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Prelude

I have been thinking a lot about how machine learning (ML) and related areas (e.g., artifi-
cial intelligence, digitalization, and data science) are transforming and will transform our
research field of process systems engineering (PSE). The ML field continues to explode as
I write this commentary; there will be thousands of new papers published on the subject
by the time I am done writing this. This is the first time in my career that I witness such a
revolution; it has been fun, thrilling, confusing, and at times scary, to witness such a tidal
wave. As a scientist, I continue to wonder about how my PSE skills fit and can be best used
in this ML revolution. As an educator, I continue to wonder what mix of “old” and “new”
skills/knowledge I should be providing my students to help them make the most of the ML

revolution.
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In this commentary, I provide a personal perspective on how I see ML is transforming
PSE and on how I think that we (the PSE community) can best use and contribute to ML.
In doing so, I will provide an anecdotal perspective on how I “discovered” (and learned to
love) ML and on how this has transformed my research program over the past few years. In
this context, I will emphasize the aspects of my PSE training that facilitated my adoption of
ML. I will also share some anecdotes on surprising/unexpected things that ML has taught
me, on how ML has changed the way I perceive the world, and on how ML has opened
doors to collaborations with diverse research fields. I will also provide a perspective on
some of the ML work that the PSE community is conducting; this will aim to provide some
insight into how I believe ML and PSE can best fuse to create tangible impact. As part of
this, I will try to contextualize different ML paradigms and emphasize on how ML provides
new and powerful tools that help PSE researchers do what they do best: develop conceptual
abstractions. I will also try to argue why I think that we should continue to focus on teaching
first-principles modeling and mathematical fundamentals when educating the next generation of
PSE researchers.

I would like to highlight that I prefer not to offer a precise definition of ML as this is
blurry (from my perspective) and quickly evolving and converging with other fields. In
addition, I do not want to trigger unnecessary discussions on what is ML vs. what is not ML,
because that judgment is inherently biased by the background of the observer. For example,
I think that principal component analysis (PCA) is a classical tool of statistics (while others
think that it is an ML tool) and some people like to say that neural networks are “just”
nonlinear regression models. I think that aiming to fit techniques into bins is tempting but
futile, and might ultimately hinder innovation. I will use the term ML loosely and by this
I often mean “modern data science” and by “modern” I do not mean necessarily recent,
but rather “non-classical” (from a PSE perspective). For instance, deep neural networks,
reinforcement learning, and transformer models are tools that have not seen widespread
adoption in PSE until recently (although some of these tools were explored decades ago by

PSE researchers). I also would like to emphasize that this commentary paper is not intended
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to be a scientific literature review, but rather a perspective that I hope helps readers gain
a quick understanding of the ML field and helps them navigate/judge the literature more
critically and selectively. A description of what this type of commentary paper is supposed
to be can be found in.! Excellent reviews and other perspectives on the intersections between

ML/ Al and PSE (and chemical engineering at large) can be found in.**

How I Learned to Love Machine Learning

I was trained as a “classical” PSE researcher; my PhD work (2004-2008) involved the devel-
opment of model predictive control, real-time optimization, and parameter/state estimation
methodologies for high-pressure polyethylene reactors.” It cannot get more classical PSE
than that. My PhD project provided training in continuous optimization, nonlinear dynam-
ics, feedback control, linear algebra, and (some) statistics. At the time, there was virtually
zero discussion of ML in PSE conferences and literature (from my restricted perception as a
PhD student). Yes, there was some discussion on topics that could now be considered ML,
but you would not hear the words “Machine Learning” often. The first time I heard the
term Machine Learning was because my roommate (a roboticist) was taking a course on the
subject and was using the book of Tom Mitchell (Professor of Computer Science at Carnegie
Mellon).® Also, back then, it appeared to me that ML techniques such as neural networks
had a bad reputation; they were perceived as esoteric or pseudo-science, akin of genetic
algorithms, as they did not have a solid “theoretical” basis and were too niche.

From 2008 to 2015 I was a scientist in the Mathematics and Computer Science Division at
Argonne National Laboratory. Here, I conducted research in stochastic optimization (lots of
statistics), real-time optimization (lots of multivariate calculus), parallel computing (lots of
linear algebra), and energy systems (lots of physical modeling). Being in a math department
helped me tremendously in thinking abstractly and rigorously, and helped me appreciate
how my training in chemical engineering and PSE could be used in other fields. Specifically,

I think that a unique aspect of PSE training is the ability to develop conceptual abstractions
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of complex systems, and by complex I mean heterogeneous (involving distinct scales, types of
phenomena, and types of components). I will elaborate on this subject later on. During this
period, you would also not hear much about ML at math/engineering conferences and in
funding opportunities with one notable exception: Gaussian Processes (GPs). I remember
that back then there was a fast growing interest from the community in using GPs for diverse
applications. I used GPs in my own research for predicting energy demands of buildings.’
At the time, I did not think of GPs as an ML technique, as they appeared to me to be rooted
in statistics. In retrospect, this reflected my limited understanding of the ML field and of its
history and evolution; in computer science, GPs are considered ML (specifically statistical
learning).

