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While superhydrophobic surfaces (SHSs) show promise for drag reduction applica-
tions, their performance can be compromised by traces of surfactant, which generate
Marangoni stresses that increase drag. This question is addressed for soluble surfactant
in a three-dimensional laminar channel flow, with periodic SHSs made of long finite-
length longitudinal grooves located on both walls. We assume that bulk diffusion is
sufficiently strong for cross-channel concentration gradients to be small. Exploiting
long-wave theory and accounting for the difference between the rapid transverse and
slower longitudinal Marangoni flows, we derive a one-dimensional model for surfactant
transport from the full three-dimensional transport equations. Our one-dimensional
model allows us to predict the drag reduction and surfactant distribution across the
parameter space. The system exhibits multiple regimes, involving competition between
Marangoni effects, bulk and interfacial diffusion, bulk and interfacial advection, shear
dispersion and surfactant exchange between the bulk and the interface. We map out
asymptotic regions in the high-dimensional parameter space, and derive explicit closed-
form approximations of the drag reduction, without any fitting or empirical parameters.
The physics underpinning the drag reduction effect and the negative impact of surfactant
is discussed through analysis of the velocity field and surfactant concentrations, which
show both uniform and non-uniform stress distributions. Our theoretical predictions of
the drag reduction compare well with results from the literature solving numerically the
full three-dimensional transport problem. Our atlas of maps provides a comprehensive
analytical guide for designing surfactant-contaminated channels with SHSs, to maximise
the drag reduction in applications.
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1. Introduction

When a fluid flows over a superhydrophobic surface (SHS), surface chemistry and mi-
croscopic roughness combine to entrap an array of microscopic gas pockets at the SHS. In
the non-wetted or Cassie-Baxter state (see, e.g., the reviews of [Rothstein|2010;|Lee et al.
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12016; [Park et all |2Q21), the reduced liquid-solid contact area at the SHS reduces viscous
drag at the surface when compared to a solid wall, which leads to an overall decrease
in drag. Owing to these drag-reducing capabilities, SHSs have been considered in a
number of applications, such as low-Reynolds-number laminar flows (e.g.
12005; [Sbragaglia & Prosperetti 2007; Rothstein 2010; [Schonecker et all 12014; [Lee et al.
12016; Landel et al. [2020), high-Reynolds-number turbulent flows (e.g. m 2014;
Tk et al. 2014; Golovin et all 2016; Seo & Mani 2018; [Rastegari & Akhavanl 2019;

Park et al. [ﬂ) and the thermal management of microelectronics (e.g. Baier et al. [ZM,
Cheng et al. [2015; [Lam et all 2015; Kirk et all [ZQZQ)

Although the physical mechanism behind laminar drag reduction is well understood,
SHSs seldom achieve the high drag-reduction performance predicted by theory
12016; [Park et all [21121) A number of practical difficulties can explain the lower
performance measured experimentally, such as displacement of the liquid—gas interfaces
(Biben & Joly 2008: [Ng & Wang [2009), contact-angle effects (Shragaglia. & Prosperetti
12007; [Teo & Khod IZDLI), viscous drag from the gas phase (Schonecker et all 12014;
\Game et al! lZD_lZ), as well as surfactant-induced Marangoni stresses (Peaudecerf et al.
12017; [Landel et al! [ZQZQ) In this study, we investigate in detail the impact of soluble
surfactant on the drag reduction of SHSs in laminar channel flows. Surfactants can be
transported by a liquid, adsorb at liquid—gas interfaces and lower the surface tension
of these interfaces (Manikantan & Squires 2020). Transported by the flow along the
liquid—gas interface, surfactants can accumulate at stagnation points (liquid—gas—solid
contact lines), inducing an adverse Marangoni stress at the interface which increases the
drag, thereby negating the drag-reducing effect of the nominally shear-free interface.

The impact of surfactants on SHS drag reduction was suggested by experimental
studies in the last decade, which reported only a modest drag reduction when compared
to solid walls. For example, Kim & Hidrovd (IZDLZ) used microscopy to analyse the
location of the liquid—gas interface in a channel flow over transverse ridges. Combined
with flow-rate measurements, they found that the frictional properties of the channel
were insensitive to the degree of microtexture wetting, and hence closely resembled solid
walls. Likewise, using fluorescence microscopy and passive tracers, Mgmumﬂ (|201_4)
studied the flow field and shape of the liquid—gas interfaces for a channel flow over
longitudinal ridges. They found non-zero shear stresses at the interfaces, whereas most
theoretical Eg__fﬂ numerical studies normally employ shear-free conditions to model SHSs

).

Following these observations, several studies have explored the effects of surfactants on
SHS drag reduction. [Schéffel et al. (IZM) combined fluorescence correlation spectroscopy
with numerical simulations to examine the effective slip length in a channel flow with
cylindrical pillars. They found that the effective slip length reduced when compared to
simulations of a surfactant-free channel. [Peaudecerf et al. (2017) performed experiments
and numerical simulations in a channel with longitudinal ridges, demonstrating that low
levels of surfactant could yield large changes in interfacial conditions. They showed that
liquid—gas interfaces could be rendered no-slip at surfactant concentrations well below
typical environmental values. They used channel-flow experiments where the imposed
pressure gradient was removed abruptly to show that the observed reverse flow was
only possible due to adverse out-of-equilibrium surfactant gradients. [Song et al. (lZD_]ﬁ)
performed experiments for finite longitudinal ridges and effectively infinite concentric,
annular ridges. For finite longitudinal ridges, surface tension gradients arose due to the
presence of downstream transverse contact lines, increasing the drag when compared to
infinite concentric ridges, where there were no stagnation points.

The experiments of [Peaudecerf et al, (2017) and |Song et al. (2018) were conducted
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in nominally “clean” channels without added surfactant. [Schéffel et al! (2016) also per-
formed experiments with added surfactant, finding barely measurable increases in drag
relative to their nominally “clean” experiments. As noted by [Peaudecerf et al. (2017), the
counterintuitive result reported by [Schéffel et all (2016) was most likely due to the fact
that traces of surfactants were already present in their experiment. Surfactant traces are
inherently present in most engineered systems, due to general manufacturing conditions,
materials, and the high surface-to-volume ratio of the SHS textures. For instance,
microfluidic experimental devices are often made of polydimethylsiloxane (PDMS), which
is known to lead to surfactant effects (Hourlier-Fargette et all2018). In nature, surfactant
traces have been measured in sea water (Pereira et al. 12018), rivers, estuaries and fog
(Lewis 11991; [Facchini et al. 2000).

Due to the potentially strong adverse effect of surfactants on the drag reduction
performance of SHSs, it is crucial to model their impact. Theoretical models can explain
experimental observations, and also provide predictions for the design of SHSs where
surfactant effects are mitigated. However, as discussed by [Landel et all (2020), the
theoretical modelling of flows inclusive of surfactant over SHSs is complex. To make
progress, [Landel et all (2020) assumed that the surfactant concentration is small. This
assumption is consistent with normal environmental conditions where surfactants are
found in trace amounts (Peaudecerf et all 2017). [Landel et all (2020) constructed a
scaling theory to model the slip and drag in steady two-dimensional (2D) pressure-
driven channel flows bounded by SHSs, made of long transverse gratings, in the low-
Reynolds-number flow regime. They also performed finite-element 2D numerical sim-
ulations to compute the constants in the scaling theory, and validated their scaling
predictions. Their results showed that the slip length and drag reduction are affected
by surfactants across a broad range of the parameter space. They focused on parameter
combinations associated with microfluidic applications; it remains of interest to perform
a comprehensive asymptotic analysis of the parameter space. Moreover, their theory
did not consider non-uniform interfacial surfactant distributions associated with the
“stagnant cap” regime, where the upstream region of the interface has a weak surfactant
gradient and is almost shear-free, whilst the downstream region of the interface has
a strong surfactant gradient and is effectively no-slip (see, e.g., Bond & Newton 11928;
Frumkin & Levich [1947; [Levich [1962; [He et al. 11991, which describe similar behaviour
for air bubbles rising in surfactant-contaminated water). In this regime, the advection
of surfactant at the interface dominates relative to surface diffusion and bulk-surface
exchange.

The scaling theory of [Landel et all (2020) was extended to three-dimensional (3D)
low-Reynolds number channel flows with long but finite longitudinal gratings by
Temprano-Coleto et all (2023). They used a long-wave limit and assumed low surfactant
concentrations to show that the slip velocity and the slip length scale in a similar
fashion as in 2D flows. In the limit of large Damkdhler numbers, as found for common
surfactants, and sufficiently small bulk Péclet numbers, they predicted that significant
slip can be achieved provided that the grating length is longer than both a modified
depletion length and a mobilization length. The modified depletion length depends
on surfactant properties and the height of the channel, and is generally small, of
the order of 1 mm, for small-scale applications. The mobilization length depends on
the normalised surfactant concentration, Marangoni number, Damkohler number and
Biot number. Since the mobilization length can be much longer for typical small-scale
applications, they concluded that the mobilization length alone controls the slip in most
small-scale applications. If the grating length is smaller than the mobilization length,
they showed that the slip velocity increases with the square of the grating length, which
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is in agreement with their numerical simulations and experiments, as well as with the
experimental results from [Peaudecerf et al. (2017) and [Song et al. (2018).

The contamination of SHS channels with surfactant may be simplified if one considers
only the effect of insoluble surfactant at the liquid—gas interface, neglecting the exchange
with bulk surfactant which remains at some background concentration. |Baier & Hardt
(2021) found analytical expressions for the velocity field and interfacial surfactant distri-
bution in a 2D channel flow over transverse grooves in an advection-dominated regime
(i.e., large interfacial Péclet numbers), under the assumption that the surface tension
depends linearly on the surface concentration. Under the assumption of insoluble surfac-
tant, drag is not reduced by increasing streamwise groove length, in contrast with findings
from experiments and soluble-surfactant models, where slip increases with the square
of the groove length (Peaudecerf et al. [2017; [Landel et al) [2020; [Temprano-Coleto et all
2023). For periodic transverse grooves, |[Baier & Hardt (2021) determined the effective slip
length, which is strongly dependent on the Marangoni number for large gas fractions,
decreasing rapidly as the Marangoni number increases from zero. Mayer & Crowdy (2022)
also considered surface immobilisation due to insoluble surfactant in a shear flow over
periodic transverse SHSs; however, unlike [Baier & Hardt (2021), the authors varied the
surfactant load, interfacial Péclet and Marangoni number, using a non-linear equation of
state. They combined asymptotic theory with numerical solutions to identify two distinct
mechanisms behind surface immobilisation. The first is the previously discussed stagnant
cap mechanism. The second immobilisation mechanism emerges when there is a region
of near-maximal surfactant concentration close to the downstream stagnation point. In
contrast to the stagnant cap mechanism, surfactant gradients need not be large for
appreciable Marangoni stresses to develop. The near-maximal surfactant concentration
mechanism is captured using a non-linear equation of state and thus can appear outside
of the advection-dominated region, i.e. for small Péclet and Marangoni numbers, provided
there is sufficient surfactant present at the interface.

Liquid-infused surfaces (LISs) offer an alternative to SHSs where the SHS pockets are
filled with a lubricating immiscible fluid instead of gas (Wong et al. [2011; Wexler et al.
2015). They can self-repair and are more robust than SHSs if properly designed. However,
the drag reduction of LISs decreases as the viscosity ratio between internal and external
fluids increases (Schonecker et al. 2014). Furthermore, recent numerical simulations by
Sundin & Bagheri (2022) have indicated that LISs may be more susceptible to surfac-
tant effects than SHSs. |Sundin & Bagheri (2022) extended the theory introduced in
Landel et all (2020) to account for surfactants in a 2D shear flow, predicting the critical
surfactant concentration for the slip to be reduced appreciably: C,=4x10"4 mol/m?
for water—air SHSs and C. = 5 x 105 mol/m3 for water-dodecane LISs. For low applied
shear stresses, [Sundin & Bagheri (2022) found that the distribution of surfactant at
the interface is approximately uniform and a scaling theory was used to derive an
expression for the slip length. For high applied shear stresses, surfactant accumulates
at the downstream stagnation point and forms a stagnant cap. |Sundin & Bagheri (2022)
employed numerical simulations to find that the stagnant cap regime only exists below
a particular bulk concentration (above which the scaling theory once again becomes
valid). Considering a typical surfactant, e.g., sodium dodecyl sulfate (SDS), the critical
bulk concentration is shown to be proportional to the inverse Marangoni number.

In this paper, we show that a one-dimensional (1D) asymptotic theory, derived as
coupled nonlinear ordinary differential equations (ODEs) from the full 3D transport
problem, can capture the impact of surfactant in 3D channels bounded by periodic SHSs
made of long finite-length longitudinal grooves. The main assumption behind our theory
is that bulk diffusion is strong enough to suppress cross-channel concentration gradients.
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We thereby sidestep the need for introducing empirical or fitting coefficients associated
with scaling analyses, as done in previous studies (Landel et alll2020; Sundin et al/l2021;
Temprano-Coleto et all 12023). This allows us to address non-uniform shear stresses at
the liquid—gas interface. By mapping the drag reduction across a large part of the high-
dimensional parameter space, we identify a multitude of asymptotic regions and their
boundaries, unexplored by previous studies. Explicit closed-form asymptotic solutions
predict the drag reduction in all the regions of the parameter space studied, offering
analytical predictions for practical use where numerical simulation of the fluid and
surfactant equations are computationally expensive. By addressing the role of shear
dispersion, the theory developed here constitutes also a stepping stone towards a wider
class of laminar flows with weaker cross-channel diffusion, where the bulk concentration
field varies in three-dimensions and must be resolved numerically.

The paper is arranged as follows. In §2, the full 3D transport problem is formulated in
terms of nine dimensionless parameters. In §3] an asymptotic model is derived for the flow
and surfactant transport; cross-channel integration reduces the number of independent
dimensionless parameters to six. In §4, key results are presented for the drag reduction
using 2D maps that illustrate the structure of the parameter space; the underlying physics
is described using the surfactant distribution and the 3D velocity field of the channel
flow. In §5, the implications and extensions of this study are discussed; a table of five
dimensionless groups that control drag and the negative impact of surfactant is presented,
expressing these dimensionless groups in terms of the dimensional parameters of the
problem.

2. Formulation
2.1. Governing equations

Consider a steady 3D laminar channel flow contaminated with a soluble surfactant and
bounded between two SHSs that are separated by a distance 2H , as illustrated in figure
[L Hats indicate dimensional quantities. The Z-, §- and Z-coordinates are oriented in
the streamwise, wall-normal and transverse directions, with & = (&, g, 2). The liquid
is assumed to be incompressible and Newtonian with dynamic viscosity f, velocity
o = (a(x), 0(&), w(&)), pressure p(&), bulk surfactant distribution é(&) and interfacial
surfactant distribution I’ (Z,%). Owing to the periodicity of the geometry, we restrict
attention to a single periodic cell with streamwise (transverse) period length 2P, (2]5Z),
liquid—gas interface length (width) 20, Py (241)2]52) and gas fraction ¢, (¢.). Liquid—
gas interfaces, or plastrons, are assumed to be flat. The domain is partitioned into two
subdomains per period, that are bounded by the plastron and solid ridge, namely

Dy = {& € [~¢u Lo, ¢ P ]}X{yE[O 2]} x {2 € [P, ]}, (2.1a)
Dy = {& € [¢sPr, (2— ¢2) P} x {9 € [0, 2]} x {2 € [-F., P.]}, (2.1)

as outlined in figure [(5). At the SHSs, § = 0 and § = 2H, we define the liquid-gas
interfaces, the ridge surfaces and the solid surfaces, respectively, as

I={2€[-¢uPu, 0P|} x {§ € {0, 2H}} x {2 € [-¢.P., ¢.P.]}, (2.2a)
R={ie[- ¢ Py, . P]} x {5 € {0, 2H}} x {2 € [-P., —¢.P.]U[¢. P, P.]}, (2.2b)
S={d€[¢aPs, (2 ¢u)Pu]} x {§ € {0, 2H}} x {2 € [-P,, P.]}, (2.2¢)
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FIGURE 1. (a) Schematic depicting a plane periodic streamwise channel flow (illustrated by
the array of arrows) of a liquid transporting a soluble surfactant. The origin of the Cartesian
coordinate system, & = 0, is located in the middle of the bottom interface. The channel height
in the wall-normal direction is 2H , the transverse gas fraction, ¢., and the transverse period,

2P,. On the top and bottom SHSs are no-slip ridges, R (outlined in red), solid surfaces, S

(yellow), and liquid—gas interfaces, 7 (green) onto which surfactants can adsorb and desorb,
modifying the interfacial stress through the Marangoni effect. (b) Cross-sectional view of the

periodic domain at zZ = 0, showing the streamwise gas fraction, ¢, streamwise period, 2]51, and
highlighting domains D; and D2 (magenta).

as outlined in figure [[(a). Note that placing the origin of the coordinate system at the
centre of the domain (common practice in the literature for flows over SHSs) would
increase the number of matching conditions between subdomains from two to three.

