The VLDB Journal
https://doi.org/10.1007/500778-023-00830-z

REGULAR PAPER

A new window Clause for SQL++

James Fang'

®

Check for
updates

- Dmitry Lychagin? - Michael J. Carey? - Vassilis J. Tsotras'

Received: 9 February 2023 / Revised: 28 July 2023 / Accepted: 14 November 2023

© The Author(s) 2023

Abstract

Window queries are important analytical tools for ordered data and have been researched both in streaming and stored data
environments. By incorporating ideas for window queries from existing streaming and stored data systems, we propose a
new window syntax that makes a wide range of window queries easier to write and optimize. We have implemented this new
window syntax in SQL++, an SQL extension that supports querying semistructured data, on top of AsterixDB, a Big Data
Management System, thus allowing us to process window queries over large datasets in a parallel and efficient manner.

1 Introduction

Large amounts of data are being generated daily (web logs,
transaction logs, sensor data, etc.). Much of this data is
ordered, e.g. tweets ordered by time, and this order is impor-
tant for computing analytics over the data such as running
averages, etc. An important tool for computing analytics over
ordered data is the window query which effectively breaks
an ordered data sequence into smaller and possibly over-
lapping ordered sub-sequences (windows), whose tuples are
then processed with aggregation to produce query results.
Windowing allows the user to compute an answer over each
of these windows. Data is either analysed as it arrives, e.g.
streaming systems, or is stored for later historical analyti-
cal query processing, also called offline or batch processing
systems.

This work emanated from the desire to create an alternative
windowing facility for processing windows over big data that
is both richer in its capabilities to support additional common

B4 James Fang
jfang003 @ucr.edu

Dmitry Lychagin
dmitry.lychagin @snowflake.com

Michael J. Carey
mjcarey @ics.uci.edu

Vassilis J. Tsotras
tsotras @cs.ucr.edu
University of California, Riverside, Riverside, USA

2 Snowflake Inc. (Work Performed While at Couchbase Inc.),
San Mateo, USA

University of California, Irvine, Irvine, USA

Published online: 19 December 2023

use cases, and hopefully easier for users to learn and use. In
particular, we wanted a natural, usable windowing facility for
the Apache AsterixDB system [3], a parallel shared-nothing
big data management system that uses SQL++ [12, 30] as
its query language. SQL++ is a SQL-like query language
designed to work with both structured and semi-structured
data. Currently SQL++ in AsterixDB (and Couchbase Ana-
lytics for that matter [21]) supports the OVER “Clause” of
SQL, but as we argue in Sect. 3, it does not meet our require-
ments.

While SQL OVER may involve more compact queries,
it is less intuitive. In particular, having the SQL OVER
inside the SELECT can be confusing since the SQL OVER
may introduce GROUP_BY and ORDER_BY within the
SELECT itself. This is in contrast to the logical evaluation
order that the user is familiar with from traditional SQL,
where GROUP_BY and ORDER_BY are performed before
and after SELECT, respectively. Further, OVER belongs to a
window function call which is actually an expression which
imposes various limitations. Nevertheless, the SQL OVER
Clause offers various advantages, for example its simple
framing.

XQuery gives a predicate-based approach to express win-
dow queries. This allows for more flexible boundaries on
when a window can start or end. Additionally, the creation
of predicate variables allows for easier access to information
within the window. An example of a sliding window of size
3 tuples can be seen in Fig.1 for the OVER and XQuery
approaches.

By first reviewing previous window approaches from
both streaming and stored data environments (namely SQL
and XQuery), our proposed WindowBy Clause in SQL++

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-023-00830-z&domain=pdf
http://orcid.org/0000-0003-1440-5570

J.Fangetal.

SELECT station,
date,
AVG(val) OVER (ORDER BY date
ROWS BETWEEN CURRENT ROW
AND 2 FOLLOWING)
FROM Ghcn

(a)

for sliding window Sw in //Ghcn,
start s at sp when fn:true()
end at ep whenep—sp=2
return <window>
<station>{Ss/station} </station>
<date>{Ss/date} </date>
<avg>{avg(Sw)} </avg>
</window>

(b)

Fig.1 Sliding Window of Size 3 using a OVER and b XQuery

combines advantages from both worlds. The syntax of our
proposed window Clause allows users to write window
queries in a simpler and more intuitive way. Furthermore,
the new Clause can be implemented in a horizontally scal-
able way in the AsterixDB big data management system.

The rest of this paper is organized as follows: Sect. 2 pro-
vides basic background on windows and summarizes related
work. The desiderata for a new window Clause appear in
Sect.3.1 and are based on adapting advantages from pre-
vious window approaches. Section3.2 examines how these
desiderata can be supported in SQL++, while the details
of the proposed SQL++ WindowBy Clause are presented
in Sect.3.3. Section4 shows how various common window
queries are written in a more intuitive way using the proposed
WindowBy Clause as compared to previous approaches. A
prototype implementation of WindowBy in AsterixDB is
described in Sect.5 while Sect. 6 shows preliminary experi-
mental evaluation results. Conclusions and future work are
described in Sect.7.

2 Background and related work
2.1 Terminology

Each window is defined by its two boundaries: start (which
comes first) and end (which comes later in the sequence
order). The data sequence order is thus crucial. A window
boundary occurs when one of the following events happen:
(1) a new tuple arrives, or (2) some system time has elapsed
(e.g. after 20 min or at the start of the hour). Case (1) refers
to the event time, while case (2) refers to the processing
time, i.e., the system time when a tuple is processed. In a
streaming environment, window boundaries can also be cre-

@ Springer

ated based on a system clock (and not only based on a new
tuple’s attribute values).

Creating windows over stored data requires that the data is
first ordered based on some attribute value; that is, data needs
to be sorted first if it is not already ordered. This is typically
the tuple’s event time. Thus in a stored data environment,
window boundaries are defined based on event time. Another
difference between streaming and stored data windows is
that in a streaming environment, tuples may arrive late (and
thus out of sequence order) and will be eliminated from the
window results.

Depending on the relative positions of the window bound-
aries different window types have been discussed in the
literature; the most common ones are sliding, tumbling, land-
mark and sessions [2, 27, 32]. In sliding windows a tuple
can belong to many individual windows (thus windows can
overlap). In contrast, in tumbling windows each tuple can
participate in at most one window (i.e., windows do not over-
lap). Landmark windows are considered as a special case
of sliding where every window’s start is fixed at a specific
“landmark” (time or tuple), typically the start of the ordered
sequence [27, 32]. Multiple landmarks are also possible [9].
The notion of sessions has been used in streaming systems to
capture periods of specific activity in the data sequence; e.g.
tuples that arrive close to each other, say within 5 min. Ses-
sions are special cases of tumbling windows and are typically
defined using a timeout (and possibly a window maximum
duration) [2, 17, 36].

This paper concentrates mainly on sliding and tumbling
windows as they are the most commonly used in practice. In
addition, we discuss how to support typical session windows
in Sect.4.3.

2.2 Streaming environment

Early streaming systems such as Aurora [1], TelegraphCQ
[14] and STREAM [39] were the first to define windows as
a way to process the incoming data into smaller analyzable
subsets. More recent streaming systems focus on using par-
titioning to improve latency and throughput, e.g. Spark [41],
Storm [22] and Flink [11]. Other works consider hardware
optimization [13, 25, 28, 36]; examples are Saber focusing
on GPUs and Streambox focusing on multi-core processors.
There is also work on window aggregation [34, 35, 37], how
to process out of order data in a window [2, 35, 42], and
watermarks which determine how late data can arrive and
still be processed by a window [5].

Most streaming systems have their own way of express-
ing windows and this differs between systems. There are two
main approaches: using dataflow languages or SQL-like lan-
guages. The dataflow languages mainly follow an approach
similar to the Google Dataflow Model [2]: they create oper-
ators for the windows, add properties to these operators and

A new window Clause for SQL++

follow a Directed Acyclic Graph approach to process these
windows over the streaming data. Examples include Aurora
[1], Flink’s Data Stream API [11], Streambox [28], Microsoft
Trill [13] and IBM’s SPL (Stream Processing Language)
[20].

One early example of an SQL-like window language is
STREAM’s Continuous Query Language (CQL) [4] which
supported the creation of sliding windows in the FROM
Clause by allowing the user to specify either time-based
windows using the RANGE keyword or row-based windows
using the ROWS keyword.

Another example appears in [27] where they model win-
dows using RANGE, SLIDE, and WATTR. RANGE defines
the window length in tuples or duration, SLIDE determines
how far from the start of the previous window to start a new
window in tuples or duration, and WATTR is the ordering
attribute to order the data. Note that while this approach is
intuitive and simple for the user to define windows, it is lim-
ited to creating fixed size windows.

As more stream processing systems were created, there
has been work to develop a streaming SQL standard [23]. A
streaming SQL example can be found in Apache Calcite’s
SQL [6], used by projects such as Flink [11] and Samza
[31]. In Calcite, the SQL OVER Clause is still used to create
tuple-based sliding windows. However, Calcite also supports
other window types such as tumbling and hopping (a sliding
window using the system clock). These can be implemented
through the use of the TUMBLE or HOP keywords in the
GROUP BY Clause along with their parameters: the ordering
attribute, the window length, and a window slide (for hop-
ping windows). These windows are grouped together based
on their ending tuple, as it is impossible to know when a
window is complete before the last tuple closes it, and can
be accessed in the SELECT Clause through the keywords
TUMBLE_END or HOP_END respectively using the same
parameters to find the grouping value.

Note that representing hopping windows in GROUP BY
violates the relational semantics of SQL since in GROUP
BY each input tuple belongs to exactly one group, which
is not the case in hopping windows that are special cases of
sliding windows. A proposed variation for streaming SQL [7]
addresses this issue by moving the window creation (using
TUMBLE or HOP) into the FROM Clause using table valued
functions. Another feature of this approach is the use of EMIT
that allows the user to control when results are output based
on an event or system time.

2.3 Stored data environment
Windows in stored data environments have been expressed

using SQL for relational data and XQuery for semistructured
data.

Since the OVER Clause was added to the SQL standard
[43], window functions have attracted increasing interest and
are implemented by the major database vendors. Accord-
ing to a 2016 survey, SQL window queries accounted for
4% of all queries in a workload collected from a multi-year
deployment of a database-as-a-service platform [24]. A char-
acteristic of SQL OVER is that it creates a window for each
tuple in the sequence. There is also work on optimizing SQL
OVER in a parallel environment [8, 10, 26] and on speed-
ing up window queries using global sampling [33], holistic
aggregates [38] and reducing data transfer [15]. A disadvan-
tage of SQL OVER is thatitis not as intuitive (from a usability
perspective) for writing window queries. Various SQL con-
cepts (like ORDER BY, GROUP BY) are reused within the
OVER Clause, making window query writing quite challeng-
ing.

Another approach to writing window queries in SQL is by
using the MATCH_RECOGNIZE Clause [29], which is used
toidentify events in atime sequence. MATCH_RECOGNIZE
accepts a set of rows as input, and returns all matches for a
given data pattern. It can thus identify windows that match a
specific data pattern. MATCH_RECOGNIZE is used within
FROM and effectively creates an elaborate sub-query on
its own, which makes it even more complex and less intu-
itive than OVER for writing window queries. Note that
MATCH_RECOGNIZE can express all of the OVER and
WindowBy example queries used in this paper. However, it
results in queries that are very difficult to optimize (see the
discussion in [16] about the optimizer). There has been some
work to optimize parts of MATCH_RECOGNIZE for queries
with specific conditions and no duplicates [44].

Finally, XQuery has been extended to support window
queries over stored semi-structured data [9]; here the order
is the binding sequence provided by the document. XQuery
windowing is different from SQL in that it uses a predicate
based approach to define the start and end of a window. This
is very powerful as it allows the user to create a window
using a predicate on a tuple’s attribute values (i.e. a window
does not need to be based on the only sequence order as in
SQL OVER). It also allows the user to choose what type
of window to use: tumbling, sliding or landmark. Note that
the latest XQuery 3.1 standard Window Clause [40] does
not support landmark windows. There has also been work to
extend XQuery to allow patterns between the window start
and end [18]. To the best of our knowledge there is no work
extending XQuery windowing in a scalable way for parallel
systems.

3 The proposed WindowBy Clause

The aim of the proposed WindowBy Clause is to provide an
intuitive way for users to create a variety of useful window

@ Springer

J.Fangetal.

WINDOW_BY := WINDOW BY w WINDOW_PROPERTIES WINDOW_FRAMING

WINDOW_PROPERTIES := TYPE (SLIDING | TUMBLING) (PARTITION BY p)? ORDER BY o

WINDOW_FRAMING := (LABEL WINDOW_PREDICATES)? START WINDOW_BOUNDARY (ONLY)? END WINDOW_BOUNDARY
WINDOW_PREDICATES := WINDOW_VARS (WINDOW_CONDITION)?

WINDOW_BOUNDARY := (UNBOUNDED | WINDOW_PREDICATES)

WINDOW _VARS := (AS currentltem)? (AT positionalVar)? (PREV AS previousltem)? (NEXT AS nextItem)?

WINDOW_CONDITION := WHEN condition

Fig.2 The proposed WINDOW BY Clause

queries. In doing so, we first describe the desiderata for a
new Clause by combining the advantages of SQL OVER and
XQuery while avoiding their disadvantages. We then exam-
ine how SQL++ can easily support these desiderata followed
by the semantics of the WindowBy Clause.

