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Abstract—Optimal Power Flow (OPF) is a challenging problem
in power systems, and recent research has explored the use of
Deep Neural Networks (DNNs) to approximate OPF solutions
with reduced computational times. While these approaches show
promising accuracy and efficiency, there is a lack of analysis of
their robustness. This paper addresses this gap by investigating
the factors that lead to both successful and suboptimal predictions
in DNN-based OPF solvers. It identifies power system features and
DNN characteristics that contribute to higher prediction errors
and offers insights on mitigating these challenges when designing
deep learning models for OPF.

I. INTRODUCTION AND BACKGROUND

The Optimal Power Flow (OPF) problem aims to find the
generator dispatch with minimal cost to meet power system
demands. However, the introduction of intermittent renewable
energy sources requires frequent adjustment of generator set-
points. To overcome the computational complexity of solving
OPFs, system operators often use more computationally efficient
approximations like the DC approximation. However, these
approximations may lead to suboptimal infeasible solutions [1].

Recent research has explored the use of Deep Neural
Networks (DNNs) to approximate AC-OPF [2]-[4]. Once
trained, DNNs can quickly compute predictions in milliseconds.
Although these learning models have shown high accuracy
in approximating generator set-points for AC-OPF, little is
known about why they achieve such accurate predictions and
the robustness of their predictions. This paper aims to address
this knowledge gap and contribute to the growing body of
research on deep learning for OPF by providing insights into
the inner workings of these black box models.

The paper investigates the relationship between the training
data and their target outputs to understand why DNNs can
accurately approximate OPF solutions with minimal errors.
Fig. 1 (left) shows the change in generator outputs as the
total demand varies for selected IEEE-118 generators. The
blue curve indicates a linear dependence between generator
outputs and loads, suggesting that a simple learning model
can effectively capture this behavior. This is supported by
low prediction errors reported in Fig. 1 (right), indicating
accurate results for approximating OPF with DNNs when many
generators exhibit such behavior.

However, certain generators are more challenging to predict,
as shown by the volatile orange curve in the figure, leading to
higher prediction errors and highlighting robustness concerns.
The paper explains why standard learning models struggle with
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Fig. 1: Generator 28 and 40 outputs (left) and associated prediction
errors (right) as a function of demand. Orange (blue) colors show high
(low) variability in output and continuous (dashed) lines depict easy
(hard) prediction tasks.

such behaviors due to training data instability affecting model
approximation. Additionally, it examines factors impacting pre-
diction accuracy for these generators, explores error-contributing
OPF traits, and emphasizes modeling OPF constraints during
training to capture prediction complexity.

Machine learning has gained traction in accelerating power
system optimization procedures. Hasan et al. [5] provide a recent
survey summarizing the developments in this area. Notably, Pan
et al. [6] investigate DNN architectures for predicting DC-OPF
solutions, while [7] utilizes a recurrent neural network (RNN)
to predict solutions with intertemporal constraints. Furthermore,
[8] employs a DNN architecture to learn the set of active
constraints for DC-OPF.

Recent works aim to incorporate OPF constraints into
deep learning-based models. One approach [3] combines deep
learning and Lagrangian duality via OPF dual variables in the
loss function to encourage feasible solution prediction. Other
approaches directly enforce OPF constraints during the learning
process. For instance, [2] uses a DNN to predict a partial OPF
solution and solve for the remaining outputs using power flow
equations. Additionally, [9] extends this approach by employing
implicit layers for reasoning about hard constraints, with worst-
case performance guarantees analyzed in [10].

While these approaches approximate high-quality solutions
faster than traditional solvers, a deeper comprehension of their
effectiveness and reliability is still lacking. This paper initiates
the process of unraveling these insights. Importantly, this paper
does not aim to introduce new ML techniques for learning
AC-OPFs, but rather seeks to elucidate the conditions under
which ML methods successfully approximate AC-OPFs.