In 2015, I became a Professor in the Department of Chemical and Biological Engineering
at the University of Wisconsin-Madison. I remember quite fondly the moment when I offi-
cially “entered” the ML world. In late 2015, I went to have lunch with Prof. Nicholas Abbott
(expert in soft materials) to chat about some of his work on designing chemical sensors using
liquid crystals. He explained to me that liquid crystals can be engineered to generate optical
responses when exposed to specific contaminants; he then mentioned that this appeared to
be a “pattern recognition” problem. I asked my then postdoc Yankai Cao to look into this
topic and see if he could develop a framework to classify the optical responses (images) of
liquid crystals that have been exposed to different contaminants. Yankai developed a hybrid
ML framework that combined pre-trained convolutional neural networks (CNNs) to extract
features from optical responses and a support vector machine (SVM) that conducted classi-
tication based on the extracted features. The results were striking; the ML framework was
able to classify optical responses with an accuracy of 99%; we obtained a U.S. patent based
on these results. %!

Around this time, you could feel that the engineering world was beginning to become
aware of the incoming ML tidal wave. I noticed this based on the growing number of fund-
ing opportunities and papers coming out, and also based on the raising awareness about

ML from my non-PSE colleagues. For instance, in 2017, a student of Prof. James Dumesic
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(expert in catalysis) asked us to help them explore whether neural networks could predict
activity of different catalyst formulations. I asked my then student Alexander Smith to look
into this and he came up with a framework that visualized the catalyst design space in a
latent space (using principal component analysis - PCA) and used neural networks to make
predictions. The results indicated that experimental data typically collected by the catalysis
community clusters in narrow regions of the design space and that this was insufficient to
predict performance across catalyst formulations; in other words, the features/descriptors
of catalyst formulations reported in the literature do not provide enough information to
make generalizable predictions.'? This work made me realize that a key aspect of ML is
data representation: what and how do we express data that is fed to an ML model (the ML
community calls this feature engineering). This realization was further reinforced in a collab-
oration with Prof. Reid Van Lehn (expert in molecular simulations), in which we explored
representations of 3D solvent environments that are generated by molecular dynamics sim-
ulations. These environments are complex and are usually characterized /described using
statistical or physics-based descriptors. Some of our students (Alex Chew, Shengli Jiang,
and Weiqi Zhang) were taking an ML course at the time and, as part of their final project,
they realized that they could represent a solvent environment as a 3D tensor that encoded
the spatial concentration of different species. Moreover, they proposed to feed the tensor
to a 3D CNN to automatically extract features/descriptors of the environment and to deter-
mine if such features correlated with emergent properties. Their results indicated that the
CNN could obtain more accurate and generalizable predictions than those obtained with
traditional, physics-based descriptors; this work eventually resulted in a publication.® This
work made me realize that ML could be used as a powerful tool to search for information
that is hidden in complex data objects and that this information could be used to come up
with refined hypotheses/theories on factors that drive system behavior.

After my initial exposure to ML techniques (specifically neural networks) and after dig-
ging deeper into the literature, I realized that I was joining the ML party quite late. I began

to discover a whole universe of techniques and applications that I was completely unaware
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of. For instance, around 2018-2019, I came across the work of Aspuru-Guzik and co-workers
on predicting properties of molecules using graph convolutional neural networks (convolu-
tional networks that take input data that is represented as graphs/networks) and on using
autoencoder networks to represent molecules in a continuous latent space (an autoencoder
is a dimensionality reduction technique that maps a high-dimensional input data object into
a low-dimensional space, analogous to PCA)."*® Around this time, I also came across the
work of Jensen and Coley on predicting outcomes of chemical reactions.! I found this work
in the area of ML for computational chemistry to be conceptually fascinating and I was
excited about the prospect of using such techniques together with robotic experimental plat-
forms for accelerating the discovery of molecules. Via this work I realized the transforma-
tive power that ML could potentially bring to scientific research (in industry and academia).
This work also made me realize that a key aspect that chemists and chemical engineers con-
tribute to ML is the data representation, as the representation encodes domain-specific knowl-
edge. Consider, for instance, trying to predict the outcome of a chemical reaction: how do
you mathematically represent the reactant molecules that you feed a neural network? How
do you mathematically represent the potential interactions between the reactants? How do
you mathematically represent the catalyst? What physico-chemical aspects are (or not) cap-
tured by such representations? These questions are absolutely non-trivial to answer and are
inherently ambiguous, because these are mathematical modeling questions. In other words, se-
lecting a data representation is a modeling question!. Ambiguity arises because there are
different forms of representing/modeling a molecule (e.g., SMILES strings, graphs, sigma

profiles, numerical descriptors).'®

This ambiguity is directly analogous to that found in the
mathematical modeling of any physical phenomenon; we have diverse modeling tools (e.g.,
differential equations, algebraic equations, networks, random variables) and levels of detail

to represent a phenomenon. Chemical engineers leverage their physical knowledge (e.g.,

thermo, transport, conservation) and their knowledge of the application context (e.g., de-

Tt took me a while to realize that the terms representation, model, and formulation refer to the same thing: a
mathematical model.
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sign, control) to select the appropriate model. In addition, the selection of the model in-
fluences the algorithm /tool used for executing/solving/simulating the model (e.g., we use
different solvers for continuous and discrete optimization). This same issue arises in ML;
different data representations (different data models) are fed to different tools (e.g., neural
networks, convolutional neural networks, graph neural networks, PCA, GPs, support vector

machines, random forests).
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Figure 1: An image can be represented as a matrix (top) or graph (bottom); the topology of
the graph is not affected by space deformations such as bending.

