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ABSTRACT

Fast inference of numerical model parameters from data is an important prerequisite to generate pre-
dictive models for a wide range of applications. Use of sampling-based approaches such as Markov
chain Monte Carlo may become intractable when each likelihood evaluation is computationally ex-
pensive. New approaches combining variational inference with normalizing flow are characterized
by a computational cost that grows only linearly with the dimensionality of the latent variable space,
and rely on gradient-based optimization instead of sampling, providing a more efficient approach
for Bayesian inference about the model parameters. Moreover, the cost of frequently evaluating
an expensive likelihood can be mitigated by replacing the true model with an offline trained surro-
gate model, such as neural networks. However, this approach might generate significant bias when
the surrogate is insufficiently accurate around the posterior modes. To reduce the computational cost
without sacrificing inferential accuracy, we propose Normalizing Flow with Adaptive Surrogate (No-
FAS), an optimization strategy that alternatively updates the normalizing flow parameters and surro-
gate model parameters. We also propose an efficient sample weighting scheme for surrogate model
training that preserves global accuracy while effectively capturing high posterior density regions. We
demonstrate the inferential and computational superiority of NoFAS against various benchmarks,
including cases where the underlying model lacks identifiability. The source code and numerical
experiments used for this study are available at https://github.com/cedricwangyu/NoFAS.

1 Introduction

Numerical models are increasingly used to improve our understanding of physical processes in engineering and sci-
ence. They can achieve a remarkable realism, even in the simulation of complex multi-physics phenomena, but their
computational cost typically increases with their complexity, and with the level of detail they are designed to provide.
These models might, in addition, contain a large number of parameters that need to be carefully tuned to reproduce
observed data, before predicting the response of the system of interest for unobserved conditions.

This two-step process of first inferring the model parameters from data and then using an optimally trained model
to make predictions is essential to construct digital twins, i.e., predictive digital replicas of physical systems. Recent
applications combining digital twins with Bayesian network-based probabilistic reasoning are discussed, for example,
in [1] for damage assessment in unmanned aerial vehicles, and [2] for multi-physics simulations for hypersonic sys-
tems. A recent digital twin for computational physiology is also discussed in [3] for predicting group II pulmonary
hypertension in adults.

The most expensive computational task in the development of predictive models is the solution of an inverse problem.
Since the exact posterior distribution of the model parameters given a set of observations is not available in closed
form, posterior sampling is often employed to approximate the posterior distribution numerically, using approaches
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such as Approximate Bayesian Computation (ABC) [4] and, in the presence of a tractable likelihood, Markov chain
Monte Carlo sampling (MCMC) [5]. For complicated posteriors with multiple modes or ridges, advanced MCMC
with adaptive proposal distribution were proposed in [6, 7], with more recent approaches being the Hamiltonian Monte
Carlo [8], the no U-turn sampler [9] and the differential evolution adaptive Metropolis (DREAM) algorithm [10, 11]
to cite a few.

As an alternative to sampling-based approaches, variational inference (VI) [12, 13, 14] leverages numerical opti-
mization to determine the member of a parametric family of distributions that is the closest to a desired posterior in
some sense (e.g., the Kullback-Leibler divergence). VI can be combined with stochastic optimization to improve its
efficiency for large datasets [15], but still required significant model-specific analysis. To overcome this problem,
Black-Box VI (BBVI [16]) was developed to support a larger class of models, leveraging Monte Carlo estimates of
the evidence lower bound (ELBO) and reparameterized gradients with lower variance [17, 18, 19, 20]. However, a
common approximation made by BBVI is the mean field assumption, which enforces an a-priori independence among
groups of parameters, and may introduce significant bias in the distributional approximation, when the independence
assumption does not hold. To go beyond the mean field assumption, many approaches have been proposed using,
e.g., Gaussian mixture models [14], hierarchical variational models [21], CRVI [22], copula VI [23] and others (see,
e.g., [24]), but they often rely on strong parametric assumption when introducing a dependency structure.

Normalizing flows was proposed in [25]. It can be used for VI via a composition of invertible transformations with eas-
ily computable Jacobian determinants. Simple flows were initially proposed such as planar and radial flows [25], fol-
lowed by Inverse Autoregressive Flow (IAF [26]), real-valued non volume preserving transformations (RealNVP [27]),
masked autoregressive flow (MAF [28]), generative flow (GLOW [29]), among others. Readers may refer to [30] for
an extensive overview on NF.

For both sampling-based posterior inference or approximate inference via VI through NF, the likelihood function given
the assumed model and data need to be repeatedly evaluated for new posterior samples, which becomes quickly in-
feasible, in practice, for computationally expensive models. One of the solutions is to approximate the models using

a surrogate f̂ which is generally obtained through a three-phase process, i.e., input dimensionality reduction, design
of experiments, and formulation of a surrogate from an appropriate family (see, e.g., [31]). Reduction of the inputs
dimensionality can be achieved through, e.g., principal component analysis [32], variable screening [33, 34, 35], sen-
sitivity analysis [36, 37, 38], and Bayesian updating [39, 40]. Sampling locations can be selected through factorial
design [41], central composite design [42] and orthogonal arrays [43], among others. Finally, possible surrogate for-
mulations include response surface analysis [44], Kriging [45], radial basis functions [46], boosting trees and random
forests [47], adaptive and active learning [48, 49], among others. Popular non-intrusive approaches used in computa-
tional mechanics include the generalized polynomial chaos expansion (gPC) [50, 51], stochastic collocation on tensor
isotropic and anisotropic quadrature grids [52, 53], multi-element adaptive gPC [54], hierarchical sparse grids [55],
simplex stochastic collocation [56], sparsity-promoting gPC [57], generalized multi-resolution expansion [58, 59] and,
more recently, deep neural networks [60]. Finally, other approaches in the literature have proposed the combination
of an inference task and an adaptive surrogate model. For example, a local approximant is combined with MCMC
in [61, 62, 63] and a Gaussian process surrogate coupled with Hamiltonian Monte Carlo sampling is presented in [64]
with applications to one-dimensional hemodynamics.

