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We establish an equivalence between a family of adversarial training problems for non-parametric
binary classification and a family of regularized risk minimization problems where the regularizer is a
nonlocal perimeter functional. The resulting regularized risk minimization problems admit exact convex
relaxations of the type L1 + (nonlocal) TV, a form frequently studied in image analysis and graph-
based learning. A rich geometric structure is revealed by this reformulation which in turn allows us to
establish a series of properties of optimal solutions of the original problem, including the existence of
minimal and maximal solutions (interpreted in a suitable sense) and the existence of regular solutions (also
interpreted in a suitable sense). In addition, we highlight how the connection between adversarial training
and perimeter minimization problems provides a novel, directly interpretable, statistical motivation for a
family of regularized risk minimization problems involving perimeter/total variation. The majority of our
theoretical results are independent of the distance used to define adversarial attacks.

Keywords: adversarial training; nonlocal perimeter; nonlocal total variation; existence of solutions;
regularity.

1. Introduction

In this paper, we investigate the connection between adversarial training and regularized risk mini-
mization in the context of non-parametric binary classification. Adversarial training problems, in their
distributionally robust optimization (DRO) version, can be written mathematically as min-max problems
of the form

inf
θ∈Θ

sup
µ̃ : G(µ,µ̃)≤ε

J(µ̃, θ), (1.1)

where in general θ denotes the parameters of a statistical model (the parameters of a neural network, a
binary classifier, the parameters of a linear statistical model, etc.), and µ denotes a data distribution
to be fit by the model. To fully specify a DRO problem, one also needs to introduce a notion of
‘distance’ G between data distributions that is employed to define a region of uncertainty around the
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922 L. BUNGERT ET AL.

original data distribution µ and that can be interpreted as the possible set of actions of an adversary who
may perturb µ. The value of ε ≥ 0 describes the ‘power’ of the adversary and is often referred to as
adversarial budget. The function J(µ̃, θ) is a risk relative to a data distribution µ̃ and some loss function
underlying the statistical model. Problem (1.1) is a transparent mathematical way to explicitly enforce
the robustness of models to data perturbations (at least of a certain type). Although the origins of this
type of problem are now classical [60], recent influential research [32] has shown that neural networks
can be greatly improved by using the DRO framework, and as a result, a renewed interest in this class
of problems has been generated, see, e.g. the monograph [22] and the paper [42]. In the context of
the binary classification problem described in detail throughout this paper, the works [44] and [55] have
explored the game theoretic interpretation of (1.1) and the existence of Nash equilibria in parametric and
non-parametric settings, respectively. Other very recent works, e.g. [3, 36, 50, 59], have expanded our
theoretical understanding about adversarial training problems, providing results on existence of robust
classifiers and reformulating adversarial training problems in new ways that are amenable to further
analysis and alternative computation schemes.

By regularization, on the other hand, we mean an optimization problem of the form

inf
θ∈Θ

Ĵ(µ, θ) + λ R(θ), (1.2)

where Ĵ(µ, θ) is a risk functional that here is taken with respect to the single data distribution µ, R is
the regularization functional and λ > 0 is a positive parameter describing the strength of regularization.
Regularization problems are fundamental in inverse problems [5, 56], image analysis [12, 16], statistics
[57] and machine learning [35]; the previous list of references is of course non-exhaustive. In contrast to
problem (1.1), the effect of explicit regularization on the robustness of models is less direct, but this is
compensated by a richer structure that can be used to study the theoretical properties of their solutions
more directly.