II. PRELIMINARIES

Optimal Power Flow. A power network is viewed as a graph
(N, E) where the set of nodes N describes n buses and the
edges E describe e lines. Here E is a set of directed arcs and
ER denotes the reverse direction of the arcs in E. The power
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Model 1: The AC Optimal Power Flow Problem (AC-OPF)
variables: S%,V; Vie N, S;; V(i,j) € EUE"

minimize: " 5, (R(S9)? + 1 R(S) + eo (1)
ieN

subject to: 'vf <|Vil<v® VieN )
- 05 < uVV) <67 V. j)eE (3)
SE <S8 <S8 VieN @
ISl < s} V(i j) € EUE" Q)
Sf =81 =X peroer Sij Yie N (0)
Sij = YjIViP =Y, ViV; VG, j)e EVER  (7)

generated and the load demand in bus i € N are denoted by S
and Sj’ , respectively. §;; describes the power flows associated
with line ij. Finally, 6; represents the phase angles at bus i.

The AC power flow equations are based on complex quantities
for current I, voltage V, admittance Y, and power S. The
quantities are linked by constraints expressing Kirchhoft’s
Current Law (KCL), i.e., If = I = ¥ ;cpupr Lij» Ohm’s Law,
ie., I;; = Y;;(V; = V;),, and the definition of AC power, i.e.,
Sij= V,~Ii*j. Combining these properties yields the AC Power
Flow equations, i.e., (6) and (7) in Model 1. The objective
function (1) captures dispatch cost. Constraints (2)-(3) capture
complex voltage operational constraints, and (4)-(5) enforce
the generator output and line flow limits. Finally, constraints
(6) capture KCL and (7) capture Ohm’s Law.

III. OPF LearRNING GOALS

The goal of this paper is to analyze the effectiveness of
learning an OPF mapping O : R?*" — R?": Given the loads
{Slf’ Y, (vectors of active and reactive power demand), predict
the set-points {(%(Sf),IV,-I)}?; ,» of the generators, i.e., their
active power (p?) and the voltage magnitude (|V]) at their buses.
Here, p® and v are used as a shorthand for R(S¢) and |V]|.

The input of the learning task is a dataset D= {(x,, yl’)}Zw
where x,=S8 and y, = (p®, v) represent the £ observation of
load demands and generator set-points which satisfy y, =O(z).
The output is a function O that ideally would be the result of
the following empirical risk minimization problem

N
minimize: Z L(ys, O(x)))

(=1
subject to: C(xz;, O(x/)),

(8a)

(8b)
where the loss function is specified by
Ly, 9) = Ip* =PI + llv - oI,

and C(zx, §) holds if there exists voltage angles and reactive
power generated that produce a feasible solution to the OPF
constraints with & = §¢ and § = (p%, D), where the hat notation
is adopted to denoted the predictions of the model.

A key difficulty of this learning task is the presence of the
nonlinear feasibility OPF constraints. The approximation O will
typically focus on minimizing (8a) while ignoring the OPF con-
straints or using penalty-based methods [3]. Its predictions will
thus not guarantee the satisfaction of the problem constraints.

As a result, the validation of the learning task uses a load flow
computation Il¢ that, given a prediction 9=0(x), computes
its projection onto the constraint set C, i.e., the closest feasible
generator set-points Ilc(§) = argming ¢ [1§ - yl|I?, with C being
the OPF constraint set.

IV. Deep LEARNING ProxiEs FOR AC-OPF: RoapmaP

In this paper, the fundamental model assumes an OPF
approximation o provided by a feed-forward fully connected
(FCC) neural network. This baseline employs 3 hidden layers,
each containing 4n neurons and using ReLU activations.
While this baseline minimizes (8a), it disregards AC-OPF
constraints C(xf, §€). This foundational model, along with its
variations detailed in Section I, often yields dependable and
precise predictions. However, as later sections will explore, its
robustness is not always guaranteed. The analysis categorizes
generator complexity based on cost and solution trajectory
smoothness, introducing a complexity score to identify more
challenging predictions within each category.

The presence of nonlinear constraints has a significant impact
on the learning process of the OPF problem. We examine
how these constraints affect generator dispatch volatility under
varying input loads and objective functions. Additionally, we
investigate the characteristics of the learning model, analyzing
parameter size, input scales, activation function, and architecture.
The next sections shed light on the reasons for these behaviors.
Prior to do so, we describe the training data generation setting.
Training Data This study examines learning models trained
on NESTA library test cases [11], primarily focusing on IEEE
118, 162, and 300-bus networks for simplicity, but results are
consistent across the benchmark set. The ground truth data
are derived as follows: For each network, various benchmarks
are created by adjusting nominal load = = S¢ within +20%.
Using a uniformly sampled load multiplier a from [0.8, 1.2],
a load vector &’ = §¢ is formed by independently perturbing
each load value Sid with Gaussian noise centered at a, while
maintaining Z,-Slfi/ = aZiSid. Each dataset entry (z’,y’ =
O(x")) represents a feasible AC-OPF solution from solving the
detailed Model 1. The data are normalized using the per unit
(pu) system, and the experiments utilize an 80/20 train-test split,
with results reported on the test set.