To model the fluid we use the steady Stokes equations, neglecting inertia and any body
forces. The bulk surfactant is coupled to the flow field by a steady advection—diffusion
equation. In D; and 252, we therefore have

V-a=0, AVa—-Vp=0, DV*—a -Vé=0, (2.3a-¢)

where D is the surfactant bulk diffusivity. The interfacial surfactant is coupled to
the flow by a steady advection—diffusion equation and an equation of state. The bulk
concentration is coupled to the interfacial surfactant by continuity of flux, where exchange
at the interface is modelled using a source—sink term consistent with the Henry isotherm
(Chang & Franses 11995). The equation of state and adsorption—desorption kinetics are
linearised, which is valid for small deviations in the concentration of surfactant away
from some reference value (Manikantan & Squires|2020). On 7 , we balance the tangential
components of the stress, T -n where T = —pl + (V@ + (Va@)T) and n is the unit
normal to Z (pointing into the channel), with tangential gradients of surface tension 6.
We assume that (7) the effects arising from the gas trapped in the SHSs are negligible,
(i) 6 = 60 — A(I' — I)) where 6¢ is the reference surface tension, A is the surface
activity and I is the reference surface concentration of surfactant, and (i) the surface
tension remains large enough to suppress deflections of the interface from its assumed
flat state. Thus, along 7 , we impose the tangential stress balance in the streamwise and
transverse directions, no-penetration of velocity, continuity of surfactant flux and the
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transport equation for interfacial surfactant
in-Va—Al; =0, pn-Vio—Al:=0, 9=0, Dn-Vé— K.é+ Ky =0,
Di(Dss + Isz) + Koé — Kgl' — (0D); — (@1)s = 0, (2.4a-e)
with D; the surfactant interfacial diffusivity, K « the adsorption rate and kd the desorp-

tion rate. On 97 (the contact line bounding the interfaces), no-flux of surfactant requires
that

Wl — DIy =0 at &=+¢,Pp, Wl —DiIs=0 at 2=4¢.P.. (2.5a,b)

Along R and S, we impose no-slip, no-penetration of velocity and no-flux of bulk
surfactant

=0, w=0, =0, ¢;=0. (2.6a-d)
Defining g = (@, pz, ¢), periodicity across the unit cell Dy UD, means that
A(=0Pu, 5, 2) = 42~ ¢2)Po. 9, 2), 43, 9, —P2) = q(&. 9, ). (27a,b)
The bulk flow and concentration are continuous at the boundary between 151 and 252
a((¢Pe)™, 0, 2) = al(¢ Po)F, 9, 2), (2.8)

where the superscripts — and + mean that the boundary condition is evaluated in Dy
and 152, respectively.

Owing to the symmetry about § = H , the top and bottom interfaces are assumed to
have the same distribution of surfactant. We can integrate (2.3)—(2.8) across the channel
to show how the streamwise bulk surfactant flux changes as surfactants adsorb and desorb

2H . ¢- P, o
/ / (a¢ — Dég)dgdz = 2/ (KqI' — K,¢) dz; (2.9)
=-P, 2=—¢.P., =0
and likewise how the streamwise interfacial surfactant flux changes along the plastron
d o R N o A R
— (@' = DiI)dz = —/ (Kql' — K,¢)dz. (2.10)
dz J;—_4.p., 5=0 t=—¢.P., 5=0

The boundary-value problem (2.3)-(2.8) can also be integrated to show that the total
flux of liquid @ is uniform along the streamwise length of the channel

. P, 2H
= / / udydz, (2.11)
2=—P, Jg=0

the total flux of surfactant K is uniform along the streamwise length of the channel

2H R oy . A
K= / / (46 — Dé; dg)d2+2/ (af' — D;I;)dz, (2.12)
-P, =—¢.P., =0

where the factor of 2 in front of the second integral accounts for both top and bottom
symmetrical SHSs, and the adsorption—desorption flux of surfactant between the interface
and the bulk integrates to zero over the whole interface owing to conservation of mass,

/ / (Kql' — K,¢)d2dé = 0. (2.13)
_¢z —¢. P, Z7y =0

Integrating (2.9) plus twice (2.10) with respect to & recovers (2.12)).
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A key quantity of interest in the present study is drag reduction. The flow is driven in

the streamwise Z-direction by a cross—channel—averaged pressure drop per period given by

Ap = () (—daPs) — (DY(2 — ¢2)Pu) > 0, where () = ff_ip " dgdz/(4P.H) is the

cross-channel average. In the limit when 7 is immobilized (y1e1d1ng an effective no-slip
boundary condition for the velocity), we have Ap = Apg, say, and in the uncontaminated
(or surfactant-free) limit Ap = Apy (when Z is a shear-free surface). We define the
normalised drag reduction as

Apr — Ap
Apr — Apy’
which varies from DR = 0 to 1 in the cases of minimum and maximum drag reduction,
depending on the surfactant-induced Marangoni stresses. Equation (2.14) differs from

other definitions of the drag reduction which compare the flow over a SHS to a solid
wall, such as 1 — Ap/Apr (e.g., [Lee et al. [2016).

DR = (2.14)

2.2. Non-dimensionalisation

Non-dimensionalising the governing equations (2.1)-(2.14) using Ul = Q/(H?) for the
velocity scale, with € = H / P, for the slenderness parameter, P= uU / H for the pressure
scale, ¢ = K/Q for the bulk concentration scale and G = K,C/K for the interface
concentration scale, we write

I
=, (2.15a-
g ( q)

, I'=

P, P’ €U
where £, = (3, £2) and @, = (9, @). Assuming that ¢ < 1, this normalisation yields
a long-wave theory for steady flow in the streamwise direction and introduces a ve-
locity scaling which captures the rapid cross-channel transport that acts to eliminate
cross-channel gradients of surfactant. The transverse flow decays exponentially quickly
(Mcnair et al. [2022), but should formally be retained to develop consistent expansions.
Here we only consider channels with an order-one aspect ratio (such that H~ pz), other
asymptotic scalings are left for future work. The longitudinal subdomains ([2.1)) become

Dy ={z € [~¢s, ¢u]} x {y € [0, 2]} x {z € [P, P.]}, (2.16a)
Dy ={x € [¢s, 2 — 0]} x {y €0, 2]} x {z € [-P;, P.]}, (2.160)

where P, = P,/H is the non-dimensional pitch, and interfaces (2.2) are

T ={z€[~bs, ¢]} x {y € {0, 21} x {z € [~¢. P, 6. P.]}, (2.17a)
R={z€[~¢s, ¢ul} x {y €{0,2}} x{z € [P, =4 P.]U[¢.P., P2},  (2.17b)
S = {2 € [bs, 2~ ¢a]} x {y € {0, 2}} x {z € [-P,, P.]}. (2.17¢)

We substitute the non-dimensionalisation (2.15) into the governing equations (2.3)—
([2.14) to acquire rescaled governing equations in terms of the non-dimensional variables
given in (2.15) and €2. In D; and Do,

Eug +V,-u, =0, eQ'um—l—Viu—Vp:O,
Pe Y +V20) — Eucy —uy -Vie=0, (2.18a<c)

with Pe = UH/D the bulk Péclet number; V, = (8, ;) and V2 = 9,, + 0,. are
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cross-channel differential operators. Along Z,
n-Vu—Mal, =0, n-Vw—Mal,=0, v=0, n-Vc—Da(c—TI)=0,
Pe; Y (?Tyy + I.) + Bi(e —T) — E(ul’), — (wl), =0, (2.19a-¢)

with Ma = Ifié/ﬂf] the Marangoni number, Da = I%'af{/l? the Damkohler number,
Pe; = HU/Dj the interfacial Péclet number and Bi = K4H /U the Biot number. On
0T,

ul' — Pe;'T, =0 at z=+¢,, wl —Pe;'I, =0 at z=+¢,P,. (2.20a,b)
On R and S,

u=0, w=0, v=0, ¢ =0 (2.21a-d)
Periodicity and continuity between subdomains require that, for ¢ = (u, p., c),
q(*(ﬁz, Y, Z) = q(2 - ¢ma Y, Z)a q(l’, Y, 7PZ) = q(l’, Y, PZ)7 (2220’) b)
and
a(65, v, 2) = a(¢3, y, 2). (2.23)

The total liquid flux, total surfactant flux and net flux of surfactant from interface to

bulk are given respectively by
P. 2
/ / udydz =1, (2.24)
z=—P, Jy=0

P, 2 ¢=P:
- 2D I
/ / (uc - C—) dydz + —= . / <uF - ) dz=1, (2.25)
z=—P, Jy=0 Pe Blpe 2=—¢.P,,y=0 Pe[

Pz ¢z P
/ / (I' = ¢)dzdz =0, (2.26)

— b= —¢=Pz,y=0
where bulk and surface fluxes are related to adsorption—desorption at the interface via

d [t 2 : 2D ¢=Px

_/ / (uc— c—l) dydz = 2_&/ (I" = c)dz, (2.27a)
dz J.—_p. Jy—o Pe €Pe Jomp.pP. y=0

d ¢sz

Fm B ¢sz
< (uF - ) dz=——= (I' - ¢)de. (2.27)
dz J.——g.P.,y=0 Pe;y € Ji=—9.P..y=0
The group Da/(BiPe) = K%/(Kdlil) in ([2.25) appears frequently in this problem. The
depletion length Ly = K,/K,; (Manikantan & Squires 2020) corresponds to the depth
into the liquid necessary to balance the adsorption and desorption fluxes between the

interface and the bulk, at equilibrium. Hence, the group Da /(BiPe) compares Lq to the
channel height H. The drag reduction (2.14) becomes

_ Apr—4p
Apr — Apy’

where Ap = (p)(—¢s) — (P)(2 — ¢x) and () = [T, [2 - dydz/(4P%).

The non-dimensional governing equations (2.18)), boundary conditions (2.19)—(2.23)
and flux constraints (2.24)—(2.26), define a 3D boundary-value problem for u, p, ¢ and
I'. The solution depends on 9 dimensionless groups (e, Pe, Ma, Per, Bi, Da, ¢z, ¢
and P.) that characterise the geometry, flow, liquid and surfactant. The number of
dimensionless groups differs from [Landel et al) (2020) (where there are 8), as the authors

DR (2.28)
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considered 2D geometries, and [Temprano-Coleto et all (2023) (where there are 10), as
we have absorbed the non-dimensional background concentration into Ma. Our aim is to
construct a reduced model in the limit € < 1 to predict the drag reduction (2.28)).

3. Model

With 9 non-dimensional parameters in the problem, we choose distinguished limits
to reveal different dominant physical balances. We take ¢ — 0 with some parameters
held fixed and others varying proportionally to €2. Specifically, in §3.2, we take Da =
Bi = 0O(1) as e — 0, allowing the leading-order bulk (cg) and interfacial (I) surfactant
concentrations to remain in equilibrium, such that ¢y = Iy; we call this the “strong
exchange limit”. In §3.3] we treat smaller Da and Bi, so that Iy decouples from cp;
we call this the “moderate exchange limit”. First, however (in §3.1), we introduce the
resulting 1D surfactant transport equations coupling the bulk and the interface, which
depend on 5 non-dimensional parameters that characterise the strength of bulk and
interfacial advection, Marangoni effects, diffusion and bulk—interface exchange and one
geometrical parameter.

3.1. Surfactant transport equations

To derive the 1D surfactant transport equations from (2.27), we assume that Pe =
Per = Ma = O(1) in the limit ¢ < 1, which implies that cross-channel concentration
gradients are small, so that ¢ ~ ¢o(z) and I" =~ Iy(x). A detailed derivation is provided
in §3.3t however, in this subsection, we introduce the 1D surfactant transport equations
that we solve to generate the results in §4l We briefly describe their physical meaning
to provide the reader with an overview of the different physical processes at play in the
problem studied. The 1D surfactant transport equations relate bulk and surface fluxes
of surfactant through adsorption—desorption fluxes at the interface. As will be shown in
§3.3] they reduce to a simpler coupled nonlinear system of second-order ODEs:

(co — acog)s — 612(1“0 —¢)=0 in Dy, (3.1a)
(BT — ¥Tol 0w — 6T0)s — E%(co ~I3)=0 in Dy, (3.1b)
(co — acoz)s =0 in Da. (3.1¢)
The total flux of surfactant (2.25) becomes
co — acoy + BIy —vIoloy — 0o, =1 in Dy, (3.2a)
co—cop =1 in Ds. (3.2b)

Continuity of bulk surfactant (2.23) and bulk surfactant flux (2.25) between unit cells,
and no flux of interfacial surfactant (2.20) through contact lines, are together given by

co(dy) =co(ds),  co(—¢z) = co(2 = ¢a),
co—acor: =1, Bloy—~Ioloz —0lo, =0 at z==¢,. (3.3a—d)

Equations (B.I)-(3.3) are the steady leading-order surfactant transport equations, flux
constraints and boundary conditions in D; and Ds, accounting for bulk advection by
the pressure gradient (co, in [B.I))), surface advection by the pressure gradient (510,),
Marangoni advection (y(Ipl0os)s), bulk diffusion (cegys), surface diffusion (61pz,) and
bulk-surface exchange (£v(Iy — co)/€?). In §3.21 we derive and discuss further the non-
dimensional parameters «, 3, v and § associated with the strengths of the above physical
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processes. In §3.2] we focus on the limit where bulk—surface exchange of surfactant is
strong relative to advection and diffusion, such that v/e? > O(1, «, 3, §) in B.I)-B.3),
and therefore, the ¢y and I fields are in equilibrium. In §3.3] we study the limit where
bulk—surface exchange of surfactant is comparable to advection and diffusion, such that
v/e? ~ 01, a, B, 6) in BI)—(B.3), and therefore, the co and I fields are distinct.