The connections between adversarial training and regularization have been intensely explored in
recent years in the context of classical parametric learning settings; see [7, 8, 22] and references within.
For example, when θ ∈ Θ = Rd represents the parameters of a linear regression model and the loss
function for the model is the squared loss, the following identity holds:

min
θ∈Θ

max
Gp(µ,µ̃)≤ε

E(x,y)∼µ̃

[
(y − 〈θ , x〉)2

]
= min

θ∈Θ

{√
E(x,y)∼µ

[
(y − 〈θ , x〉)2

]
+ √

ε |θ |q
}2

, (1.3)

where Gp is an optimal transport distance of the form

Gp(µ, µ̃) := min
π∈Γ (µ,µ̃)

∫∫

Rd+1×Rd+1
cp((x, y), (x̃, ỹ)) dπ((x, y), (x̃, ỹ).

The cost function cp is defined by

cp
(
(x, y), (x̃, ỹ)

)
:=

{
|x − x̃|p if y = ỹ,
+∞ if y += ỹ,

where | · |p is the 'p norm in Rd for p satisfying 1
p + 1

q = 1. In the definition of Gp(µ, µ̃), the set
Γ (µ, µ̃) represents the set of transportation plans (a.k.a. couplings) between µ and µ̃, namely, the
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THE GEOMETRY OF ADVERSARIAL TRAINING 923

set of probability measures on Rd+1 × Rd+1 with marginals given by µ and µ̃. Notice that equation
(1.3) reveals a direct equivalence between a family of DRO problems (1.1) and a family of regularized
risk minimization problems (1.2) which includes the popular squared-root Lasso model from [4]. In
particular, in this setting, | · |q becomes the regularization term R, the risk functional is Ĵ =

√
J,

where J is the mean squared error, and λ = √
ε. Through an equivalence such as (1.3), it is possible

to motivate new ways of calibrating regularization parameters in models with a convex loss function
(where first-order optimality conditions guarantee global optimality) as has been done in [8]. Beyond
linear regression, the equivalence between adversarial training and regularization problems has also
been studied in parametric binary classification settings such as logistic regression and SVMs (see [8]),
as well as in distributionally robust grouped variable selection, and distributionally robust multi-output
learning (see [22]).

In more general learning settings, it is often unknown whether there is a direct equivalence between
(1.1) and a problem of the form (1.2) that is somewhat tractable both from a computational perspective
as well as from a theoretical one. In such cases, an illuminating strategy that can be followed in order
to gain insights into the regularization counterpart of (1.1) is to analyze the max part of the problem
for small ε and identify its leading order behavior to construct approximating regularization terms. This
is a strategy that has been followed in many works that study the robust training of neural networks,
e.g. [11, 25–27, 41, 45, 51, 53, 62]. The structure of the resulting approximate regularization problems
can be exploited to motivate algorithms and provide a better theoretical understanding of the process of
training robust deep learning models (see [27]).

Having discussed some of the literature exploring the connection between adversarial training and
regularization, we move on to discussing, first in simple terms, the content of this work. Through
our theoretical results, this paper continues the investigation started in [59], this time providing a
deeper structural connection between adversarial training in the non-parametric binary classification
setting and regularized risk minimization problems. In particular, we show that the equivalence between
adversarial training and regularized risk minimization problems goes beyond the aforementioned
parametric settings without relying on approximations. Here, θ is substituted with A which from now
on will be interpreted as an arbitrary (measurable) subset of the data space X (i.e. A specifies a binary
classifier), while J is the risk associated to the 0-1 loss; the other elements in problem (1.1) will be
specified in more detail in Section 1.1. We show that perimeter functionals penalizing the ‘boundary’
of a set arise naturally as regularizers for binary classification problems regardless of the feature space
or distance used to define the adversarial budget. This provides a more direct means of studying the
evolution and regularity properties of minimizers of the adversarial problem than the ones that were
implied by the evolution equations studied in [59]. This approach also provides tangible prospects for the
design of new algorithms for the training of robust classifiers and suggests which algorithms are more
suitable for enforcing robustness relative to specific adversary’s actions. Finally, through the connection
between adversarial training and regularization, we will deduce a variety of theoretical properties of
robust classifiers, including the existence of ‘regular’ solutions, where regularity is understood in a
suitable technical sense. Regularity results like the ones we obtain in Theorem 3.25 are, to the best of
our knowledge, the first of their kind in the context of adversarial training.