In this work, we combine NF and surrogate modelling and propose a new method – Normalizing Flow with Adaptive
Surrogate (NoFAS) – for variational inference with computationally expensive models. NoFAS is a general approach
for Bayesian inference and uncertainty quantification, designed to sample from complex or high-dimensional posterior
distributions with significantly reduced computational cost. This is an alternated optimization algorithm, where a
surrogate is adaptively refined using posterior samples which are, in turn, computed by optimizing the NF parameters
with respect to a loss function that depends on the surrogate. Any expressive NFs can be used, and we find the
autoregressive NFs to be effective in approximating even complicated posterior distributions. Our contributions are
listed below.

• We combine variational inference, normalizing flow and surrogate modelling in a data efficient and compu-
tationally affordable framework to obtain inference on true model parameters.

• We propose an efficient sample weighting scheme for the loss function that remembers samples in the pre-
grid (providing global surrogate accuracy) as well as more recent samples acquired during the NF iterations.
Older samples acquired during the early stages of VI are instead progressively forgotten.

• We demonstrate the application of NoFAS in multiple experiments with different types of models, and show-
case its advantages over the fixed-surrogate model approach, MCMC and BBVI with the mean-field assump-
tion, for indentifiable and non-identifiable models.

The paper is organized as follows. In Section 2, we review normalizing flow, surrogate modeling and present our
NoFAS approach. In Section 3, we apply NoFAS for the solution of inverse problems in four numerical experiments,
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and compare its performance in posterior inference to an approach where the surrogate is kept fixed, MH, and BBVI.
We provide some discussions and final remarks in Section 4.

Table 1: List of mathematical symbols.

Symbol Description Symbol Description

b Batch size for NF. M Total size of the adaptive
samples stored.

b1, . . . , bL+1 Bias terms in MADE. n Total number of observations.
β0 Pre-grid weight factor. p Target density function.
β1 Memory decay factor. π(·) Prior distribution.

samples in loss.
c Calibration frequency. qk(zk) Density function of zk.
d Latent space dimensionality. ϕF , ϕS Optimizers for NF and

surrogate update.
D(·‖·) KL-Divergence. σj , j = 1, · · · ,m Prescribed standard deviations

in log-likelihood.
fµi

, fαi
MADE networks in MAF. σ Soft-max activation.

f True model. S0 Pre-grid size.

f̂ Surrogate model. TF Total number of NF iterations.
Fk, F NF bijections and their TS Total number of surrogate update

composition. iterations.

h1, . . . , hL+1 Activation functions in MAF. V,MV ,W,MW MAF: Mask matrices used in MAF.
G Queue for sample storage x, X Observations and and their space.

for calibration.
k,K Current and total number z, Z Latent variables and their space.

of NF layers. y Variables in hidden MADE layer.
ℓ(z; f,x) Likelihood function. ZG Adaptively selected

training set for f̂
λ, λk,Λ,Λk NF parameters and their space. ZP Pre-grid.

Lj(·) Loss function. {z(i)K }bi=1 Batch samples.

mi(k) functions returning an integer zk Output from the k-th NF layer.
from 1 to d.

m Output space dimensionality, ω∗ Optimal surrogate model parameters.
x ∈ R

m.

2 Method

In this section, we first review the framework of NF for VI, focusing on MAF, and RealNVP in Section 2.1. We then
discuss a surrogate model formulation for computationally expensive models in Section 2.2. We introduce NoFAS in
Section 2.3, along with its algorithm. The notation introduced in this section is summarized in Table 1.

2.1 Autoregressive Normalizing Flow

NF uses the map F : R
d × Λ → R

d with parameters λ ∈ Λ to transform realizations from an easy-to-sample
distribution, such as z0 ∼ N (0, Id), to samples from a desired target distribution.

Specifically, F is obtained as a composition of K bijections Fk : Rd × Λk → R
d, each parameterized by λk ∈ Λk:

F (z0;λ) = [FK( · ;λK) ◦ FK−1( · ;λK−1) ◦ · · · ◦ F1( · ;λ1)] (z0), where zk = Fk(zk−1;λk) for k = 1, . . . ,K.
Since Fk( · ;λk) is a bijection from zk−1 to zk, qk(zk), the distribution of zk, can be obtained by the change of
variable

qk(zk) = qk−1(zk−1)

∣∣∣∣det
∂F−1

k

∂zk−1

∣∣∣∣ = qk−1(zk−1)

∣∣∣∣det
∂Fk

∂zk−1

∣∣∣∣
−1

. (1)
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Taking the logarithm and summing over k, Eqn. (1) becomes

log qK(zK) = log q0(z0)−
K∑

k=1

log

∣∣∣∣det
∂Fk

∂zk−1

∣∣∣∣ . (2)

The goal is to determine an optimal set of parameters λ∗ = (λ∗1, λ
∗
2, · · · , λ∗K) ∈ Λ1 × Λ2 × · · · × ΛK = Λ so the

density qK can approximate a target density p. A commonly used objective (loss) function to achieve this goal is the
flow-based free energy bound, expressed as

F(x) = EqK(z) [log qK(z)− log p(x, z)] = Eq0(z0) [log qK(zK)− log p(x, zK)]

= Eq0(z0)[log q0(z0)]− Eq0(z0)[log p(x, zK)]− Eq0(z0)

[
K∑

k=1

log

∣∣∣∣det
∂Fk

∂zk−1

∣∣∣∣

]
.