3.1 SQL OVER and XQuery windows

The SQL OVER Clause defines windows using a required
window function (or aggregate function) and three optional
parts: partitioning, ordering and framing [26, 43]. Partition-
ing comes first and groups the data so as to create different
sequences; one per grouping key. Ordering these creates the
ordered sequences. While optional, ordering is crucial for
windowing; without ordering, SQL window queries could
provide different results every time they run. Finally, fram-
ing is used to build windows on top of each ordered sequence.
Examples of the required window function include built-in
such as AVG or user-defined aggregates, as well as built-
in functions for windows such as ROW_NUMBER). The
OVER Clause can be used in the SELECT or ORDER BY
Clauses. If the OVER Clause appears in SELECT, the result
of the window function is appended (as an attribute) to the
output tuple. If OVER is used within ORDER BY, the win-
dow function is first computed and then used to determine
the order of the result.

An advantage of SQL OVER is that the use of ordering
and partitioning allow the user to create ordered sequences as
needed. The result of a window is appended to a single tuple
in the ordered sequence. The advantage of framing is that it
allows the user to pick window boundaries; these boundaries
can be before, after or include the tuple that will append
this window’s result. Consider as an example the window in
Fig. 1a, which depicts a sliding window of size 3 tuples using
the OVER Clause. To do so, in the SELECT, we used AVG as
our window function followed by the OVER keyword. The
parameters for OVER are followed by ORDER BY to sort
by date and then the ROWS keyword to specify a framing. In
this specific case, the framing is between CURRENT ROW
and 2 FOLLOWING (3 tuples).

Note that OVER requires that every single tuple in the
sequence creates a window; as a result, OVER is effectively
limited to expressing sliding windows. In [27], tumbling win-
dows are modeled as a special case of sliding windows where
the RANGE of a window is equal to the SLIDE of that win-

@ Springer

dow (explained in Sect. 2). However, in the case of OVER, the
SLIDE is always 1 tuple; thus, a tumbling window can occur
only for a window size of length 1 tuple using the ROWS
keyword, assuming there are no duplicates in the ordering
attribute.

XQuery windowing, as part of the XQuery 3.0 Standard,
consists of three required parts: a window type (tumbling
or sliding), variables (start and end), and predicates (start
and end). Note that XQuery uses the order of the binding
sequence for its windowing hence no explicit ordering is
needed. Variable access offers a major advantage to XQuery
windowing as it allows the user to create windows on more
than just the ordering attribute of the sequence. The variables
enable access to the first and last tuple of the window and their
positional variable (their numerical position in the ordered
sequence). For each of the two tuples, XQuery also provides
access to the tuple preceding or following that tuple. These
tuple variables and positional variables can be referred to
in the predicate (Boolean expression) used to start or end a
window.

Moreover, XQuery allows the user to specify the window
type (tumbling or sliding). Another advantage of XQuery is
that it provides access to the whole window and its tuples
through a user defined variable. Since data can be nested,
this allows the user to return more than just an aggregation
result over this window if needed. Nevertheless, in XQuery
a window result always appends the tuple that started this
window; this is a limitation since it does not allow a win-
dow to consider only tuples before (or after) its boundaries.
Consider as an example the window in Fig. 1b, which depicts
a sliding window of size 3 tuples using XQuery. To do so,
we first use the keyword SLIDING WINDOW followed by
the window result variable w. The start predicates contain
the starting tuple of the window s and its position sp. The
start predicate condition is to always start a window after the
WHEN keyword. The end predicates include its position ep
and the end predicate condition is when ep — sp = 2; which
creates a window of size 3. This approach assumes that the
dataset Ghen is already ordered by time, and the user is also
allowed to use the window variable w and the predicate vari-
ables s, sp and ep in forming the result.

To summarize, our proposed SQL++ WindowBy Clause
should have the following desiderata: (1) ability to create
the desired ordered sub-sequences; (2) ability to pick the
window type; (3) use framing to define which tuples should

A new window Clause for SQL++

QueryBlock:

Selection:

SelectClause

StreamGenerator

>

UnionOption
| [J

N}
>

StreamGenerator H SelectClause

StreamGenerator:

»> I QueryBlock I
\{ WithClause |—/

M OrderByClause |—j I—{ LimitClause I—j

»—l FromClause II f >«
1—{ LetClause |—fh WhereClause I—fl—{ GroupByClause I WindowByClause
L—{ LetClause |—j 1—{ HavingClause |—j

Fig.3 SQL++ query block semantics

WindowBy:

Variable }— WindowByProperties

~EE3) €

— WindowByFraming

>

a)

WindowByProperties:

1 SLIDING
[J
TUMBLING

PARTITION

b)

Fig.4 a WindowBy Definition and b Properties

be included in the window; (4) provide ability to provide
start/end windows using predicates; (5) access to a window’s
tuples through user defined variables. Here, desiderata (1)
creates the input sequence, while (2) defines the window type.
Desiderata (3) and (4) create the window boundaries and its
position in the sequence, while (5) computes and formats the
result.

A sketch of the grammar of our proposed WindowBy
Clause appears in Fig.2 (its semantics will be detailed in
Sect.3.3). Variables such as w, p and o are user defined
and the user can change them. Its major (required) parts are
window_properties (addressing desiderata (1) and (2)) and
window_framing (covers (3) and (4)). Inspired by XQuery,
the window properties allow the user to choose the win-
dow type (sliding or tumbling), and users can create ordered
sequences as needed (inspired by OVER). The framing
includes predicates (as in XQuery) and the ability to append
the window result to any tuple in the sequence (as in OVER).
Finally, the variable w enables accessing the tuples of a win-
dow, thus supporting desiderata (5) (as will further become
clear through query examples). Combining the above advan-
tages in the proposed WindowBY Clause will enable users to
write a variety of useful and complex windows in an intuitive
way (see Sect.4).

Expr

ORDER BY }—
j \

Expr

Tl

DESC

3.2 The advantages of SQL++

Having identified the desiderata, we proceed to consider what
language tools are needed for supporting them. An important
difference between how SQL and XQuery handle windows is
that XQuery uses a Clause to create windows while the SQL
OVER approach, despite being named a Clause, is actually
an expression. An expression is a language fragment that
can be evaluated to return a single value [12]. Examples are
boolean expressions, aggregate functions, numeric expres-
sions etc. In SQL++, a query is made of several Clauses,such
as SELECT, FROM, or GROUP BY, and each Clause does a
specific task by consuming input tuples and producing out-
put tuples. Clauses like FROM, WHERE, GROUP BY and
HAVING are characterized as generators since they result
in a stream of tuples. Clauses like ORDER BY, LIMIT and
OFFSET are instead output modifiers since they do not cre-
ate any new tuples; but can only order, limit or omit some of
the tuples in the result stream. SELECT is special in that it
constructs an output object for each tuple in its input.

Since OVER is an expression, it returns a single value
(window result) per tuple; further, in SQL it can occur either
in the SELECT or in the ORDER BY Clause. Being in either
of these Clauses implies that the number of results tuples in

@ Springer

J.Fangetal.

the output stream is not changed by OVER; which simply
attaches a window result to each tuple and in the case of
ORDER BY, it orders the tuples using their window result.
While this is fine for SQL windowing, since every tuple cre-
ates a window (i.e. each tuple is expanded with the window
result), it will not suffice for WindowBy. As in XQuery, the
WindowBy Clause should allow the user pick which tuples
will create a window based on a predicate. An expression-
based approach like OVER will not work; instead, a true
Clause is needed for WindowByY.

Moreover, for each window, WindowBy should allow the
user to access, using variables, the first and last tuple of the
window as well as their positional variables, preceding tuple,
and following tuple. Such variables are bounded as each win-
dow is considered. In SQL, the variables in scope (available
attributes) are defined by the FROM Clause and stay in scope
throughout the query block. Other Clauses in SQL cannot add
new variables in scope; they can only place restrictions on
which variables can be used in SELECT (e.g. as does the
GROUP BY Clause). Hence, it would not be easy to add a
new Clause to SQL Standard with our required desiderata.

We proceed by describing how the somewhat richer struc-
ture and semantics of SQL++ [12, 30] can help us avoid these
shortcomings and can thus support all the desiderata of our
WindowBy Clause. One significant difference from SQL is
that SQL++ offers the ability to create or remove variables
within each Clause as needed; i.e., variable creation is not
limited to the FROM Clause.

Consider for example, GROUP BY. When used in SQL
it restricts SELECT to use only the GROUP BY keys or
aggregates. When used in SQL++, GROUP BY can also
add new variables into the scope through the use of GROUP
AS. As in SQL the GROUP BY Clause “hides” the original
tuples in each group by exposing only the grouping keys and
aggregation functions on the non-grouping fields; however
its GROUP AS extension (used only within GROUP BY)
makes the original tuples in the group visible to subsequent
Clauses by creating a new variable. This allows a SQL++
query to generate output data both for the group as a whole
and for the individual objects inside the group [12]. This is
possible because SQL++ supports a nested data model.

As aresult, SQL++ offers important advantages to support
our WindowBy Clause as it naturally supports the variables
needed to access various parts of the window and its con-
tents. Finally note that the existing GROUP BY Clause even
within SQL++ is not sufficient to support all of our window-
ing desiderata.

For example, desiderata (1) is not possible since ORDER
BY happens after GROUP BY. Similarly, desiderata (2) fails
since GROUP BY does not allow data to overlap between
groups (and thus no sliding windows). Next is a detailed
discussion of the WindowBy Clause semantics.

@ Springer

3.3 WindowBy Clause semantics

Figure 3 shows the top level SQL++ grammar extended
to include our proposed WindowBy Clause. As WindowBy
is an optional standalone Clause, the proposed extension
does not affect/modify the results of any existing queries
in SQL++. As can be seen from the figure, the WindowBy
Clause is placed after GROUP BY. We designed WindowBy
as a Clause to separate it from the SELECT Clause, which in
our view reduces the complexity of writing window queries.
Another important characteristic is that we allow the user to
create, for each window w, predicate variables that refer to
specific tuples/values in that window (e.g., starting tuple, its
positional value etc.). Note that the result for each created
window w is a complex tuple that contains all of the predi-
cate variables for w as well as its data tuples as an ordered
array, as can be seen in Fig. 10, box 3. The predicate vari-
ables and the window array for each w can then be used
inside the SELECT clause so that the user can easily form the
desired query result. Note that this requires a nested structure
which cannot be expressed in traditional SQL; SQL++ has
the advantage that it allows for nesting and makes it easy to
create the desired window tuples. This allows the user to cre-
ate windows over groups (if any). Note that this is similar to
SQL where OVER is placed inside the SELECT or ORDER
BY and thus applies to the results coming after GROUP BY.

As shown, the WindowBy Clause starts with the WIN-
DOW BY reserved keyword followed by an identifier, the
window properties and framing (Fig.4a). The identifier is a
user defined variable that can be referenced in later Clauses
to access the window results; it is referred to as result variable
below.

According to the SQL++ grammar (Fig.3), ORDER BY
occurs after the QueryBlock and hence after the WindowBy
Clause. Thus, WindowBy needs to create its own ordered
sequences and this is done through the properties section
(Fig.4b). In addition to ORDER BY, properties specify the
TYPE of the window to be created (currently only sliding and
tumbling are supported). There is also an optional partition
section where the user can partition the data before ordering,
based on a user specified expression.

The framing section is based on XQuery’s window Clause
and it uses a predicate-based approach to create the window
boundaries. There are three separate parts in framing (see
Fig. 5a): the optional LABEL (to be discussed later), START
and END. The START refers to the first tuple in the win-
dow, while END refers to the last one. They are each defined
by the WindowByBoundary (Fig. 5b). Such a boundary can
either by the keyword “UNBOUNDED” or a window pred-
icate (Fig.5c). “UNBOUNDED” allows the user to create
windows that extend to the start or the end of the sequence of
the partition. Like XQuery, the window boundary contains
two parts: variables and an optional predicate (condition).

A new window Clause for SQL++

WindowByFraming:

¥{LABEL)—{ WindowPredicates

WindowByBoundary: WindowPredicates:

I{START)—' WindowByBoundary

WENDH WindowByBoundary |»N
{ ONLY '

WindowCondition:

f *{ WindowVars
\

<)

UNBOUNDED
»1—{ WindowPredicates

LJ WindowCondition

o (o) []
7

d)

Fig.5 a WindowBy Framing, b Boundaries, ¢ Predicates and d Conditions

WindowVars:

(.

Fig.6 Variables allowed in the WindowBy Predicates

The window variables (Fig. 6) for a START boundary corre-
spond to the first tuple in the window (referred to by AS), its
position in the sequence (AT; also termed as the positional
variable), the tuple preceding the first tuple (PREV AS) and
the tuple following the first tuple (NEXT AS). Similarly, for
an END boundary these variables are relative to the last tuple
of the window.