My focus on data representations eventually led me into a rabbit hole; together with
my students Alexander Smith, Shengli Jiang, and Shiyi Qin, we started thinking about al-

ternative ways that we have available to model data.'2!

For instance, in PSE, we develop
models by using tools from statistics (e.g., probability distributions), linear algebra (e.g.,
vectors and matrices), calculus (e.g., functions), and graph theory (e.g., networks). It is im-
portant to recognize that data models are appropriate for certain uses but not for others. For
instance, capturing the shape of a data object using statistical models is not straightforward
or might be simply impossible. Why is that? Because statistics was developed to model
uncertainty /variability, not shape. As another example, it is well-known that matrix rep-
resentations of images are not rotationally invariant; in other words, rotating an image or
transposing a matrix yields a different object. This explains why, for instance, the human

brain might get “confused” when an object is rotated. It is also important to recognize that

the data model defines the tools that we can use to process and extract information from the
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data. For instance, to process data that is represented as matrices we use tools from linear
algebra (e.g., eigenvalue decompositions and projections) and to process data that is rep-
resented as functions we use tools from calculus (e.g., derivatives, Fourier transforms, and
convolutions). My focus on data representations has also been heavily influenced by our
adventures in the obscure field of topological data analysis. Topology is a mathematical field
that provides powerful tools to model data and to extract information from data. Specifi-
cally, topology provides tools to quantify the shape of data objects that are represented as
graphs, simplicial complexes (generalizations of graphs to high dimensions), point clouds,
and functions/manifolds. A key aspect of topological tools is that they are invariant or ro-
bust to certain types for data deformations. For instance, a graph/network is a data model
that does not have context of space, see Figure 1; in other words, the position of the nodes of
a graph does not matter, all that matters (from a topological standpoint) is the connectivity of
the nodes. Think about the implications of this invariance when representing 3D molecular
environments; molecules form networks via inter-molecular forces and thus tend to move
together in space. As a result, while it may appear that molecules move around randomly
in space, the connectivity of the network that they form might remain invariant (or close
to) over time. These properties can ultimately lead to more explainable ways of represent-
ing data and can potentially enable the use of prediction models that are easier to train and
analyze (e.g., linear regression instead of neural networks).?> Geometry is another mathe-
matical field that provides powerful capabilities to represent and extract information from
data;>?* geometry defers from topology in that it focuses on local features (e.g., curvature),
while topology focuses on global features (e.g., connectedness). Riemannian geometry is a
subfield of differential geometry that enables the characterization of objects that do not live
on Euclidean spaces and has lots of interesting applications in data science and control. >’

Understanding the advantages and limitations of different data models is a key aspect
that any user of ML should be aware of; this is analogous to how any user of an optimization
solver needs to understand how to properly model/formulate an optimization problem (the

user needs to understand the type of model that can be fed to a specific solver). Similarly,
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a user of a linear algebra package needs to know the matrix type that is being fed to the
solver (e.g., symmetric vs. nonsymmetric) and should be aware of any potential matrix ir-
regularities (e.g., singularity and rank deficiencies). Understanding data representations is
also important in determining which are the key aspects that explain a phenomenon; specif-
ically, it is not sufficient to ensure that an ML model can predict, but we need to understand
what aspects of our input data enable such a prediction. This, in my mind, should be one of
the ultimate goals of using ML in PSE; specifically, ML models are powerful tools that can
help us discover non-obvious relationships between systems and that can help us uncover
key aspects that govern such relationships. It is also important for the ML user to be aware
of any potential irregularities of the data model (e.g., data redundancy) that might affect
computational performance and conclusions reached.

My work on data representations and ML for sensors has also changed my perspective
on how we, as humans, capture information and navigate the world using our sensory sys-
tems (vision, hearing, smell, taste, hearing, touch). Specifically, it is important to remember
that our senses are limited; the olfactory system of a dog can perceive smells that we cannot
and their hearing system can perceive frequencies that we cannot. Also, I have become fasci-
nated by how the human brain processes color information (e.g., how it decomposes a vision
signal into color channels) and by what alternative tools we have available for capturing and
modeling color (e.g., RGB, LAB, infrared, and hyperspectral), see Figure 2. For instance, ac-
quiring image data using hyperspectral, thermal, or infrared cameras can reveal information
about a system that cannot be perceived by standard cameras or by conventional sensors
(e.g., thermocouples). Moreover, decomposing a standard color image in RGB or LAB chan-
nels can reveal different types of information. I think that the field of computer vision can
have many applications in PSE; for instance, one could use real-time camera information to
enhance to model and control systems.?®?* More generally, I think that there is interesting
research to be done to help uncover hidden information from the physical world using a
combination of sensing devices and ML techniques.®® For example, there is current inter-

est in creating an artificial human nose and in detecting PFAS contaminants at extremely
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RGB Hyperspectral

Video Space-Time Field Multivariate Time-Series Correlation Network

Figure 2: Examples of different data representations. Top-left: A color image captured by
a standard camera can be decomposed into red, green, and blue (RGB) channels, while an
image captured by a hyperspectral camera can be decomposed in hundreds of channels that
capture a wider and finer spectrum of light. Top-right: An image can be represented as a
tield that better reveals is topological /morphological features. Mid-left: A video can be rep-
resented as a space-time field. Mid-right: A multivariate time-series can be represented as
a correlation network that highlights topology/connectivity between variables. Bottom: A
color image can be decomposed into RGB or LAB channels; these alternative data represen-
tations highlight different types of features.