(3)

The expectations in Eqn. (3) are approximated by their Monte-Carlo (MC) estimates using samples z0 from the basic
distribution q0. However, the computation of the Jacobian determinants in Eqn. (3) may be computationally intensive,
especially when using a large number of bijections. To efficiently compute the determinants, the coupling layer-based
NF with block-triangular Jacobian matrices (RealNVP [27] and GLOW [29]), and autoregressive transformation-based
NF with lower-triangular Jacobian matrices (MAF [28] and IAF [26]) have been proposed. In this study, we focus on
autoregressive transformations in NF.

According to the chain rule, the joint distribution p(z) can be written as p(z) = p1(z1)
∏d

i=2 pi(zi|z1, . . . , zi−1). If
the components of z are not independent, the autoregressive flow can be applied to capture their dependency. For
example, MAF [28] uses p(zi|z1, . . . , zi−1) = φ((zi − µi)/e

αi), where φ is the density function of the standard
normal distribution, µi = fµi

(z1, . . . , zi−1), αi = fαi
(z1, . . . , zi−1), and fµi

and fαi
are masked autoencoder neural

networks (MADE [65]). Let z be the input and ẑ be the output of a MADE network having L hidden layers with dl
nodes per layer, for l = 1, · · · , L. The mappings between the input and the first hidden layer, among hidden layers,
and from the last hidden layer to the output are, respectively





y1 = h1(b1 + (W 1 ⊙M1)z), where M1 is d1 × d and M1
u,v = ✶m1(u)≥v

yl = hl(bl + (W l ⊙M l)yl−1), where M l is dl × dl−1 and M l
u,v = ✶ml(u)≥ml−1(v)

ẑ = hL+1(bL+1 + (WL+1 ⊙ML+1)yL) where ML+1 is d× dL and ML+1
u,v = ✶u>mL(v),

where hl is the activation function between layer l−1 and l for l = 1, · · · , L+1, ml(k) is a pre-set or random integer

from 1 to d− 1, bl and W l are the bias and weight parameters for l = 1, . . . , L+ 1.

The matrix
∏1

l=L+1 M
l, encoding the dependence between the components of the input z and output ẑ, is strictly

lower diagonal, thus satisfying the sought autoregressive property [65]. The masks M1, . . . ,ML+1 enable the com-
putation of all µi and αi in a single forward pass [28]; additionally, the Jacobian of each MAF layer is lower-triangular,

with determinant equal to | det ∂f/∂z|−1 = exp(
∑d

i=1 αi).

Between consecutive autoregressive layers and after the basic distribution, batch normalization [66] can be used to
normalize the outputs from the previous layer so they have approximately zero mean and unit variance [28]. Batch
normalization accelerates training by reducing the oscillations in the magnitudes of the flow parameters between con-
secutive layers, without complicating the computation of the Jacobian determinant in Eqn. (3). A batch normalization
layer with input z and output ẑ, parameterized through β and γ, is

ẑ = FB(z) = β+(z −m)⊙ (v + ǫ)−1/2 ⊙ eγ and

∣∣∣∣det
∂FB

∂z

∣∣∣∣ = exp

[
∑

i

(
γi −

1

2
log(vi + ǫ)

)]
,

where m and v refer to the sample mean and variance of z, respectively, and the tolerance ǫ (e.g. 10−5) ensures
numerical stability if v has near zero components.

Besides MAF, RealNVP is another commonly used auto-regressive flow of the form
{
ẑi = zi for i ≤ d′
ẑi = zi ⊙ eα + µ for d′ < i ≤ d ,

where µ = fµ(z1, . . . , zd′) and α = fα(zd′+1, . . . , zd). The output ẑ consists of identical copies of the input z for
the first d′ < d elements, while the remaining d− d′ components are transformed by the MADE autoencoders fµ and
fα. MAF could be seen as a generalization of RealNVP by setting µi = αi = 0 for i ≤ d′ [28]. We employ both
RealNVP and MAF in our experiments in Section 3.
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2.2 Surrogate Likelihood for Computationally Expensive Models

Consider a black-box model as a generic map f : Z → X between the random inputs z = (z1, z2, · · · , zd)T ∈ Z and
the outputs (x1, x2, · · · , xm)T ∈ X , and assume n observations x = {xi}ni=1 ⊂ X to be available. Without loss of
generality, we assume x to come from a Gaussian distribution with mutually independent components (other distribu-
tional assumptions can be made, depending on the specific problem). With the Gaussian distribution assumptions, the
log-likelihood of z given x is

ℓ(z; f,x) = −1

2

n∑

i=1

m∑

j=1

(
f(z)j − xij

σj

)2

− n ·m
2

log(2π)− n
m∑

j=1

log(σj).

Our goal is to infer z and to quantify its uncertainty given x. We employ a variational Bayesian paradigm and
sample from the posterior distribution p(z|x) ∝ ℓ(z; f,x)π(z), with prior π(z) via NF. VI-NF requires the evalu-
ation of the gradient of the cost function in Eqn. (3) with respect to the NF parameters λ, replacing p(x, zK) with
p(x|zK)π(zk) = ℓ(zK ; f,x)π(zk), and approximating the expectations with their MC estimates. However, the likeli-
hood function needs to be evaluated at every MC realization, which can be costly if the model f(z) is computationally
expensive. In addition, automatic differentiation through a legacy (e.g. physics-based) solver may be an impractical,
time-consuming, or require the development of an adjoint solver.

One solution is to replace the model f with a computationally inexpensive surrogate f̂ : Z × Ω → X parameterized
by ω ∈ Ω, whose derivatives can be obtained at a relatively low computational cost, but intrinsic bias in the selected

surrogate formulation (i.e., f(z) /∈ {f̂(z;ω)|∀ω ∈ Ω}), a limited number of training examples, and locally optimal ω

can compromise the accuracy of f̂ .

To resolve these issues, we propose to update the surrogate model adaptively by smartly weighting the samples of z
from NF. Once a newly updated surrogate is obtained, the likelihood function is updated, leading to a new posterior
distribution that will be approximated by VI-NF, producing, in turn, new samples for the next surrogate model update,
and so on. In the next section, we will introduce this new approach in detail and provide its algorithm.