The optional window predicate (Fig.5d), specified with
the keyword WHEN, can use the above variables to form
boolean conditions that start or end a window at a specific
tuple. This removes the SQL OVER limitation that each tuple
must start its own window. Given a finite ordered sequence,
when the last tuple of the sequence is reached, there may be
many windows whose END condition has not been met. By
default, the WindowBy Clause will produce results for all
windows whether they are ‘closed’ (these are windows for
which a tuple was processed that matched the condition to
END the window) or are still ‘open’ after the sequence is pro-
cessed (no tuple in the sequence matched the END condition
for this window). As in XQuery, when the ONLY keyword
is used, the WindowBy Clause returns results only for the
closed windows. After WindowBy, all variables preceding
the WindowBy Clause go out of scope. Only variables intro-
duced by WindowBy are available after it.

The concepts of partitioning, ordering and framing of the
WindowBy Clause are visualized in Fig. 7 (following a simi-
lar approach from [26]). PARTITION BY separates the tuples
into distinct groups, according to some attribute p in the Fig-
ure. Each partition is ordered by ORDER BY (using some

a Variable |—f Variable i—j PREV Variable |—f NEXT @ Variable i—j

attribute o) to create ordered sequences. The figure shows two
ordered partitions with a window w created on one of these
ordered partitions (w refers to the entire window framing). A
user can create variables based on the start or the end tuple of
a window, their positional values and their previous and next
tuples. Window w starts from tuple t3 (denoted with variable
startCurrentltem in the Figure) and ends at t7 (endCurren-
tltem). The positional variable for t3 (startCurrentPos) is 3
and for t7 (endCurrentPos) is 7. Variable startPreviousltem
and startNextltem denote the previous and the next tuple
of the start tuple. Similarly for endPreviousltem and end-
Nextltem for the end tuple. A window consists of all tuples
between the startCurrentItem and the endCurrentItem (within
the same partition); in this example the window will consider
all tuples between t3 and t7.

One limitation that the XQuery predicate-based approach
has in framing is that a window’s result will always be
appended to the tuple that started the window (first tuple in
the window). To remove this limitation, the optional LABEL
part was added in WindowBy (Fig.5a). The label is used
to denote the tuple that will include the appended the result;
doing so allows the window boundaries to be before, after, or
to include this tuple. If LABEL is not used, the WindowBy
Clause will default to the label being the first tuple in the
window (like XQuery). The variables in the LABEL win-
dow predicate reference the tuple that will have the result.
These variables can be referenced later in the query.

Note that LABEL allows the WindowBy Clause to sup-
port queries that are possible in OVER but not in XQuery.

@ Springer

J.Fangetal.

Fig.7 WindowBy partitioning,
ordering and framing

Order By
(o)

startCurrentpos __—

1 tl

startPreviousltem

startNextltem
i5

endPreviousltem

| Window
ll Framing (w)
endNextltem
5 P Partition By (p)
t

Order By
(o)

t21 ¥
t22
t23
t24
t25

u B W N PO

Consider a generic SQL OVER query with framing. This
framing can be separated into BETWEEN X and Y. X and Y
can be either UNBOUNDED PRECEDING/FOLLOWING,
CURRENT ROW, or n PRECEDING/FOLLOWING where
n is a positive integer. If X is the current ROW, then in Win-
dowBYy the label refers to the start tuple. If instead the current
row is in Y, then in WindowBy the label refers to the end
tuple. As discussed earlier, in the WindowBy boundaries, the
UNBOUNDED choice is allowed for both start and end. With
access to the label variables and the start variables, represent-
ing in WindowByY a start condition in X for n PRECEDING or
n FOLLOWING is simple to do by comparing the label vari-
ables with the start variables. Consider for example a ROW
framing query where X is PRECEDING 5 in SQL OVER.
Let’s assume that labelCurrentPos (startCurrentPos) corre-
sponds to the label (start) positional variable (respectively)
in WindowBy. The above OVER window boundary can be
represented by having a WindowBy start condition of label-
CurrentPos - startCurrentPos = 5, which implies that the
start of the window is 5 tuples before the label. Likewise, the
same can be represented for the case of Y of FOLLOWING
5 by having the end condition be endCurrentPos - labelCur-
rentPos = 5.

3.4 WindowBy bindings

We now describe the nature of WindowBy variable bindings
through an SQL++ query example. All window queries in
this paper will be using a dataset from the Global Historical
Climatology Network (GHCN) [19]. It contains measure-
ments of climate data collected at stations across the world.
In particular we will use the AsterixDB DDL that appears
in Fig. 8; which contains a subset of all the attributes in the
original GHCN table. Each GHCN tuple has four attributes:
station, date, val, and dataType. Station corresponds to the

@ Springer

CREATE TYPE Ghcnltem AS {
station: int,
date: datetime
val: double,
dataType: string

)

};
CREATE DATASET Ghcn(GhenItem) primary key station,
date, dataType;

Fig.8 DDL for the GHCN dataset

SELECT
s.ghen . station AS station,
s.ghcn.date AS start_time,
ARRAY_AVG((SELECT VALUE ghcn.val
FROM w)) AS average
FROM ghcn
WHERE dataType = "TMIN"
WINDOW BY w
TYPE SLIDING
PARTITION BY ghcn.station
ORDER BY ghcn.date
START AS s AT sp WHEN s.ghcn.val < 25
END AT ep WHEN ep - sp = 2

Fig.9 Example query for bindings

id of the station that took the measurement, val refers to
the reported measurement value, and dataType describes the
type of the collected value. In our examples the measurement
value “TMIN” corresponds to the minimum temperature
collected by a station on the specific date. Other types of
measurements that a station provides are maximum temper-
ature, precipitation, snow depth, etc.

Consider the query: “When the value of TMIN in a spe-
cific station is less than 25 degrees, find the average value of
TMIN over this measurement and the two following TMIN
measurements of that station”. This is a sliding window (i.e.,
overlap between windows is allowed) with a window length
of three tuples (including the starting tuple). The query using
our WindowBy Clause appears in Fig. 9. There are three pred-
icate variables declared: startCurrentltem which corresponds

A new window Clause for SQL++

to the first tuple of the window, startCurrentPos which is the
positional variable of this current tuple and endCurrentPos
for the positional variable of the window’s last tuple. There is
also the result variable w. ARRAY_AVG is a SQL++ aggre-
gate function that computes the average for an array of tuples
while ignoring missing or null values.

Figure 10 shows the Clauses’ output bindings for this Win-
dowBy query. The FROM Clause outputs a bag of GHCN
tuples (indicated as number 1 in the Figure) that becomes
input to the WHERE Clause. For simplicity, we use inte-
gers to represent dates instead of the actual datetime values.
Afterwards, the data is filtered to keep tuples that satisfy the
expression in the WHERE Clause (dataType = “TMIN”).
The output of WHERE becomes the input of the WindowBy
Clause (number 2).

WindowBy will first partition the data by station. It will
then order each partition by date (to create the ordered
sequence) and then will create a (sliding) window for any
input tuple that satisfies the starting condition (number 3).
By construction, each window created is represented by a
tuple that contains the following attributes: one attribute for
each variable declared and one attribute to capture the result
variable (providing the tuples of the window created). These
variable’s values are bound as we sequentially process the
data. When a tuple satisfies the start condition (the TMIN
val is less than 25), its associated start variables startCur-
rentltem and startCurrentPos are bound to this tuple and its
sequence position, respectively. When a tuple satisfies the
ending condition, its associated end variable endCurrentPos
is bound to this tuple’s sequence position. If the end of the
sequence is reached, then any endCurrentPos variables are
set to MISSING; MISSING is also appended to the result
variable w of any unclosed window as shown in the figure.

In the example query in Fig. 10, WindowBy creates three
windows, one starting at the tuple with the date 1 and val
20 for station 1, one starting at the tuple with the date 4 and
val 23 for station 1, and one starting at date 1 and val 22
for station 2. In this example each window is represented by
a tuple with the following four attributes: s (the first GHCN
tuple of the window), sp (its position in the sequence), ep (the
position of the last GHCN tuple in the window), and w (the
result for this window that contains all the window’s GHCN
tuples).

The first window in this example contains 3 GHCN tuples
in w, those with dates (1, 2 and 4). Note that the tuple with
station 1 and date 3 was removed by the WHERE Clause
which causes the tuple with station 1 and tuple 4 to be the
third tuple in this sequence. The case where a window is
created but its end condition is never satisfied, is denoted in
the output by using the keyword ‘MISSING’. This happens
in the second window created for station 1 at date 4; note
that the value of ep is MISSING. This window contains two
GHCN tuples (with date 4 and 5) and since it never ended,

the value MISSING is also added). The same occurs for the
third window, created for station 2.

The window tuples resulting from the WindowBy Clause
will then become input to the SELECT Clause which will
then construct new tuples according to the user’s desired
output (number 4). In particular, SELECT in the example
outputs the station id of each window, the start time of the
first tuple in the window and the average val of TMIN for
over the tuples in the window. Note that attributes associated
with variables introduced in the WindowBy (s and w) were
used in the SELECT.

It is important to note that the above description provides
a logical representation of how WindowBy computes the
windows. Most windows (like the example shown) typically
compute aggregates on the window tuples. As a result, the
individual tuples within a window do not need to be mate-
rialized and carried forward (as in step 3; since step 4 only
needs an average). A simple optimization will push the aggre-
gation into the WindowBy processing thus avoiding actually
materializing all the window tuples.

4 WindowBy query examples

To showcase the new WindowBy Clause, we proceed with
query examples for various common windows. Each query
uses the dataset described in Fig. 8. Queries differ in their type
(sliding or tumbling) and framing (the window boundaries).
For simplicity all query examples partition by the station and
order by date, while the output of each window contains the
station, starting time (time of the first tuple in the window),
and the average TMIN value over the window for the spe-
cific station. We express each query using both in SQL++
OVER and WindowBy. For cases where SQL++ OVER can-
not express the query (e.g., windows that are not based on the
ordering attribute or tumbling windows) we write the query
using an SQL++ correlated nested query approach.

4.1 Sliding windows

The length of a window, whether it is sliding or tumbling, can
be constrained in two ways: either with fixed duration (order-
ing attribute range) or with a fixed number of tuples. Such
windows accept tuples as long as the duration has not been
met (this assumes that the ordering attribute is time-based) or
as long as the number of tuples in the window is less than the
threshold. We call both such windows ‘bounded’. If instead
the ending condition is based on a predicate involving some
other attribute of a tuple (i.e., not the ordering attribute), the
window will continue to accept tuples as long as the ending
condition is not met. We call such windows ‘unbounded’ to
indicate that there is no preset upper bound on the window’s

@ Springer

J.Fangetal.

\ FROM Ghcn

[WHERE dataType = “TMIN”)

.
| (BRY . = Bifupre / \
{1L | {Ghen: {date:4, station:1, val: 23, dataType: “TMIN"}, |/ {{startCurrentitem: {Ghcn: {date: 1, station: 1, val: 20, dataType: “TMIN"}}, \
Z Ghen: {date: 2, station: 1, val: 26, dataType: “TMIN"},

Ghen: {date: 3, station: 1, val: 30, datatype: “TMAX"},
Ghen: {date: 1, station: 1, val: 20, dataType: “TMIN"},

out — Rin
Biinpow By = Bstrecr

startCurrentPos: 1,
endCurrentPos: 3,
w: [{Ghen: {date: 1, station: 1, val: 20, dataType: “TMIN”}},
{Ghcn:{date: 2, station:1, val: 26, dataType: “TMIN"}},
{Ghcn:{{date: 4, station: 1, val: 23, dataType: “TMIN"}]},
{startCurrentitem : {Ghcn:{{date: 4, station: 1, val: 23, dataType: “TMIN"}},

/" WINDOW BY w N Ghen: {date: 5, station: 1, val: 30, dataType: “TMIN"},
(TYPE SLIDING | Ghen: {date: 1, station: 2, val: 22, dataType: “TMIN"},
PARTITION BY Ghcn.station _ Ghen: {date: 2, station:2, val: 28, dataType: “TMIN"}})/
ORDER BY Ghen.date
START AS startCurrentltem AT startCurrentPos (pout — Bin
WHEN startCurrentltem.Ghcn.val < 25 WHERE WiINDOW BY.

END AT endCurrentPos |
WHEN endCurrentPos - startCurrentPos =2/

(SELECT startCurrentitem.Ghcn.station ASstation
startCurrentltem.Ghcn.date AS start_time,

~

{ Ghen: {date: 4, station: 1, val: 23, dataType: “TMIN"},
Ghen: {date: 2, station: 1, val: 26, dataType: “TMIN"},
Ghen: {date: 1, station: 1, val: 20, dataType: “TMIN"},

3 Ghen: {date: 5, station: 1, val: 30, dataType: “TMIN"},

Ghen: {date: 1, station: 2, val: 22, dataType: “TMIN"}, |
| Ghen: {date: 2, station: 2, val: 28, dataType: “TMIN"}} |\

startCurrentPos : 4,

endCurrentPos : MISSING,

w: [{Ghen:{{date:4, station: 1, val: 23, dataType: “TMIN"}},

{Ghcn:{{date:5, station: 1, val: 30, dataType: “TMIN"}}, MISSING]}},

{startCurrentitem : {Ghcn:{{date: 1, station: 2, val: 22, dataType: “TMIN"}},

startCurrentPos: 1,

endCurrentPos : MISSING,

w: [{Ghen:{{date: 1, station: 2, val: 22, dataType: “TMIN"}}, /

ARRAY_AVG(FROM w SELECT VALUE

N {Ghcn:{{date: 2, station: 2, val: 28, dataType: “TMIN”}}, MISSING]}

\ Ghen.val) AS average) (El

out — pin
BSgiecr = Bokroer By

N\

{{station: 1, start_time: 4, average: 26.5},
{station:1, start_time: 1, average: 23},

| {station:2, start_time: 1, average: 25}} |

Fig. 10 The outputs of each query Clause; numbers indicate where the output was produced

length in terms of duration or number of tuples. Below we
present sliding window examples for each case.