3.2. Strong exchange
3.2.1. Strong cross-channel diffusion

We begin by assuming that Pe = Pe; = Bi = Da = Ma = O(1) in the limit ¢ < 1.
We call this the “strong cross-channel diffusion limit”. In this subsection, we derive the
O(1) coefficients a, 8, v and 4, such that v/e? > O(1) for e < 1 and v = O(1). We
substitute the expansions

(u, v, w, p, ¢, I') = (ug, vo, Wo, po, co, 1) + € (u1, vi, wi, p1, 1, I1) + ...,  (3.4)

in the governing equations (2.18)-(2.28) and take the O(1) approximation. In domains
D; and Do,

Vi -uio=0, Viuo — Vpo =0, Pe_IVico —u,10-Vico=0. (3.5a—c)
Along the interface Z,
n-Vug— Malyo: =0, n-Vwy— Malp, =0, vy =0,
n - Vg — Dalcy — Ip) =0, PCI_IFOZZ + Bi(co — Ip) — (wolp). =0, (3.6a—¢)
and on the interface contour 07,
wolp — Pe; T, =0 at z=+¢,P,. (3.7)

There are inner regions near r = *£¢,, within which uglp — Pe}lfogy = 0 is imposed
on 0Z, and the boundary conditions ug(¢; , y, z) = wo(¢}, y, z) and wo(—¢z, y, z) =
uo(2 — ¢z, y, z) are imposed between D; and D,. Within the inner regions, the flow
and surfactant field are governed by the coupled 3D Stokes and surfactant transport
equations. In the present long-wave theory it is sufficient to impose continuity of ¢g
between D; and Ds, such that

CO(¢;7 Y, Z) = CO(¢I7 Y, 2)7 CO(_¢xa Y, Z) = CO(2 - ¢l‘a Y, Z)a (3'80'7 b)

and continuity of volume and surfactant flux between D; and D-, such that

P, 2
/ / updydz =1, (3.9)
z=—P, Jy=0

P, 2 ¢= Pz,
Com) 2Da / < Fom>
ugco — — | dydz + — uolp — dz=1, (3.10
/Z_Pz /y_o( 00" pe ) W BiPe J.—_4.p., y=0 070 Pe, ( )

for all —¢, < x <2 — ¢,. Along the ridge R and solid S,
u =0, v9=0, wg=0, coy=0. (3.11a—d)

Transverse periodicity can be rewritten as the symmetry conditions
up, =0, v, =0, wg=0, ¢o=0 at z==xP,. (3.12a-d)

The drag reduction becomes
Apr — Apog

DRy = .
* " Apr — Apy

(3.13)
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FIGURE 2. (a) Contour plot of U defined by ([BI5), the leading-order _contribution to the
streamwise flow due to the pressure gradient, po;. (b) Contour plot of U defined by ([B.I6),
the leading-order contribution to the streamwise flow due to the surfactant gradient, Io,. Since
poz < 0, U contributes positively to the leading-order streamwise velocity component ug, whilst
U contributes negatively, since Io, > 0, following (314). The thick black lines represent the
solid regions of the SHS with the transverse gas fraction ¢, = 0.5 and width P, = 1.

From (B.5)—(3.12)), the leading-order solution simplifies to Iy = Iy(z), co = co(x) where
co = I, po = po(x) and vg = wy = 0. The leading order velocities in the cross-section,
vo and wyp, vanish due to transverse surfactant gradients decaying exponentially fast in
a time-dependent setting, as discussed by [Mcnair et _al. (121122) Therefore, in our steady
problem, the concentration field does not vary in the transverse direction and there are
no concentration gradients to generate velocities in the cross-plane. The streamwise flow
is driven by po,, from B.5b), and Iy, from B.6l). Using linear superposition, we can
write

up = Upoy + MaUTy, inD; and wo= Upyy in Do, (3.14a, b)

where U(y, z) and U(y, z) are velocity contributions related to the bulk pressure and
surfactant gradient, respectively, in D;, and U (y) is the velocity contribution related to
the bulk pressure gradient in Ds. Hence, we must solve the following boundary-value
problems: streamwise flow driven by a pressure gradient over Dy,

ViU =1, subject to U,(0, z,) =0, U(0, zns) =0, Uy,(2, z5) =0,

U(27 Zns) =0, Uz(ya _Pz) =0, Uz(ya Pz) = 0; (3-150'79)

streamwise flow driven by a surfactant-induced Marangoni shear stress over Dy,

V2U =0, subject to Uy(0, z5) =1, U0, zp5) =0, Uy(2, z5) = —1,

U(2? Zns) =0, Uz(ya *Pz) =0, Uz(ya Pz) =0; (3'16‘179)

and streamwise flow driven by a pressure gradient over Do,

9

U,y =1, subject to U(0)=0, U(2)=0; (3.17a-¢)

with zs = {z € [—¢. P,, ¢.P.]} and 2z = {2z € [- P, —¢.P.]} U{z € [¢.P;, P.]}.
Numerical solutions to (8.15] B.I6) can be seen in figure 2 for ¢, = 0.5 and P, = 1,
computed using the method outlined in Appendix [Al Equation (3.17) can be integrated

to give U = y(y — 2)/2 and Q= fP;_PZ y2=0 Udydz = —4P,/3. We define the volume
and surface fluxes

_ P, 2 - P. 2
Q= / / Udydz, Q= / / Udydz, (3.18a, b)
z=—P, Jy=0 z=—P, Jy=0
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FIGURE 3. Plot of (a) Q defined in (3I8a) and (b) § defined in ([BITb), the contributions to the
bulk and surface flux due to the pressure gradient po, < 0, for varying ¢. and P;. Plot of (¢)
Q defined in (BI8b) and (d) g defined in (BI9k), the contributions to the bulk and surface flux

due to the surfactant gradient Io. > 0, for varying ¢. and P,. Since po. < 0, Q and ¢ contribute
positively to the leading-order velocity flux, whilst ¢ and ¢ contribute negatively, since o, > 0,

following (3:25a).

6. P 6. P . $.P
q :/ up dz, (}:/ Udz, (j:/ Udz. (3.19a-c¢)
z=—¢.P.,y=0 z=—¢- P, y=0 z=—¢.P.,y=0

Bulk (Q, Q) and surface fluxes (g, §) are plotted as functions of ¢, and P, in figure 3.

Next, we substitute the expansions (3.4)) into the governing equations (2.18)—(2.22) to
evaluate the O(€2) equations. The O(€?) system is required to calculate the first-order
cross-channel flow field (v1, wy), pressure field p1, bulk ¢; and surface concentration field
Iy driven by streamwise gradients of the leading-order quantities (ug = (uo(x,y, 2), 0, 0),
¢o(z) and Ip(x)), and to close the leading-order problem. In D; and Dy,

VJ_"U/J_l = —UQz, ViuLlvapl = 0, P671Vicl = 7P67160m93+’ll,060m. (3.20(1*0)

Along 7,

n-Vw — Mal, =0, v =0, n-Ve¢ —Da(c; —1I1) =0,

Pe;'T',. + Bi(cy — I) — Towi, = —Pe; ' Tope + (uol0)s,  (3.21a-d)

and on 0Z,
wily— Pe;'I, =0 at z=+¢,P,. (3.22)
Along R and S,
v1 =0, wi =0, cy=0 (3.23a—c¢)
Transverse periodicity can be rewritten as the symmetry conditions
v1,=0, w; =0, ¢,=0 at z==%P,. (3.24a—c¢)

Solvability conditions imposed on (3.20)-(B.24) constrain ug, ¢o and Iy at O(1). The
forcing on the right-hand sides of (3.20} B.21]) must be orthogonal to each vector in the
null space of the linear operator that is adjoint to the left-hand sides of (3.20} B.21]).
Conveniently, these conditions are provided by the conservation arguments that result
in the leading-order velocity and surfactant flux conditions (8.9, B.10). Substituting the
leading-order streamwise velocity (B.14) into the leading-order velocity flux condition

[(3.9), we obtain
QpOx + MGQFO.’,C =1,

Substituting (3.28) into the leading-order surfactant flux condition (3.10) and remem-

¢ =Gpos + Maglo, in Dy, Qpoe=1 in Dy (3.25ac)
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bering that co(z) = I'v(z), we obtain the strong cross-channel diffusion problem

(B+1)co —veocor — (@+ ) co, =1 in Dy, (3.26a)
co— ey =1 in Do, (3.26b)

subject to continuity of bulk surfactant [B.3la, b). In ([B.26]), we have introduced

AP, 4DP, .

a=—o== 70 (bulk diffusion), (3.27a)
2Daj  2K,§

B=— Y 2nad (partition coefficient), (3.27b)
BiPeQ HK4Q
2MaDa (GQ 2K, AG (§Q

= aza (ﬁ - ’) = <£ - (j) (surfactant strength), (3.27¢)
BiPe Q HEKq uU \ Q
4¢.P.Da _ 4D1Ka¢. P .

_ o _ ADiKq¢ (surface diffusion). (3.274d)

- BiPePe;  H3K,U

The bulk diffusion coefficient o > 0 is a rescaled (by 4P,/H) inverse Péclet number
1/Pe = D/(HU), nominally assumed O(1). The coefficient a characterizes the ratio of
streamwise diffusion to streamwise advection in the bulk for a given normalised channel
width, assumed O(1). The partition coefficient 8 > 0 is the rescaled (by 2G/Q) normalised
surfactant depletion depth Ly = K,/(HK4). The coefficient 3 in (3.:26la) determines the
portion of the surfactant flux transported by the pressure-driven flow along the interface
in comparison to the surfactant flux transported by the pressure-driven flow in the bulk.
For § > 1 (8 < 1), the surfactant advection flux is strongest at the interface (bulk).
The surfactant strength coefficient v > 0 is the rescaled (by 2(GQ/ Q — ¢)) product of
Lg and the Marangoni number Ma = AG/ (i), the ratio of surface tension changes due
to interfacial surfactant to viscous forces. The coefficient v characterizes the nonlinear
impact of streamwise surfactant-induced Marangoni stresses on the streamwise surfactant
flux at the interface and in the bulk. The surface diffusion parameter § > 0 is a rescaled
(by 4¢.P.) product of Ly and the inverse surface Péclet number 1/Pe; = D;/(HU),
nominally assumed O(1). The coefficient § measures the ratio of interfacial streamwise
surface diffusion to streamwise advection for a given normalised interface width.

In summary, the leading-order problem (B.5)-(8.12) has been reduced to the 5-
parameter problem (B3.26) subject to ([B.3la, b), a special case (where v/e? > O(1, a, 3, J))
of the 6-parameter problem (B.I)—(B.3]), requiring the solution of a first-order ODE to
determine ¢y and hence DRy (explained in §3.4] below). Then, the leading-order
streamwise velocity ([B.14]) and first-order problem (8.20)—(B.24]) can be used to construct
the 3D flow field.

3.2.2. Moderate cross-channel diffusion

In general, when cross-channel diffusion is weak and cross-channel gradients in the
concentration field are comparable to the cross-channel average, a numerical technique
must be employed to evaluate c. We call this the “generalised limit”. In Appendix
[B.Il we identify the regions of parameter space where cross-channel gradients first
emerge by perturbing around the cross-channel-averaged concentration. Writing ¢y =
(co)(z) + ¢h(z, y, z), we assume that ||cp]| = /() < (co) for all z, seeking to
characterise the leading-order effects of shear dispersion in this problem (Taylor[1953). We
expect shear-dispersion effects to arise in surfactant-contaminated SHS channels because
the pressure-driven flow advects surfactant at different speeds across the channel. The
advected surfactant is then mixed by cross-channel diffusion, which in turn results in
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longitudinal dispersion of the surfactant distribution. We call this the “moderate cross-
channel diffusion limit”. The validity of this assumption is evaluated a posteriori in
Appendix [B.2

To develop this limit, we assume that 1/Pe = 1/Pe; = Bi = O(e?) and Da = Ma =
O(1) for € < 1, substituting the asymptotic expansion (8.4)) into the governing equations
RI8)-@227) (as in §3.2.1). We then use the first-order system to eliminate ¢{ and the
leading-order surfactant flux constraint to derive the moderate cross-channel diffusion
problem, which is effectively a modification to the strong cross-channel diffusion problem

([3.26) accounting for shear dispersion,

e 7 2 7 3 :
(B+1)co— yeocon — - (81001- + SQECOI + ssﬁc%) =1 in Dy, (3.28a)
€2

Co — E (540095) =1 in DQ, (328b)

subject to continuity of bulk surfactant (8.3, b). We have defined the O(1) coefficients

. _WPXOC)  _ 16P2QUUC) + (UC)) —2Q0(UC))
' Q> Q*(4Q — 4Q) ’
5y _ _LOP2P(@(UC) — QQUUC) +(UC) +QXUC) - 16PAUC)
Q%(dQ — 4Q)? ’ Q>
(3.29a-d)

where C, C and C are solutions of the boundary-value problems (B12)(B14), respec-
tively (see Appendix [B.I), which depend on geometrical factors and Da. Here, (U, U)
are given by [B.15} B.16), (Q, Q) by BI8), and (¢, ) by (B-19). The coefficients s; > 0,
s9 and s3 are plotted for different ¢., for P, = 1 and as a function of Da in figure [[1]
(Appendix [B1)). The coefficient s4 = 3/35, since U = y(y—2)/2, C = 1/5—y3/6+y*/24
and Q = —4P,/3 in D,. Comparing the strong (3.26) and moderate cross-channel
diffusion problems ([B.28)), streamwise diffusion terms proportional to o and ¢ in (3.26])
have been replaced by shear dispersion terms proportional to €?/a in (3.28), some of
which are nonlinear due to Marangoni effects.

3.2.3. Composite equation

The ODEs in the strong cross-channel diffusion limit ([8.26) can be combined with the
ODEs in the moderate cross-channel diffusion limit (8.28) to construct the composite
approximation

2

c 2
(B+ 1)co — yeocor — (o + 8)cor — . <S1col- + 5210(2)95 + 53 22 cor> =11in Dy, (3.30a)

B
€2
Co — oy — o (s4coz) = 1in Do, (3.300)

subject to continuity of bulk surfactant (3.3, b). The dependence of «, 3, v and § on
Ma, Pe, Pej, Bi, Da, ¢, and P, is given in ([8.27). The dependence of s1, sa, s3 and s4 on
Da, ¢, and P, is given in ([3.29) and discussed in Appendix [B.Il Together, the solution
o ([B.30) depends on nine dimensionless parameters. The numerical method used to
solve (3.3, B.3b, B.30) is outlined in Appendix [A.Tl Incorporation of shear dispersion
effects in (8.30), through perturbation of the cross-channel-averaged concentration (¢o =
(co)(z) +ci(x, y, z)), enables the strong-exchange model to explore regimes where cross-
channel concentration gradients first become significant (||cgl| = O({co)) for some z),



16 S. D. Tomlinson and others
enabling us to estimate approximately the boundary of validity of the 1D model (3.I))—

B3) (Appendix B2). When bulk diffusion is strong enough for shear dispersion to
become negligible, (3.30)) reduces to (8.26]), or (8.2) with co = Ip.

3.3. Moderate exchange

In §3.2] we assumed that Da = O(1) in order to have strong exchange at the interface,
such that bulk and interfacial surfactants were in equilibrium at leading-order, i.e. ¢cg =
Iy. To study the case where cg and I are not in equilibrium, we rescale Bi = 2% and
Da = €29 with = 2 = O(1), whilst retaining Pe = Pe; = Ma = O(1). Substituting
the expansion ([B3.4) into the governing equations [2.18)—([2.27), then the leading-order
strong cross-channel diffusion equations ([3.5)), B.6la—c), (3.7)—B.9) and (B.11)-[B.12) are

recovered. Along the interface 7
coy =0, Pe;'Ty.. — (wolb). = 0. (3.31a, b)
The total flux of surfactant (2.25) is given by

¢z z F X
/ / UgCy — —) dydz + ——— 27 (uOFO — Ol) dz=1. (3.32)
—P, Jy=0 %Pe z=—¢, P,,y=0 PC[

The bulk and surface fluxes ([2.27) are related to adsorption—desorption fluxes at the
interface via

4 / / UpCy — —) dydz | = g/ (Ih — co)dz, (3.33a)
dz P, Zfﬂpzp y=0
d (/ ( dz) = ff@/ (I'o — ¢o) dz. (3.330)
dz =—¢.P.,y=0 —¢.P;,y=0

The cross-channel velocity field again decays rapidly in time to vg = wg = 0. However,
the bulk concentration ¢y = ¢o(z) and surface concentration I'y = I'n(x) are no longer
equal at leading-order. The streamwise velocity field is given by ug = Upos + MaUT,
in Dy and uy = Upo, in D, where U, U and U are given by BI15)-BI17).