2.3 Variational Inference via Normalizing Flow with an Adaptive Surrogate (NoFAS)

The computational cost of training a surrogate model with an uniform accuracy over the entire parameter space Z
grows exponentially with the problem dimensionality (see, e.g., [42]). In such a case, many training samples would
correspond to model outputs that are relatively far from the available observations x and contribute minimally to
learning the posterior distribution of z given x, leading to a massive waste of computational resources.

Motivated by this observation, we propose a strategy to alternate gradient-based updates for the surrogate model
parameters ω and NF parameters λ. Once every c normalizing flow iterations (calibration frequency), a sub-sample

from the batch {z(s)
K }bs=1 (used in Eqn. (3) to evaluate the MC expectations) is used to provide additional training

samples to adaptively improve the surrogate f̂ . This approach, referred to as VI using Normalizing Flow with an
Adaptive Surrogate (NoFAS for short), is illustrated in Figure 1 and its algorithmic steps are presented in Algorithm 1.

NoFAS starts with an initial surrogate model trained from an a-priori selected pre-grid, ZP = {z(s)
P }SP

s=1 of realizations
from Z (typically tensor product grids or low-discrepancy sequences [67]). At every (j · c), j ∈ N flow parameter

update, SG < b realizations ZG,j = {z(t)
G,j}SG

t=1 are sub-sampled at random from the batch {z(s)
K }bs=1. The solutions

from the true model f(ZG,j) are computed and used to update the surrogate model f̂ on the training set

ZT =
(
∪jα=max(1,j−M+1)ZG,α

)
∪ ZP . (4)

Additionally, the sequentially collected samples carry different weights in the loss function for the surrogate model
update; more recently collected parameter samples ZG receive a larger weight than those collected earlier so to achieve
better accuracy around regions of high posterior density progressively discovered by NF. Larger weights are also
assigned to the pre-grid realizations ZP , since they are responsible to ensure some generalizability of the trained
surrogate over the parameter space Z, rather than just capturing local features. Taken together, if a l2 norm is used
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Observation
x

Likelihood
ℓ(z; f̂ ,x)

NN
Surrogate f̂

Model f

Prior π(z)

Basic Dist.
q0(z)

Posterior
p(z|f̂ ,x)

NF F (z;λ)
Approx.
posterior
qK(zK)

Sample ZG

from NF

Pre-grid ZP
train

train

calibrate

Figure 1: Illustrative Diagram for the NoFAS algorithm.

(but other types of loss can be chosen), the surrogate model optimization loss would take the form

Lj(β0, β1, ω, ZP , ZG) = β0

SP∑

s=1

‖f̂(z(s)
P ;ω)− f(z(s)

P )‖22/SP+

+(1− β0)
j∑

α=max(1,j−M+1)

SG∑

s=1

σ(exp(−β1(j − α)) ‖f̂(z(s)
G,α;ω)− f(z

(s)
G,α)‖22/SG,

(5)

where M denotes the memory of the proposed adaptive scheme, i.e., the number of the more recent realizations in
ZG included in the loss, β0 represents the weight assigned to the pre-grid realizations, β1 > 0 defines the rate of
exponentially decaying weights for ZG,α, α = max(1, j −M + 1), . . . , j (with realizations ordered from the most
recent j to the least recent max(1, j −M + 1)) and σ(·) is the softmax function.

In our numerical experiments, the behaviors of batch {z(s)
K }bs=1 could be observed to evolve in three phases. In the

first phase, the samples are aggregated in clusters occupying a small region of the parameter space. In the second
phase, the aggregated clusters move together to a region of high posterior density, followed by a third stage where
they are scattered to better cover the posterior distribution. Batch sub-samples extracted in the first two phases can
be similar in some cases and lack diversity to provide a good characterization of the local response of the true model
f , negatively affecting convergence. Additionally, evaluating the true model at almost identical inputs (parameter
samples) is a waste of computational resources. A possible remedy is to perturb the parameter realizations by injecting
Gaussian noise, before storing them in ZG,j . For the experiments presented in Section 3, we added Gaussian noise

N (0, ε2) if the batch has a standard deviation < ε and we used ε = 0.1. We conjecture that several factors affect
the choice of ε, such as the prior knowledge about the parameters and the local curvature of the true model response;

6
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future work is needed to better understand this phenomenon and to develop a systematic approach for choosing ε.

Algorithm 1: NoFAS algorithm.

input : Model f , observations x, batch size b, calibration frequency c and size SG

Generate initial surrogate model training set ZP = {z(s)
P }S0

s=1 from prior π(z);

Let ω0 = argminω∈Ω L(ω;ZP ) and initialize surrogate f̂(· ;ω0);

Initialize† flow parameters λ0 and set t = 0;
Initialize hyper-parameters (e.g. learning rate η0, learning scheduler) for optimizer ψF (λ,F(x)) over λ that

minimizes the free energy bound in Eq. (3);
while t ≤ TF or |Ft(x)−Ft−1(x)| > ǫ do

Obtain a batch of samples {z(s)
0 }bs=1 from a basic distribution (e.g., N (0, Id));

Compute z
(s)
K = F (z

(s)
0 ;λt), s = 1, . . . , b;

if (t mod c == 0) then

Randomly draw a subset of {z(s)
K }bs=1 and push it into ZG,t;

Reset the parameters of the scheduler‡ for optimizer ψS(ω,Lt(β0, β1, ω, ZP , ZG)) over ω, minimizing
the surrogate loss in Eq. (5);

for τ = 0, 1, · · · , TS do

ωτ+1 ← ψ
(t)
S (ωτ , Lt(β0, β1, ω, ZP , ZG));

Update the likelihood ℓ(z
(s)
K ; f̂(· ;ωTS

),x) for s = 1, · · · , b;
λt+1 ← ψF (λt,F(x));
t← t+ 1;

† We used the uniform Glorot initialization [68] in the experiments in Section 3. However, other initialization schemes, such as

Kaiming Uniform [69] can also be used.
‡The learning rate scheduler parameter reduces the learning rate at every iteration. Our algorithm resets the learning rate back to

η0 at every surrogate model update.