11
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low concentrations (e.g., parts per billion).?'?? T have also become interested in how one
can come up with clever ways to represent data to reveal different types of information, see
Figure 2. For instance, one can represent an image as a 3D field (third dimension is light
intensity), and this can help reveal topological features (e.g., peaks and valleys of intensity).
Similarly, it is possible to represent a video as a 4D field (fourth dimension is intensity); this
can be used to analyze the topology/structure of space-time dynamics.?’ Another interest-
ing observation is that one can represent a multivariate time series as a correlation network
that captures how variables are interconnected (this representation is used in neuroscience
to monitor brain connectivity).?>* Using different data representations is important, as they
can be used to extract complementary sources of information and one can use such informa-
tion to train more powerful ML models. In other words, the type of information that one can
extract from a correlation matrix using topology (e.g., Euler characteristic), signal processing
(e.g., convolution), and linear algebra (e.g., eigenvalues) is fundamentally different.

Our work on data representations has also helped me realize that scientists and engineers
naturally leverage their physical knowledge to develop powerful descriptors that character-
ize complex systems. For example, in the language of ML, the Reynolds number is a nonlin-
ear descriptor that encodes information on velocity, density, and viscosity and that can be
used to classify flow regimes. I mention this example because ML tools can also be used
to discover descriptors directly from data to classify behavior (e.g., CNNs), but the types
of descriptors identified often do not have a physical interpretation. However, there is on-
going work (e.g., sparse regression and symbolic regression) that can be used to discover
complex descriptors by combining ML and physical knowledge.** For instance, if I give
you data on velocity, density, viscosity, and flow regime; can you give me a single descriptor
that best classifies flow types? Wouldn't it be cool if ML could find out that the best descrip-
tor is indeed the Reynolds number? Wouldn't it be cool if ML finds out that there is another
equally-effective (or better) descriptor? Also, in what sense can we say that the Reynolds
number is “optimal” or “the one”?

More recently, I have become interested in the use of ML for closed-loop experimenta-

12
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tion. This all started when my former postdoc Qiugang Lu and I started exploring the use
of Bayesian Optimization (BO) for automatically tuning feedback controllers (e.g., tuning
the gain and time constants of a PID controller).*® In a nutshell, BO is an algorithm that
works as follows:? input-output data of a system is used to build a probabilistic model of
the system (typically a GP model but there are also variants that use neural networks and
tree models*%); the model allows us to make predictions about performance and also to
quantify the uncertainty of the predicted performance. The model is then used to build
an acquisition function that is used to select the next input/experiment to run. The ac-
quisition function balances performance and information (people call this exploitation and
exploration); in other words, when selecting an experiment, one can exploit the model to
maximize predicted performance or one can aim to explore the space further to maximize
information that helps mitigate model uncertainty. This process is repeated in a closed-loop
manner to progressively refine the model and optimize system performance.

For people in the PSE community, BO will sound awfully similar to feedback control,
experimental design, stochastic optimization, and black-box optimization. Indeed, BO is
a decision-making paradigm that brings together concepts from all these fields and is also
related to other closed-loop ML paradigms such as reinforcement learning (RL).¥4%4! The
key difference between BO and RL is the way that the user represents/models the decision-
making process. For instance, RL is intended for dynamical systems (more analogous to
control), while BO is intended for batch systems (more analogous to batch experimental
design). Moreover, RL aims to learn the best policy for making decisions, while BO aims
to find the best decision itself. It is also important to emphasize that BO/RL differ from
classical, statistical design of experiments (DOE) methodologies (e.g., Box’s surface response
methodology*?) in that BO/RL are closed-loop techniques, while classical DOE are open-
loop techniques. BO/RL have more resemblance with techniques from sequential Bayesian
experimental design.*

The beauty and popularity of BO/RL rely heavily on the fact that they are entirely data-

driven approaches; the user does not have to propose a model (e.g., a physical model) to
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make them work (BO/RL automatically learn a suitable model using data). I like to make
the analogy of this data-driven, decision-making paradigm with a toddler that is learning
how to assemble Lego block structures without having any knowledge of physics (e.g., equi-
librium forces); the toddler develops rules and intuition based only on experimentation and
observations 2. While the toddler might fail many times before they learn the rules of the
game, they will eventually figure it out and perhaps develop some early intuition of physics.
Now, an engineer that has learned some physics will probably assemble the Lego structures
much faster and effectively than a toddler (they have to experiment less), because they have
some prior knowledge on what things work or do not work and this constrains/narrows
down the strategy used. Our work on BO has focused on combining physics/expert knowl-

edge with data-driven models;**°

as expected, encoding physics does accelerate experi-
mentation, but there are different ways to encode physical knowledge. For instance, one
can aim to decompose the system under study into a component that can be explained reli-
ably from physics (e.g., conservation of energy) and a component that cannot be explained
from physics and needs to be learned from data (e.g., fouling or aging). It is here, again,
where domain-specific knowledge from chemical engineers is crucial, as they have to deter-
mine which aspects are explainable (or not) from physics; this is a modeling choice that is
non-trivial and ambiguous. This choice is also influenced by the context of the application;
for instance, the user needs to determine the time/effort that can be invested in developing
a physics-based model (or in collecting data for a data-driven model) and needs to con-
sider the ability of the model to be used for reaching generalizable conclusions. In other
words, and this is important, there are aspects of a decision-making process that are difficult to
model/automate due to their inherent ambiguity; it is here where a human expert is needed. If

you are unfamiliar with the notion of ambiguity (or ill-posedness), think about how would

you mathematically model happiness, fairness, or risk? There are many established definitions