4.1.1 Bounded sliding windows: duration

Consider creating a sliding window with a duration of 1 week
(i.e., given a station, find the average TMIN value starting
from a given tuple and ending 1 week later than the date
of this tuple). This query can be written using OVER as in
Fig. 11a; it partitions by station, orders by date and applies
RANGE for the framing.

The same query using the WindowBy Clause appears in
Fig. 11b; it creates two variables, startCurrentltem for the
first tuple in the window, and endNextltem for the tuple fol-
lowing the last tuple of the window (using END NEXT
AS). To create the sliding window of size 1 week, its end-
ing condition ensures that the difference between the date
of startCurrentltem and the date of endNextltem is within
1 week. Note that endNextltem is the earliest tuple in the
sequence where the date is not within 1 week. As such, end-
Nextltem should not be in the window, but it is still required
for expressing the window boundaries. By using the tuple
before or after the first (last) tuple of the window, it is possi-
ble to make the window boundary inclusive or exclusive of
a particular condition.

4.1.2 Bounded sliding windows: number of tuples

Next consider creating a sliding window of size 20 tuples (i.e.,
given a station, find the average TMIN value starting from a
given tuple and including the next 19 tuples of the sequence).
This query written using OVER appears in Fig. 12a; it par-
titions by station, orders by date and applies ROW for the
framing.

The same query using the WindowBy Clause appears in
Fig. 12b; it creates three variables, startCurrentltem for the
first tuple in the window, startCurrentPos for its position in

@ Springer

the sequence and endCurrentPos for the position of the last
tuple in the window. To create this sliding window of size
20 tuples, its ending condition ensures that the difference
between startCurrentPos and endCurrentPos is exactly 19.
The startCurrentltem variable allows SELECT to access both
the station and date from the first tuple in the window.

An interesting observation about the two example win-
dows we have discussed is that each tuple in the sequence
creates a window. Hence, the START condition is always
satisfied (WHEN true) in the WindowBy Clause. Note that
OVER does not need such a condition since every tuple starts
a window.

4.1.3 Unbounded sliding windows

Consider a sliding window that stays open while the TMIN
value of the tuple remains less than 25 (i.e., given a sta-
tion, the window starts from a given tuple where the TMIN
value is less than 25 and includes all the station’s subsequent
tuples until a tuple is reached—in sequence order—where
the TMIN value is greater than or equal to 25).

This query cannot be written using OVER since the
window is not based on the ordering attribute. Figure 13a pro-
vides a solution for this query in SQL++ using a nested query
approach, by finding the tuples that start and end a window
and creating a window using this information. Using WITH,
three temporary tables are created to help find the window
boundaries. The first table wSrart finds the tuples that can
start a window (i.e., their TMIN value is less than 25). The
second table wEnd finds the tuples that can end a window
(the TMIN value is greater than or equal to 25 or the last
tuple in the sequence for that station). To find the last tuple in
the sequence, we use the LET Clause to find the last date for
that station. The third table wBoundaries finds pairs of actual
window boundaries; in particular it pairs a starting tuple from
wStart with the earliest tuple from wEnd with the same sta-
tion which comes after it in sequence order (and it is from the

A new window Clause for SQL++

Fig. 11 Example of a sliding
window with 1 week duration
using: a OVER and b
WindowBy

Fig. 12 Example of a sliding
window with fixed length of 20
tuples using: a OVER and b
WindowBy

SELECT station,
date,
AVG(val) OVER (PARTITION BY station
ORDER BY date
RANGE BETWEEN CURRENT ROW L.
AND Duration(“P7D”)
FOLLOWING)
FROM Ghcn

WHERE dataType="TMIN”
(a)

OVER groups all tuples
between the current tuple
and those within 1 week

|

SELECT startCurrentitem.Ghcn.station AS station, -l
startCurrentltem.Ghcn.date AS date, 4
ARRAY_AVG((SELECT VALUE Ghcn.val

startCurrentltem and w
created in the Window By

Clause

FROM w)) =
FROM Ghcn
WHERE dataType="TMIN”

WINDOW BY w
TYPE SLIDING
PARTITION BY Ghcn.station ||
ORDER BY Ghcn.date -

Window Properties:
Sliding Window, ordered
by date and partitioned
by station

START AS startCurrentitem WHEN true
END NEXT AS endNextltem
WHEN endNextltem.Ghcn.date —

startCurrentltem.Ghcn.date >= Duration(”P7D”)J

(b)

1

OVER groups all
tuples between
the current
tuple and 19
after

SELECT station,
date,
AVG(val) OVER (PARTITION BY station -
ORDER BY date
ROWS BETWEEN CURRENT ROW/ |
AND 19 FOLLOWING)
FROM Ghcn

WHERE dataType="TMIN”

(@)

Compare the
dates between
the starting
item and the
item following
the end to get a
1-week window

SELECT startCurrentltem.Ghcn.station AS station,
startCurrentltem.Ghcn.date AS date, [
ARRAY_AVG((SELECT VALUE Ghcn.val

startCurrentltem is created
in the Window By Clause

FROM w)) AS average
FROM Ghcn
WHERE dataType="TMIN” Window Properties:
WINDOW BY w

TYPE SLIDING

ORDER BY Ghcn.date =

Sliding Window,
ordered by date and
PARTITION BY Ghen.station [partitioned by station

START AS startCurrentltem AT startCurrentPos WHEN true

END AT endCurrentPos WHEN endCurrentPos — startCurrentPos = 19 I

(b)

Compare the
position of the
starting item
and the ending
item to ensure
a size of 20

same station). Note that since these are sliding windows, a
given tuple from wEnd can be the ending tuple for many win-
dows (and thus it is paired with all tuples from wStart that
come before it). Using two copies of GHCN and the table
wBoundaries, a conceptual nested loop finds all tuples that
are in each window. Grouping by the station and the time of
the first tuple in each window (startTuple.date), the average
TMIN is calculated for each window.

The same query using the WindowBy Clause appears in
Fig. 13b. It creates two variables, startCurrentltem for the
first tuple in the window, and endNextltem for the tuple fol-
lowing the last tuple of the window. To create this sliding
window is simple: its starting condition checks if the TMIN
value of startCurrentltem is less than 25 and the ending con-
dition checks if the TMIN value of endNextltem is greater
than or equal to 25. An interesting observation about this

@ Springer

J.Fangetal.

Fig. 13 Example of an
unbounded sliding window
using: a Nested-loop SQL++
approach and b WindowBy

@ Springer

SELECT station, date

WITH wStart AS (
FROM Ghcn }

Find when the value is less
than 25 degrees

WHERE dataType="TMIN" AND val < 25
), WwEnd AS (

SELECT gl.station, gl.date

FROM Ghcn AS g1

LET stationLastDate = (SELECT VALUE MAX(g2.date)

FROM Ghcn AS g2
WHERE gl.station = g2.station)[0]
WHERE dataType = "TMIN" AND
(val > 24 OR gl.date >= stationLastDate)
), wBoundaries AS (

SELECT wStart.date AS startDate,
MIN(wEnd.date) AS endDate, -
wStart.station AS station

FROM wStart, wEnd

WHERE wStart.station = wEnd.station AND

wEnd.date >= wStart.date

GROUP BY wStart.station, wStart.date

)

SELECT startTuple.station, =
.| Return the station, date and average

wBoundaries.startDate AS date,

Find when the value
is greater than or
equal to 25 degrees

Find the next following end
for each window using the
low and high data sets.

AVG(windowTuple.val)

FROM Ghcn AS startTuple, Ghcn AS windowTuple, wBoundaries t::tsgt(:u:o

WHERE startTuple.dataType = “TMIN”AND windowTuple.dataType = “TMIN” you have all
startTuple.station = windowTuple.station AND the data in-
wBoundaries.station = startTuple.station AND .| between
startTuple.date = wBoundaries.startDate AND start and
wBoundaries.startDate <= windowTuple.date AND end

wBoundaries.endDate >= windowTuple.date

GROUP BY startTuple.station, wBoundaries.startDate; ’}_

Group the data together

(a)
SELECT startCurrentitem.Ghcn.station AS station, -
startCurrentitem.Ghcn.date AS date, | startCurrentltem and w
ARRAY_AVG((SELECT VALUE Ghen.val ~/'| created in the Window By
FROM w)) AS average Clause

FROM Ghcn

WHERE dataType="TMIN" Window Properties:

WINDOW BY w - sliding Window, Start the
TYPE SLIDING ordered by date and window when
PARTITION BY Ghen.station | partitioned by station temperature
ORDER BY Ghcn.date | lessthan 25
START AS startCurrentltem WHEN startCurrentitem.Ghcn.val < 25 and end it
END NEXT AS endNextitem | —

WHEN endNextitem.Ghcn.val >= 25

(b)

A new window Clause for SQL++

example is that not every tuple creates a window; only tuples
when the starting condition (WHEN startCurrentltem.val <
25) is satisfied start a window.

4.1.4 Discussion

The preceding sliding window examples have revealed inter-
esting differences between the proposed WindowBy Clause
and SQL++’s current windowing capabilities for sliding
windows. While the OVER Clause is more compact than
WindowBy for sliding windows, it cannot express some
predicate-based windows (those not based on the ordering
attribute). Using nested loops to express these sliding win-
dows can involve many subqueries which is very challenging
for optimization. Instead, WindowBy is much more intuitive
as the user only needs to input the window properties and
the window boundaries. The properties allows the user to
partition and order the sequences before processing. The
window boundaries are set by the predicates and the user
is also allowed to set variables for tuples and their position.
Our WindowBy Clause also allows the user to flexibly deter-
mine which tuples create windows through the start predicate,
which is not possible in OVER.

4.2 Tumbling windows

Different from sliding, tumbling windows do not allow
overlap; while a window is open, no other windows can be
created (i.e., a tuple can belong to at most one window). Note
that OVER produces a window for each tuple in the input
sequence. As a result, OVER will create sliding windows
unless each window contains exactly 1 tuple (the starting
tuple of the window), which is a degenerate case of tum-
bling windows. Below we examine two tumbling window
examples that are the ‘tumbling’ version of sliding windows
discussed in the previous section. In particular, an unbounded
window and a window with fixed duration.

4.2.1 Unbounded tumbling windows

Consider a tumbling window that stays open while the TMIN
value of the tuple is less than 25 (i.e., given a station, the win-
dow starts from a given tuple where the TMIN value is less
than 25 and includes all the station’s subsequent tuples until a
tuple is reached—in sequence order—where the TMIN value
is greater than or equal to 25). Figure 14a shows the query
written using the WindowBy Clause. When compared with
its sliding version (Sect.4.1.3, Fig. 13b), the only difference
is that keyword TUMBLING replaces SLIDING for the win-
dow type.

As with the sliding case, this query cannot be written using
OVER (since the window boundaries are based on a non-
ordering attribute). We show how this query can be written

in SQL++ using a nested loop approach (Fig. 14b). There are
five temporary tables: wStart, wEnd and wBoundaries which
perform similar tasks as in the sliding case, as well as Ghc-
nPos and currentPrev. In particular, GhcnPos first partitions
the data by station and then orders by time to assign each
tuple its positional variable within the sequence of tuples of
their respective station. This table will help identify the exact
tuples that start or end a window such that there is no over-
lap between windows. This is done by comparing a tuple’s
TMIN value with the tuple preceding it coming from the
same station.

The CurrentPrevious table creates pairs that contain a
specific tuple in the sequence (currentTuple) and the tuple
preceding it (previousTuple) for the same station. The table
wStart still finds tuples that start a window; in this example,
there are two cases in which a tuple should start a window:
(1) TMIN value less than 25, and (2) the currentPos is 1 (first
tuple in the sequence) or the previous TMIN value is greater
than 24. Table wEnd finds tuples that end a window; there
are two cases for a tuple to end a window: (1) the tuple is the
last tuple in the sequence, or, (2) the previous TMIN value
(previousVal) is less than 25 and the current TMIN value
(previousVal) is greater than 24. As before, the wBoundaries
table finds pairs of window boundaries. The rest of the query
uses a nested loop approach and GROUP BY to find all the
tuples in each tumbling window.

4.2.2 Bounded tumbling windows: duration

Consider creating a tumbling window with a duration of
1week (i.e., find the average TMIN value starting from a
given tuple and ending 1week later than the date of this
tuple). Since it is a tumbling window, the next window starts
in the next tuple after the previous window ended. This query
written using the WindowBy Clause appears in Fig. 16a; it is
similar to the sliding window in Fig. 11b with the only dif-
ference being that the keyword TUMBLING is used for the
window type.

This query cannot be written in SQL without recursion
because there is no way to identify the position of the start-
ing or ending tuples. As recursion is not yet supported in
SQL++, we write the query in PostgreSQL. A nested loop
is first used to create all possible sliding windows between
a tuple and all tuples (from the same station) within 1 week
from the tuple that starts the window. Grouping by the station
and the starting date, creates the boundaries and desired out-
put for every sliding window (station, starting time, ending
time and average TMIN value). The window boundaries for
each sliding window are stored in a temporary table (named
w). The next step is to identify the tumbling windows from
all possible sliding windows. This is performed by using a
recursive CTE (common table expression) to calculate all
non-overlapping windows (denoted by “WITH RECURSIVE

@ Springer

J.Fangetal.