3 Experiments

In this section, we run four numerical experiments to demonstrate the application and performance of NoFAS in
parameter estimation, for models formulated as algebraic or differential equations. The first two experiments have
identifiable model parameters, the model in the third experiment has highly correlated parameters, and we purposely
design an over-parameterized model in the fourth experiment to examine the robustness of the NoFAS procedure for
variational inference. In each of the four experiments, we employed a fully connected neural network with two hidden
layers with 64 and 32 nodes, respectively, as the surrogate model, and set β0 = 0.5 and β1 = 0.1. We investigated
numerically the sensitivity of NoFAS to different choices of β0 and β1 and the results are presented in Appendix D.1.
The results suggest that NoFAS performs well for β0 ∈ [0.5, 0.7] and β1 ∈ [0.01, 1.0]. We also compare NoFAS with
MH, BBVI, and NF with a fixed surrogate model, evaluating their performance based on the accuracy in the recovered
posterior and predictive posterior distributions, and the computational cost savings as measured by the number of true
model evaluations.

3.1 Experiment 1: Model with Closed-form Solution

The output from model f : R2 → R
2 in this experiment has the closed-form expression

f(z) = f(z1, z2) = (z31/10 + exp(z2/3), z
3
1/10− exp(z2/3))

T . (6)

Observations x̃ are generated as
x̃ = x∗ + 0.05 |x∗| ⊙ x0, (7)

where x0 ∼ N (0, I2). We set the true model parameters at z∗ = (3, 5)T , with output x∗ = f(z∗) = (7.99,−2.59),
and simulated 50 sets of observations from Eqn. (7). The likelihood of z given the observed data x̃ is Gaussian and
we adopt a noninformative uniform prior π(z).

For surrogate model estimation, we set the maximum number of true model evaluations – referred to as the budget
– at 64, and examine two scenarios for allocating the budget. In the first scenario, the entire budget is assigned to a

2-dimensional 8 × 8 = 64 pre-grid Zp. The surrogate f̂ is learned from ZP only, and never updated. In the second

7
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Figure 3: Parameters and model solutions from Experiment 1 using a MH sampler. The blue points represent the
parameter samples of z from MH (left plot), the corresponding model solutions x (right plot). A green star represents
the true parameters z∗ (left) and model solutions x∗ (right). Red dots indicate the observations x̃. A contour plot of
the true posterior distribution is also superimposed to the posterior samples on the left plot.

3.2.1 Experiments 2: Two-element Windkessel Model

The two-element Windkessel model was developed by Otto Frank [70] and, when applied to the flow-pressure relation
in the aorta, is successful in explaining the exponential decay of the aortic pressure following the closure of the aortic
valve. This model requires two parameters, i.e., a systemic resistance R ∈ [100, 1500] Barye· s/ml and a systemic
capacitance C ∈ [1 × 10−5, 1 × 10−2] ml/Barye, which are responsible for its alternative name as RC model. We
provide a periodic time history of the aortic flow in Figure 4 and use the RC model to predict the time history of the
proximal pressure Pp(t), specifically its maximum (max), minimum (min) and average (ave) values over a typical
heart cycle, while assuming the distal resistance Pd(t) as a constant in time, equal to 55 mmHg. In our experiment,
we set the true resistance and capacitance as z∗1 = R∗ = 1000 Barye· s/ml and z∗2 = C∗ = 5 × 10−5 ml/Barye and
determine Pp(t) from a RK4 numerical solution of the following algebraic-differential system of two equations

Qd =
Pp − Pd

R
,

dPp

dt
=
Qp −Qd

C
, (8)

where Qp is the flow entering the RC system and Qd is the distal flow (see Figure 4). Synthetic observations are
generated by adding Gaussian noise to the true model solution x∗ = (Pp,min, Pp,max, Pp,ave) = (78.28, 101.12, 85.75),
i.e., x̃ follows a multivariate Gaussian distribution with mean x∗ and a diagonal covariance matrix with entries 0.05x∗i ,
where i = 1, 2, 3 corresponds to the maximum, minimum, and average pressures, respectively. The aim is to quantify
the uncertainty in the RC model parameters given 50 repeated pressure measurements. We imposed a non-informative
prior on R and C. Also note that the two-element Windkessel model is identifiable. The resistance R can be estimated
based on the mean flow and pressure, while the capacitance C directly affects the pulse pressure (i.e. the difference
between systolic and diastolic pressure).

Similar to Experiment 1, we consider a total budget of 64 output evaluations via the true model f and compare NoFAS
with the fixed surrogate approach, a MH sampler, and BBVI. For NoFAS, M = 20 batches of SG = 2 samples
per batch are collected at a calibration frequency of c = 1000 NF parameter updates. The NF architecture is MAF
composed of five alternated batch normalization and 5 MADE layers, each consisting of a MADE autoencoder with 1
hidden layer of 100 nodes and ReLU activation.

The results from NoFAS and from NF with a fixed surrogate are presented in Figure 5. The approximate posterior
distribution of the RC model parameters with a fixed surrogate is clearly biased, and so is the corresponding predictive
posterior distribution. In contrast, NoFAS provides significantly more accurate results.