At O(€?), the first-order strong cross-channel diffusion equations ([3.20), (3.21la, b) and
B.22)-([3.24) are recovered. On Z,

Cly = @(Co*]—b), Pe;lflzszowlz = 7P6;1F011+(UOF0)93 7@(6071})). (3.34(1, b)

This system is required to evaluate the first-order cross-channel flow, (v1, w1), driven by
streamwise gradients of ug, cg and I, and to close the leading-order problem.
Substituting the streamwise velocity (3.14) into the velocity flux condition (I&_ﬂ[) we
recover ongc + MaQFOx =11in D; and me =1 in Dy, where Q is given by (3.18k),
given by (BI8b) and Q = —4P, /3. Substituting the streamwise velocity (3.14) into (Im)
we derive the steady leading-order surfactant transport equations (B.I). Substituting
(3.14) into the surfactant transport equations (3.32) (or adding (8.Iz) and (B.1lb) and
integrating) we recover integral constraints on the surfactant transport equations (3.1)),
which are given by surfactant flux constraints (3.2)). The coefficients «, 3, v and § are

defined in (8.27) and

4¢.P,Da  4AK,0.P
v= ¢PZ ¢ - I‘f{q;; Z  (surface exchange). (3.35)

The surface exchange coefficient v is a rescaled (by 4¢)sz) product of the inverse bulk
Péclet and Damkdéhler numbers, comparing the rate of adsorption of surfactant contained
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in the layer of fluid H with the rate of advection. At the domain boundaries, we impose
continuity of bulk surfactant (8.3, b), continuity of bulk surfactant flux between D; and
Dy ([B3kc) and no flux of interfacial surfactant (3.3d). For v/e? > O(1, a, 3, §) then
cop = Iy at leading-order, recovering the transport equations (8.26) in the strong cross-
channel diffusion and strong exchange limit. The numerical method used to solve the 1D
surfactant transport equations (3.1)—(3.3)) is outlined in Appendix [A.T.

3.4. Drag reduction

As mentioned in §21 we study the transition from an immobilised interface where
DRy = 0, to a shear-free interface where DRy = 1. When the interface is shear-free,
Qpor =1 in Dy and Qpo, = 1 in Dy, such that integrating —pg, across the period gives

a2 2=9s 20,  2(1— ¢y
Apy = —/ Pox dz —/ pos d = — 222 _ A1~ ) (3.36)
T=—ch, T=¢, Q Q

In the limit where the interface is immobilized, on:c =1 in D; and Ds, giving Apg =
—2/Q. Note that when ¢ = 0, the surface velocity flux condition (3.:25h) implies that
qpoz + Maqly, = 0. We can substitute this into the bulk velocity flux condition (3.25l),
to find po.(Q7 — Q) = ¢ in D;. However, we also have po, = 1/Q in Dy for ¢ = 0.
Combining these two expressions for po; in Dy, gives Qi— Q= qQ and q(Q Q) Qd.
It follows that QQq/((qQ - qQ)(Q Q)) = 1, which is valid for any ¢. Between these
no-slip and shear-free limits, Qpo, + MaQIp, = 1 in D; and QpOQL = 1 in Ds, such that
integrating —pg, across the period gives

o 2—¢a 20,  2(1 —¢y)  MaQAIL
APO = 7/ Pozx dx — / Pox de = *i - ( = (b ) + aQ 07 (337)

where we have defined ATy = Iy(¢py) — [o(—¢dz) > 0 (Al = Acp in the strong exchange
limit). Using the definition of (3, v) in (3278 B.27c) and substituting Apy, Apr and
Apg into the leading-order drag reduction (B.13]), we have

(3.38)

In (8.38), the first term gives the drag reduction when the interface is shear-free and
the second term measures the impact of surfactant. In order to derive the expression in
(B38), we used the fact that QQq/((GQ — 7Q)(Q — Q) =1

Drag reduction is one possible measure of the performance of surfactant-contaminated
SHSs. An alternative measure, commonly used for laminar flows over SHSs, is the effective
slip length A. (Landel et al)|2020; Temprano-Coleto et all|2023), defined as the uniform
slip length applied to the top and bottom boundaries of an equivalent channel of the
same height as the SHS channel and which has the same flow rate as the SHS channel
under the same pressure gradient (Lauga & Stone [2003). To evaluate A., we integrate
the leading-order streamwise momentum equation (3.5b) for an equivalent channel with
the mixed boundary conditions (3.6} B.11]) replaced by Acuoy —up = 0 on Z, R and S.
We obtain ug = U Apg, where U = y(y —2)/2 — A and po, is the same pressure gradient
as in the SHS channel. The flux is Q = fP:ziPz f;:O Upozdydz = (Q — 2P \e)pos, or by

integrating over one period Q = (Q — 2P, )\¢)Apo/2. Equating the flux of the equivalent
channel with the flux of the SHS channel, Qpo, + MaQIy, = 1, we find

DRy(Apr — Apy)
PZApR(ApUDRo + ApR(l — DR()))7

Ae = (3.39)
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which can be used to convert results from DRy to A..

4. Results

In §4.1] we investigate the leading-order drag reduction (DRy), bulk surfactant concen-
tration (cg), interfacial surfactant concentration (1) and flow field in the strong-exchange
problem, (3.30) B.3la, B.3b), by varying the bulk diffusion (), partition coefficient (8),
surfactant strength (y) and surface diffusion (§). In §4.21 we address the moderate-
exchange problem, B.I)-((B.3), by varying «, 53, v, 6 and the exchange strength (v).
In both strong- and moderate-exchange problems, we identify three primary areas of the
parameter space. The Marangoni-dominated (M) region, where the interfacial surfactant
gradient is sufficient to immobilise the liquid—gas interface (low drag reduction); the
advection-dominated region (A), where interfacial surfactant has been swept to the
downstream stagnation point and the liquid—gas interface is mostly shear free (high
drag reduction); and the diffusion-dominated (D) region, where the interfacial surfactant
gradient has been attenuated by diffusion and the liquid—gas interface is mostly shear
free (high drag reduction). Throughout §4] the gas fraction and transverse period width
are maintained at ¢, = ¢, = 0.5 and P, = 1 for simplicity. However, general asymptotic
solutions are derived for any ¢,, ¢, and P,.

4.1. Strong exchange
4.1.1. Drag reduction

Figure[4(a) shows how DRy varies with the bulk diffusion («) and surfactant strength
(), for B = 1. In §41] we set @« = § for simplicity. However, general asymptotic
solutions are derived for any é. The governing equations simplify in different regions of
the parameter space, where subsets of the terms in (3.30) are dominant. These distinct
physical balances are reflected by limits or transitions of DRy, as well as variations in
the concentration profiles. The three primary areas of the parameter space, regions M,
D and A, are separated by black lines in figure [4(a). They are analysed asymptotically
in Appendix [C. Another more general region (G) exists where cross-channel gradients in
concentration can be comparable to the cross-channel average (shaded in figure da). As
region G lies beyond the model predictions, its boundaries delimit the domain of validity
of the model (Appendix [B2). To contextualise the changes in DRy, we examine how
¢p and I vary across one period in figure (b—e). Recall that D; and D, represent the
subdomains over the plastron and solid ridge, respectively, (D; and D, are separated by
the vertical dotted line at « = ¢, = 0.5), and ¢ = I in D;.

To start our journey around the parameter space in figure[dl(a), we address region M, in
which Marangoni effects are sufficiently strong to render the interface almost immobile.
That is, the surfactant is transported along the liquid—gas interface by the flow and
accumulates at stagnation points, where the adverse Marangoni stress generated is large
enough to reduce the streamwise velocity at the liquid—gas interface to negligible values
along the whole length of the plastron. As shown in Appendix [C.1l DRy is close to zero
in region M and takes the value

s ¢ (E+1)

1 2
DROz;<a+5+? E-1) ) for 'y>>max(1, a, B, 6, %), (4.1)
where E = exp(2a(l — ¢,)/(a? + €2s4)) and s = s1 + s2 + s3 (note that s > 0 for
all ¢,, P, and Da examined in Appendix [B.I]). The leading-order drag reduction can

be simplified within two sub-regions: Mp, in which Marangoni effects start to compete
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FIGURE 4. The leading-order drag reduction (DRy) and surfactant distribution (co = Ip) in the
strong-exchange problem, for 5 =1, ¢, = 0.5, ¢ = 0.1, ¢. = 0.5, Da = 1 and P, = 0.5, computed
using (3.30). (a) Contours of DRy, where DRy = 0 exhibits a no-slip SHS and DRy = 1 exhibits
a shear-free plastron. The Marangoni (M), advection (A) and diffusion-dominated (D) regions
are separated by black lines and DRy is approximated by (£1), (£7) and (@3] for the M, A and
D regions, respectively. The generalised (G) region shaded in brown is discussed in Appendix
[B.21 The dashed magenta lines describing when DRy ~ 0.5 are given by (&3] E4). (b—e) Plots
of ¢o for varying surfactant strength ( ) and bulk diffusion («), where the asymptotic curves
are: (b)a—6—1 A: —— @R), M: - - - [£2) with v = 100, (¢) v = 0.1, A: —— ([@3J) with
a=4§=0.01, D: (M)Wltha—d—lo (d) a =86 =001, A: —— (@), M: - - - (£2) with
~ = 100, and(e)v—lOO M: —— [@2) with a =6 =1, D: - - - ([@6) with & = 6 = 1000. The
star identifies the point of the («, )-plane where we examine the flow field in §4.1.2]

with bulk diffusion, and Mg, in which Marangoni effects start to compete with shear
dispersion In the Mp case, (1)) reduces to DRy ~ a/(y(1—¢z))+6 /7 for v > (o, 6) >
max(1, §, €2/a), demonstrating how bulk diffusion (noting that a/~ o aDP,/(AGHLy))
and surface diffusion (noting that 6/ o aDr¢.P./(AGH 2)) weaken the immobilizing
effects of surfactant. In the Mg case, (A1) reduces to DRy ~ €2(s4¢,+s(1—¢,))/(ya(1—
¢z)) for v > €/a > max(1, a, 3, ), demonstrating how shear dispersion starts to
mobilise the interface (noting that €2/(ay) o fU2H®/(DAGL4P. P2) shows a quadratic
dependence on the bulk flow speed).
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Representative concentration profiles in region M are shown in figure [4(b, d, ¢). Here,
the leading-order concentration solution in D; (Appendix [C.1) is linear with a shallow
gradient,

B BB+
R

2

) for > max (1, a, B, 96, %) . (4.2)
The gradient of ¢y is controlled by both advection and Marangoni effects (noting that
B/v < 1/Ma = U/(AG), which shows that an advective flow is needed to set up a
Marangoni gradient), providing a surface shear stress sufficient to immobilise the liquid—
gas interface. From (4.2]), the magnitude of the concentration in D; is weakly regulated by
fluxes driven by bulk diffusion or shear dispersion in domain D, via the factor a+s4€?/a
in E that appears due to continuity of concentration across D; and Ds.

The M region transitions into the G region across the GM boundary, where the
concentration field starts to develop appreciable cross-channel gradients. In Appendix
B2l we show that a 3D perturbation (c}) to the cross-channel-averaged surfactant field
({co)) becomes comparable to {cy) when Marangoni effects compete with shear dispersion,
with v = O(e?/a) for = O(1). Similar to streamwise diffusion, shear dispersion
increases drag reduction when approaching the GM boundary, as shown in figure[d(a). We
conjecture that at 50% drag reduction, shear dispersion becomes large enough to induce
an appreciable cross-channel gradient, defining a possible boundary between region M
and G. However, 3D numerical simulations would be required to test this hypothesis and
determine precisely the GM boundary, beyond which our asymptotic results (4.1) and
(4.2)) in region M are no longer valid. Therefore, our asymptotic approximation below to
determine the GM boundary based on estimating DRy = 0.5 should be used qualitatively
rather than quantitatively. At the GM boundary, we find (Appendix [C.2])

(251(1 — ¢u) + 52¢2(2+ B))
200 (1 — ¢z)

which gives the leftmost dashed magenta line in figure d(a). This approximation agrees

with the numerical solution of the 1D strong-exchange problem in the limit & — 0. As the

immobilizing effect of surfactant decreases across the GM boundary, larger streamwise

velocities in the cross-plane imply that ¢y decreases from ¢y ~ 1 to smaller values along

the channel (see figure [dld). This is due to the velocity and surfactant flux being fixed.

The M region transitions into the D region through the DM boundary for v = O(«)
or v = O(d), which can be defined (see Appendix [C.3]) by

a(2+ Bos)
2(1 - ¢m)

which gives the rightmost dashed magenta line in figure [(a). The asymptotic approxi-
mation (4.4) agrees with the numerical solution of ([B.30) (thick black line in figure [dla)
for min(«, ) > 1. Similar to the GM transition, the immobilizing effect of surfactant
decreases as we move from M to D by increasing the strength of bulk diffusion. By
increasing the strength of bulk diffusion, bulk and interfacial surfactant gradients are
attenuated because bulk—surface exchange is strong; this allows the streamwise velocity
and drag reduction to increase. Since the velocity and surfactant flux are fixed, the
increase in velocity leads to a decrease in ¢, as shown in figure [4(e).

In summary, the factors promoting drag reduction from a state of interfacial immobil-
isation (in region M) are bulk diffusion (moving into region D), shear dispersion (moving
into region G) or reduced surfactant strength (moving into region G, D or A, of which
more details are given below). As we move into region D (or G), the surfactant in the

DRy~ 0.5 when ~= for o<1, (4.3)

DRy =~0.5 when ~=9§+ for min(a, §) > 1, (4.4)
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bulk of the channel spreads out via diffusion (or shear dispersion), transporting surfactant
from areas of high concentration to low concentration. Then, because exchange between
the bulk and interfacial surfactant is strong, the concentration fields rapidly equilibrate;
the interfacial surfactant gradient is also attenuated by these diffusive processes and the
drag reduction DRy increases.

We next turn our attention to region D, where diffusion is sufficiently strong for
surfactant to be distributed almost uniformly along the bulk and interface. This implies
that there are almost no Marangoni stresses to increase the drag and the liquid—gas
interface is almost shear-free. As shown in Appendix[C4] DRy is close to unity in region
D and is given by

(1 — d)m)'y
(1+ ¢aBa+ (1 —¢5)o

for 8 = O(1). Equation (4.5) shows how drag-promoting Marangoni effects are weakened
by strong diffusion in the bulk (&) or at the interface (J). Figure ¢, ¢) shows the
surfactant profiles in region D in the limit of strong diffusion, where o or § are large
compared to bulk advection and Marangoni effects. The leading-order solution in Dy is
uniform along z, such that

o a+0(1—¢y)
O a(Boe +1) +0(1— ¢y)

demonstrating how diffusion eliminates gradients of ¢y throughout D; and Dy (the
weak gradients contributing to DRy in (4.3) appear at higher order and are detailed
in Appendix [C4)). Therefore, drag reduction in region D is impeded by decreasing the
bulk and surface diffusion (if v > 1) or increasing the surfactant strength (i.e. moving
into region M).

We finally consider region A, in which surfactants can adsorb onto the interface but
generate weak Marangoni stresses, allowing the streamwise flow to advect the interfacial
surfactant towards the downstream stagnation point. In this advection-dominated region,
we show in Appendix that DRy is once again close to the shear-free value

v
202 (B+1)

Region A can also be divided into two sub-regions: Ag which balances advection and
shear dispersion, and Ap which balances advection and diffusion; these balances give the
same DRy as in (AT). The corresponding concentration profiles in region A are shown
in figure [4(b, ¢, d). The leading-order solution in D; exhibits a surfactant gradient that
increases monotonically towards the downstream end of the plastron

1 B (1+6)(x—¢)
)exp(

~ +
B+1 (B+1 a+ 6+ €e%si/a

The downstream boundary layer in (4.8) can be short compared to the plastron length,
such that the surface shear stress is negligible almost everywhere on the interface and
the bulk flow experiences a largely shear-free boundary.