In summary, our work reveals a rich geometric structure of adversarial training problems which
is conceptually appealing and that at the same time opens up new avenues for the theoretical study
of adversarial training for general binary classification models. In the next subsections, we provide a
more detailed discussion of our theoretical results and some of its conceptual consequences right after
introducing the specific mathematical setup that we follow throughout the paper.
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924 L. BUNGERT ET AL.

1.1 Setup

Let (X ,d) be a separable metric space representing the space of features of data points, and let B(X )

be its associated Borel σ -algebra. In most applications, X is a finite dimensional vector space, e.g. Rd

for some d ∈ N, and later, we will assume a certain, essentially finite dimensional, structure for some
of our statements. We are given a probability measure µ ∈ P(X × {0, 1}) describing the distribution
of training pairs (x, y) ∈ X × {0, 1}. Letting π1 : X × {0, 1}, (x, y) ,→ x be the projection onto the
first factor of X × {0, 1}, the first marginal of µ is denoted by ρ := π1*µ ∈ P(X ) and represents the
distribution of input data. Here, π1*µ denotes the push-forward measure, whose definition we give in
Appendix A. We decompose the data distribution as ρ = w0ρ0 + w1ρ1, where wi = µ(X × {i}) and
ρi ∈ P(X ) denote the conditional distributions

ρi(A) := µ (A × {i})
wi

, i ∈ {0, 1}, A ∈ B(X ). (1.4)

Throughout this paper, we make the assumption that all measures are Radon measures on X . In the
following example, we lay out two canonical situations which are highly relevant in machine learning.

Example 1.1. (Absolutely continuous and empirical data distribution). We let X = Rd, equipped with
an arbitrary 'p-metric for p ∈ [1, ∞], i.e., d(x1, x2) := |x1 − x2|p. If we know the true distribution ρ

of the data, and this distributions is assumed to be absolutely continuous with respect to the Lebesgue
measure, we can work with ρ directly. If we are only given a finite number of data points {xi}N

i=1, we can
work with the empirical measure ρ = 1

N

∑N
i=1 δxi

. Both measures are Radon measures, and the main
results of the paper apply in both settings.

In binary classification, we seek a set A ∈ B(X ) and its induced classifier

x ∈ A : ⇐⇒ x is assigned label 1,

x ∈ Ac : ⇐⇒ x is assigned label 0.

The most natural approach to constructing such a classifier is to minimize the empirical risk

inf
A∈B(X )

E(x,y)∼µ

[∣∣1A(x) − y
∣∣] . (1.5)

A minimizer of this problem is known as a Bayes classifier relative to µ.

Remark 1.2. (0-1-loss). Note that introducing the 0-1-loss function '(ŷ, y) = 0 if ŷ = y and '(ŷ, y) = 1
if ŷ += y, one can equivalently express (1.5) as infA∈B(X ) E(x,y)∼µ['(1A(x), y)].

Applying the law of total expectation (or equivalently disintegrating the measure µ) one obtains that
(1.5) coincides with the following geometric problem:

inf
A∈B(X )

∫

A
w0 dρ0 +

∫

Ac
w1 dρ1. (1.6)

Problem (1.6) forces the set A to be concentrated in places where the measure w1ρ1 is larger than
w0ρ0. Defining the signed measure σ := w1ρ1 − w0ρ0, one can take a Hahn decomposition of X into
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THE GEOMETRY OF ADVERSARIAL TRAINING 925

Fig. 1. Picture in the spirit of [42, Fig. 3]. An affine Bayes classifier on the left is not robust with respect to adversarial attacks. The
robust classifier on the right has a smaller nonlocal perimeter than the Bayes classifier. The adversarial attacks play an important
role in the geometry of the robust classifier and will define a particular form of nonlocal perimeter regularization.