Fig. 14 Example of an

unbounded tumbling window
using: a WindowBy, and b
Nested-loop SQL++ approach

@ Springer

SELECT startCurrentitem.Ghcn.station AS station, startCurrentitem.Ghcn.date AS date,
ARRAY_AVG((SELECT VALUE Ghcn.val FROM w)) AS average

FROM Ghcn

WHERE dataType="“TMIN" Change type to

WINDOW BY w == tumbling window
TYPETUMBLING _ |

PARTITION BY Ghcn.station

ORDER BY Ghcn.date

START AS startCurrentitem WHEN startCurrentitem.Ghcn.val < 25
END AS endCurrentitem WHEN endCurrentitem.Ghcn.val >= 25

(a)
WITH GhcnPos AS (

SELECT station,
date,
val,
ROW_NUMBER() OVER (PARTITION BY station *’> Create the positional

ORDER BY date) AS pos variables for the ordered
FROM Ghcn = data set
WHERE dataType="TMIN"
), currentPrev AS (
SELECT currentTuple.station AS station,
currentTuple.pos AS currentPos,
currentTuple.val AS currentVal,

currentTuple.date AS currentdate,
previousTuple.pos AS previousPos, Find the
previousTuple.val AS previousVal, tuples before
previousTuple.date AS previousdate . the current
FROM GhcnPos AS currentTuple, GhcnPos AS previousTuple tuple using
WHERE currentTuple.station = previousTuple.station AND = positional
((currentTuple.pos = previousTuple.pos + 1) OR variables
(currentTuple.pos = 1 AND previousTuple.pos=1)) ~—
), wStart AS (
SELECT station, currentdate AS date Find the starting
FROM currentPrev point of the windows
WHERE currentVal < 25 AND _.| (less than 25 degrees
(currentPos = 1 OR previousVal > 24) .| or when it swaps)
), WEnd AS (- L
SELECT cl.station, cl.currentdate AS date Find the
FROM currentPrev AS c1 ending
LET stationLastPos = (SELECT VALUE MAX(pos) point of the
FROM GhcnPos AS g1 windows
WHERE gl.station = c1.station)[0] (swaps
WHERE currentPos >= stationLastPos OR between
(previousVal < 25 AND currentVal > 24) less than 25
), wBoundaries AS (to more)
SELECT wStart.date AS startDate,
MIN(wEnd.date) AS endDate, __| Find the ending
wStart.station AS station point of the
FROM wStart, wEnd window based on
WHERE wStart.station = wEnd.station AND || the closest end to
wEnd.date >= wStart.date the start of the
GROUP BY wsStart.station, wStart.date J window

)

SELECT startTuple.station, -
wBoundaries.startDate AS date, | Return the station, date and average

AVG(windowTuple.val)
FROM Ghcn AS startTuple, Ghen AS windowTuple, wBoundaries

WHERE startTuple.station = windowTuple.station AND - | Filter out the data so
wBoundaries.station = startTuple.station AND you have all the data
startTuple.date = wBoundaries.startDate AND | in-between start and
wBoundaries.startDate <= windowTuple.date AND end

wBoundaries.endDate >= windowTuple.date
GROUP BY startTuple.station, wBoundaries.startDate; ‘IL Group the data together

(b)

A new window Clause for SQL++

tumble’ in Fig. 16b). CTE tumble produces tuples with three
attributes: starting time s, ending time e, and station. A recur-
sive CTE has two parts: a base query and a recursive query;
when separated by UNION ALL the output contains the
results of all iterations. For CTE tumble, the base query (first
iteration) finds the boundaries of the earliest window in each
station. Then the recursive query uses the output of the pre-
vious iteration and finds the next tumbling window in the
sequence. This continues until there are no more tumbling
windows are created.

Without using recursion, this query can also be expressed
in SQL using the MATCH_RECOGNIZE Clause; see Fig. 16¢
(note that SQL++ currently does not support MATCH_RECO
GNIZE). MATCH_RECOGNIZE is made up of two required
parts that define the pattern (PATTERN and DEFINE) and
five optional parts for the pattern properties and the query
output (PARTITION, ORDER, MEASURES, ROW PER
MATCH and AFTER MATCH). For the example tumbling
query, the required parts allows the user to define the pattern
for the window boundaries. In this case, the pattern is sim-
ilar to our WindowByY starting (always start a window) and
ending condition (next tuple is over 1 week from the start-
ing tuple). PARTITION and ORDER are used to create the
ordered sequence. AFTER MATCH allows the user to choose
the window type. For example, by using SKIP TO LAST
DOWN the pattern matching continues from the tuple after
the end of the previous window (and thus create tumbling
windows). Using one ROW PER MATCH limits the output
to produce one result per window. Finally MEASURE allows
to format the output.

4.2.3 Bounded tumbling windows: number of tuples

Next consider creating a tumbling window of size 20 tuples
(e.g., given a station, find the average TMIN value starting
from a given tuple and including the next 19 tuples of the
sequence). This query can be written using OVER to find
all sliding windows and then filtered to get just the tumbling
windows in Fig. 15b.

The WindowBy version of this query can be found in
Fig. 15a and it is the same query as Fig. 12b except that the
keyword SLIDING has been changed to TUMBLING for the
window type.

4.2.4 Discussion

It is worth noting the simplicity in writing both tumbling
query examples using the WindowBy Clause: since their win-
dow predicates remain the same as their sliding versions, a
simple keyword change enables the previous sliding window
query to now find tumbling windows. These tumbling win-
dows cannot be expressed by OVER unless it is a fixed tuple

sized window; using MATCH_RECOGNIZE or a nested-
loop approach results in much more complex query writing.

4.3 Sessions

Sessions are special cases of tumbling windows modeling
situations where there are periods of inactivity between sub-
sequent windows and these periods are not included in the
window results. Session windows involve the time order and
group events that arrive at similar times; they have three
parameters: timeout, maximum duration, and (an optional)
partitioning key [17]. Partitioning is already part of our Win-
dowBy Clause and a maximum duration is similar to the
windows discussed in Sect.4.2.2. Below we discuss how to
represent windows with timeouts.

A timeout window query will continue accepting tuples
until the time difference between arrivals of subsequent
tuples is greater than the given timeout interval. For example,
consider a window that remains open as long as subsequent
tuples (from the same station) come within 5min of each
other. OVER cannot express this window because there is
no mechanism to compare the difference in time between
any arriving tuples; OVER only considers the time differ-
ence from the tuple that appends the result. This window is
possible to express using WindowBy because the positional
variables provide access to both a tuple and the tuple fol-
lowing it. The end condition ensures that the time difference
between the last tuple of the window endCurrentltem and
its subsequent tuple endNextltem is greater than 5Smin (see
Fig.20).

This session query can also be expressed using a (much
more complex) nested loop approach, very similar to the one
taken for the unbounded tumbling window shown in Fig. 14b.

4.4 Using ONLY and LABEL

This section discusses two additional features in the Win-
dowBy Clause, namely ONLY and LABEL.

4.4.1 ONLY

When the optional keyword ONLY is used with the END
condition, it will filter all produced windows and output only
the windows that have satisfied their end condition within
the sequence; i.e. there was a tuple that ended such windows.
Consider for example, the sliding window query in Fig.9;
as is, the query produces three windows (shown in Fig. 10).
However, if the END is changed to ONLY END, this query
will produce just one window (the window starting at date
1 for station 1). The other two windows are filtered out as
they have not met the ending condition (noted also by the
MISSING keyword in ep and w in Fig. 10). Note that when
ONLY is used with a tumbling window, it will just check

@ Springer

J.Fangetal.

Fig. 15 Example of an bounded
tuple sized tumbling window
using: a WindowBy, and b
OVER

SELECT startCurrentltem.Ghcn.station AS station,
startCurrentltem.Ghcn.date AS date,
ARRAY_AVG((SELECT VALUE Ghcn.val

FROM w)) AS average

FROM Ghcn

WHERE dataType="TMIN”

WINDOW BY w

TYPE SLIDING _ |

Change Window Type to
Tumbling

PARTITION BY Ghcn.station

ORDER BY Ghcn.date

START AS startCurrentltem AT startCurrentPos WHEN true

END AT endCurrentPos WHEN endCurrentPos — startCurrentPos = 19

WITH SlidingWindows AS (

SELECT station,
date,

(a)

AVG(val) OVER (PARTITION BY station

ORDER BY date
ROWS BETWEEN CURRENT ROW
AND 19 FOLLOWING),

ROW_NUMBER() OVER (PARTITION BY station

FROM Ghcn

ORDER BY date
ROWS BETWEEN CURRENT ROW
AND 19 FOLLOWING) as pos

WHERE dataType="“TMIN”

)
SELECT station,
date,
avg
FROM SlidingWindows
WHERE pos %20=1

whether the last window satisfies the end condition (since by
construction all previous windows have ended).

4.4.2 LABEL

By default, WindowBy appends a window to the tuple that
starts the window. That is, when a tuple from the sequence is
processed and this tuple satisfies the window starting condi-
tion, the window created will be appended to this tuple. The
optional LABEL keyword allows the user to disassociate the
tuple that appends the window result (the tuple currently pro-
cessed) from the first tuple of the window. When LABEL is
used, it points to the currently processed tuple; if the LABEL
predicate is satisfied from this tuple, a window is created and
its result will appended to this tuple (pointed by LABEL).
However, the user can now use LABEL as a reference point
to identify the starting/ending tuples of the window which

@ Springer

1
J

Find the windows that have
position 1, 21,41,...

(b)

can thus be before or after the current tuple (e.g., the window
associated with the current tuple can start 10 tuples before
the current tuple and end 5 tuples after it). Not every tuple
pointed by LABEL creates a window; the LABEL predicate
needs to be satisfied. LABEL allows WindowBy to offer the
same functionality as OVER’s framing (PRECEDING, FOL-
LOWING etc.) (Fig. 16).

Consider the following window: when a tuple has value
of TMIN that is less than 25, compute the average TMIN
value of these three tuples: the current tuple, the preceding
tuple and the following tuple (from the same station). This
3-tuple window query using WindowBy is shown in Fig. 17a
(for reference, the same query in OVER appears in Fig. 17b).
Note that this is a modified query of Fig.9 where the win-
dow was computed starting from the current tuple and two
tuples following it. As LABEL refers to the tuple currently
being processed, its position labelCurrentPos in the sequence

A new window Clause for SQL++

Fig. 16 Expressing a tumbling
window of size 1 week using: a
WindowBy, b Recursive CTE
and ¢ MATCH_RECOGNIZE

SELECT startCurrentitem.station AS station, startCurrentitem.date AS date,
ARRAY_AVG((SELECT VALUE val FROM w)) AS average

FROM Ghcn

WHERE dataType="TMINT

WINDOW BY w Il Change Window Type to
TYPE TUMBLING _j_ Tumbling
PARTITION BY station

ORDER BY date

START AS startCurrentitem WHEN true

END NEXT AS endNextltem

WHEN endNextitem.date —
startCurrentitem.date >= Duration(“P1W")

CREATE VIEW w AS (

)

WITH RECURSIVE tumble(s, e, station) AS (

WITH NestedQuery AS (

(a)

SELECT I.d AS d, r.val AS val, r.d AS end, l.station AS station

FROM Ghcen |, Ghenr

WHERE r.d >= |.d AND r.station = |.station AND
r.d < (l.d +'1 week'::interval)) AND -
l.dataType="TMIN"” AND r.dataType="TMIN"
SELECT n.d AS s, MAX(n.end) AS e, AVG(n.val) AS average

This subquery finds all
tuples within 1 week of a
specific tuple in the

FROM NestedQuery n
GROUP BY n.station, n.d [~

Return the date, endDate and average
value for the window after grouping

SELECT wl.s AS s, wl.e AS e, wl.station AS station

FROM w w1l

WHERE w1.5 = (SELECT MIN(w2.5)

FROM w w2

WHERE w1.station = w2.station)

UNION ALL

SELECT wl.s AS s, wl.e AS e, wl.station AS station

FROM tumble t, w w1l

WHERE t.station = wl.station AND
EXISTS(SELECT MIN(w2.s) FROM w w2
WHERE w2.s > t.e AND w1l.station=w2.station) AND

wl.s = (SELECT MIN(w2.s) FROM w w2
WHERE w2.s > t.e) AND wl.station = w2.station)

SELECT w.station, w.s, w.average
FROM tumble, w
WHERE w.s = tumble.s AND w.e = tumble.e;

SELECT station, d, average
FROM Ghcn MATCH_RECOGNIZE (
PARTITION BY station, dataType

)

ORDER BY d

MEASURES START.station AS station)

START.d AS d,

AVG(val) AS average,
START.dataType AS type

ONE ROW PER MATCH

AFTER MATCH SKIP TO LAST DOWN-’

PATTERN START END?

DEFINE START AS START.val = START.val

-

Get the results based on
the tumbling windows

(b)

Return start date and
average value

Create the tumbling
window

END AS NEXT(END.d) > (START.d + "1 week'::interval) _J

WHERE type="TMIN”

(c)

sequence
Recursively
find the
| tumbling
windows
Define the
Window Start
and End
Conditions

@ Springer

J.Fangetal.