The results from BBVI and MH are presented in Figure 6. BBVI uses a normal variational distribution. For the RC
model, where no posterior correlation between parametersR and C is expected, BBVI with the mean field assumption
captures the posterior and predictive posterior distributions accurately. MH operates on a fixed surrogate trained using
a 30 × 30 pre-grid and requires 2 × 106 true model evaluations. A total of 1800 effective posterior samples were
generated using a burn-in and thinning rate of 10% and 1/1000, respectively. Even though this fixed surrogate is
trained from a large number of examples, it still introduces bias in the estimated parameters. The posterior samples
from MH deviate instead significantly from the true model parameters, and so do the posterior predictive samples,
though less pronounced.
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Figure 6: Parameters and model solutions from BBVI (first row) and MH (second row) for Experiment 2. Symbols
and colors are consistent with those in Figure 2.

of the algebraic-differential system

Qp =
Pp − Pc

Rp
, Qd =

Pc − Pd

Rd
,

dPc

dt
=
Qp −Qd

C
, (9)

where the distal pressure is set to Pd = 55 mmHg. Synthetic observations are generated from N(µ,Σ), where
µ = (f1(z

∗), f2(z
∗), f3(z

∗))T = (Pp,min, Pp,max, Pp,ave)
T = (100.96, 148.02, 116.50)T and Σ is a diagonal matrix

with entries (5.05, 7.40, 5.83)T . The budgeted number of true model solutions is 216; the fixed surrogate model is
evaluated on a 6×6×6 = 216 pre-grid while the adaptive surrogate is evaluated with a pre-grid of size 4×4×4 = 64
and the other 152 evaluations are adaptively selected. The NF architecture and hyper-parameter specifications are the
same as for the RC model, except a more frequent surrogate update of c = 300 and a larger batch size b = 500.

The results are presented in Figure 7. The posterior samples obtained through NoFAS capture well the non-linear
correlation among the parameters and generate a fairly accurate posterior predictive distribution that overlaps with the
observations but has a slightly larger dispersion, as expected. In contrast, NF with a fixed surrogate fails to capture
the parameter correlations and the complex shape of the posterior distribution; in addition, the posterior predictive
samples deviate significantly from the observed data.

The results from the BBVI and MH are shown in Figure 8. BBVI used a Gaussian variational distribution; 3600
posterior samples were obtained from 4× 106 MCMC iterations with a burn-in and thinning rate of 10% and 1/1000
respectively. Since the RCR model parameters are highly correlated, it is not surprising that the mean field assumption
for BBVI leads to biased posterior distributions. MH produces better results than BBVI, but still has some bias in the
posterior predictive distribution, particularly in the tails. Similar to the RC model, a fixed surrogate model is used for
MH, trained with a large pre-grid consisting of 203 = 8000 samples.

This experiment showcases the inferential and computational superiority of NoFAS over BBVI with the mean field
assumption and MH with a fixed surrogate trained from a large training dataset, for cases where there is a strong
posterior correlation among parameters.

3.3 Experiment 4: Non Isomorphic Sobol Function

In this experiment, we consider a mapping from a five-dimensional parameter vector z ∈ R
5 onto a four-dimensional

output

f(z) = Ag(ez). (10)
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Figure 7: Parameter posterior samples and corresponding model solutions for the RCR model. The two columns
on the left show the results of NoFAS, while the two columns on the right contain the results for NF with a fixed
surrogate. The first and third columns show the posterior samples, and the second and fourth columns show the
posterior predictive samples (blue) and observations (red). The green stars represent ether the true parameters R∗

p, R∗
d,

C∗ (1st and 3rd columns) or the corresponding model solutions (2nd and 4th columns).

where gi(r) = (2 · |2 ai − 1|+ ri)/(1 + ri) with ri > 0 for i = 1, . . . , 5 is the Sobol function [71] and A is a 4× 5
matrix. We also set

a = (0.084, 0.229, 0.913, 0.152, 0.826)T and A =
1√
2



1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1


 .

The true parameter vector is set at z∗ = (2.75, −1.5, 0.25, −2.5, 1.75)T . The Sobol function is bijective and analytic
but f : R5 → R

4 leads to an over-parameterized model and non-identifiability. This is also confirmed by the fact that
the curve segment γ(t) = g−1(g(z∗)+v t) ∈ Z gives the same model solution as x∗ = f(z∗) = f(γ(t)) ≈ (1.4910,
1.6650, 1.8715, 1.7011)T for t ∈ (−0.0153, 0.0686], where v = (1,−1, 1,−1, 1)T . This is consistent with the
one-dimensional null-space of the matrix A. Since the output gi(r) of the Sobol function is (1, 2|2ai − 1|], hence

t ∈ ⋂5
i=1((1− gi(z∗))/vi, (2|2ai − 1| − gi(z∗))/vi] = (−0.0153, 0.0686].

Similar to the other 3 experiments, we generated the model output observations from a Gaussian distribution as

x = x∗ + 0.01 · |x∗| ⊙ x0, where x0 ∼ N (0, I5). (11)

The aim is to obtain posterior samples on the latent variables z and quantify the uncertainty given the observed data.
The likelihood function is Gaussian and we impose a uniform prior on z. The fixed surrogate model was estimated on
a grid of 45 = 1024 points; for NoFAS, the adaptive surrogate model was initially trained on a 35 = 243 pre-grid, and
then successively updated using SG = 12 samples from the b = 250 batches computed every c = 200 NF parameter
updates. We used a ReLU-activated RealNVP NF with 15 layers, where each linear masked coupling layer contains
one hidden layer of 100 nodes, and 15 batch normalization layers are added before each RealNVP layer. A RMSProp
optimizer was used, with the learning rate and its exponential decay factor at 0.0005 and 0.9999, respectively.
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Figure 8: RCR model parameters and corresponding outputs from BBVI (left two columns) and MH (right two
columns) in Experiment 3. Symbols and colors are consistent with those in Figure 7.

The marginal posterior histograms for the 5 model parameters and their pairwise 2-dimensional scatter plots are
presented in Figure 9. Additionally, since the model is non-identifiable, the 5-dimensional joint posterior distribution
has a ridge γ(t) for t ∈ (−0.0153, 0.0686], highlighted in red in the pairwise plots. In the plots of z2 vs. the other latent
variables, the ridge is also characterized by a vertical or horizontal red segment, suggesting z2 becomes unimportant
sufficiently away from its true value z2 ≈ 0.223 and making the inference of this parameter particularly challenging.
The samples from the posterior predictive distributions are presented in Figure 10. The model outputs generated from
the posterior predictive distributions overlap well with the actual observations.

