

Your abstract submission has been received

Click [here](#) to print this page now.

You have submitted the following abstract to 242nd ECS Meeting (October 9-13, 2022). Receipt of this notice does not guarantee that your submission was complete, free of errors, or accepted for presentation.

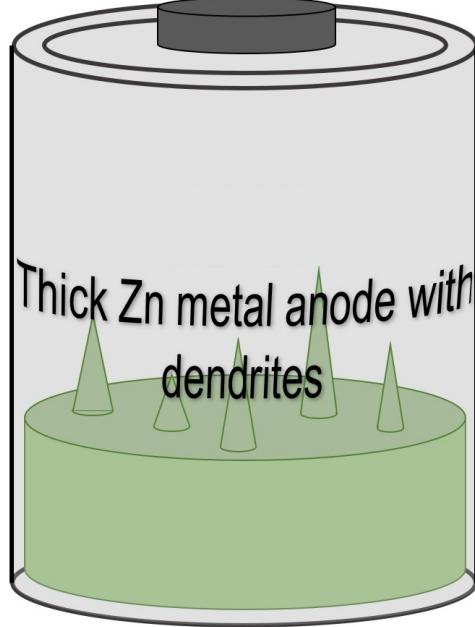
Ultrathin Stabilized Zn Metal Anode for Highly Reversible Aqueous Zn-Ion Batteries

Y. Zhang (Purdue University), H. W. Song (Korea Research Institute of Standard and Science (KRISS)), and S. Lee (Purdue University)

Abstract Text:

Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.¹ Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.² However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.³ Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn^{2+}). In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.⁴ As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.⁵

Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.⁶ However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm^{-2} is about $1.7 \mu\text{m}$. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below $20 \mu\text{m}$.


Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a $1.7 \mu\text{m}$ Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al_2O_3 , the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al_2O_3 layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al_2O_3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm^{-2} for 1 mAh cm^{-2} . Then the fabricated Zn anode was paired with MnO_2 as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al_2O_3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.

1. Obama, B., The irreversible momentum of clean energy. *Science* **2017**, *355* (6321), 126-129.
2. Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective. *J Am Chem Soc* **2013**, *135* (4), 1167-76.
3. Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc-ion Batteries. *Energy & Environmental Materials* **2020**, *3* (2), 146-159.
4. Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. *Nano Energy* **2020**, *70*.
5. Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives. *Nanomicro Lett* **2022**, *14* (1), 42.

6. Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries. *Adv Mater* **2020**, 32 (48), e2001854.

Acknowledgment

This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

Short lifespan, low energy density

Long lifespan, high energy density

Symposium Selection:

A04 - Next Generation Batteries

Submitter's E-mail Address:

zhan4151@purdue.edu

Preferred Presentation Format:

Digital

First Presenting Author

Mr. Yuxuan Zhang

Affiliation(s): Purdue University

Phone Number:

E-mail Address: zhan4151@purdue.edu

Second Author

Dr. Han Wook Song

Affiliation(s): Korea Research Institute of Standard and Science (KRISS)

Phone Number:

E-mail Address: hanugi16@kriss.re.kr

Third Corresponding Author

Prof. Sunghwan Lee

Affiliation(s): Purdue University

Address:

401 N Grant St., Purdue University

West Lafayette, IN, 47907-2021

USA

Phone Number: 7654962119
E-mail Address: sunghlee@purdue.edu

If necessary, you can make changes to your abstract between now and the deadline of [Monday, April 25 2022](#)

To review or revise your submission prior to the deadline, click on the link below; you may need to log in again with your ECS credentials.

<https://ecs.confex.com/ecs/242/gateway.cgi>

Any changes that you make will be reflected instantly. You DO NOT need to go through all of the submission steps in order to change one thing. If you want to change the title, for example, just click "Title" in the abstract control panel and submit the new title.

When you have completed your submission, you may close this browser window.

[Tell us what you think of the abstract submittal](#)

[Home Page](#)