V. GENERATOR CHARACTERISTICS
A. Neural Network Input and Output Characteristics

This section relates learning challenges to changes in optimal
dispatch across varying loading. As shown in Fig. 1, the
trajectory of generator set-points under different input load
parameters can often be approximated by piecewise linear
functions. The objective of the mapping function 0 is to
accurately approximate these piecewise linear functions for each
generator. It is intuitive that the more complex the function is to
approximate, the more challenging the learning task becomes.
To address this, we introduce the following concept:

Definition 1 (Complexity Score). Given a piecewise linear
function f : R¥ — R with p pieces, each of width h; for i € [p],
the complexity score (CS) of f, CSy is computed by:

CSy= p,ufO'/l-,
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Fig. 2: Standard deviation of prediction error (in percentage) vs
complexity score, of an FCC neural network without constraints.

where p is the number of pieces of f, uy is the average slope of
f over p pieces, oy is the standard deviation of {L,-};D:1 (slope
of f on piece i), and A is the weight multiplier.

Complexity score provides insights into the variability of a
piecewise linear function, and its relevance to the robustness of
ReLU-based neural networks will be explored later. Comparing
the variability of two piecewise linear functions can be done by
comparing their complexity scores using lexicographic ordering.
Since generator dispatch can be approximated as piecewise
linear, the complexity score of generator g represents the
complexity score of the corresponding piecewise linear function
for the optimal dispatch O(S?) of g under varying loads S“.

Fig. 2 shows relationships between complexity score and the
mean and standard deviation of prediction errors. The standard
deviation (“Std Error”) represents the absolute values of the
errors obtained when comparing the optimal dispatches p$,
associated with different input loads, to their predictions p¢
obtained from an FCC learning model (described in Section
IV). Standard deviation errors are reported as percentages and
shown on the y-axis. The generators’ results for IEEE-89, -118,
-162, -189, and -300 test cases are presented in ascending order
based on their complexity score. oy is classified as “low” if it
is under 5. As the figure shows, generators with a low number
of piecewise linear segments generally have lower complexity
score and mean/standard deviation of errors.

DNNs tend to struggle more in predicting the outputs of
generators with higher complexity scores. There is generally
a strong positive correlation between prediction errors and
the complexity of the underlying piecewise linear function that
describes the generators’ trajectories. Both the number of pieces
p in these functions and the standard deviation components o s
significantly influence the characterization of prediction errors.
Importantly, the standard deviations of prediction errors reflect
the notion of robustness in network predictions. It is noticeable
that generators described by more variable piecewise linear
functions also yield less robust predictions. These observations
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Fig. 3: Accuracy of ReLU FCC vs tanh FCC on selected generators
IEEE-162 (left) and IEEE-300 (right).
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shed light on why simple fully connected ReLU networks are
able to approximate OPF solutions with relatively low error.

B. Which generator outputs are harder to predict?

Next, we investigate the relationship between cost coefficients,
generator dispatch patterns, and the complexity score. The
analysis utilizes k-means clustering to group generators based
on their dispatch values and cost coefficients. Each generator
cluster exhibits a distinct cost distribution and dispatch trajectory
pattern. Clusters with small cost coefficients (<25th quantile)
display nearly invariant solution trajectories, where generator
dispatch remains relatively constant regardless of the load.
Generators with cost coefficients in the 50-75th quantile exhibit
more variable trajectories, while those with the highest cost
coefficients (>75th quantile) display highly variable trajectories.
Notably, these generators are typically inactive and only
activated when there is a significant increase in load, resulting
in spikes in their solution trajectories. These findings provide
a quantitative and explainable factor that helps associate the
robustness of DNN prediction errors.