X = P 0 N, where P is a positive set and N is a negative set under σ (see Appendix A for the definition
of a Hahn decomposition). We then let A := P and deduce that such a set A is a Bayes classifier, i.e. a
minimizer of problem (1.6). Notably, the Hahn-decomposition is not unique and so neither is the Bayes
classifier A. Furthermore, there is no control over the set, where w0ρ0 = w1ρ1. Those points might be
arbitrarily assigned to either of the classes without affecting the objective functional; this is a potential
source of non-robustness in classification.

Throughout the paper, we focus our attention on the following adversarial training problem for
robust binary classification, see Fig. 1 for an illustration

inf
A∈B(X )

E(x,y)∼µ

[

sup
x̃∈Bε(x)

∣∣1A(x̃) − y
∣∣
]

. (1.7)

The model allows an adversary to choose the worst possible point in an open ε-ball Bε(x) := {x̃ ∈ X :
d(x, x̃) < ε} (relative to the metric d) around x to corrupt the classification. We emphasize that we do
not use the essential supremum with respect to some measure but rather the actual supremum which
potentially makes the adversarial attack much stronger. However, under mild assumptions on the space
X and the measure ρ, it is possible to draw a connection between (1.7) and the following problem:

inf
A∈B(X )

E(x,y)∼µ

[

ν-ess sup
x̃∈Bε(x)

∣∣1A(x̃) − y
∣∣
]

, (1.8)

where ν is a suitably chosen reference measure. This problem has favorable functional analytic
properties and we will use it as intermediate step to construct solutions of the original problem (1.7), as
well as to analyze the structure of the set of solutions of (1.7).

Before proceeding to an informal presentation of our main results, we emphasize that, in contrast to
some papers in the literature, here we consider open balls Bε(x) to describe the set of possible attacks
available to the adversary around the point x. By making this modelling choice, we can simplify some
technical steps in our analysis (e.g. see Remark 3.9 and Appendix B.1) and avoid measurability issues
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926 L. BUNGERT ET AL.

Fig. 2. Illustration of the ‘perimeter’ defined in (1.10). The blue strip outside A is measured with ρ0. The olive strip inside A is
measured with ρ1. The sum of these two quantities being small means that the indicator of A is an adversarially robust classifier.

that may arise when working with closed balls (see [55] for a discussion on the measurability issue and
contrast it with Remark 2.3).

1.2 Informal main results and discussion

Our first main result, at this stage stated informally, is a reformulation of the adversarial training problem
(1.7) in terms of a variational regularization problem.

Theorem. The objective in the adversarial training problem (1.7) can be rewritten as

E(x,y)∼µ

[

sup
x̃∈Bε(x)

∣∣1A(x̃) − y
∣∣
]

= E(x,y)∼µ

[∣∣1A(x) − y
∣∣] + ε P̃erε(A; µ), (1.9)

where P̃erε(A; µ) is a nonlocal and weighted perimeter of A, defined as

P̃erε(A; µ) = w0

ε
ρ0({x ∈ Ac : dist(x, A) < ε}) + w1

ε
ρ1({x ∈ A : dist(x, Ac) < ε}), (1.10)

see Fig. 2 for a color-coded illustration.

The functional P̃erε can be called a type of ‘perimeter’ since it is a non-negative functional over sets
with the important submodularity property

P̃erε(A ∪ B; µ) + P̃erε(A ∩ B; µ) ≤ P̃erε(A; µ) + P̃erε(B; µ), ∀A, B ∈ B(X ).

Submodular functionals over sets typically induce convex functionals over functions (referred to as a
total variation), defined through the coarea formula

T̃Vε(u; µ) :=
∫ ∞

−∞
P̃erε({u ≥ t}; µ) dt.