Region A transitions into region D across the AD boundary, where advection and
diffusion balance. The concentration and drag reduction at the AD boundary can be
obtained in closed form following the method shown in Appendix However, in figure
4(a), we see that crossing the AD boundary (shown by the vertical black line at « = 1 and
v < 1) does not affect DRy to leading-order. When v < min(1, §) and the surfactant
strength is weak, either the streamwise velocity at the surface is large enough to advect

DRy~ 1— for min(a, §) > max(1, v), (4.5)

for min(e, ) > max(1, v), (4.6)

DRy ~1-— for € <a<1, < min(l,p). (4.7)

o ) for ? < a < 1, y < min(1, B). (4.8)
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FIGURE 5. The leading-order drag reduction (DRy) and surfactant distribution (co = Ip) in the
strong-exchange problem, for ¢, = 0.5, ¢ = 0.1, ¢, = 0.5, Da = 1 and P, = 0.5, computed using
(3:30). Contours of DRy for (a) 8 =10 and (b) 8 = 100, where DRg = 0 exhibits a no-slip SHS
and DRy = 1 exhibits a shear-free plastron at the SHS. The Marangoni (M), advection (A) and
diffusion-dominated (D) regions are separated by black lines and DRy is approximated by (£1]),
(#D) and (EE) for the M, A and D regions, respectively. The dashed magenta lines describing
when DRy =~ 0.5 are given by (@9) and ({4) for the AM and DM boundaries, respectively.
Plots of ¢o for varying surfactant strength (v) and o = § = 1, where (¢) 8 = 10, A: —— (3],
M: - - - [@2) with v = 1000, and (d) 8 = 100, A: —— (X), M: - - - (@2) with v = 10000.

most of the interfacial surfactant to the downstream stagnation point (o < 1) or diffusion
is strong enough to attenuate any interfacial surfactant gradient that forms (a > 1). As
the interface is mostly shear-free in both A and D, we do not pursue this limit. Bulk
diffusion dominates over bulk advection for a > O(1), so we employ « = 1 to illustrate
the AD boundary in figure [4(a) (via the thick vertical black line on the right of the A
region). When bulk diffusion is weak, shear dispersion dominates over bulk advection for
€2/a > 1 (Appendix [B2)), so we use a = €2 to illustrate the AG boundary (the thick
vertical black line on the left of the A region in figure [dla). Region A transitions into
region M across the AM boundary, such that Marangoni effects dominate advection for
7 > max(1, 8).

We next investigate the dependence of the drag reduction on the partition coefficient
(8) by evaluating DRy for § = 10 in figure[5(a) and S = 100 in figure [5(b). As 3 grows,
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FIGURE 6. Contour maps of the flow field in the strong-exchange problem, for o = 0.1, g =1,
v =13,6 = 0.1, ¢, = 0.5, ¢, = 0.5 and P, = 0.5, corresponding to 50% normalized drag
reduction given by the star in figure d{a). (a) Leading-order streamwise velocity uo and (b)
leading-order wall-normal velocity vy with (v1, w1) streamlines at the centre of the plastron,
z = 0. (¢) Leading-order streamwise velocity uo and (d) leading-order transverse velocity w;
with (uo, w1) streamlines at the interfaces, y = 0 or 2. The thick black lines in (a—d) represent
the solid regions of the SHS.

the advective flux of surfactant at the liquid-gas interface increases, sweeping more of
the interfacial surfactant towards the downstream stagnation point. This means that a
larger portion of the upstream part of the interface is shear-free, whilst the surfactant
concentration remains unchanging at the downstream end of the interface. Overall,
the net (nonlinear) effect with increasing § is a reduction in drag. The limit 8 > 1
also corresponds to the near-insoluble surfactant limit, with nearly all surfactant being
transported along the interface in region D;. A number of the asymptotic approximations
given in (AI)-(AY) simplify for § > 1: (A3) reduces to DRy = 0.5 when v =
25480, /(2a(l — ¢,)) for a < 1 < B3, such that shear dispersion in Dy determines
DRy; (@4) reduces to DRy ~ 0.5 when v = af¢,/(2(1 — ¢,)) for a > S > 1 and
a = 0(0), with bulk diffusion determining DRy.

Another feature that emerges from figure[5(a, b) is the flattening of the central contours
of DRy at the AM boundary as 3 increases for 5 > 1, due to advection at the interface
becoming stronger. To extract this feature asymptotically, in Appendix we assume
B> 1> max(a, 6, €2/a) and v = O(B) at the AM boundary, showing that DRy ~
1—7/(2B¢;) for v/B < 2¢, and €2 < o < 1 (the case where v/ > 2¢, is also considered
in Appendix and gives DRy ~ —(1/8 + yIn(1 — 28¢./7)/(2¢.%)) provided 1 —
2¢,6/v > exp (—f)). This demonstrates how a large surface advective flux weakens the
immobilizing effects of surfactant (noting that /8 oc AG/iU). Using this expression for
DRy at the AM boundary, we predict that

2
DRy~ 0.5 when ~=¢,8 for (> 1> max (a, 0, %) , (4.9)
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which gives the central dashed magenta lines in figure [B(a, b) (agreement with the 1D
numerical solution of the strong-exchange problem improves for increasing ). At the AM
boundary, the surfactant concentration at the interface exhibits a stagnant cap (He et al.
1991), or a piecewise-linear distribution, if v/8 < 2¢,, where the upstream interface is
almost shear-free and the downstream interface is effectively no-slip. In Appendix [C.6]
we show that

0 for — ¢ <z < x,

co &
0 g(x—qu)—i—lforxogxg(ﬁx,

2
for min(8, v) > 1 > max (a, d, %) , (4.10)
where xg = ¢, — v/0 (see, e.g., the red curve for v = 100 in figure Bld). If ~/5 >
2¢., then the interfacial concentration distribution at the AM boundary is linear, ¢y =~
B/v(x — ¢.) + 1 at leading-order. When the surface advection overcomes Marangoni
effects, for B > ~, surfactants can accumulate at the downstream stagnation point. The
blue curve for v = 10 in figure [Bld demonstrates that cy ~ 0 throughout most of D;: the
large surfactant advective flux at the interface contracts the downstream boundary layer,
making the interface almost shear-free. In summary, stronger nonlinearity in the form of
stagnant cap profiles in the interfacial concentration can appear with increasing S near
the transition from region A to M. This results in a sharp decline in DRy towards zero,
which can be seen as the AM transition becomes less smooth, i.e. the vertical distance
between DRy = 0.5 and DRy = 0.05 contours decreases from figure [5(a) to (b) as the
surface advection increases from 8 = 10 to 8 = 100. However, we note that the location
of the transition is captured by the simple expression (49) when v/38 < 2¢,..

4.1.2. Flow field

Whenever there is partial drag reduction, 0 < DRy < 1, the surfactant has a
non-uniform concentration in D;p, reducing the streamwise velocity at the plastron
and generating a secondary flow in the bulk. To illustrate, videos of the leading-order
streamwise velocity ug, wall-normal velocity vy, transverse velocity w; and the streamwise
gradient of the surfactant distribution ¢y, are given in supplementary movie 1, evaluated
at a point in the parameter space where DRy =~ 0.5, shown by the star in figure[d(a). The
corresponding flow field is shown in figurelol Figurel6(a) shows ug at the centre of domain
D1, where z = 0. The streamwise velocity, built from the components shown in figure 2]
attains a maximum value at the channel centre, decaying towards either SHS (y = 0, 2) to
satisfy no-slip at the solid wall (=P, < z < ¢, and ¢, < z < P,), whilst allowing for slip
over the plastron (—¢, < z < ¢,). The slip velocity at Z reduces as one progresses through
D1, in accordance with the rise in ¢, for increasing x; see figure[6(c) and supplementary
movie 1. The associated secondary cross-channel velocity field (vy,w;) shown in figure
[6(b) (recall that the leading-order components are (vg,wo) = (0,0)) advects particles
from Z towards the centre of the channel (y = 1 and z = £P,). The absolute maximum
of v occurs above the centre of the plastron (z = 0), whereas the absolute maximum
of w; occurs above the transverse contact lines (z = £¢,). Supplementary movie 1 and
figurel6(d) show how vy and w;y grow in magnitude as one progresses through D along the
positive z-direction as the interface is immobilized. As mentioned in §3.2.T] the present
long-wave model does not capture rapid adjustments of the flow field near the contact
lines at x = +¢,, where domains D; and Dy meet.

4.2. Moderate exchange

We now turn our attention to the moderate-exchange problem (B.I)-(B.3), in which
the bulk and interfacial concentration fields decouple for v/e? ~ O(1, a, B, §). At the



Surfactant-contaminated superhydrophobic channels 25

(b)
1 --AD  —y=1 —y=100
—~=0.1—y=10--M
k __________——__—_’—‘—’_--f-==="
0.9 0.5 D,.D
: = =09 -
=g I s~
05 0 05 1 15
0.5 x
0.8 -0.5 0 0.5
(c) T
--ADp  —v=00l-—v=1
—10.7 — v =0.001 —v=0.1 - AD
—10.6
-10.5
-10.4
-0.3
0.2
0.1

0 05 0 05 1 1
0.94 z

-0.5 0 0.5

FIGURE 7. The leading-order drag reduction (DRp), bulk surfactant (co) and interfacial
surfactant distribution (/) in the moderate-exchange problem, foraa =1,8=1,§ =1, ¢ = 0.5,
e = 0.1, ¢, = 0.5 and P, = 0.5, computed using (BI)—(B3). (a) Contours of DRy, where
DRy = 0 exhibits a no-slip SHS and DRy = 1 exhibits a shear-free plastron. The Marangoni (M),
advection-diffusion (AD), Marangoni-exchange (Mg) and advection-diffusion-exchange (ADg)
regions are separated by black lines and DRy is approximated by (@1), (@7), (@II) and (£I5)
in the M, AD, Mg and ADg regions, respectively. The dashed magenta lines describing when
DRy =~ 0.5 are given by (@4} [A13]). Plots of Iy and ¢ for varying surfactant strength (y) and
exchange strength (v), where the asymptotic curves are: (b) v = 10, AD: —— ([@2]) with v = 100,
M: .-+ @3), (¢) v =0.03, ADg: —— ({I6), AD: --- @), (d) v =0.001, ADg: —— ([@I6), Mg:
- ([@I2) with v =10, and (e) v = 100, Mg: —— @I12), M: - - - (£2).

plastron, surfactant adsorbs onto the interface at the upstream end (¢o > I)) and
desorbs at the downstream end (I'y > ¢p), as regulated by the bulk—surface exchange
parameter v in (3.35). The moderate-exchange model does not take into account shear-
dispersion effects, however, we ensure that the bulk diffusion strength is larger than the
threshold identified in the strong-exchange problem (§£1.1), o >> €2, where cross-channel
concentration gradients first become significant.



26 S. D. Tomlinson and others

4.2.1. Drag reduction

Figure[[(a) shows how DR, varies with surface exchange strength (v) and surfactant
strength (v), fora =1, 8 = 1 and 6 = 1. Similar to the strong-exchange problem in §4.1.T]
the moderate-exchange governing equations (8.1)—(B.2)) simplify in different regions of the
parameter space, representing distinct physical balances. The analysis in the moderate-
exchange problem is simplified by the fact that for v/€2 > max(1, a, 3, §) the moderate-
exchange problem transitions to the strong-exchange problem, which is discussed in
detail in §L1.7] In the strong-exchange limit, v/e? > max(1, «, 3, §), we reach the AD
boundary and sub-region Mp identified in figure d(a). Accordingly, the regimes AD and
Mp are also identified in figure[Z(a) where bulk—surface exchange is strong. New regimes
Mg and ADg appear for weak exchange, v/e> < max(l, o, 3, 0), and are analysed
asymptotically in Appendix The four primary areas of the parameter space, namely
Mg, ADg, M and AD, are separated by black lines in figure[7(a). Corresponding surface
concentration distributions I'n(x) (where, unlike the strong-exchange problem, c¢g # I
in Dy) are illustrated in figure [[{b—e). The primary feature of figure [f{a) is that the
drag-reduction transition from large DRy to small DRy shifts only modestly, despite
the exchange strength v varying across many orders of magnitude, for reasons that we
explain below.

We begin our exploration of the parameter space in the moderate-exchange problem
(figure [@) with region Mg, where Marangoni effects are strong and surfactant exchange
between the bulk and interface is weak. In Appendix [D.I we show that DR remains
close to the immobilised value

DRy =~ 9 for ~> max(1, «, 8, 9), 12 < min(1, «, B, 9). (4.11)
ol €

Here, the immobilizing effects of surfactant are weakened by strong interfacial diffusion
(6/v < iDr¢, P,/ (AGH?)). The corresponding concentration fields ¢y and Iy are shown
in figure [7(d, e). The leading-order solution on Z in My is given by

Ip~1+ % for > max(1, a, 8, 9), 12 < min(1, «, 8, 9). (4.12)
€

The gradient of Iy in region Mg is controlled by the relative strength of surface advection
and Marangoni effects, §/v, which is sufficiently small to immobilise the liquid-gas
interface. Furthermore, there is very little adsorption and desorption at the interface and
the bulk and interfacial surfactant concentrations are close to their background values at
leading order (i.e. ¢ ~ 1 and Iy ~ 1). In contrast to (£2]) in M and the strong-exchange
problem of §4.1.1] where ¢ = Iy and Iy < 1 for all z, in Mg and the weak-exchange
problem, ¢y &~ 1 and Iy > 1 for > 0 (see, e.g., the dashed and blue curves in figure
[Te), in order to satisfy the net flux condition (2.26) at leading-order. Furthermore, ¢
has turning points for —¢, < = < ¢, where the adsorption—desorption fluxes attain a
local maximum and then decrease towards the contact lines, as shown by the green and
orange curves in the inset in figure [l d).

Region ME gives way to region Mp as the exchange strength increases. It is notable that
DRy = §/v (see ([4.11) is regulated mainly by surface diffusion in region Mg, whilst both
bulk and surface diffusion control DRy in region Mp, where DRy ~ o/ (y(1 — ¢5)) + 6/~
(see §4.1.1). This is due to the absence of the strong coupling between I and ¢g in region
Mg, which imposed Iy = ¢ in region Mp. In figure [[(a), we find that v = 10€? best
captures the centre of this transition (this can also be tested by varying €). As exchange
weakens and the bulk and interfacial surfactant move out of equilibrium, variations in Iy
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increase, thus making the interface more susceptible to Marangoni effects that increase
the drag.

Depending on the strength of diffusion (via the parameters « and §, which vary
orthogonally to the (v,v)-plane in figure [[a), the lower half of the (v, y)-plane is
composed of either a sub-region of A, D, or the transition region AD between A and
D. In figure [[{a), since & = § = 1, this corresponds to the transition region AD. In
contrast, in figure §(a) we plot DRy for « = § = 0.1 and @ = § = 10 in figure B(b).
The Mg region transitions into the diffusion-exchange-dominated (Dg) region across the
MEgDg boundary for min(«, 6) > O(1) (figure[§(b)), whereas the Mg, region transitions
into the advection-exchange-dominated (Ag) region across the MgAgp boundary for
max(a, 0) < O(1) (figure B(a)). At the MgDg boundary, the asymptotic analysis in
Appendix [D.2] shows that

L« (4.13)

DRy~ 0.5 when y=4 for min(a, 0)>1, =
€

which gives the leftmost dashed line in figure [8(b). This asymptote agrees with the
numerical solution presented in figure[8(b) for 6 > 1 and v — 0. The range of validity for
the asymptote given in ([4.13) is extended to 6 = O(1) to include the MgADg boundary,
for which we give partial justification in Appendix[D.3] At the MgAg, boundary, Appendix
[D.4] demonstrates that

B + 0 for max(a, §) < 1,
4 2
which gives the leftmost dashed line in figure 8(a). This asymptote approximates the
numerical solution presented in figure[§(a) where § = 0.1 as v — 0. Agreement improves
for smaller §. It is notable that the threshold (4.14) differs from the strong-exchange limit
(4.9) by a factor of 4.