Fig.17 Label query using: a
WindowBy, b SQL OVER

SELECT labelCurrentltem.Ghcn.station AS station,
labelCurrentitem.Ghcn.date AS date,
ARRAY_AVG((SELECT VALUE Ghcn.val FROM w))

FROM Ghcn

WHERE dataType="TMIN”

WINDOW BY w
TYPE SLIDING
PARTITION BY Ghcn.station
ORDER BY Ghcn.date
LABEL AS labelCurrentitem AT labelCurrentPos /)

WHEN labelCurrentitem.Ghcn.val < 25 L

START AT startCurrentPos WHEN labelCurrentPos — startCurrentPos = 1
END AT endCurrentPos WHEN endCurrentPos — labelCurrentPos =1 —

(a)
WITH windows AS (

SELECT station,
date,

=

Change the
starting tuple
to label and
create the
boundaries to
include the
previous and
following tuple

val,
AVG(val) OVER (PARTITION BY station
ORDER BY date

OVER groups all tuples
between the previous tuple
and next tuple

FROM Ghcn

ROW BETWEEN 1 PRECEDING |
AND 1 FOLLOWING)

WHERE dataType="TMIN")
SELECT station, date, avg

FROM windows
WHERE val < 25;

[FROM Ghen

| 2

[WHERE dataType = “TMIN”]

L 2
“WINDOW BY w
TYPE SLIDING
PARTITION BY Ghcn.station
ORDER BY Ghcn.date
LABEL AS labelCurrentltem AT labelCurrentPos
WHEN labelCurrentltem.Ghcn.val <25
START AT startCurrentPos
WHEN labelCurrentPos— startCurrentPos = 1
END AT endCurrentPos
WHEN@dCurrentPos — labelCurrentPos=1
3

labelCurrentltem.Ghcn.station AS station,

labelCurrentltem.Ghcn.date AS start_time,

ARRAY_AVG(FROM w SELECT VALUE
Ghcn.val) AS average

4

SELECT

\

(b)

out — pin
BWINDOWBY - BSELECT

{{labelCurrentitem: {Ghcn: {date: 1, station: 1, val: 20, dataType: “TMIN"}}, \

labelCurrentPos: 1,
startCurrentPos : MISSING,
endCurrentPos: 2,
w: [MISSING, {Ghcn: {date: 1, station: 1, val: 20, dataType: “TMIN"}},
{Ghcn: {date: 2, station: 1, val: 26, dataType: “TMIN"}}1},
{labelCurrentitem: {Ghcn:{{date:4, station: 1, val: 23, dataType: “TMIN"}},
labelCurrentPos: 4,
startCurrentPos : 2,
endCurrentPos: 5,
w: [{Ghcn: {date: 2, station: 1, val: 26, dataType: “TMIN"}},
{Ghcn: {date: 4, station: 1, val: 23, dataType: “TMIN"}},
{Ghcn: {date: 5, station: 1, val: 30, dataType: “TMIN"}}1},
{labelCurrentitem: {Ghcn:{{date: 1, station: 2, val: 22, dataType: “TMIN"}},
labelCurrentPos: 1,
startCurrentPos : MISSING,
endCurrentPos: 2,
w: [MISSING, {Ghcn: {date: 1, station: 2, val: 22, dataType: “TMIN”}},
{Ghcn: {date: 2, station: 2, val: 28, dataType: “TMIN”}}]} /

Ny

Fig. 18 Label bindings. The outputs of each query Clause; numbers indicate where the output was produced

@ Springer

A new window Clause for SQL++

Fig. 19 WindowBy example of SELECT labelCurrentitem.Ghcn.station AS station,
a Cumulative average and b

window between 10 tuples labelCurrentitem.Ghcn.date AS date,
before and 5 tuples before the ARRAY_AVG((SELECT VALUE Ghcn.val FROM w))
current tuple FROM Ghcn
WHERE dataType="TMIN"
WINDOW BY w Change the starting
TYPE SLIDING tuple to label and
PARTITION BY Ghcn.station create the boundaries
ORDER BY Ghcn.date to all tuples from the
LABEL AS labelCurrentitem WHEN true start to the current
START UNBOUNDED tuple
END AT endCurrentltem
WHEN endCurrentltem = labelCurrentitem

(@)

SELECT labelCurrentltem.Ghcn.station AS station,
labelCurrentitem.Ghcn.date AS date,
ARRAY_AVG((SELECT VALUE Ghcn.val FROM w))

FROM Ghcn
WHERE dataType="TMIN"
WINDOW BY w Change the
TYPE SLIDING starting tuple to
PARTITION BY Ghcn.station label and create
ORDER BY Ghcn.date the boundaries
LABEL AS labelCurrentitem =3 to between 10
AT labelCurrentPos WHEN true tuples before
START AT startCurrentPos - and 5 tuples
WHEN labelCurrentPos — startCurrentPos = 10 | before
END AT endCurrentPos
WHEN labelCurrentPos —endCurrentPos =5 -
(b)
Fig.20 Example of a session SELECT startCurrentitem.Ghcn.station AS station,
window using WindowBy startCurrentitem.Ghcn.date AS date,
ARRAY_AVG((SELECT VALUE Ghcn.val FROM w)) AS average
FROM Ghcn

WHERE dataType="TMIN”
WINDOW BY w
TYPE TUMBLING _1__ Sessions are a special
PARTITION BY Ghen.station | | type of tumbling window
ORDER BY Ghcn.date
START AS startCurrentitem WHEN true
END AS endCurrentltem NEXT AS endNextltem _
WHEN endNextltem.Ghcn.date — I
endCurrentlitem.Ghcn.date > Duration(“PTSM”) ‘_

Compare the last
tuple of the
window with the
tuple following it
to make sure it’s
within 5 minutes

@ Springer

J.Fangetal.

can be used to start the window one tuple before the current
tuple (labelCurrentPos-startCurrentPos = 1) and end it one
tuple after the current tuple (endCurrentPos-label CurrentPos
= I). The resulting bindings are shown in Fig.18. When
there is no tuple preceding labelCurrentPos, any start vari-
ables (startCurrentPos) are reported as MISSING; similarly,
w also shows a MISSING before the tuples in the window.
The only window that satisfies the starting condition is the
window that has a label at the tuple with station 1 and date 4.

As another example consider computing cumulative aver-
ages over sliding windows. That is, given a station, find the
average TMIN value starting from the start of the sequence
and ending on the current tuple, for each tuple for that sta-
tion. Figure 19a depicts this query in WindowBy. Note that
the ending tuple of the window is set to be the LABEL tuple
(shown by endCurrentltem = labelCurrentltem) which is the
current tuple processed (and the tuple where the window will
be appended). The START is set to UNBOUNDED, and the
END condition is set to be always true.

Using LABEL allows the window not to include the cur-
rent tuple. As an example, consider computing the average
TMIN value for a sliding window that starts ten tuples before
the given tuple and ends five tuples before the given tuple.
Figure 19b depicts this query in WindowBy. Note that the
LABEL predicate is set to be always true and as a result
every tuple generates a window. START is set to be ten tuples
before the label while END is set to be five tuples before the
label.

5 Basicimplementation

As a proof of concept, in this section we present algorithms
that implement WindowBYy sliding windows both for single
and multi-node environments. For simplicity we focus on
the default case where the label coincides with the start of
the sliding window; these algorithms can be extended eas-
ily to support the case where the label is not the window’s
starting tuple. The algorithm can also support the creation
of tumbling windows by effectively filtering (selecting) the
tumbling windows out of all the sliding windows. A number
of optimizations are possible, but we leave such discussions
for follow-up work.

5.1 Sliding windows

Consider a WindowBy query creating sliding windows over
an input sequence of n tuples; its output will contain between
0 and n windows (since not every tuple creates a window). As
noted earlier, each window created is represented by a tuple
that contains: one attribute for each variable declared (e.g.
the starting and ending tuples and their positions) and one

@ Springer

attribute to capture the result (all the tuples of the window cre-
ated). For example in Fig. 10, the first window tuple (see box
3) has 4 attributes (startCurrentltem,startCurrentPos, end-
CurrentPos and w).

Consider first the case where the ordered sequence can
be stored in a single node. Our basic WindowBy evaluation
algorithm will sequentially process the tuples of this ordered
sequence. For each tuple it will check whether the starting
condition is satisfied, in which case it creates a new window. It
then adds this tuple to any currently open windows (by ‘add’
we mean that this tuple is used in the calculation of the result
of a window, typically an aggregate). Afterwards it checks if
this tuple ends any open window(s), in which case it closes
that window. For each window the variables for its start and
end are assigned when the window is created/closed. Any
windows that remain open after the entire tuple sequence
is processed are reported in the output with the MISSING
keyword added. If the ONLY option is used, then only closed
windows are reported.

If the ordered sequence is too large to fit in a single node,
it will be sliced into ordered subsequences, each handled
by a different node. This creates an ordered node sequence,
i.e., node NCI1 followed by node NC2, followed by NC3,
as shown in Fig.21a (which also shows the tuples of the
subsequence assigned to each node). Note that there are three
ways that the windows can occur when the ordered sequence
is distributed: (1) windows that start and end in the same
node, (2) windows that start in a node but end in a later node,
and (3) windows that start in a node but never end. In our
approach, windows will be reported at the node where they
started.

In this environment the WindowBy algorithm can create
sliding windows in at most two passes. The first pass will
use the previous single-node algorithm to find the locally
completed windows within each node (i.e., those windows
that start and end within the same node). Figure 21b, shows
the finished windows after the first pass assuming the data
is distributed in three nodes (NC1,NC2,NC3) as in Fig.21a,
assuming that the query is a sliding window of size 2 tuples.
The windows shown in the figure follow the notation Wi-
Jj:[list] where i corresponds to the NC where this window
started, j is the id of this window within that NC and list pro-
vides the result tuples currently in this window. The finished
windows in the first pass are W1-1, W2-1, W3-1 and W3-2
and correspond to windows that start and end within the same
node. W1-1 is the first window created by NC1 and contains
tuples 1 and 2. Node NC3 created 2 windows; the second
one W3-2 has the list [6,MISSING] since it started at tuple
6 in the sequence and was open when the full sequence was
processed (NC3 is the last node). Note that only the last node
in the node sequence will add MISSING to its unfinished
windows that did not close after processing its subsequence
since this marks the end of the whole sequence. If every win-

A new window Clause for SQL++

Input Data

=

v

2 4 6
(a)
Phase 1 Finished Input Data
Windows
Phase 1
Unfinished
Windows 7 \
Phase 2 \\
Unfinished ’ \
Windows \\ \
> wEETEl \ [w2113, 4] | \ [wa-1:[56] |
unfinished | w12 2]] \ [Twasz:) \‘ W3-2: [6, ‘
window is \ \ MISSING]
returned to the W1-2.2: [3]
node that
started it. W1-2.3: [5]
(c)

Information

Input Data
about Phase
1 Unfinished s
windows is
forwarded to N
later nodes) -
Phase 1 Finished 2 i 6
Windows
Phase 1 [w112 | (w4 |/ [waisel |
Unfinished W32 6
Windows [wiza | [wazpe | T
(b)
Phase 1 Finished
Witidows Input Data
Phase 2 y
Finished
Windows i T
Note that W1-2.3 - - -
is discarded at 2 4 6
node NC1 because
thiswindow | | Wi1:[1,2] | [w21:(3,41 | [w3156 |
has ended in Node | W1-2: [2, 3] ‘ | W2-2: [4, 5] | W3-2: [6,
NC2. MISSING
(d)

Fig.21 Parallel Sliding Window Example: a distributing the data, b single node sliding window results, ¢ processing of unfinished windows, and

d final calculation of results

dow can be completed locally, the algorithm ends in just one
pass.

If there are windows that cannot be completed within a
node (that is, windows that start in a given node but are still
open when this node finished processing its subsequence),
each node sends information about all its unfinished windows
created after the first pass, to the nodes that are later in the
node sequence; this is because such windows can end in any
of the subsequent nodes (or remain open after the whole
sequence is processed). In the example of Fig. 21b these are
windows W1-2 and W2-2. For each unfinished window the
information sent includes the window’s Wi-j identification
and its start variables (but no window tuples are transferred).

In the second pass, each node works on any unfinished
windows that it may have received from the first pass. A
major difference with the first pass is that now, when pro-
cessing a tuple, the algorithm does not check if this tuple
starts a window; this was done in the first pass and all win-
dow starts are known. Each node will process every tuple in
its subsequence. A given tuple will be considered by all the
unfinished windows the NC received from the first pass as
long as these windows are still open. Moreover, the algorithm
will check if a given tuple ends any of those unfinished win-
dows. If it does, the particular window is closed and it cannot
consider any further tuples. The results of these windows are
stored using the notation Wi-j.k:[list] where k corresponds

to the id of the NC that computed the result for unfinished
window Wi-j. In Fig.21c there are three unfinished window
results: in W1-2.2:[3], W1-2.3:[5], and W2-1.3:[5].

During the second pass a node does not know if any of
its unfinished windows may have finished at an earlier node;
hence it will calculate result for any of the unfinished win-
dows it received. (An easy optimization can mitigate this
issue: when a node closes an unfinished window it can inform
all later nodes in the node sequence that this unfinished win-
dow closed; however such optimization is not implemented
yet). At the end of the second pass, each node sends its unfin-
ished windows and their calculated tuples (including the end
variables for those windows that it closed) to the node that
started the respective unfinished window.