2] like to use toddler examples when explaining ML concepts because my discovery of ML coincided with
me having little kids at home. As such, I have become fascinated by how my kids learn and make sense of
the world using their amazingly powerful neural nets! I think that ML provides fascinating insights into how
humans learn and into how we can facilitate such learning (such insights might be particularly relevant for
teachers).

14
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and models of these quantities.** What model you decide to use depends on many factors
that are inherently tied to human behavior and to the application context. Taking human ex-
pert knowledge and intuition into consideration is extremely important, because letting ML
algorithms (or any math algorithm) automatically make decisions can lead to unintended
consequences that are not captured in their decision-making logic (e.g., from an ethical or
safety perspective).®

I would like to conclude this anecdotal perspective by emphasizing that ML has led to
many collaboration opportunities for me and my group in many areas (in materials, systems
biology, catalysis, molecular simulations). I attribute this to the fact that ML has become a
common language that colleagues from different disciplines have learned, and this has facil-
itated identifying problems of mutual interest. But the question is, in a scientific world in
which everyone knows ML, why would people reach out to a PSE person to provide ML
expertise? I will return to this topic later on, as I will seek to highlight some unique aspects

of the PSE skillset that I think can continue to foster collaborations.

Role of ML in PSE and of PSE in ML

My personal journey in “discovering” and embracing ML has been full of naivete, resis-
tance, and skepticism. Some of my resistance was originally driven by my frustration in
noticing that the ML literature often appeared to be unaware of classical work on control,
optimization, and statistics (topics that are familiar to the PSE community). Also, the ML
literature often appears to define their own terminology for well-established concepts (like
if it was living a vacuum); e.g., “learning rate” instead of “step-size”. As a result, at times
it appears to me that the ML literature is reinventing the wheel. At one point, I considered
channeling my frustration by forming a rock band that I would call “Rage Against the Ma-
chine Learning.” Over time, I have recognized that my evaluation of ML was unfair; at times
it appeared that the ML literature was unaware of the topics that I am familiar with in the

same way that I was unfamiliar with the ML literature. I attribute this to the extraordinarily

15


http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

fast clash between the ML world and the PSE world (and the computing world at large). For
instance, ML has quickly become a dominant topic in optimization/control conferences and
our chemical engineering colleagues in molecular simulations, computational fluid dynam-
ics, and computational chemistry/materials are now well-versed in ML.

The convergence of ML and PSE motivates a couple of natural questions:
* How can we best leverage ML in PSE?
* How can we best leverage PSE in ML?

To address the first question, I would like to provide a quick perspective on how diverse
tields of mathematics (e.g., control, statistics, optimization) historically have found their
way into PSE. Let’s recall that PSE emerged from the need to develop math (and later com-
putation) tools to help us navigate the complexity of chemical processes. As such, PSE has
evolved by making use of the math/computation tools that have become available over time
and these have helped us tackle problem of increasing complexity. However, some of our
computational colleagues (e.g., molecular dynamics, computational chemistry, and compu-
tational fluid dynamics) could also make the claim that they also use math/computation to
gain understanding of chemical processes. In fact, ML colleagues could also make the same
claim. Therefore, I think that it is important to go back to the definition of a system (a col-
lection of interconnected components). The notion of a system is essential, because this def-
inition is agnostic to application and scales; everything is technically a system (a molecule,
the cell, a piece of equipment, a human organ, a chemical process, the human body, a sup-
ply chain). In my mind, what is unique about PSE is that it uses math/computation tools
to develop abstractions that capture connections across heterogeneous components and across
scales.”

So what do I mean by “abstraction”? Itis finding suitable representations/models/formulations
(e.g. a supply chain network model, a disjunctive programming formulation, a predictive
control formulation, a planning/scheduling model) that help us think about systems in a

unified and coherent manner. Once we develop an abstraction, we apply math/computing
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tools to gain understanding about the system (e.g., establish theoretical properties) or to
make decisions (e.g., design, control). Beyond developing abstractions, PSE researchers have
also adventured into developing new math/computing tools (e.g., develop algorithms and
software for simulation or optimization). In this context, I would argue that the distinctive
approach taken by PSE researchers (compared to mathematicians and computer scientists)
stems from the fact that, while we tend to remain agnostic to the application, we retain
some bounded context of the application space (chemical processes). Retaining context of
the application space is important, as it helps us leverage our domain-knowledge of phys-
ical principles (e.g., thermo, transport, chemical kinetics) to find better solutions and make
sense of solutions. As a result, while PSE has leveraged math/computation tools that have
emerged from other fields, PSE has also refined, expanded, and modified these tools to tackle
specific problems of interest to chemical engineers (which are highly complex). For instance, non-
linear optimization formulations and interior-point algorithms for their solution emerged
from the mathematical optimization community, but these formulations/algorithms were
refined to tackle complex chemical processes by the PSE community. This led to fundamen-
tal advances that have benefited many communities, such as the development of Ipopt.>!
Analogous stories can be found in the adoption over the years of mixed-integer optimiza-

tion, global optimization, feedback control, and statistics by the PSE community.>*™¢

So, back to the first question: How can we best leverage ML in PSE?