We next analyse the drag reduction in both the Ag and Dg regions, where advection or
diffusion induce a near uniform distribution of surfactant at the interface. In Appendix
[D.5] we show that DRy in regions Ag and Dg is close to the shear-free value

Y« (4.14)

DRy~ 0.5 when ~= 5
€

DRy~ 1— % for v < min(1, «, 8, 9), 12 < min(1, a, B, 9). (4.15)
€

Equation (4.153) shows how drag-promoting Marangoni effects are weakened by strong
diffusion at the interface, when surfactant exchange between the bulk and interface
is weak. Figure [§l(¢, d) shows the surfactant profiles in Ag and Dg, the leading-order
solution on Z being given by

P ) G )
e (E) )

From (4.16), weak surface diffusion, § <« O(1), decreases (increases) Iy at the upstream
(downstream) end of the interface. A downstream boundary layer forms to satisfy the
mass balance condition (2.26]), condensing the Marangoni effect to a small region near
T = ¢,. The streamwise velocity flows over a almost shear-free boundary at the upstream
end of the interface. When surface diffusion is strong, § > O(1), (4.16]) reduces to

Bx
Ip=1+—
0 +6

for v < min(1, o, 8, 9), 12 < min(1, a, B, 6). (4.16)
€

for v < min(1, a, 8, 9), 12 < min(1, «, 8, 9). (4.17)
€

Noting that 8/6 o« H2U/(D;¢.P,), @I7) demonstrates how the gradient of I} is
controlled by the ratio of advection to diffusion at the interface, which allows surface
diffusion to regulate DRy in (&I5). In figure B(a, b), the horizontal boundary of the Mg
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FIGURE 8. The leading-order drag reduction (DRp), bulk surfactant (co) and interfacial
surfactant distribution (Ip) in the moderate-exchange problem, for 8 = 1, ¢, = 0.5, ¢ = 0.1,
¢- = 0.5 and P, = 0.5, computed using (BI)—B.3). Contours of DRy for (a) @ = = 0.1 and
(b) « = § = 10, where DRy = 0 exhibits a no-slip SHS and DRy = 1 exhibits a shear-free
plastron at the SHS. The Marangoni (M), advection (A), diffusion (D), Marangoni-exchange
(MEg), advection-exchange (Ag), diffusion-exchange (Dg) regions are separated by black lines

and DRy is approximated by (1), [@71), (£3), @II), (£I5) and (@I5) in M, A, D, Mg, Ag

and Dg, respectively. The dashed magenta lines describing when DRg = 0.5 are given by (44
in (a,b) (right curves), (£13) in (b) and (EI4) Sa). Plots of Iy and ¢y for varying surfactant
strength (), where (¢) «a =6 =0.1 and v = 10", Ag: —— (@I06), Mg: - - - ({12) with v = 10,
and (d) « = § = 10 and v = 0.01, Dg: —— @ID), Mg: - - - @I2) with v = 1000. The star
identifies the point of the (v, v)-plane where we examine the flow field in §4.2.21

region (shown with a black solid line) moves downwards when surface diffusion decreases
(6 = 0.1 in figure Bla) and upwards when it increases (§ = 10 in figureBb). Figure[8(c, d)
demonstrates how increasing surface diffusion attenuates gradients of surfactant at the
interface, increasing the drag reduction from sub-region Ag to Dg in figure8(a, b).

4.2.2. Flow field

Videos of ug, vy, wy and Iy, are given in supplementary movie 2. Again, we choose
an example in figure [3 for which DRy = 0.5, shown with a star in B(a). Figure [9(a)
shows that wo has a similar structure to the strong-exchange problem at z = 0 (see
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%107

FI1GURE 9. Contour maps of the flow field in the moderate-exchange problem, for « = 0.1, 8 = 1,
v=028=01v=10""% ¢, =05, ¢. = 0.5 and P, = 0.5, corresponding to 50% normalized
drag reduction given by the star in figure B(a). (a) Leading-order streamwise velocity uo and
(b) leading-order wall-normal velocity v1 with (v1, w1) streamlines at the centre of the plastron,
z = 0. (¢) Leading-order streamwise velocity uo and (d) leading-order transverse velocity w;
with (uo, w1) streamlines at the interfaces, y = 0 or 2. The thick black lines in (a—d) represent
the solid regions of the SHS.

figure [Gla). However, when comparing figure [9(¢) to figure [6l(c), uo exhibits different
behaviour along Z. The streamwise velocity decreases slowly at the upstream end of Z,
Iy, and Ij,, increase slowly with x, and there is a uniform distribution of surfactant
at the interface which is almost shear-free. The streamwise velocity decreases rapidly at
the centre of Z, where there is a sudden change of surfactant gradient at the interface.
The streamwise velocity then decreases at the downstream end of Z, where there is a
more linear distribution of surfactant at the interface which is almost no-slip. The cross-
channel flow in figure[d(b) closely resembles that observed in figure[6l ). In supplementary
movie 2 and figure [9(d), the magnitudes of both v; and w; increase until they attain a
maximum at the start of the low-slip region, after which, they decrease towards x = ¢,..
The streamwise location of the maximum of v; and w; is approximately the same as the
streamwise location of the maximum of I, on Z, the “corner” in the surfactant field.

4.3. Comparison with numerical simulations

Finally, we compare our model predictions with the numerical simulations detailed in
tables SI and SIT and figures S1 and S2 in [Temprano-Coleto et al! (2023), which were de-
signed to be representative of microchannel applications. They used finite-element simula-
tions to solve the steady 3D Stokes equations, which were coupled to advection—diffusion
equations for bulk and interfacial surfactant. The equation of state and adsorption-
desorption kinetics, which link the velocity field to the bulk and interfacial concentrations,
were derived from the nonlinear Frumkin isotherm (Chang & Franses 1995). The authors
considered a channel with only one SHS at the bottom wall (y = 0), so our theory in
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FIGURE 10. The drag reduction (DRp) and bulk surfactant distribution evaluated at the
SHS (co(x,0,0)), using the theory presented here and numerical simulations provided by

- (2023). (a) Contours of DRy, where DRy = 0 exhibits a no-slip SHS
and DRy = 1 exhibits a shear-free SHS, for § = 38.6, 6 = 1, v = 0.2, ¢ = 0.99, ¢. = 2/3 and
P, = 1. The Marangoni (M) and diffusion-dominated (D) regions are separated by the black
line (along which DRy = 0.5). The advection-dominated (A) region appears for o < 0.01 and
v < 100. (b) Plot of co, where o = 0.4, 8 = 38.6, vy = 1.2 x 10*, 6 = 1, v = 0.2, ¢, = 0.99,
¢. =2/3 and P, = 1 (corresponding to the stars in panel a and c¢), computed using (3:30) (red)
and (€.2) (dashed and black). (¢) Scatter plot of DRy using our theory ((8:38) and (BI)-([B3))
and the 159 numerical simulations detailed in |Temprano-Coleto et all (2023), the colorbar gives
the magnitude of € for given data point and the dashed line is where DRy = 0.5. (d) Same data
as in (c¢): scatter plot of DRg € [0.1, 1]. The colourbar gives the magnitude of « for given data
point and the black points have o > 1.5. The arrows indicate the region of parameter space for
a given data point: orange points are in region D, yellow points are in region A and blue points
are in region M.

§3 is adjusted accordlngly for a solid surface at the top wall (y = 2). This amounts to
reevaluating U, U and U, as well as modifying the surface surfactant flux term in (3.10])
to account for the contribution of a single interface at y = 0. Parameters are detailed in

table SI in (Temprano-Coleto et al! (2023).

In figure 10 a, b) we compare our model to a representative example from numerical

s1mu1at1ons performed 1n Temprano-Coleto et all (|2Q2_3 with parameters H = 6 x

10~° m, P, = 6 x 1075m and ¢. = 2/3, from which we can evaluate P, Q, Q, q
and ¢ using (B.18 B.19). Using (8.27) (appropriately adjusted for a single SHS), we can
calculate the transport coefficients: & = 0.4, 8 = 38.6, v = 1.2 x 104, § = 1, € = 0.02,

= 0.2 and ¢, = 0.99; with Pe = Pe; = 20.6, Da = 30.1, Ma = 1.2 x 10* and
Bi = 0.2, as in [Temprano-Coleto et all (2023). Note that Ma is defined differently to
Temprano-Coleto et all (|2Q2_3), the value provided here uses our definition of Ma. Figure
[[0(a) shows that the example lies within the Marangoni-dominated region M, where
DRy is close to zero and the liquid—-gas interface is immobilised. Using this information,
in figure [I0(b), we compare the numerically simulated bulk surfactant concentration
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co(2,0,0) from [Temprano-Coleto et all (2023) (blue solid curve) with our prediction for
¢o given by the solution to the 1D ODE model solving (8.30) subject to (3.3la, b) (red solid
line), and the (indistinguishable) asymptotic solution in M ([4.2) (black dashed line). The
gradient of ¢y at the centre of the plastron computed using our theory (deg/dx(0) ~ 0.19)
and the numerical simulation (d¢/dz(0, 0, 0) = 0.16) of [Temprano-Coleto et all (2023)
are similar, noting that our theoretical prediction does not require any fitting parameters.
However, the numerical simulation reveals thin boundary layers close to the upstream
and downstream contact lines. These boundary layers are not captured by our long-wave
theory. Within these inner regions, the 3D Stokes and surfactant transport equations
govern the flow and surfactant field near the no-flux stagnation points at the upstream
and downstream ends of the interface. This comparison suggests that the inner layers at
the upstream and downstream ends are not needed to estimate the leading-order drag
reduction in region M, but capturing the inner layers may be necessary for more accurate
predictions.

In figure[10) ¢), we compare the drag reduction results from all the 3D numerical simula-
tions of [Temprano-Coleto et al! (2023) with the leading-order drag reduction predictions
from our 1D model. These simulations span the whole parameter space characteristic of
realistic microchannel applications. In order to approximate the drag reduction from the
streamwise slip length results provided by [Temprano-Coleto et all (2023), we integrate
the streamwise velocity field when ¢, = 0 for the solid-walled and SHS flows. For the flow
over a single SHS, we replace the mixed boundary conditions at y = 0 with Acugy —uo = 0,
to find ug as a function of y and A\.. We then use DRy = (Apr — Apo)/(Apr — Apy) to
relate the leading-order drag reduction and streamwise slip length, DRy = 1—1/(2A.+1),
in a similar manner to [Landel et all (2020). There is no obvious correlation between the
scatter and the size of e (shown in colour), which varies up to € = 0.5 as highlighted
by the colorbar in figure [I0[c). The scatter could be due to unresolved cross-channel
concentration gradients or streamwise boundary layers at the ends of the plastron; both
hypotheses require further testing against targeted numerical simulations. Nonetheless,
our theory compares well with simulations for DRy > 0.1 in figure 10| d); the root-mean-
squared error between the simulated data from [Temprano-Coleto et all (2023) and our
theory is 0.07. The majority of the data points have DRy < 0.5 and lie in region M.
Those that have DRy > 0.5 are classified as belonging to region A when o« < 1 or D
when « > 1, as highlighted by the colorbar in figure [10{d). None of the simulations with
high drag reduction (DR > 0.5) had a bulk diffusion strength small enough to lie on the
boundary of region G (a = O(e?)), where cross-channel concentration gradients become
important and shear dispersion decreases the drag. Hence, the effect of shear dispersion
we have described cannot be investigated from the simulations of [ Temprano-Coleto et al.
(2023).

5. Discussion

The drag-reducing potential of superhydrophobic surfaces (SHSs) may be compro-
mised by trace amounts of surfactant (Peaudecerf et all2017). In this paper, we have
derived an asymptotic theory for 3D laminar flow, in a plane-periodic channel with SHSs
made of an array of long but finite-length longitudinal grooves along both walls, which
has been contaminated with soluble surfactant. The mass, momentum and surfactant
equations are solved in the Stokes flow limit, where the adsorption—desorption kinetics
and equation of state are linearised. We have investigated regimes where cross-channel
concentration gradients are small, developing a long-wave theory that accounts for a
rapidly equilibrating surfactant-driven transverse flow. This results in a 1D model (3.1)—
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Strong exchange % > max(1, a, 8, J)
€

Region Parameter space DRy Regime
2 2.
M 'y>>max<1,a,,8,6, i) l(a+6+2+m) DRy < 1
@ 5 @ (F-1)
€ @ 1
Mp v> (a, 6) > max (1, 8, — —_+ - DRy k1
@ Y1 —¢s) v
2 2
54 Pz (1 — ¢
Mg v> < > max(l, a, 8, §) € (5490 + 51 — ¢4)) DRy < 1
a va(l — ¢éa)
A ’ca<l, y<min(l, Qp—— 1- DRy < 1
€ @ v < min(1, B) 5o (A1) 0
D min(e, ) > max(1, v) 1- (1= ¢a)y 1- DRy < 1
(14 ¢aB)a+ (1= ¢2)d
Weak exchange 12 < min(1, a, 3, 9)
€
Region Parameter space DRy Regime
é

Mg ~v > max(1, a, B, 9) ; DRy < 1

Ag, Dg v < min(1, o, B, ) 1- % 1- DRy < 1

TABLE 1. Summary of the asymptotic predictions of the leading-order drag reduction
DRy in the main asymptotic regions analysed in the strong-exchange problem with: the
Marangoni-dominated region (M) with sub-regions Mp and Mg, the advection-dominated region
(A) and the diffusion-dominated region (D); and their analogues in the weak-exchange problem:
the Mg, Ag and Dg regions. The drag reduction DRy is expressed in terms of the transport
coefficients «, 83, 7, § and v given in (8.27) and (8:35) and constants (s1 > 0, s2, s3 and s4 > 0)
given in ([B29) where s = 51 + s2 + s3 and E = exp(2a(1 — ¢z)/(a? + €%54)).

- X « X l 7
Quantity " = 3 of 5
. ACLiH  ACLIDHP.  ACL4H®*  ACL4H*  ACL.H?
Proportional to —— —— ——= —— — =
ADP; aQ? AQPs ADP; AD1¢=P.

TABLE 2. Summary of the dimensionless ratios appearing in table[I] that affect the leading-order
drag reduction, and their dependence on the dimensional quantities characterising the flow and
surfactant properties and the geometry (outlined in §2J).

B.3) for surfactant transport, which incorporates advection, diffusion, Marangoni effects
and exchange between the bulk and the interface. No parameter fitting is required, in
contrast to the 3D theory outlined in [Temprano-Coleto et all (2023) and the 2D theory
in [Landel et al! (2020). Using this theory, we gain access to parts of the parameter space
that are unavailable using models that assume uniform shear stress at the interface
(Landel et all 2020), and we make asymptotic predictions for the drag reduction and
surfactant concentration distribution that complement expensive numerical simulations
of the 3D flow and surfactant equations (Temprano-Coleto et al. [2023).



Surfactant-contaminated superhydrophobic channels 33

We have investigated the leading-order drag reduction (DRy) across the parameter
space, varying the strength of surface advection (3), bulk («) and surface (§) diffusion,
Marangoni effects (y) and exchange between the bulk and the interface (), compared
to bulk advection. When exchange of surfactant is strong, the bulk and interfacial
concentration are in equilibrium at leading-order. We derived and solved a composite
equation (3.30)) that includes shear dispersion to qualitatively highlight where 3D effects
become important (region G in figure da). When exchange of surfactant is moderate, the
bulk and interfacial concentrations decouple. We have identified three primary regions
of the parameter space in both the strong- and moderate-exchange problems (figures [l
and [7). In the Marangoni-dominated (M) regime, the interface is immobilised and the
drag reduction vanishes to leading-order (low drag reduction regime, DRy < 1). The
interfacial surfactant distribution is linear with a shallow gradient. In the advection (A)
and diffusion-dominated (D) regimes, the interface is shear-free and the drag reduction is
unaffected by the surfactant at leading order (high drag reduction regime, 1 — DRy < 1).
The interfacial surfactant distribution can be non-uniform in A, near the AM boundary,
where we find both exponential and almost piecewise-linear stagnant cap profiles. To
clarify the underlying physics associated with these results, the dependence of the 3D
velocity field on surfactant transport at the bulk and interface has been determined in
both strong- and moderate-exchange limits (figures[6 and [9; supplementary movies 1 and
2).