Using this information the node that started each win-
dow can now compute the final result for that window
(Fig.21d). For window W1-2, NCI received results from
NC2 (W1-2.2:[3]) and NC3 (W1—2.3:[5]) but the result
from NC2 ends the window. Thus W1—2.3:[5] is discarded
when calculating window W1-2.

The above distributed window algorithm can be easily
updated in the case where LABEL is used; the difference is
that now a node will send the information about its unfinished
windows to nodes before or after it depending on the range
of the window. A window will be reported by the node that
contains the window’s label tuple.

@ Springer

J.Fangetal.

5.2 Tumbling windows

A generic algorithm for calculating tumbling windows is to
first calculate the set of sliding windows as above and then
identify the tumbling windows using this set. To do so, all
the boundaries of the sliding window are ordered and then
sent to one node. The node can then sequentially identify
the sequence of tumbling windows (another window cannot
be open until the previous closes). Various optimizations are
possible depending on the window query but this is out of
this paper’s focus.

6 Experimental evaluation

In this section we compare the performance of our initial
WindowBy implementation against the SQL++

OVER implemented on the Apache AsterixDB big data man-
agement system. We note that the SQL++ OVER Clause
implementation has been tested and optimized; it is also been
used and tested in an industrial strength system, Couchbase
Analytics [21] (which is built on AsterixDB). The exper-
iments here focus on the general WindowBy functionality
with a largely unoptimized WindowBy implementation. Our
approach focuses on a range-based partitioning scheme, so
some stations’ data sequences can be split across nodes. SQL
OVER'’s hash-based partitioning ensures that each station’s
sequence lies within a single partition. As a result, we expect
OVER to perform better because it does not require any com-
munication or data transfers between partitions. In contrast,
the only optimization that has been applied on our initial
WindowBy proof-of-concept implementation is the obvi-
ous aggregate push-down (which limits how many tuples
are carried between stages of the WindowBy algorithm). In
our initial WindowBy implementation, we allow an ordered
sequence to be split among partitions. As aresult, only aggre-
gate functions that implement a way to aggregate partial
results work. Holistic functions like rank thus do not yet
work in our implementation.

For our performance evaluation we used the window
examples discussed in Sect.4. For comparison purposes,
for all queries we also report the performance of a SQL++
nested-loop implementation. In our experiments we used
large GHCN datasets (with sizes ranging from 400GB to
800GB). Each tuple contains four attributes: station, date,
value and dataType, using the DDL shown in Fig.8. The
experiments were run on AWS using i3.xlarge instances, each
with 2.3 GHz Intel Xeon Scalable Processors, 4 vCPUs and
30.5GB RAM. Each experiment was run using 1, 2, 4, 8 and
16 instances. The results in the charts are the result of run-

@ Springer

ning the experiments 3 times and taking the average of these
3 runs.

6.1 Sliding windows
6.1.1 Bounded windows

The first experiment considers the sliding window query
with fixed duration of 1 week from Fig. 11. The query times
appear in Fig. 22 using two datasets: a 400 GB and b 800 GB,
while varying the number of nodes from 1 to 16.

Out of the three approaches, OVER is the fastest with
WindowBYy close second and the nested approach being the
slowest. The performance of OVER is better than WindowBy
by 10-20% since the current WindowBy implementation
requires a second pass over (some) data. Moreover, according
to the current implementation of WindowBy (see algorithm
in Sect. 5), during the second pass the last node receives unfin-
ished windows from all nodes before it and has to process
them even if they may not apply to its data. This step fin-
ishes when all nodes finish processing and communicating
their results before the next step can start. One can limit the
amount of communication and the number of unfinished win-
dows sent using a range map but this optimization has not
been implemented yet for WindowBy.

Another observation is that all approaches benefit from
adding more nodes, experiencing good speed-up as the num-
ber of nodes is doubled. The relative performance differences
between the three approaches become less apparent when 16
nodes are used; in that case even for the large file (800 GB)
each partition is small enough to fully fit in main memory.

We next consider the sliding window with fixed length of
twenty tuples from Fig. 12. The results are depicted in Fig. 23;
all approaches behave similarly to the fixed duration sliding
window query

6.1.2 Unbounded windows

As an unbounded sliding window example we used the slid-
ing window that stays open while the tuple’s TMIN value
is less than 25 (from Fig. 13). Recall that this query cannot
be expressed using OVER since the window is not based
on the ordering attribute. The experimental results appear
in Fig.24; again the query performance of the nested-loop
approach (Fig. 13a) is slower than our WindowBy by 20%
for a single node and this slowly drops to 7% at 16 nodes,
As expected, the unbounded sliding window takes relatively
more time than the bounded sliding examples from the previ-
ous section, since more work needs to be performed for each
window.

A new window Clause for SQL++

@ OVER [WindowBy [l Nested

40000

20000

Time(seconds)

10000

Nodes

(a)

B OVER [WindowBy [l Nested
100000

75000

Time(seconds)

25000

1 2 4 8 16

Nodes

(b)

Fig.22 Query performance for sliding window with fixed duration (1 week) for dataset sizes: a 400 GB and b 800 GB

B OVER [WindowBy [l Nested

40000

Time(seconds)

10000

Nodes

(a)

B OVER [WindowBy [l Nested
100000

75000

Time(seconds)

25000

1 2 4 8 16

Nodes

(b)

Fig.23 Query performance for sliding window with fixed length (20 tuples) for dataset sizes: a 400 GB and b 800 GB

B WindowBy [l Nested

40000

Time(seconds)

Nodes

(a)

B WindowBy [l Nested

125000

100000

g 75000

é" 50000
[

25000

Nodes

(b)

Fig.24 Query performance for unbounded sliding window for dataset sizes: a 400 GB and b 800 GB

6.2 Tumbling windows

6.2.1 Unbounded windows

Consider first the unbounded tumbling window that stays
open while the tuple’s TMIN value is less than 25 (seen
in Fig. 14). The performance results for the WindowBy and

nested approaches appear in Fig. 25 (recall that both the tum-
bling window examples used in Sect. 4.2 are not possible with
OVER). The nested-loop approach still takes longer than the
WindowBy query by about 19% in a single node case down
to 6% in the 16 node case. Note that both the WindowBy and
nested implementations of this tumbling window take longer
than their respective implementations of the sliding variant

@ Springer

J.Fangetal.

B WindowBy [Nested

40000

Time(seconds)

20000

Nodes

(a)

B WindowBy [l Nested
200000

150000

Time(seconds)

Nodes

(b)

Fig.25 Query performance for unbounded tumbling window for dataset sizes: a 400 GB and b 800 GB

60000

40000

Time(seconds)

20000

(a)

125000

100000

Z 75000
§

2 50000
B

25000

Nodes

(b)

Fig.26 Query performance for tumbling window with fixed duration (1 week) for dataset sizes: a 400 GB and b 800 GB

of this query (from Fig. 24). This is expected since our initial
tumbling window implementation uses a generic algorithm
that first calculates the set of all sliding windows and then
identifies the tumbling windows amongst them.

6.2.2 Bounded windows

Next we examine a tumbling window with fixed duration
of 1week (Fig.16). We can only implement this query
using WindowBy since AsterixDB currently does not support
recursion or MATCH_RECOGNIZE. The results appear in
Fig.26. As expected, the tumbling window query takes longer
than the sliding window variant (Fig.22), and is faster than
its unbounded tumbling version (Fig. 25).

6.3 Label and session windows

The following experiments consider the performance of win-
dows with labels as well as session windows.

Consider the window with label example given in Fig. 17.
This query represents a sliding window of length three tuples
between the tuple preceding and the tuple after the current

@ Springer

tuple, when the current tuple’s TMIN value is less than 25.
The experimental results appear in Fig. 27. The performance
of the label sliding window in WindowBy is slightly slower
by 15% than a plain (no-label) sliding window case (say
Fig.23) because additional communication is now required
with nodes before the current node (in addition to nodes after
it). In our initial implementation a node sends unfinished
windows to all nodes that require them and in this case, it
sends them to all nodes before and after itself; as before,
optimizations can be applied to reduce that communication
but this is left for future work.

We next experimented with a session window with time-
out using the query shown in Fig.20. This query cannot be
written using OVER because there is no mechanism to com-
pare the difference in time between arriving tuples. It can be
written using a rather complex SQL++ nested approach. (see
Fig.33 in the “Appendix”). The query performance between
the WindowBy and nested approaches appears in Fig.28.
As with the tumbling unbounded window performance (of
which sessions is a special case) the WindowBy approach is
faster than the nested one.

A new window Clause for SQL++

B OVER | WindowBy [l Nested

40000

Time(seconds)

20000

Nodes

(a)

B OVER [WindowBy [l Nested

100000
75000
5
:
50000
2
T
£
F
25000

Nodes

(b)

Fig.27 Experimental results for label window over dataset sizes: a 400 GB and b 800 GB

W WindowBy [Nested

40000

Time(seconds)

20000

10000

B WindowBy [l Nested
100000

75000

Time(seconds)

25000

Nodes

(b)

Fig. 28 Query performance for a session window with timeout for dataset sizes: a 400 GB and b 800 GB

40000 60000

30000

R :40000
[|

H E2oooo
10000

50000

40000

30000

20000

Time (seconds)

10000

[

Fig.29 Scale-Up experiments using a a sliding, and, b a tumbling window with fixed duration (1 week) and ¢ a label window query. The dataset

size per node is 400 GB

6.4 Scale-up experiments

Finally we examined how well our implementation of the
WindowBy Clause scales. For the scale-up experiments we
used three window examples: the sliding window with fixed
duration of 1week (from Fig. 11), the tumbling version of
the same window (from Fig. 16) and a label window (from
Fig. 17). In particular we started with one node handling a
dataset of size 400 GB and continued doubling the number

of nodes and the size of the overall dataset, while keeping the
dataset size per node at 400 GB (that is, two nodes handled
800GB, 4 nodes 1.6TB etc.) The query performance results
appear in Fig.29. As it can be seen our WindowBy imple-
mentation achieves good scale-up performance; the query
execution time remains roughly the same, which means that
the additional data is processed in roughly the same amount
of time.

@ Springer

J.Fangetal.

7 Conclusions

One of the major advantages of the WindowBy Clause is that
the window start and end can be expressed by predicates.
This simplifies sliding and tumbling windows for users. As
such, our WindowBy Clause is more intuitive compared to
the SQL OVER Clause and many of the current streaming
approaches. This makes it a potentially valuable addition to
SQL++ systems. While it may not be as expressive as the
MATCH_RECOGNIZE clause that was recently added to the
SQL standard, it is far easier to write a query. Various opti-
mizations can be applied depending on the window query.
For example, if the end condition is a fixed condition (e.g.
TMIN value greater than or equal to 25) then the entire win-
dow can be calculated in one pass. As future research we are
examining how to fully optimize WindowBy. This includes
optimizations that should bring comparable performance to
OVER as well as ways to finish some queries in a single pass.

Acknowledgements We would like to thank Yannis Papakonstantinou
for early discussions on the window clause. This research was supported
by NSF Grants IIS-1954644, 1IS-1954962, CNS-1924694 and CNS-
1925610 and by the Donald Bren Foundation (via a Bren Chair at UC
Irvine).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix

Below we present SQL++ nested-loop approaches for some
of the window queries used in the experiments.

A.1: Sliding window with fixed duration
The query (fixed duration of 1 week) appears in Fig. 30. While

not complex, it still requires looping over the data to find the
tuples in each window.

@ Springer

SELECT startTuple.station,
startTuple.date,
AVG(windowTuple.val)
FROM Ghcn AS startTuple, Ghen AS windowTuple
WHERE startTuple.dataType = “TMIN” AND
windowTuple.dataType = “TMIN” AND
startTuple.station = windowTuple.station AND
windowTuple.date >= startTuple.date AND
windowTuple.date — startTuple.date <= Duration(“P7D")
GROUP BY startTuple.station, startTuple.startDate;

Fig. 30 A sliding window with fixed duration (1week) using the
SQL++ Nested-loop approach

WITH GhcnPos AS (
SELECT station,
date,
val,
ROW_NUMBER() OVER (PARTITION BY station
ORDER BY date) AS pos
FROM Ghcn
WHERE dataType="TMIN"
)
SELECT startTuple.station,
startTuple.date,
AVG(windowTuple.val)
FROM GhcnPos AS startTuple, GhcnPos AS windowTuple
WHERE startTuple.station = windowTuple.station AND
windowTuple.pos >= startTuple.pos AND
windowTuple.pos — startTuple.pos <=19
GROUP BY startTuple.station, startTuple.startDate;

Fig. 31 A sliding window with fixed length (20 tuples) using the
SQL++ Nested-loop approach

A.2: Sliding window with fixed length

The query (fixed length of 20 tuples) appears in Fig.31. It
is more complex than the fixed duration query because it
requires attaching positional variables to each tuple to create
a 20 tuple long window. As before, it requires looping over
the data to build the windows.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

A new window Clause for SQL++

WITH GhcnPos AS (
SELECT station,
date,
val,
ROW_NUMBER() OVER (PARTITION BY station
ORDER BY date) AS pos
FROM Ghcn
WHERE dataType="TMIN"
), wStart AS (
SELECT station, date, val, pos
FROM GhcnPos
WHERE val < 25
)
SELECT startTuple.station,
startTuple.date,
AVG(windowTuple.val)
FROM wStart AS startTuple, GhcnPos AS windowTuple
WHERE startTuple.station = windowTuple.station AND
windowTuple.pos >= startTuple.pos - 1 AND
windowTuple.pos — startTuple.pos <=1
GROUP BY startTuple.station, startTuple.date;

Fig. 32 Label Query for previous and following tuple using Nested-
loop SQL++ approach

A.3: Sliding window with label

This label query represents a sliding window of length
three tuples, starting with the tuple preceding and ending
with the tuple after the current tuple, when the current
tuple’s TMIN value is less than 25; it appears in Fig.32.
The approach taken is similar with the nested-loop approach
we followed for the sliding window example in Fig. 13a. In
particular, the nested solution requires finding first the tuples
that can start a window through the wStart table. Once these
label tuples are found, the query loops over the Ghcn data
and finds any Ghen tuples in the defined window length from
that label tuple. As the tuple positions are available in table
GhcenPos, a startTuple’s position needs to be compared with
that of a windowTuple’s position.