The ML revolution is providing a new and vast set of math/computation tools that can
be exploited by PSE researchers to obtain new types of abstractions. For example, we can
now use diverse variants of neural networks in developing our abstractions. Recall my
early discussion on data representations, I think that PSE researchers can excel at modeling
data by combining their domain-specific knowledge with tools from graph theory, topology,
statistics, and optimization. Specifically, PSE can play a key role in finding suitable data rep-

resentations for molecules, chemical reactions, dynamical systems, flowsheets, and expert
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logic (and connections between them); such representations can then be fed to ML tools to
conduct diverse tasks. For instance, recent work by the PSE community has explored data
representations and ML models to predict molecular properties.'®””® Recent work by the
PSE community has also developed data representations of flowsheets as graphs and text-
strings (analogous to SMILES strings) and has used these to train ML models that can au-

tomatically synthesize flowsheets.>6!

ML tools such as physics-informed neural networks
and physics-constrained neural networks also provide hybrid modeling capabilities that allow
PSE researchers to fuse data-driven and physical models in new ways.*6>%¢* The PSE com-
munity has also developed new control, optimization, scheduling, and experimental design
formulations that make use of ML techniques.**>% All this work is a clear example of how
PSE leverages tools of ML to come up with innovative abstractions that facilitate discov-
ery and decision-making. It is important to highlight that the PSE community was an early
adopter of ML tools such as neural networks (going back to the 1980s and 1990s),? but this
early adoption was not as widespread.

It is important to recognize that ML tools originate from combinations of fundamental con-
cepts and tools of mathematics: statistics, probability, optimization, graph theory, calculus,
linear algebra, and topology/geometry. I think that it is easy to forget about this basic fact
given the explosive growth in the number of ML techniques and software packages that are
becoming available. For example, CNNs integrate concepts of linear algebra, statistics, cal-
culus (convolutions, optimization), and automatic differentiation. Similarly, RL combines
tools of probability, dynamical systems, and optimization. I believe that identifying the fun-
damental elements of ML tools is important in understanding what these tools can/cannot
do and in understanding how they relate to other computational techniques that help ex-
plain what ML tools behave. For example, CNNs are usually considered to be tools for
image analysis; however, a CNN can take any input data that can be represented as a vector,
matrix, and tensor. As such, one can use CNNs for a wide range of non-obvious applications
such as multivariate time series analysis.?! As another example, one can show that autoen-

coders networks are generalizations of PCA (under some specific conditions)'*®” . Moreover,
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there is recent interesting work that is aiming to analyze neural networks as dynamical sys-
tems.””

I also think that it is important to emphasize the origin of ML tools because I feel that
there is a lot of confusion on how to best train chemical engineers (undergraduate and grad-
uate) and PSE researchers so that they become proficient in ML. I was personally able to
jump in the ML wagon quickly because of my training in statistics, linear algebra, and op-
timization. Without such background, I likely would have been able to use ML tools, but I
would have probably struggled to truly understand what was happening inside such tools.
I believe that not understanding what happens inside an ML tool is limiting and I think that
not understanding which data representation to feed an ML tool is limiting. Specifically,
without proper domain-specific and math knowledge, it becomes difficult to make sense of
the solution provided by an ML tool and to troubleshoot when the outcome is not what we
expected. This is directly analogous to the use of optimization tools; my training in opti-
mization tells me that I cannot feed a model that contains a nondifferentiable function to a
derivative-based optimization solver and my training as a chemical engineer helps me diag-
nose if the solution reported by the solver makes sense or not (e.g., from a thermodynamic
stand-point). In my optimization courses, I often like to joke about “Newton’s method is
super smart and super dumb at the same time”, in the sense that the method will use its
mathematical magic to solve complex equations, even if such solutions are not physically-
meaningful (e.g., the solution contains negative concentrations). The same can happen with
a neural network, the tool will use its mathematically magic to make things fit, even if this
breaks the laws of physics. It is the responsibility of the user to provide physical and applica-
tion context to mathematical tools.

I think that PSE should continue to focus on teaching chemical engineering and math funda-
mentals and see ML as a tool (just as we have done with other math/computation tools). I
also think that PSE should continue to focus on exploring the modeling abstraction capabil-
ities that emerging ML tools provide and in exploiting these to tackle increasingly complex

problems. This has been the approach that I have personally taken when teaching statistics
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and data science to undergraduates; I focus on the math fundamentals and show them how
these emerge in a wide range of ML tools. I also try to emphasize that ML and data science
provide a set of complementary tools that can help handle aspects of chemical processes that
are difficult to predict from first-principles. Teaching ML and data science has made me real-
ize that these topics provide a powerful avenue to teach and reinforce fundamental math skills.
For instance, it is difficult to appreciate the relevance of concepts such as eigenvalues and
rank deficiency when taking a linear algebra course. These concepts and their relevance be-
come much easier to explain and understand when seen through the lens of data science; for
example, you can relate eigenvalues to information content and you can relate rank deficien-
cies to the presence of data redundancy. As another example, ML provides a nice avenue to
explain optimization concepts and their practical relevance (e.g., sharpness/flatness of the
minimum of an estimation problem and its connection to information content). As such, I
believe that there are strong synergistic effects between ML and math that can be leveraged to
develop more effective teaching practices.