VI. NEURAL NETWORK CHARACTERISTICS

The previous section revealed a correlation between predic-
tion errors and generators with a high number of piecewise linear
segments and larger standard deviations in segment magnitude.
This section shifts focus to explore the characteristics of
neural networks to elucidate the variability of OPF solution
predictions across different network types. Specifically, we aim
to understand how the selection of activation functions and
model size can contribute to minimizing prediction errors.

a) Activation function: Fig. 3 compares two FCCs that
differ only in their activation functions. The plots display
the original generator trajectories (solid lines), approximations
learned using ReLU activation (dotted lines), and those learned
using tanh activation (dashed lines). The top and bottom plots
correspond to selected generators from the IEEE-162 and
IEEE-300 test cases, respectively. The results demonstrate
that ReLU networks provide better approximations of the
original generator trajectories, as they effectively capture
piecewise linear functions, as observed in previous research
[12]. Therefore, ReLU activations are generally more suitable
for approximating OPF solutions, given that generator outputs
can be described by piecewise linear functions.

b) Model Capacity: ReLU FCC models are suitable for
predicting OPF solutions, but the required model capacity to
accurately represent a target piecewise linear function depends
on the number of pieces involved. The following section offers
theoretical insights connecting the ability of an FCC model to
learn effective approximations of generators’ trajectories across
different Complexity Scores.
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Theorem 1 (Model Capacity [13]). Let f : R? — R be a
piecewise linear function with p pieces. If f is represented by a
ReLU network with depth k + 1, then it must have size at least
%kp% — 1. Conversely, any piecewise linear function f that is
represented by a ReLU network of depth k + 1 and size at most
s, can have at most (2](_5)" pieces.

The previous analysis establishes a lower bound on model
complexity for representing piecewise linear functions, implying
that larger models better capture complex relationships between
loads and generator set points. Load values are found to relate to
the total variation in generator outputs. A theorem [14] connects
the approximation errors of piecewise linear functions to the
total variation in their slopes.

Theorem 2. Suppose a piecewise linear function f,,, with p’
pieces each of width hy for ke [p'], is used to approximate
a piecewise linear f, with p pieces, where p’ < p. Then the

approximation error
Z |Ly+r — Ll

I1<k<p

1
”fp - fp'”l S Ehﬁ*‘ax

holds where Ly is the slope of f, on piece k and hyy is the
maximum width of all pieces.

The result indicates that higher variability in a generator’s
dispatch trajectory, as load increases, makes it more challenging
to learn. Thus, for a fixed model size, an increase in the number
of piecewise linear portions generally leads to larger errors.

The final observation is the fact that optimization problems
typically satisfy a local Lipschitz condition, i.e., if the inputs
of two instances are close, then they admit solutions that are
close as well, i.e., for Y@ € O(z?) and ¥V € O(x"),

199- 920 < Clla® - 2], ©)

for some C >0 and ||z — 27| < €, where € is a small value.
This observation suggests that, when this local Lipschitz condi-
tion holds, it may be possible to generate solution trajectories
that are well-behaved and can be approximated effectively. Note
that Lipschitz functions can be well approximated by neural
networks, as the following result indicates.

Theorem 3 (Approximation [15]). If f : [0,1]" — R is L-
Lipschitz continuous, then for every € > 0, there exists some
single-layer neural network p of size N such that ||f —plle < €,
where N = ('”%).

n

The result above illustrates that the model capacity required
to approximate a given function depends to a non-negligible
extent on the Lipschitz constant value of the underlying function.
Combined with the observations reported in the previous
section—showing that a large number of generators have a
low complexity score—the results above further illustrate the
ability of DNNs to approximate OPF solutions with small
average errors. Larger models were expected to be better
at learning complex solution trajectories (Theorem 1), but
this was not consistently observed in our experiments. Fig. 4
demonstrates this surprising behavior, where increasing the
model size did not significantly reduce prediction errors. Notice
how prediction error improvements saturate quickly and even
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Fig. 4: Prediction error for three key IEEE-118 generators at increasing
the FCC model complexity.
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Fig. 5: Non-linear patterns of generators « € [0.97,1.05] (top) and
associated voltage issues at various buses (bottom) for IEEE-118 case.

increasing the model size substantially does not produce notable
error reductions. Theoretical bounds alone do not guarantee the
training of effective approximators, as minimizing empirical
risk (Equation (8a)) can also introduce errors. This suggests
that additional factors, such as the presence of OPF constraints,
influence the ability of DNN models to learn accurate OPF
approximations, as discussed in the next section.