Table [L summarises asymptotic approximations of the leading-order drag reduction
DRy in regions M, A and D, and the parts of the parameter space that describe them.
Starting in region M, where there is no drag reduction and the interface is immobilised, we
present approximations of the drag reduction when bulk diffusion (Mp), shear dispersion
(Mg) or surface diffusion (Mg) allow small surface mobilisation. The drag can be reduced
by strengthening diffusion across the DM boundary (when min(y/(a8), v/a) ~ O(1)),
strengthening shear dispersion across the GM boundary (when a7y/e? ~ O(1)) or by
reducing the surfactant strength relative to advection across the AM boundary (when
min(y/8, v) ~ O(1)). The quantity ~v/a, which affects DRy in regions M and D, is
identified in[Temprano-Coleto et all (2023) as the mobilisation length. The quantity /8,
which affects DRy in regions A, is identified in [Sundin & Bagheri (2022) to determine
whether the surfactant concentration is in the stagnant cap regime or not.

A number of dimensionless ratios appear in table [L that increase drag: v/a, avy/€?,
~v/B, v/(aB) and v/d. We give these ratios in terms of dimensional parameters in table
(2. All the ratios given in table 2 have the common factor ACLqg/p, where A is the
surface activity, C is the bulk concentration scale, Lg is the depletion length and f is the
dynamic viscosity. Here, C L4 measures the level of surfactant adsorbed on the plastron;
ACLy gives the corresponding surface tension reduction, making AC Ld /[t a velocity scale
generated by interfacial Marangoni effects. The factor P, D, where P, is the transverse
pitch and D is the bulk diffusivity, decreases the drag across the DM boundary but
increases the drag across the GM boundary; this reflects the smoothing effect of diffusion
at the DM boundary and shear dispersion at the GM boundary. When exchange is
weak, the surface diffusivity Dy instead decreases the drag across the DgMg boundary
(figure [8). The velocity flux Q decreases the drag across the AM and GM boundaries,
quadratically in the latter case (table 2). The approximations of the leading-order drag
reduction in table [2 can also be divided into those with a linear or quadratic dependence
on Lg. Recall from §2 that Lq / H is the normalised surfactant depletion length in §2
such that for Ld/ H < 1 surfactant is essentially insoluble, and for Lg / H > 1 nearly all
surfactant is adsorbed to the interface. Accordingly, bulk diffusion and shear dispersion
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reduce drag through parameters that are quadratic in f/d, requiring solubility for them
to be effective.

A number of assumptions have allowed the present model to be derived. When cross-
channel diffusion is weak or the long wave parameter € is not sufficiently small, the
system lies in region G (identified in §4]) where cross-channel concentration gradients
become comparable to streamwise variation. In region G, our 1D model breaks down and
the full 3D transport equations must be solved to resolve the flow and surfactant fields.
Furthermore, a host of higher-order physical effects associated with flows over SHSs may
alter surfactant transport, e.g, interface curvature and the gas subphase, that have been
neglected in our model but constitute important extensions (for a detailed discussion of
these and other effects, seelLee et al!|2016). Another application of SHSs is in the thermal
management of electronics, where streamwise and spanwise thermocapillary stresses arise
due to temperature gradients at the liquid—gas interface (as in considered in Kirk et all
2020). With minor modifications it is possible that the theory outlined herein could also
give insight into these diabatic flows.

To summarise, this paper highlights the range of physical balances that arise when
one considers the effect of soluble surfactant in laminar flows bounded by SHSs. In the
appropriate regimes, our results provide a comprehensive analytical framework that can
guide the design of surfactant-contaminated SHSs. Our simple closed-form theoretical
predictions of the drag reduction can help minimize drag in realistic 3D SHS microchan-
nels and other applications, where surfactant traces may be naturally present.
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Appendix A. Numerical methods
A.1. Transport equations

We solve the transport equations, (3.1 B.2] 3.30), subject to the boundary conditions,
B.3), using Chebyshev collocation. An in-depth discussion of the (N + 1) x (N + 1)
differentiation matrix, D, that forms the basis of Chebyshev collocation technique can
be found in [Trefethen (2000). Briefly, it allows us to approximate f¢ using D f, where
f = (f(0), ..., f(N))T is the solution vector on a grid defined by £(i) = cos(im/N) for
i=0,1, .., N. We map domains Dy, for z € [—¢s, ¢;], and Da, for x € [¢,, 2 — ¢,], to
a discrete space £(i) € [—1, 1] for ¢ =0, 1, ..., N. We solve the transport equations using
differentiation matrices and then map the numerical solution back to physical space.

The linearised transport equations can be solved analytically to obtain an initial guess
(see, e.g., Appendix and [D.5). We concatenate the solution in both domains as
co = (c0.1(0), ..., co.1(N), co,2(0), ..., co,2(N))T, where ¢y, ; = (co.i(0), ..., co i(N))T is
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the solution in D; for ¢ = 1, 2. The initial guess evolves to the nonlinear state by solving

Li(cg)eo 1(1: N —1)=1 where ¢ 1(0)=co 2(N), (Ala)
Ly(cg)co 2(1: N —1) =1 where ¢ 2(0) =co 1(N), (A1d)

where L; are discrete approximations to (830 B.Il B.2) in D; for i = 1, 2. We update
the solution via €i® = g + r(co — c'4) where r is a relaxation factor, until 7; =
[Li(c§e — €§'9)lloo /7 falls below a specified tolerance for i = 1, 2.

A.2. Leading-order flow field

Problems (B.I5 [B.I6) were solved by modifying the framework introduced in
Game et al. (2017). We consider the domain A, = {y € [0, 1]} x {z € [0, P.]},
constructing the rest of the solution using symmetry arguments. The domain is
decomposed into two parts, separated by z = ¢, where continuity of the variable and
its first derivative is enforced. The domains are transformed to facilitate Chebyshev
collocation discretisations and the PDEs are transformed to discrete space using
techniques outlined in [Trefethen (2000). The discontinuous boundary conditions at
z = ¢, BI8b—e)-(B.I6b—¢), introduce integrable stress singularities into the problem.
The leading-order contributions of these singularities are subtracted to produce less
singular problems. The unknown strengths of the singularities are determined by
imposing a regularity condition, as follows.

Introducing a local polar coordinate system centred at the contact line (r, 8) = ((z —
$.)? +y*)'/2, tan"(y, z — ¢.)) and assuming r < 1, BI85, B.I6la—¢) can be used to
evaluate the singular part of the solution (U®) via

S S
Uz, + % + Yo

5 = b, suchthat U®(r,0)=0, Ug(r, ) =d, (A2a—c)

where b are d are constants that can be chosen to construct (3.15 B.16). The solution
must remain bounded as » — 0 and (A2) can be solved to give

U* = BiU; + O(r*/?) = Bir'/? sin(6/2) + O(+*?), (A3)

where Bf is an singularity strength that must be evaluated as part of the solution. We
substitute U = B{U7 + U" into (8.15k, B.16la) where U" is the residual solution with the
singularity in (A3) removed, to get

BiVAiU; +ViU" =b. (A4)
The system is completed with a condition which requires regularity in first derivatives,
U7 (0, ¢,) is constant, (A5)

where this constant can be set to zero arbitrarily (Game et al! 2017). Equations (A4,
[AS) are combined into a matrix problem which determines the singularity strength as
part of the solution. The numerical convergence is improved significantly when compared
to a single-domain solution without singularity removal.

Appendix B. Strong exchange and moderate cross-channel diffusion
B.1. Derivation of shear dispersion terms

We assume here that Pe ™! = Pe; ' = Bi = O(€?) for e < 1 and rescale Pe ™! = 29271,
Pe;1 = ¢? 3”;1 and Bi = €24, such that cross-channel diffusion is weak and exchange is
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strong, with Da = O(1). This scaling is chosen so that we can investigate the transition
from weak to strong cross-diffusion problems, i.e. for moderate diffusion, where we first
deviate from a well-mixed bulk surfactant concentration. We substitute (8.4) into (2.18)—
([2.28) and take the O(1) system. In domains D; and Dy,

Vi-u0=0, Viug—Vpy=0, wuig-Vicy=0, (Bla—c)

on the interface Z,

n-Vug— Maly, =0, m-Vwy— Maly, =0, v9=0,
n-Veg— Da(cog — Ip) =0, (wolp), =0, (B2a—e)

on the interface contour 0Z,
woly =0 at z==¢,P,, (B3)

between domains D; and Dy we have (B.8)), on the ridge R and solid & we have (3.11]),
and at the ends of the transverse period we have ([B.12)). The total fluid flux is given by
B.9) and total surfactant flux is given by

P, 2 P,

= 2Da =
uocodydz—l——/ uglpdz =1, B4
. 57 o

and the drag reduction becomes (3.13).
Similar to §3.2.1) from (B1)—(B4), -39, (3B11)-B.12) and (B4), we have that

I'y = I'o(x) where Iy = co(x, 0, 2) = co(x, 2, 2), po = po(x), and v9g = wy = 0. The

streamwise velocity field is given by ug = Upow + MaUTp, in Dy and ug = Upogc in Ds,

where U, U and U are given by (B.18) (B.17). Substituting uo into ([3.9), we recover the

velocity flux constraints satisfying (3.25), where Q, Q, § and § are defined in (318, B.19).
We use the 0(62) bulk surfactant equation to determine cy. In Dy and Do,

3271V2LCQ —UgCoy — U1 - V 1cog=0. (B 5)

The third term in (BF) involves the first-order velocity components v; and w;. However,
we will shortly assume that cross-channel gradients are small, which means that v; and
wy are not required to evaluate cg.

Decomposing the bulk surfactant field into a cross-channel average and residual com-
ponent, we write

CO(x7 Y, Z) = <Co>($) + 06(95, Y, Z)7 (B 6)
where (c¢{;) = 0. We can then evaluate the shear-dispersion contributions
(Ueo) = Qleo) + (Uch), (Uco) = Qfeo) +{Uch), (Ueo) = Qleo) + (Uch). (BTac)
Substituting (B7) into (B4) and using (3.14)), the surfactant flux constraints become

( 2Da
BP

qly + Q<Co> + 4PZ<0C/O>> Doz

2D _ _
+ <%;qfo + Q{co) + 4PZ<U06>) Malp, =1 in Dy, (B8a)

(Qlco) +4P.(Uch)) poa =1 in Dy (BSH)

In this approach, we are not accounting for variations in I'y driven by ¢f. This will bring
a level of refinement that we will address elsewhere.

Substituting (BE) into (BH, B2d, B11ld, B.12d) and assuming |cj] < (co), i.e. the
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magnitude of the cross-channel concentration gradients is small, we have

P7IV2 ¢l = up(co)z, subject to DTe(0, z5) =0, oy (0, 2ns) =0,
D7cy(2, 25) =0, o, (2, 2ns) =0, ¢ (y, =1) =0, ¢4, (y,1)=0 in Dy, (B9ay)
where D* = +0y — Da and

PV ¢ = uolco)es subject to ¢, (0, 2) =0, ¢4, (2, 2) =0,
co.(y, =1) =0, ¢{.(y,1)=0 in Dy. (BlOa—e)
Using superposition, we may then write
¢y = PCpoz(co)e+ P MaCTlop(co)e in Dy, ¢y =PCposlco)s in Dy. (Blla,b)

Substituting (B11) into (B9 [B10), in order to obtain ¢} we require the solution to
the following three boundary-value problems: shear dispersion due to flow driven by a
pressure gradient over the plastron,

V2C =U, subjectto DYC(0, z,) =0, C’y(O, Zns) = 0,

'D_C'(Q, Zs) =0, Cy(27 Zns) = 0, Cz(ya -1)=0, Cz(yv 1) =0; (B 12a-g)

shear dispersion due to flow driven by surface shear,

V3C =U, subjectto DTC(0, z5) =0, Cy(0, z,5) =0,
D_é(2a Zs) =0, C’y(Qa Zns) =0, Oz(ya 71) =0, C’z(ya 1) = 0; (B 13‘179)
and dispersion due to the flow in D,
2
Cyy =U, subject to C,(0) =0, / Cdy = 0. (B1l4a—c)
y=0
The solutions to (BI12[B13) are found numerically, following the procedure described in
Appendix [Al Equation (BI4) can be integrated directly to give C = 1/5 —y3/6 + y*/24.
The shear dispersion contributions become

(Uch) = 2{UC)pos(co)s + 2(UC) Maleo)3,
(Uch) = 2(0C)pos(co)s + P(UC)Maleo)s, (Ucp) = P{UC)pos{co)s. (B15ac)

Substituting (BI5) into (BY) with po, from (B.25a) in Dy and (3.25k) in Ds, yields
the steady integrated surfactant transport equations and boundary conditions (B.3la, B.3b,
[B.28), with (cg) replaced by ¢y and the coefficients s1, s2, s3 and s4 defined by (8.29).
The coefficients s1, s3 and s3 are plotted as functions of ¢, and Da in figure [11} the
coefficient s, = 3/35 for all ¢, and Da, where P, = 1.

B.2. Validity of the shear dispersion approzimation

When bulk diffusion is not sufficiently strong, concentration gradients normal to the
SHS become comparable to the streamwise variation, the long-wave theory outlined in
§3 breaks down, and 3D numerical simulation of the governing equations is required in
order to resolve the coupled flow and surfactant fields. Here, we compare the size of
the cross-channel-averaged surfactant concentration (cp) to the cross-channel variation
¢y, introduced in Appendix [BI] assuming that gradients normal to the SHS become
important when ¢ = O((co)). This analysis gives an approximate boundary for the
range of validity of our model.
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FIGURE 11. Plots of (a) s1 defined in [329a), (b) sz defined in (3:229b) and (c) s3 defined in
(329k), the coefficients multiplying the shear dispersion terms in the moderate cross-channel
diffusion and strong-exchange problem, for varying ¢, and Da with P, = 1.

We assume throughout this section that 5 = O(1) (the expressions for § < 1and 8 > 1
can be derived using similar arguments as discussed below). To calculate the boundary

between regions M and G, expand the cross-channel-averaged surfactant concentration
as follows (see Appendix [C.])

ﬁ(x7¢AE+U

62)
(co) =1+ ; E-1) ) + ..., for = > max (1, a, 6, =) (B16)

Substituting (B16) into (B1I), using por = 1/Q — MaQl,/Q from (B.25a) and noting
that Iy, = (co)x = O(1/7) in the strong-exchange regime, we find that ¢, = O(Z /7))
because Ma = O(7). As & = O(e?/a), we have ¢, = O(€?/(a)), so that ¢, = O({co)) =
O(1) when v = O (€?/c) in region M. Hence, v = O (¢?/r) defines the boundary of
validity of region M near the region G, where shear dispersion terms become important

(see figure [4)).
Similarly, to calculate the boundary between regions A and G, expand as follows (see

Appendix [CH):

1 1 T — Qg
O

CB+1 7 (B
for € <a<1, y<min(l,j3). (B17)

ceey

Substituting (B1Z) into (BIL) and using po, = 1/Q — MaQI,/Q, we find that ¢ =
O(2). As P = O(e? /a), we have that ¢, = O({co)) when o = O(€?) in region A.