I also think that we should place more emphasis on using ML as a scientific discovery
tool. I say this because I see a lot of emphasis on the use of ML for making predictions, but I
think that ML can also help us uncover aspects that are hiding in our data and in establishing
fundamental relationships that drive/limit behavior. Along these lines, for instance, there
has been recent work in PSE on discovering governing physics from data.”"”® There are
some ML tools for which we still do not have clear uses; for instance, large language models
have recently been used to explore the scientific literature and automate data gathering, but
they could potentially be used to synthesize materials, molecules, and processes.”*”

I also think that the PSE community should use ML as a framework that fosters collabo-
ration and integration with other scientific and engineering disciplines (computational and
experimental). Along these lines, I believe that PSE researchers play a key and unique role
as bridge-builders, which is one of our core areas of expertise. For instance, we can leverage
ML tools to build bridging models across scales and subsystems.”®”” Building these types of

models is becoming increasingly necessary as we aim to understand the interplay between
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molecular-level, unit-level, process-level, and infrastructure-level (e.g., environmental and
societal) behavior.” For instance, on-going efforts to decarbonize society requires the inte-
gration of diverse types of energy systems at different spatial and temporal scales.”® More-
over, ML could be used to find representations of human interactions (social networks) that

can potentially accelerate innovation.

Now, back to the second question: How can we best leverage PSE in ML?

Analogous to the story on how capabilities of optimization were extended by the PSE
community to tackle complex problems, I would like to highlight some of the work that
the PSE community has been doing in extending the capabilities of ML. The PSE commu-
nity has developed powerful global optimization algorithms and software that can handle
formulations that have embedded neural network and GP models.”® The community has
also recently developed BO architectures that combine data-driven and physics models (and
models of different levels of resolution) to guide experimental design.***%! Moreover, the
community has extensively explored the use of ML models as surrogates of complex mod-
els.%882% Along these lines, I would like to highlight the development of OMLT, which is
a software package for optimization modeling that automates the conversion of ML mod-
els (e.g., nonlinear neural networks) into tractable, mixed-integer linear representations.®
I believe that this work can be highly impactful, as it can help standardize modeling en-
vironments (e.g., every unit operation in a chemical process is a neural network). Having
standardized environments can help develop tailored algorithms that are more efficient and
that have more predictable behavior. Moreover, it is important to think about how this stan-
dardization can influence the computing hardware that we use; for instance, GPUs can be
better suited to handle dense neural network models than CPUs. Another important direc-
tion is identifying effective algorithms for tackling different types of “black-box” optimiza-
tion problems by combining techniques from optimization and ML (e.g., derivative-free and

BO).5% T also believe that fundamental work that the PSE community is developing will
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benefit ML at large; for instance, the Ipopt and Alamo packages are widely used in ML stud-

: aa 54,86,87

ies and convergence theory established for derivative-free optimization algorithms can

be leveraged to provide guarantees on the behavior of optimization formulations that incor-
porate surrogate ML models. %%

An important challenge in ML is the development of verification and uncertainty quantifi-
cation (UQ) procedures. These methodologies are particularly critical when using models
for scientific discovery (e.g., use an ML model to find new molecules or process designs)
and in developing systematic data collection procedures (e.g., what is the next data point to
evaluate? how many data points are needed?). For instance, ML models can contain mil-
lions of parameters or might have complex (e.g., non-differentiable) structures; as such, it
is not straightforward to implement standard UQ procedures (e.g., covariance approxima-
tions using Hessian information) and one might need to rely on computationally-expensive
sampling techniques.””! It is here, again, where domain knowledge and application context
matters; specifically, what is the model being used for? What is an acceptable level of un-
certainty /accuracy? For instance, it might not be necessary for an ML model to have high
accuracy if this is going to be used and refined in a closed-loop learning procedure (e.g., BO
or RL). This is because, in a closed-loop learning setting, the ML model is just a means to
an end (optimize performance). I mention this because there is a common expectation that
ML models (particularly neural networks) should be highly accurate and, as a result, that
they might require “lots” of data. I believe that this expectation arises from the fact that we
tend to think of developing an ML model as a one-shot (open-loop) process: we develop the ML
model and we then use it to optimize the system, but no feedback is incorporated (i.e., what
if the predicted optimum does not match the actual optimum?). In a closed-loop setting, it
might be possible to optimize a system using few data points, using “good enough” models,
and even using models that are overparame’cerized.45 As such, I believe that there is work
to be done in determining what exact properties should ML models have (i.e., what condi-
tions they should meet) for specific uses.®® Leveraging physics knowledge in ML models is