VII. CONSTRAINTS

Consider the relationship between generators with high
complexity indices and corresponding high average prediction
errors. Fig. 5 illustrates this using the IEEE-118 case (similar
observations hold across all analyzed cases). The figure shows
a region of high variability involving multiple generators. The
top plot shows dispatch of three generators (solid lines) under
varying loading ! (denoted as a) and their upper limits (dashed
lines) based on constraints (4) of Model 1. The shaded area
highlights a region of high variability, aligning with high errors.
The bottom plot presents voltage magnitude trajectories for
a subset of buses, with the dashed line indicating the upper
bounds imposed by constraints (2). Notably, while the generator
dispatch remains within the feasible region, the bottom plot
reveals multiple voltage issues. These buses yield voltages
that trigger binding constraints (2) within the region of high
generator volatility.

These errors are likely due to the DNN’s hidden representa-
tion not accurately capturing the constraints that govern OPF
solutions; e.g., the model is unaware of these constraints. Fig.
6 (first column) illustrates the significant variation in error (not
in percentage but the actual value) for generators at buses with
binding constraints. The error tends to have a higher mean

I'The load profiles consider a nominal load which is then approximately
proportionately increased or decreased within a +20% range.
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TABLE I: Accuracy comparison of a fully connected DNN with and without constraints.

Test case | FCC Without Constraints FCC With Constraints
| Bound Vio KCL Vio LF Err. (%) Opt. Gap (%) | Bound Vio KCL Vio LF Err. (%) Opt. Gap (%)
IEEE-30 0.000 0.001 0.128 0.005 0.000 0.081 0.080 0.001
IEEE-118 0.007 0.087 23.59 241 0.002 0.052 2.901 0.131
IEEE-162 0.047 0.363 25.83 2.06 0.012 0.038 4.478 0.167
IEEE-300 0.000 0.015 0.205 17.34 0.023 0.0003 1.099 0.327
No Constraint With Constraint results, accuracy and robustness concerns persist. This paper
C addresses these gaps by analyzing the connection between
_ 0.6 . s . .
£ : generator output volatility and the model’s approximation
30.4 T il capability. It also explores how model structure influences
y i ! prediction error, emphasizing the significance of operational
=02 i . t i ; é and physical constraints for capturing prediction complexity.
0.0 -Lé' < = -#%i'-l- é-ﬁ However, the interpretability of DNNs remains an issue. While
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Fig. 6: Error distributions of generators associated with problematic
buses (buses with voltage binding constraints) produced by FCC with
and without constraints for IEEE-118 (top) IEEE-300 (bottom).

and standard deviation within the binding region. As observed
previously [2], [3], [9], we confirm that actively incorporating

constraints during training is effective for improving accuracy.

The constraints were integrated using a similar model as
[3], which uses a Lagrangian dual approach for constraint
satisfaction. Note that the constrained and baseline models differ
only in their loss function, not in the number of parameters.

Table I summarizes the results, displaying the average
prediction errors |§ — y|l across the test set, the average
load flow (LF) errors [IIC(§) — y|l by comparing feasible
predictions TIC(g) with optimal quantities y, and the average
optimality gap, represented as W, where O is the
OPF cost. The table also contrasts average absolute constraint
violations (in p.u.) for set-point bounds (constraints (2)-(4))
and KCL (constraint (6)). As expected, the constrained model
mitigates constraint violations compared to the model solely
minimizing mean squared error. Fig. 6 further demonstrates
diminished mean and standard deviation errors of generators
linked to problematic buses by incorporating a Lagrange
dual loss. Notably, constrained DNN variants exhibit greater
robustness than unconstrained models. This finding contradicts
empirical risk minimization expectations: Constraints introduced
via Lagrangian-based penalties augment the loss function with
regularization-like terms, which might theoretically reduce
model variance. Consequently, integrating constraints in training
diminishes prediction errors and error standard deviation, at the
expense of heightened training complexity.

VIII. CoNcLUsIONS
This study investigates the potential of deep neural networks
(DNNs) for approximating OPF solutions. Despite promising

these models exhibit impressive predictive capabilities, their
limited ability to offer transparent insights into decision-making
hampers their adoption in critical applications. The complexity
of power systems further complicates capturing the full range of
operational conditions, potentially affecting model robustness.
Future research avenues could involve investigating alternative
network architectures, activation functions, and power networks
to broaden and generalize the findings. The authors intend to rig-
orously integrate domain-specific constraints, possibly through
hybrid models that combine physics-based and data-driven
approaches, potentially enhancing accuracy and interpretability.
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