We will show that the so defined total variation takes the form

T̃Vε(u; µ) = w0

ε

∫

X
sup

x̃∈Bε(x)
u(x̃) − u(x) dρ0(x) + w1

ε

∫

X
u(x) − inf

x̃∈Bε(x)
u(x̃) dρ1(x). (1.11)

By our notation, we emphasize that both the perimeter and the total variation depend on the data
distribution µ through wi, ρi and not just through ρ, as will be detailed in the course of the paper. Hence,
as opposed to standard (nonlocal) perimeters and total variations, they constitute a family of data-driven
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THE GEOMETRY OF ADVERSARIAL TRAINING 927

regularizers. Such regularizers, typically learned in a supervised manner, have recently been shown to
be superior over model-based regularizers for certain tasks in medical imaging, see [46].

It turns out that using the T̃Vε functional, we can define an exact convex relaxation for the
problem (1.7)

Theorem. The variational problem

inf
u:X→[0,1]

E(x,y)∼µ [|u(x) − y|] + ε T̃Vε(u; µ) (1.12)

is an exact convex relaxation of problem (1.7). In particular, any solution to problem (1.7) is also a
solution to (1.12), and conversely, for any solution u of problem (1.12), we can obtain a solution to
problem (1.7) by considering level sets of u.

We move on to study the existence of solutions to problem (1.7).

Theorem. (informal). Under some technical conditions on the metric space X and the measure ρ, the
adversarial training problem (1.7) admits a solution A ∈ B(X ).

Our existence proof is technical and is based on the lifting of the variational problem (1.7) to a
problem of the form (1.8). This problem admits an application of the direct method of the calculus
of variations after establishing lower semicontinuity and compactness in a suitable weak-* Banach
space topology, see Appendix A for a definition of the weak-* topology. In the course of this, we will
introduce well-defined versions of P̃erε and T̃Vε, which will not carry the tilde anymore, and study
their associated variational problems. We discuss how to build solutions to the original problem (1.7)
from solutions to the modified problems.

Remark 1.3. (Relation to previous results). Existence of solutions to other adversarial training problems
has also been obtained recently in the work [3]. The existence results in [3] and ours are highly
complementary to each other and in what follows we highlight the differences in their settings, which
are apparent in at least three ways: first, the adversarial model in [3] is defined in terms of closed balls
rather than open balls as done here; existence of solutions in the open ball model was left as an open
question. Second, the collection of subsets A of X over which the optimization takes place in [3] is
the so called universal σ -algebra, which is larger than the Borel σ -algebra considered here. For the
adversarial model with closed balls, it is essential to use the universal σ -algebra in order to assure the
measurability of the adversarial loss function, which we get for free in our open ball model. Naturally,
lower semicontinuity is less of an issue in [3], whereas in our proof, we rely on relaxation methods
and on the explicit construction of representatives. Lastly, we highlight that our setting is very general
since we work on a metric measure space, whereas the results in [3] hold in the setting of norm balls in
Euclidean space.

It is also worth highlighting that objective functions of type L1 + TV and their relation to perimeter
regularization have been extensively studied in the mathematical imaging community [16, 21, 23, 24,
63]. Further background on total variation methods in imaging is provided in [12, 16].

After establishing existence of solutions to (1.7), we proceed to studying their properties. In
particular, we exploit the underlying convexity made manifest by our theorems and deduce a series of
strong implications on the geometry and regularity of the family of solutions to the adversarial training
problem (1.7). As a first step, we prove that solutions are closed under intersections and unions. From
this, we will be able to prove the following.
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928 L. BUNGERT ET AL.

Theorem. (informal). There exist (unique) minimal and maximal solutions to (1.7) in the sense of set
inclusion.

It is then possible to show that maximal and minimal solutions satisfy, respectively, inner and outer
regularity conditions (in a suitable sense discussed in detail throughout the paper), providing in this way
the first results on regularity of (certain) solutions to (1.7). We investigate the regularity of solutions
further and establish Hölder regularity results like the following (see Appendix A for definitions).