also particularly critical when facilitating verification and UQ, as physics can help reduce
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uncertainty, data needs, and make predictions more generalizable. Along these lines, I think
that the PSE community can contribute in finding modeling abstractions that embed physics
and expert knowledge in different forms (e.g., priors, constraints, logic, reference models)
and in quantifying the effect that different types of information have on model generaliz-
ability /uncertainty. I also think that the PSE community is uniquely-positioned to make
contributions on embedding safety and constraint satisfaction logic in learning and decision-
making algorithms, as these are critical aspects that arise in the design and operation of

chemical processes.”>*

A key role that the PSE community has played over the years is that of generating problem
instances and applications that colleagues in other fields have used to advance math/computing
methodologies and tools. For instance, the PSE community has generated countless models
that are used to benchmark mixed-integer programming solvers.” I believe that the com-
munity should continue to embrace this path, as our applications are highly complex and
challenging. For instance, work in molecular discovery is driving huge advances in ML al-
gorithms and tools that are being developed by math and computer science communities.”
What the PSE community needs to do is identify “killer apps” that are of broad interest and
that can lead to major ML development by diverse communities; for instance, some recent
applications that the PSE community has explored are the prediction of battery lifetimes,
prediction of thermodynamic properties, and characterization of plastic waste.”** Along
these lines, I think that there is significant potential in using ML tools to extract/ digitize
data from the literature and to assemble databases that can be used for benchmarking.*
Assembling such databases is non-trivial, because it requires domain-specific knowledge
(you need to know what you are looking for). Databases and applications can also be made
available in computational notebooks (e.g., Jupyter) to train industrial practitioners and to
develop case studies for undergraduate and graduate education. The generation and stan-
dardization of datasets in different applications is essential; along these lines, I think that it

is important to find unifying abstractions that can represent diverse systems under a common
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framework. For instance, there has been recent work in the PSE community that has pro-
posed to represent molecules, flowsheets, and infrastructures as graphs.®1%1% Ag another
example, there is recent work that is aiming to unify notions of closed-loop learning, system

identification, and model predictive control.'*

Summary and Outlook

ML is transforming and will continue to transform the PSE field. My personal journey with
ML has made me realize that my focus and way of thinking were too siloed into “classical”
PSE. Embracing ML tools has greatly expanded and influenced how I think about and nav-
igate the world. Specifically, ML has given me new perspectives and tools that help me
develop conceptual abstractions, algorithms, and software. Embracing ML has also helped
me establish unexpected collaborations with colleagues in other fields; I attribute this to the
fact that ML is a communication medium, just like statistics and optimization. My jour-
ney into ML has also helped me identify ways in which I believe PSE can best leverage
and contribute to ML. Specifically, I believe that ML can greatly expand the ability of PSE
to build bridges across scales and disciplines to expand the complexity of systems that we
study. Moreover, I believe that PSE education should continue to focus on teaching math
fundamentals that serve as building blocks of ML tools. This focus on fundamentals can
help researchers and practitioners better navigate the landscape of ML techniques available,
identify the correct data representation and tool to use, diagnose problems and analyze out-
comes, and ultimately contribute new models, theory, algorithms, and software for ML.
Chemical engineers should continue to enrich and leverage their domain-specific knowl-
edge to properly pose problems, select the right ML tools, and analyze outcomes (just as we
have done with other math tools).

Some people like to wonder if ML will “stay” or “fade away”. Of course it will stay, the
same way that statistics, optimization, and control have stayed and touched nearly every as-

pect of our daily lives. The footprint of ML, however, will probably be wider, as ML is mor-
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phing into a framework that touches every aspect of computational science. Some people
also like to wonder if ML will replace humans; I hope that I am wrong, but I do not think so.
I go back, again, to the inherent ambiguity that arises in complex decision-making settings.
Simply stated, some decision-making logic cannot be easily expressed mathematically and
therefore it will be challenging/dangerous to automate such logic. I do not think that ML
and Al are ready to navigate such ambiguity (and unintended consequences of such ambi-
guity) but, maybe one day. This is why I think that PSE should keep pushing the boundaries
of abstraction and in identifying new and more complex applications. In this context, new
data/knowledge representations can potentially lead to innovations in PSE methodologies.
It is also important to remind ourselves of the ethical responsibility that we, as a community,
have in using ML tools; for instance, these are mathematical tools that can suggest decisions
that have unknown economic, social, and environmental consequences.

I think that we will also see the emergence of new types of PSE-like researchers that orig-
inate from the ML community or from other applied fields that use ML. For instance, some
of the work on molecular representations for ML in the chemical sciences has many com-
mon elements with the type of work that the PSE community does. There has also been an
explosion in the development of formulations and algorithms in diverse engineering fields
(e.g., mechanical and control engineering) that is integrating notions of learning, optimiza-
tion, and control. In addition, the current interest in sustainability and climate change (e.g.,
decarbonization of energy systems) is also opening new and interesting problems that sit at
the interface of multiple engineering disciplines. As such, I think that the PSE community
can be enriched by embracing researchers from diverse (non-“classical”) fields. Along these
lines, the PSE community can potentially learn a lot from the open and crowd-sourcing cul-
ture of the ML community; for instance, openly sharing data/code and developing bench-

marks/competitions can be of great value in accelerating innovation.
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Synopsis: In this outlook, I provide a personal perspective on how machine learning can

best fuse with process systems engineering.
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