The results from the NF with a fixed surrogate are presented in Figure 11. Consistent with the findings in the other
experiments, the posterior samples are biased and deviate from the true parameter values. The samples from the
posterior predictive distributions are presented in Figure 12, which also shows some deviation of the model outputs
generated from the posterior predictive distributions from the actual observations. We also generated posterior samples
using a MH sampler. Due to the non-identifiability of the model, MH had trouble converging on parameter z2 and
the Markov chains for z2 moved freely in the region where this parameter is unimportant, despite a satisfactory
convergence for the other 4 parameters. To mitigate this problem, we constrained the prior by forcing z ∈ [−4, 4]5,
which leads to convergence on all parameters, as measured by the Gelman-Rubin metric [72]. However, the Markov
chains still suffered from poor mixing and we used a burn-in of 10% and a thinning interval of 1 × 106 to reduce
the sample auto-correlation, generating 5400 posterior samples. The results are presented in Figure 13 and Figure 14.
The results suggest that MH can provide parameter estimates compatible with those produced by NoFAS but might
have to leverage stronger prior knowledge and requires substantially more samples for models with non-identifiable
parameters.

4 Discussion

We propose NoFAS, an approach to efficiently solve inverse problems by combining optimization-based inference
with the adaptive construction of surrogate models using samples from NF. The number of forward model evaluations
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Figure 9: Marginal histograms and pairwise scatter plots of the posterior samples from NoFAS in Experiment 4. The
vertical green lines and the green stars represent the true parameters z∗; the horizontal red lines indicate admissible
parameter ranges compatible with the output f(z∗), and the blue points represent the posterior samples.

can be greatly reduced by adaptively training and improving the surrogate with samples from high-density posterior
regions that are progressively discovered by NF. We also propose a flexible sampling weighting mechanism, where
a number of parameter realizations from a pre-selected grid and the most recent training samples are assigned larger
weights in the loss function, which significantly improves the inference results compared to NF with uniform weights.
The trade-off between global and local surrogate accuracy can be tuned by deciding the relative budget to assign either
to the pre-grid or to sample locations adaptively selected through the NF iterations. Based on our empirical studies,
the assignment of the 20% to 30% of the solution budget to the pre-grid produces generally accurate posterior and
posterior predictive distributions, even if characterized by complex features, such as the presence of multiple modes
or ridges. Assigning an excessive budget to the pre-grid can lead to poor approximation for the posterior distribution,
whereas an insufficient number of pre-grid samples can cause slow convergence or even divergence.

NoFAS requires several hyperparameters to be specified or tuned, including the batch size b, the calibration interval
c, and the calibration size SG. Specifically, b needs to exceed a certain threshold for NoFAS to converge. We tested
different batch sizes on the RCR model and observed that the minimal loss stops decreasing for b > 50, but b needs
to be at least 400 to achieve accurate uncertainty quantification. We also tested various c and found that small c tends
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Figure 10: Marginal histograms and pairwise scatter plots for the predictive posterior distribution from NoFAS in
Experiment 4. The histograms on the diagonal show the marginal distributions of the posterior predictive samples for
the model solutions, the green vertical lines indicate the true model solution, and the red curves are the kernel density
estimation. For the non-diagonal scatter plots, the blue, red, and green dots represent the posterior predictive samples,
the observations and the true model solutions, respectively.

to produce too much surrogate adaptation in the early stage of NoFAS, consuming the budget too quickly or even
ran out before convergence. Conversely, large c could lead to inaccurate gradients, delaying the exploration of high
posterior density regions. Note that approximation of multi-modal posterior distributions typically requires a higher
SG than for uni-modal distributions. In our preliminary experiments on bimodal posterior distributions (not shown),
using SG = 2 was sufficient to locate both modes. A large SG leads to a fast consumption of the budget in the early
stage of NoFAS, while a small SG could lead to an inaccurate surrogate. We recommend c and SG be jointly selected
by taking the parameter space dimensionality d into account. Generally speaking, problems characterized by a higher
dimensionality d would require a larger b/SG ratio. As for the pre-grid weight factor β0 and memory decay factor β1,
β0 represents the proportion of loss computed from the pre-grid in Eqn. (5), while β1 controls the decay rate for the
proportion of the loss function computed from adaptively collected samples from most to least recent. The larger β0,
the more impact the pre-grid samples will have on the results from NoFAS; the larger β1, the shorter the memory on
adaptively collected samples. We recommend values of β0 ∈ [0.5, 0.7] and β1 ∈ [0.01, 1.0] based on our experiment
results.

NoFAS is designed to be agnostic with respect to the NF formulation, provided the selected flow is sufficiently ex-
pressive. In our experiments, we used RealNVP and MAF. The latter requires fewer parameters than the former to

15



A PREPRINT - APRIL 29, 2022

Figure 11: Marginal histograms and pairwise scatter plots of the posterior samples for Experiment 4 obtained via NF
with a fixed surrogate. Symbols and colors are consistent with those in Figure 9.

converge and has a smaller computational cost per iteration. In addition, the three stages observed for the posterior
samples discussed in Section 2.3 tend to be more evident when using MAF rather than RealNVP.
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Appendix

A. Experiments with Black-Box Variational Inference

Black-Box Variational Inference (BBVI) [16] approximates a target density p(x, z) with a distribution q(z|λ) from
a parametric family, by minimizing the Evidence Lower BOund (ELBO) defined as L = Eq(z|λ)[log p(x, z) −
log q(z|λ)] (or the KL-Divergence D(q(z|λ)‖p(x, z))) and by reducing the variance of the stochastic gradient of
the ELBO by Rao-Blackwellization or control variate estimators [16].