Theorem. (informal). Let (X ,d) be Rd with the Euclidean distance. For any ε > 0, there exists a
solution to the problem (1.7) whose boundary is locally the graph of a C1,1/3 function.

Although stated for the Euclidean setting only, we highlight that similar results can be proved in more
general settings provided that one adjusts the interpretation of regularity of solutions to non-Euclidean
contexts. A more detailed investigation of this will be the topic of follow-up work. It is also important to
reiterate that our results apply to a general measure µ regardless of whether it has densities with respect
to Lebesgue measure or if it is an empirical measure. In particular, from our results, we can conclude
that the presence of the adversary always enforces the regularization of decision boundaries, even when
the original unrobust problem does not possess regular solutions (i.e. when the Bayes classifiers are not
regular). We remark that we do not claim any sharpness in our regularity results. However, in general,
one should not expect better regularity than C1,1 (in the Euclidean setting) based on the discussion that
we present in Section 3.6 and on the results from [39].

Finally, we remark that our results suggest that one should use algorithms for adversarial training
that are based on training parametric models that are able to produce or approximate regular classifiers.
Some examples of these models are suggested by recent results in the literature of approximation theory;
these results state that it is possible to approximate characteristic functions of regular sets with neural
networks whose size is determined by the level of regularity of the target set, see [49]. We believe
that our regularity results can indeed inform new implementations of adversarial training, but there are
still several points to be resolved before being able to carry out an actual algorithmic implementation.
Moreover, since the notion of regularity depends on the distance function used to define the action space
of the adversary, one should naturally adapt algorithms to produce robust classifiers of the specified type.
The above discussion will be expanded in future work.

In addition to the adversarial model (1.7), we discuss other adversarial models that admit a represen-
tation of the form L1 + (nonlocal) TV. From this, we will be able to conclude that perimeter functionals
penalizing the boundaries of sets indeed arise naturally as regularizers for binary classification problems.
This fact can be interpreted conversely: it is possible to give a game theoretic interpretation for a class
of variational problems that involve the use of (nonlocal) total variation (including those that have
been used in graph-based learning for classification [28]). This work can then be naturally related to a
collection of works that provide game theoretical interpretations of variational problems. For example,
[13] and [48] connect fractional Dirichlet energies with a two-player game. Moreover, [37] connects
mean curvature flow with a different two-player game. While our energies do not directly coincide with
the ones in those papers, they are similar in form.

1.3 Outline

The rest of the paper is organized as follows. In Section 2, we discuss different reformulations of the
adversarial training problem (1.7). First, in Section 2.1, we relax the problem in a suitable way in order
to make it amenable to functional analytic treatment; this reformulation will be crucial for our latter
exploration on existence of solutions to (1.7) and the study of some of their properties.
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In Section 2.2, we discuss the reformulation of (1.7) as the regularized risk minimization that has
already been introduced in Section 1.2, cf. (1.9).

Section 3 is devoted to the study of properties of the regularization reformulation of (1.7). We define
suitable relaxations of the functionals P̃erε and T̃Vε appearing in (1.9) and establish key properties
including submodularity, convexity and lower semi-continuity with respect to suitable topologies. With
these properties at hand, we show existence of solutions to problem (1.7) in Section 3.4.

In Section 3.5, we study maximal and minimal solutions, and in Section 3.6, we investigate
regularity.

In Section 4, we explain how to generalize our insights to regression tasks and other adversarial
training models that give rise to perimeter minimization problems with different perimeter functionals.
In particular, we recover data-driven regularizers as well as statistically robust interpretations to
regularization approaches used in graph-based learning.

We wrap up the paper in Section 5 where we present further discussion on the implications of our
work and provide some directions for future research.

Technical definitions, some proofs and further remarks on the advantage of using open balls are
given in the appendix.