A.4: Session window

The session window query appears in Fig.33. Session
windows are special cases of tumbling windows and are typ-
ically very complex to write using the Nested-loop SQL++
approach.

WITH GhcnPos AS (

SELECT station,
date,
val,

ROW_NUMBER() OVER (PARTITION BY station
ORDER BY date) AS pos
FROM Ghcn
WHERE dataType="TMIN"
), currentPrev AS (

SELECT currentTuple.station AS station,
currentTuple.pos AS currentPos,
currentTuple.val AS currentVal,
currentTuple.date AS currentdate,
previousTuple.pos AS previousPos,
previousTuple.val AS previousVal,
previousTuple.date AS previousdate

FROM GhcnPos AS currentTuple, GhcnPos AS previousTuple

WHERE currentTuple.station = previousTuple.station AND

({(currentTuple.pos = previousTuple.pos + 1) OR
(currentTuple.pos =1 AND previousTuple.pos = 1))
), wStart AS (

SELECT station, currentdate AS date

FROM currentPrev

WHERE currentVal < 25 AND

(currentPos = 1 OR previousVal > 24)
), WEnd AS (

SELECT cl.station, cl.currentdate AS date

FROM currentPrev AS c1

LET stationLastPos = (SELECT VALUE MAX(pos)

FROM GhcnPos AS g1
WHERE gl.station = cl.station)[0]
WHERE currentPos >= stationLastPos OR
(currentdate — previousdate >
Duration(“PTSM"))
), wBoundaries AS (
SELECT wStart.date AS startDate,
MIN(wEnd.date) AS endDate,
wStart.station AS station

FROM wStart, wEnd

WHERE wStart.station = wEnd.station AND

wEnd.date >= wStart.date

GROUP BY wStart.station, wStart.date

)
SELECT startTuple.station,
wBoundaries.startDate AS date,
AVG(windowTuple.val)
FROM GhcnPos AS startTuple, GhcnPos AS windowTuple, wBoundaries
WHERE startTuple.station = windowTuple.station AND
wBoundaries.station = startTuple.station AND
startTuple.date = wBoundaries.startDate AND
wBoundaries.startDate <= windowTuple.date AND
wBoundaries.endDate >= windowTuple.date
GROUP BY startTuple.station, wBoundaries.startDate;

Fig.33 Session window using Nested-loop SQL++ approach

@ Springer

J.Fangetal.

References

10.

11.

12.

13.

14.

15.

16.

17.

20.

Abadi, D.J., et al.: Aurora: a new model and architecture for data
stream management. VLDB J. 12, 120-139 (2003)

Akidau, T., et al.: The dataflow model: a practical approach to bal-
ancing correctness, latency, and cost in massive-scale, unbounded,
out-of-order data processing. In: Proceedings of the VLDB Endow-
ment (2015)

Alsubaiee, S., et al.: AsterixDB: a scalable, open source BDMS.
In: arXiv preprint arXiv:1407.0454 (2014)

Arasu, A., Babu, S., Widom, J.: CQL: a language for continu-
ous queries over streams and relations. In: Database Programming
Languages: 9th International Workshop, DBPL 2003, Potsdam,
Germany, September 6-8, 2003. Revised Papers 9. Springer, pp.
1-19 (2004)

Awad, A., Traub, J., Sakr, S.: Adaptive watermarks: a concept drift-
based approach for predicting event-time progress in data streams.
In: EDBT, pp. 622-625 (2019)

Begoli, E., et al.: Apache calcite: a foundational framework for
optimized query processing over heterogeneous data sources. In:
Proceedings of the 2018 International Conference on Management
of Data, pp. 221-230 (2018)

Begoli, E., etal.: One SQL to rule them Allan efficient and syntacti-
cally idiomatic approach to management of streams and tables. In:
Proceedings of the 2019 International Conference on Management
of Data, pp. 1757-1772 (2019)

Bellamkonda, S., et al.: Adaptive and big data scale parallel exe-
cution in oracle. Proc. VLDB Endow. 6(11), 1102-1113 (2013)
Botan, I., et al.: Extending XQuery with window functions. In:
VLDB, pp. 75-86 (2007)

Cao, Y., etal.: Optimization of analytic window functions. In: arXiv
preprint arXiv:1208.0086 (2012)

Carbone, P, et al.: Apache flink: stream and batch processing in a
single engine. Bull. Tech. Comm. Data Eng. 38(4) (2015)
Chamberlin, D.: SQL++ for SQL Users: A Tutorial. Couchbase
Inc., Santa Clara (2018)

Chandramouli, B., et al.: Trill: a high performance incremental
query processor for diverse analytics. Proc. VLDB Endow. 8(4),
401-412 (2014)

Chandrasekaran, S., et al.: TelegraphCQ: continuous dataflow pro-
cessing. In: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, pp. 668-668 (2003)
Coelho, F, et al.: Reducing data transfer in parallel processing of
SQL window functions. In: CLOSER (1), pp. 343-347 (2016)
Deep Dive into 12c MATCH RECOGNIZE. In: Oracle
(2015). https://www.oracle.com/technetwork/database/bi-
datawarehousing/mr-deep-dive-3769287.pdf

Eiden, F., Howell, J., et al.: Session window (azure stream
analytics)—stream analytics query. In: Session Window (Azure
Stream Analytics)—Stream Analytics Query—Microsoft Docs
(2013). https://docs.microsoft.com/en-us/stream-analytics-query/
session-window-azure-stream-analytics

. Fischer, PM., Garg, A., Sheykh, K.E.: Extending XQuery with a

pattern matching facility. In: Database and XML Technologies: 7th
International XML Database Symposium, XSym 2010, Singapore,
September 17, 2010. Proceedings 7. Springer, pp. 48-57 (2010)
Global Historical Climatology Network daily. In: Global Histor-
ical Climatology Network daily (GHCNd) (2012). https://www.
ncei.noaa.gov/products/land-based-station/global-historical-
climatology-network-daily

Hirzel, M., et al.: SPL stream processing language specification.
In: New York: IBM Research Division TJ. Watson Research Center,
IBM Research Report: RC24897 (W0911 044) (2009)

@ Springer

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Hubail, M.A., et al.: Couchbase analytics: NoETL for scalable
NoSQL data analysis. Proc. VLDB Endow. 12(12), 2275-2286
(2019)

Igbal, M.H., Soomro, T.R., et al.: Big data analysis: Apache storm
perspective. Int. J. Comput. Trends Technol. 19(1), 9-14 (2015)
Jain, N, et al.: Towards a streaming SQL standard. Proc. VLDB
Endow. 1(2), 1379-1390 (2008)

Jain, S., et al.: Sqlshare: results from a multi-year SQL-as-a-service
experiment. In: Proceedings of the 2016 International Conference
on Management of Data, pp. 281-293 (2016)

Koliousis, A., et al.: Saber: window based hybrid stream process-
ing for heterogeneous architectures. In: Proceedings of the 2016
International Conference on Management of Data, pp. 555-569
(2016)

Leis, V., et al.: Efficient processing of window functions in analyt-
ical SQL queries. Proc. VLDB Endow. 8(10), 1058-1069 (2015)
Li,J.,etal.: Semantics and evaluation techniques for window aggre-
gates in data streams. In: Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, pp. 311-322
(2005)

Miao, H., et al.: StreamBox: modern stream processing on a mul-
ticore machine. In: USENIX Annual Technical Conference, pp.
617-629 (2017)

Michels, J.: The new improved SQL: 2016 standard. ACM SIG-
MOD Rec. 47.2, 51-60 (2018)

Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ query
language: configurable, unifying and semi-structured. In: arXiv
preprint arXiv:1405.3631 (2014)

Pathirage, M., et al.: SamzaSQL: scalable fast data management
with streaming SQL. In: IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW). IEEE, pp.
1627-1636 (2016)

Patroumpas, K., Sellis, T.: Window specification over data streams.
In: Current Trends in Database Technology-EDBT 2006: EDBT
2006 Workshops PhD, DataX, IIDB, ITHA, ICSNW, QLQP, PIM,
PaRMA, and Reactivity on the Web, Munich, Germany, March
26-31, 2006, Revised Selected Papers 10. Springer, pp. 445-464
(2006)

Song, G., et al.: Approximate calculation of window aggregate
functions via global random sample. Data Sci. Eng. 3,40-51 (2018)
Tangwongsan, K., et al.: General incremental sliding-window
aggregation. Proc. VLDB Endow. 8(7), 702-713 (2015)
Theodorakis, G., et al.: Lightsaber: efficient window aggregation on
multi-core processors. In: Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pp. 2505-2521
(2020)

Traub, J., et al.: Scotty: efficient window aggregation for out-
of-order stream processing. In: 2018 IEEE 34th International
Conference on Data Engineering (ICDE). IEEE, pp. 1300-1303
(2018)

Traub, J., et al.: Scotty: general and efficient open-source window
aggregation for stream processing systems. ACM Trans. Database
Syst. (TODS) 46(1), 1-46 (2021)

Wesley, R., Xu, F.: Incremental computation of common windowed
holistic aggregates. Proc. VLDB Endow. 9(12), 1221-1232 (2016)
Widom, J., et al.: The Stanford data stream management system.
In: Believed to be Prior to, p. 24 (2007)

XQuery 3.1: An XML query language. In: WC3 (2019). https:/
www.w3.org/TR/xquery-31

Zaharia, M., et al.: Apache spark: a unified engine for big data
processing. Commun. ACM 59(11), 56-65 (2016)

Zaharia, M., et al.: Discretized streams: an efficient and fault-
tolerant model for stream processing on large clusters. In: HotCloud
12.10-10 (2012)

http://arxiv.org/abs/1407.0454
http://arxiv.org/abs/1208.0086
https://www.oracle.com/technetwork/database/bi-datawarehousing/mr-deep-dive-3769287.pdf
https://www.oracle.com/technetwork/database/bi-datawarehousing/mr-deep-dive-3769287.pdf
https://docs.microsoft.com/en-us/stream-analytics-query/session-window-azure-stream-analytics
https://docs.microsoft.com/en-us/stream-analytics-query/session-window-azure-stream-analytics
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
http://arxiv.org/abs/1405.3631
https://www.w3.org/TR/xquery-31
https://www.w3.org/TR/xquery-31

A new window Clause for SQL++

43. Zemke, F.: What’s new in SQL: 2011. ACM SIGMOD Rec. 41(1), Publisher’s Note Springer Nature remains neutral with regard to juris-

67-73 (2012) dictional claims in published maps and institutional affiliations.
44. Zhu, E., Huang, S., Chaudhuri, S.: High-performance row pattern

recognition using joins. Proc. VLDB Endow. 16(5), 1181-1195

(2023)

@ Springer

	A new window Clause for SQL++
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Terminology
	2.2 Streaming environment
	2.3 Stored data environment

	3 The proposed WindowBy Clause
	3.1 SQL OVER and XQuery windows
	3.2 The advantages of SQL++
	3.3 WindowBy Clause semantics
	3.4 WindowBy bindings

	4 WindowBy query examples
	4.1 Sliding windows
	4.1.1 Bounded sliding windows: duration
	4.1.2 Bounded sliding windows: number of tuples
	4.1.3 Unbounded sliding windows
	4.1.4 Discussion

	4.2 Tumbling windows
	4.2.1 Unbounded tumbling windows
	4.2.2 Bounded tumbling windows: duration
	4.2.3 Bounded tumbling windows: number of tuples
	4.2.4 Discussion

	4.3 Sessions
	4.4 Using ONLY and LABEL
	4.4.1 ONLY
	4.4.2 LABEL

	5 Basic implementation
	5.1 Sliding windows
	5.2 Tumbling windows

	6 Experimental evaluation
	6.1 Sliding windows
	6.1.1 Bounded windows
	6.1.2 Unbounded windows

	6.2 Tumbling windows
	6.2.1 Unbounded windows
	6.2.2 Bounded windows

	6.3 Label and session windows
	6.4 Scale-up experiments

	7 Conclusions
	Acknowledgements
	Appendix
	A.1: Sliding window with fixed duration
	A.2: Sliding window with fixed length
	A.3: Sliding window with label
	A.4: Session window

	References