We applied BBVI on two ODE hemodynamic models (experiments 2 and 3) assuming a Gaussian variational distri-
bution and minimizing the ELBO with RMSprop. Results for RC model are shown in Figure 6 and RCR model in
Figure 8. The BBVI estimates for the RC model appear accurate. However, this is not the case for the RCR model.
Not only the correlations between Rd and Rp could not be captured due to the mean-field assumption in BBVI, but
the posterior parameter estimates were found to be significantly biased.

B. Experiments with Metropolis Hastings

Metropolis Hastings (MH) is a Markov Chain Monte Carlo (MCMC) method [5], where a candidate sample z′ is
first generated given zt from a pre-specified and fixed proposal distribution q(z′|zt), and then accepted as zt+1 =
z′ with probability A(z′, zt) = min(1, p(z′) q(zt|z′)/ (p(zt)q(z

′|zt))) or rejected (zt+1 = zt) with probability
1−A(z′, zt).

We applied MH in all four experiments using a multivariate Gaussian proposal distribution with a diagonal precision
matrix. Additional details on the hyper-parameters and convergence metric are presented in Table 2. The results
provided by MH are shown in Figures 3, 6, 8 and 13 for Experiment 1, 2, 3 and 4, respectively. In addition, fixed
surrogate models are employed for the RC and RCR models (experiments 2 and 3) to speed up the inference task.
Specifically, a uniform 30× 30 = 900 grid is used for the RC surrogate and a uniform 20× 20× 20 = 4000 grid for
RCR. The true model is used in Experiments 1 and 4.

In Experiment 1, MH performs as well as NoFAS but requires the computation of millions of true model solutions.
Bias in the estimated parameters and model solutions is observed for the RC and RCR model respectively, likely
due to the use of surrogate models. For Experiment 4, the parameter z2 becomes unimportant at a certain distance
from its true value, and further changes in z2 leave the posterior distribution unaltered, resulting in bad mixing and
compromising the convergence of MH. Introduction of a more informative uniform prior on [−4, 4]5 mitigates this
problem, resulting in a similar performance to NoFAS.

Experiment Var-Cov matrix # of iterations Burn-in Thinning Accept rate Gelman-Rubin metric

1: Closed-Form 0.01 I2 4× 106 10% 1000 45.53% (1.0020, 1.0014)

2: RC diag(0.01, 0.1) 2× 106 10% 1000 60.87% (0.9996, 1.0013)

3: RCR 0.025 I3 4× 106 10% 2000 31.42% (1.0605, 1.0428, 1.0307)

4: Sobol 0.03 I5 6× 108 10% 100000 43.23% (0.9984, 0.9983, 0.9982, 0.9985, 0.9983)

Table 2: Details for the Metropolis-Hastings algorithm in the four proposed numerical experiments.

C. NoFAS Hyperparameters

All experiments used the RMSprop optimizer and an exponential scheduler with decay factor 0.9999. All normalizing
flows use ReLU activations and the maximum number of iterations is set to 25001. MADE autoencoders or linear
masked coupling layers contain 1 hidden layer with 100 nodes. In addition, we use β0 = 0.5 and β1 = 0.1 in all
experiments. The recommended values for the batch size are reported in Table 3. Based on our experiments with
different batch sizes, larger batch sizes lead to more stable results.
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Experiment NF type NF layers Batch size Budget Updating size Updating interval Learning rate

Closed-form RealNVP 5 200 64 2 1000 0.002
RC MAF 5 250 64 2 1000 0.003
RCR MAF 15 500 216 2 300 0.003
Sobol RealNVP 15 250 1023 12 250 0.0005

Table 3: Hyper parameters of NoFAS used in all four experiments

D. Sensitivity Analysis

D1. Pre-grid weight factor β0 and memory decay factor β1

We examined the performance of NoFAS varying β0 from 0.2 to 0.8 and β1 ∈ {0.01, 0.1, 1, 10}. The results are
shown in Figure 15. The top heat map suggests that all the examined β0 and β1 values lead to similar loss function
values given a sufficiently large number of iterations, but they converge with different speeds (heat map in the middle).
Assigning extreme values to β0 would slow down the convergence significantly, preventing the model to achieve
sufficient local accuracy; on the other hand, too much emphasis on local regions of the parameter space would result
in a surrogate model that largely ignores the global structure of f , possibly producing biased estimates. Using a large
β1 would put too much weight on the most recent training samples leading to slow convergence (see heat map for the
convergence iteration number) and instability in the loss function (bottom heat map). In conclusion, we recommend
setting β0 ∈ [0.5, 0.7] and β1 ∈ [0.01, 1.0].

D2. NF Paramater Initialization

We used the RCR example (Section 3.2.2) to examine how different NF parameter initializations may affect NoFAS
results. We compared the Glorot, Kaiming Uniform, and Kaiming Normal initializations in 10 repeats with different
random seeds with results shown in Figure 16. The Glorot initially performs slightly better than the other two initial-
izations but overall the performance is similar for all 3 choices. Glorot and Kaiming Normal achieve slightly better
quality and more stable convergence compared to Kaiming Uniform.
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Figure 15: Loss function values at iteration 25000 (top), iteration number at convergence (middle) and standard
deviation of loss function values after iteration 20000 (bottom) for different combinations of β0 and β1 in the RCR
experiment (see Section 3.2.2). Convergence is identified when the change in the moving average of the loss function
within a 100 iteration window is less than 0.05% with respect to the previous window.
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Figure 16: Loss function values at iteration 25000 (top), iteration number at convergence (middle) and standard devi-
ation of loss function values after iteration 20000 (bottom) for different weight initializations in the RCR experiment
(see Section 3.2.2). Convergence is identified when the change in the moving average of the loss function within a 100
iteration window is less than 0.05% with respect to the previous window.
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