2. Reformulations of adversarial training

2.1 Relaxation in quotient σ -algebra

To be able to prove existence of minimizers for (1.7), we have to relax it to make it amenable to
functional analytic treatment. Note that, because of the presence of the non-essential supremum in (1.7),
two sets A and A′ whose symmetric difference

A5A′ := (A \ A′) ∪ (A′ \ A) (2.1)

satisfies ν(A5A′) = 0 for some reference measure ν do not have to have the same value of the objective
function, in general. This is a major difference to unregularized problem (1.5) and will cause problems,
for instance, when proving existence of minimizers.

To fix this, we define the set

Nν := {A ∈ B(X ) : ν(A) = 0}, (2.2)

where ν is an arbitrary reference measure on X , to be specified later. The set Nν is a two-sided ideal in
the σ -algebra B(X ), interpreted as ring with addition 5 and multiplication ∩. This allows us to define
the quotient σ -algebra

Bν(X ) := B(X )
/

Nν (2.3)

with the equivalence relation ∼ν , defined by

A ∼ν B : ⇐⇒ A5 B ∈ Nν ⇐⇒ ν(A5B) = 0. (2.4)

The function dν(A, B) := ν(A5 B) is non-negative, symmetric and sub-additive and hence defines a
pseudo-metric on B(X ). This function is also zero if and only if A ∼ν B, and hence, it is a metric on the
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quotient σ -algebra Bν(X ). In some sources, this metric is called the Fréchet–Nikodým pseudo-metric,
see, e.g. Section 1.12 in [9].

The following proposition states that the minimization in (1.7) can be rewritten as the minimization
of some sort of quotient norm on the quotient σ -algebra Bν(X ). Interestingly, the choice of ν does not
yet matter here.

Proposition 2.1. For any Borel measure ν on X , it holds that

(1.7) = inf
A∈B(X )

inf
B∈B(X )

A∼νB

E(x,y)∼µ

[

sup
x̃∈Bε(x)

∣∣1B(x̃) − y
∣∣
]

. (2.5)

Remark 2.2. (Similarity to quotient norms). The reason why we connect this reformulation with the
quotient σ -algebra is that the objective function in (2.5) has strong similarities with the quotient norm
on a quotient Banach space X/N, which is given by

‖x‖X/N := inf
y∈X

y−x∈N

‖y‖X , x ∈ X/N.

Proof. We have to prove the equality

inf
A∈B(X )

E(x,y)∼µ

[

sup
x̃∈Bε(x)

∣∣1A(x̃) − y
∣∣
]

= inf
A∈B(X )

inf
B∈B(X )

A∼νB

E(x,y)∼µ

[

sup
x̃∈Bε(x)

∣∣1B(x̃) − y
∣∣
]

.

First, choosing B = A, which obviously fulfills A ∼ν B, we obtain the inequality ≥. Second, omitting
the constraint A ∼ν B yields the inequality ≤. !

Remark 2.3. In the definition of the adversarial problem (1.7) and throughout the rest of the paper, we
will be working with quantities like supx̃∈Bε(x) 1A for a Borel measurable set A and supx̃∈Bε(x) u for a
Borel measurable function u. We remark that the resulting sets/functions are Borel measurable. Indeed,
the function x ,→ supx̃∈Bε(x) 1A is nothing but the indicator function of the set

⋃
x∈A Bε(x) which is

Borel measurable since it is an open set. Likewise, the function x ,→ ũ(x) := supx̃∈Bε(x) u is measurable
because the sets {ũ > t} are open sets.