Appendix C. Asymptotic solutions for strong exchange
C.1. Strong Marangoni effect: region M

Assuming that 3 = O(1) and v > max(1, «, 6, €2/a), but retaining the effects of
diffusion and shear dispersion, we expand the concentration field from §3.2] using ¢y =
coo + o1/ + coz/¥* + ... in (B3, B3k, B.30). At O(y?), we have

6284

3 . .
Coox — 0 in Dl, Coo — Coox — TCQOx =1 in Dg,

subject to  coo(¢y ) = coo(d),  coo(—dz) = coo(2 — ¢z). (Cla—d)
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The system in (C1]) requires coo = 1 in D; U Dy. At O(1) and O(v), we have

6254

co1z = in Di, co1— acory — —, Cota = 0 in Do,

subject to  co1(¢, ) = 001(¢j), co1(—¢z) = co1(2 — ¢z). (C2a—d)

We can integrate (C2)) to show that co; = B(z — ¢(E + 1)/(E — 1)) in Dy, where
E = exp(2a(l — ¢)/(a? + €2s4)), giving [£2). At O(y~1), we have that

€? s 5 .
co2e = (B+1)co1 — co1co1z — (0 +0)core — - (510011- + %C%m + ﬂ—zcglz) in Dy. (C3)
From (C2) and (C3)) we can compute the concentration increase over Dj,
20, 20,
Aco = ¢ poe g“ﬁ B) (s — = 68) — s+ (a(ds + a+0) + €25)E), (C4)

where s = 1+ $2+ s3 > 0, which is substituted into ([8.38)) to give (4.1]). The corrections
to cg =~ cpo = 1 and DRy = 0 are small provided v > max(1, «, §, €2/a), defining the
boundaries of the asymptotic region M.

C.2. Strong Marangoni effect and strong shear dispersion: the GM boundary

At the GM boundary, assume that 3 = O(1) and v > 1. Rescale €2/a = 7/a where
a = O(1). Expand the concentration field from §3.2] using ¢y = coo + co1 /v + ... in B.3la,
[B.3b, B.30). At O(+?), shear dispersion dominates with

Chox =0 i Dy, coor =0 in Dy, (C5a,b)

subject to (CI)(c, d). In order to calculate coy we must proceed to the next order. At
O(1)-O(~?), Marangoni effects and advection enter

1 S S .
(B + 1)coo — coocorz — p (SICOI;C + 526311. + ﬁ—";cgu) =1 in Dy,

€00 — %400195 =0 in D,, (Cé6a,bd)

subject to (C2)(c, d). As co1x = B in M (see Appendix [C1), we expect sacd;,/(afB) ~
saco12/a and s3cdy,/(af?) ~ s3co1./a as we approach the GM boundary, such that we
instead solve the linearised problem

s . s .
(B4 1)coo — coocore + JColz 1 in D1, coo— fcom =1 in Dy. (CTa,b)

Integrating (C7T) over the period gives cop as the solution to

(coo = 1)(¢z — 1)(5 — acoo) = 5402 (1 — coo(B + 1)). (C8)

By solving (C8)), we can then integrate (CZa) in D to find Acg, which is substituted
into (B.38) to give (3.

C.3. Strong diffusion and strong Marangoni effect: the DM boundary

At the DM boundary, assume that § = O(1) and v > 1. Rescale @ = ay and 0 = dvy
where a ~ d ~ O(1). Expand the concentration field using ¢y = cop + co1/7 + ... in (B3,
B.3b, B.30). At O(v), Marangoni effects, diffusion and shear dispersion dominate with

2 b
— C00CO0z — (a + d)COOaz — %6(3)01 =0 in Dy, coz=0 in Do, (C 9a, b)
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subject to (CI))(¢, d). Hence, cgor = 0 in both D; and Ds. In order to calculate cog we
must proceed to the next order. At O(1), the advection terms enter

(B +1)coo — cooco1z — (a+d)core =1 in D1, coo —acore =1 in Dy, (C10a,b)
subject to (C2)(c, d). Integrating (CI0) over D; gives coo as the solution to
(COO — 1)(¢1 — 1)(a +d—+coo) = aqu(coo(ﬁ +1)— 1). (C 11)

By solving (C11J), we can then integrate (C10a) in D; to find Acy, which is substituted
into (B.38) to give (&.4).

C.4. Strong diffusion: region D
Assume that f = O(1) and min(a, ) > max(1, 7). Let § = do, where d = O(1).
Expand the concentration field from §3.21using ¢y = coo + co1/a+ ... in B3, B.3b, B.30).
At O(«), diffusion dominates with

Coox — 0 in Dl, Coox — 0 in DQ, (C 120,, b)

subject to (Clle, d). In order to calculate coo we must proceed to the next order. At O(1),
advection enters

(ﬂ —+ 1)600 — (1 + d)C()lz =1 in Dl, Coo — Co1z = 1 in DQ, (C 13(1, b)

subject to (C2e, d). Integrating (C13) over Dy U Dy and imposing periodicity,
co1z(—¢z) = c01(2 — @), coo is given in (AG). Using cp1,, we can obtain the jump
in ¢g over Dy,

(1 - ¢1)(O‘ + 5) + ¢1a(6 + 1)’
which is substituted into ([B.38)) to give (4.5]). The corrections to ¢ = cpp and DRy = 1
are small provided min(a, §) > max(1, v, ), defining the boundaries of the asymptotic
region D.

ACO ~ %6011 = (C 14)

C.5. Weak Marangoni effect: region A

Assume that § = O(1) and v < 1. Expand the concentration field from §3.2] using
¢o = coo+7yco1+ ... in B.3la, B.3b,3.30). At O(1), advection, diffusion and shear dispersion
dominate with

2 2
(ﬂ+1)0007 (Oé +6+ %) cooz = 1in Dy, coo — (a + %) cooz = 1 in Do, (C 15a, b)

subject to (CI)(c, d). Assuming €2 < a < 1, we integrate (C15) to get (48). In either
case, we have that

Acg (C16)

B+1
which is substituted into (3.38)) to give (47). The corrections to cp = coo and DRy = 1 are
small provided €2 <« o < 1 and v < 1, defining the boundaries of the asymptotic region
A. Note that (CIH) is linear and has a general solution that can be used to determine the
AD boundary. However, as this does not change the drag reduction to leading-order (the
interface remains shear free for v < min(1, 8)), we do not investigate this limit here.

C.6. Strong advection and strong Marangoni effect: the AM boundary

Assume that 8 = O(v), v > max(q, 6, €2/a) and €2 < a < 1. Rescale a = a/7,
B ="0by,d =d/yand €2/a = e/ where a, b, d and e are positive O(1) constants. Expand
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the concentration field from §3.20 using ¢y = coo + co1/7v + .. in (B.3la, B.3b, B.30). At
O(7), Marangoni effects and advection dominate with

Coo(b - COOz) =0 in Dl, Coo — 1 in DQ, (C 17(1, b)

subject to (CTl, d). The system in (CI7) gives a linear profile cog = B(z — ¢,)/v+ 1 for
v/B > 2¢, in Dy, such that ¢op > 0 for all & € [—ds, ¢z]. For v/8 > 2¢,, we find that
Acy = 2¢,0/~v and DRy = 0 at leading-order, hence we proceed to O(1) where we find

that Aco = 20,8/ + 2¢./v + In(1 — 28, /7)/B provided 1 — 2¢,.8/v > exp (—3). For
v/B < 2¢, a piecewise-linear solution exists with coo = 0 for all —¢, < = < ¢ — v/8
and cop = B(x — @) /v + 1 for all ¢, — /8 < = < ¢,. This nonlinear profile typically
represents the emergence of the stagnant cap profile (He et al.[1991), where surfactant
is swept to the downstream end of the plastron where it gives rise to a strong gradient.
For v/8 < 2¢,, we find that Acg = 1, which is substituted into (8.38)) to give (4.9).

Appendix D. Asymptotic solutions for weak exchange
D.1. Strong Marangoni effect: region Mg
Assume that 8 = O(1), v > max(1, o, §) and v/e? < min(1, a, §). Rescale v/e? =
n/+ where n = O(1). Expand the concentration field from §3.3lusing I'y = I'no + Lo1/7+

To2/7? + ... and ¢y = coo + co1/7 + ... into BI)-B3). At O(y), Marangoni effects,
advection and diffusion dominate with

(coo — acooz)z =0, Tooloox =0 in Dy, coo — cpor =1 in Do,
subject to  coo(¢; ) = coo(@7),  coo(—0z) = coo(2 — ¢a),
coo(£¢z) — acoon(£02) =1,  Too(£¢z)l00x(£¢z) =0. (Dla—g)

The system in (D) requires Iy constant on Z. At O(1), surface advection enters

(co1 —aco1z)s =0, B—TITpz=0 in Dy, co1 —acpiz =0 in Dy,
subject to  co1(¢;) = co1(@7),  cor(—0z) = co1(2 — ¢a),
Col(iqf)x) — QCo1x (iqf)a) = O7 ﬁ — Fle(i¢x) =0. (D 2a7g)

We can integrate (D2) to show that Iy = Sz + C; on Z, using the net flux condition
sz’”_(ﬁ (I'vy — co1) dz = 0 from (2.26) to find C; = 0, which gives (£.12). At O(y~ 1), we
have

To2e = BIo1 — 1011012 — 01010 + o1 — aco1 on . (D3)

Integrating (D2, [D3) on Z, altogether we have that Ay = 2¢,.3/v — 2¢.36 /72, which
is substituted into (8.38) to give (4.12). The corrections to Iy = I[yo = 1 and DRy =0
are small provided v > max(1, o, §) and v/e? < min(1, a, §), defining the boundaries
of the asymptotic region Mg.

D.2. Strong Marangoni effect and strong diffusion: the MgDg boundary

At the MgDg boundary, assume that § = O(1) and v > 1. Rescale a = avy, § = dy
and v/e? = n/vy where a, d and n are positive O(1) constants. Expand the concentration
field from §3.3 using I'y = Iyo + Lo1/7 + .- and ¢y = oo + co1 /7. into BI)-([B.3). At
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O(7), Marangoni effects and diffusion dominate with

cooze = 0,  acoox + L0l 00x +dloos =0 in Dy, cpoz =0 in Do,
subject to  coo(¢; ) = coo(@7),  coo(—0z) = coo(2 — ¢a),
co0z(E£0z) =0,  Too(E£de)l00x(E£ds) + dlo0x(£¢z) =0. (D4a—g)

The system in (D4) requires Iyp and cop are constant. At O(1), advection appears with

cotex = 0, coo — acorz + Bloo — (Too +d)lo1z =1 in D1, coix =0 in Dy,
subject to  co1(¢, ) = cor(d5),  cor(—da) = co1(2 — da),
coo — acore(£9z) =1, Bloo — (Lo + d)1o12(£¢2) =0. (Dba—g)
The system in (DF) requires that coo = 1 and Ip1, = (8100)/(d+100). Using information

at O(1/7v), we can show that I'yo = 1. We can then evaluate Ay = 2¢,6/(y(d+ 1)) and
substitute it into (3.38) to find DRy ~ 0.5 when v = 4, as in (£.13).

D.3. Strong Marangoni effect, advection and diffusion: the MgADg boundary

At the MgADg boundary, assume that 3 = O(1) and v/e> < 1. Expand the
concentration field from §3.3 using Iy = Iyo + 62F01/V +...and ¢g = cgo + 62001/1/... into
BI)-@B.3). At O(1), advection, diffusion and Marangoni effects dominate with

(coo — acooz )z =0, BIoo —vLo0l 00z — 6100z =0 in Dy,
coo — acoor =1 in Dy, subject to coo(9, ) = coo(PF),
coo(—¢z) = co0(2 — ¢2), coo(£dz) — acooe(£de) = 1,
BlLoo(£¢z) — v o0(Edx) [00x(£¢z) — 0 00x(E£¢z) =0. (D6a—g)

We can integrate (D6) directly over Z using the no-net-flux condition ffz’"_ s, Toodz =
2¢, as cop = 1 to derive

2¢:8 — 7Aoo (Ioo(—¢z) + Too(dz))/2 = 6 Alo. (D7)

From (D7) we can evaluate Al and substitute it into (3.38) to get
DRy — 1) + ’Y((FOO(ffvbz) + F00(¢z))/2 B 1)
’ 0 +v(Too(=¢=) + Too(¢2))/2

As long as (I'oo(—¢z) + Too(¢z))/2 ~ 1 (as in figure[Td), then DRy ~ 1 —~/(6 + ) and
DRy = 0.5 when v = §. Note that we recover (AII) for v > § in Mg and (£.15]) for
7L 6 in AE, Dg and ADE

(D8)

D.4. Strong Marangoni effect and strong advection: the MgAg boundary

At the MgpAg boundary, assume that 8 = O(1) and o < 1. Rescale, § = da and
v/€? = na where d and n are O(1) constants. Expand the concentration field from §3.3]
using Iy = Ipo + alpy + ... and cg = cop + acpy ... into BI)-B3). At O(1), advection
and Marangoni effects dominate with

cooz =0, Bloo —7vlo0loo =0 in D1, copo=1 in Dy,
subject to  coo(¢, ) = coo(¢7),  coo(—¢z) = coo(2 — ¢u),
coo(£¢z) =1, Bloo(£oz) — vIoo(£0z)l002(£Pz) =0. (D9a—g)
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The system in (D9) requires Iyo = 0 for —¢, < z < z9 and Iy = Bz — 30)/y
for zg < = < ¢, for v < B¢é,. This nonlinear profile typically denotes the presence
of the stagnant cap profile (He et al. 1991). The constant zo = ¢, — 2(¢.7y/B)"/? is

evaluated by the no-net-flux condition sz”"_ b Too dz = 2¢, as coo = 1. We then evaluate

ATy = 2(¢./7)"/? and substitute it into B.38) to find DRy ~ 0.5 when v = 3¢, /4, as
in

To extend the region of validity of the above solution, we retain the surface diffusion
term at leading-order, such that cog = 1 in D1 U Dy but now (]]Eb, g) become

BLoo — 710000z — 6100 =0 in Dy,
subject to ﬂpoo(ﬂ:(,bm) — "}/Foo(ﬂ:d)m)[bom (:l:gf)m) — 5F00m(:|:(725m) = 0 (D 10a7b)

We can integrate (D10) term by term, using sz””_(b TI'yo dz = 2¢), and the fact that weak
surface diffusion makes I'yo(—¢,) exponentially small (recall that I'np(—¢,) = 0 when
there was no surface diffusion), to calculate Aly, substitute this into (3.38)) to get

DRy =1+ =2 ( gl +( 0 >2>1/2. (D11)

208 \P=B  \20:f3

We therefore have that DRy = 0.5 when v = 8¢, /4 4+ /2, as in (414); we have now
evaluated the leading and first-order correction in the limit where Marangoni effects are
strong and diffusion is weak.

D.5. Weak Marangoni effect: region Ag
Assume that 3 = O(1), v < min(1, «, §) and v/€e? < min(1, a, J). Rescale v/e? = ny
where n = O(1). Expand the concentration field from §3.3| using I'y = I'yo + vLo1 + ---
and ¢p = coo + Y1 + ... into BI)-B.3). At O(1),

(co0 — acooz)z =0, BIoo — 0L0os + oo — acoor =1 in Dy,
Coo — Cooxr = 1 in DQ, subject to Coo((;%_) = Coo(gf):), COO(*QSz) = 600(2 — gf)m),
coo(E£¢z) — acoozn(Edz) =1, Bloo(Eos) — 0l00e(£¢ds) =0. (D12a-g)

Integrating (D12)) on Z and making use of the no net-flux condition, f(,i”_(j) Ty dx = 2¢,,

we obtain (4.16). Therefore, ATy = 2[¢/J, which is substituted into ([8.38) to give (4.15).
The corrections to Iy = Iho and DRy = 1 are small provided v <« min(1, «, d) and
v/€? < min(1, a, §), defining the boundaries of the asymptotic region Ag and Dg.
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