An alternative way of avoiding ambiguities arising from equivalent sets with respect to ν is to
consider the essential version of the adversarial problem given by (1.8), where the adversarial attack is
performed using the essential supremum of the measure ν. This problem can be fundamentally different
to our problem (1.7) or the relaxed one (2.5) since for example, in the case ν = ρ, the attack can only
be performed within the support of the given data distribution which is much weaker than (1.7). Still, in
Section 3, we shall construct a measure ν such that the problems (1.7) and (1.8) do coincide, a property
we will exploit later for proving existence of solutions to the original adversarial problem.
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Example 2.4. Consider the simple situation with the measure ρ = 1
2δ−1 + 1

2δ1 on X = R and ν = ρ.
The labels are set to be equal to zero on the left axis and one on the right one. Then, it holds

E(x,y)∼µ

[

sup
(x−ε,x+ε)

∣∣1A(x) − y
∣∣
]

= 1
2

sup
(−1−ε,−1+ε)

1A + 1
2

sup
(1−ε,1+ε)

1Ac .

Let us assume that 1 < ε < 2. In this case, the intervals (−1 − ε, −1 + ε) and (1 − ε, 1 + ε) overlap.
Therefore, for any choice of A ∈ B(R), either A or Ac intersect both intervals. This implies that the
optimal adversarial risk is ≥ 1

2 . Furthermore, choosing A = {1}, we find the risk equals 1
2 .

For comparison, the objective of the quotient problem (2.5) is given by

inf
B∈B(X )

ρ(A5B)=0

E(x,y)∼µ

[

sup
(x−ε,x+ε)

∣∣1B − y
∣∣
]

= inf
B∈B(X )

ρ(A5B)=0

1
2

sup
(−1−ε,−1+ε)

1B + 1
2

sup
(1−ε,1+ε)

1Bc

and, arguing as before, any choice of B leads to this term being ≥ 1
2 independently of A.

On the other hand, the objective in (1.8) for ν := ρ and 0 < ε < 2 is

E(x,y)∼µ

[

ρ-ess sup
Bε(x)

∣∣1A(x) − y
∣∣
]

= 1
2

1A(−1) + 1
2

1Ac(1),

which does not even depend on ε. This is due to the fact that the ρ-ess sup prevents the adversary from
leaving the set of data points. For instance, the half axes x ≥ α with −1 < α < 1 have risk 0 and thus
are optimal.

2.2 Nonlocal variational regularization problem

We now show how to express the adversarial training problem (1.7) as a variational regularization
problem in the form of (1.2). More precisely, we show that it can be written as L1 + TV-type problem.
This class of problems has been intensively studied in the context of image processing, following the
seminal paper [21]. The model there was related to a geometric problem involving the Lebesgue measure
Ld(·) and the standard perimeter functional Per(·), namely

min
A∈B(X )

Ld(A5Ω) + λ Per(A). (2.6)

This functional was shown to exhibit a range of different behaviors in terms of the regularization
parameter λ.

In our context, we will show that the adversarial problem (1.7) can be interpreted analogously, with
the modification that we use a weighted volume and a weighted and nonlocal perimeter, see Remark 2.9
below. Let us therefore first introduce the set function P̃erε(·; µ) : B(X ) → [0, +∞] for ε > 0 which
we refer to as nonlocal pre-perimeter and which is defined as

P̃erε(A; µ) := w0

ε

∫

X
sup

x̃∈Bε(x)
1A(x̃) − 1A(x) dρ0(x) + w1

ε

∫

X
1A(x) − inf

x̃∈Bε(x)
1A(x̃) dρ1(x). (2.7)
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932 L. BUNGERT ET AL.

Here, the dependency on the data distribution µ is captured by the presence of the conditional
distributions ρi and the class probabilities wi for i ∈ {0, 1}. Here, the tilde serves as a reminder that
we are using supremum and infimum as opposed to their ν-essential forms. To see that P̃erε(A; µ) has
units of a perimeter, we rewrite it as follows:

P̃erε(A; µ) = w0

ε
ρ0({x ∈ Ac : dist(x, A) < ε}) + w1

ε
ρ1({x ∈ dist(x, Ac) < ε}), (2.8)

where the distance of a point x ∈ X to a set A ⊆ X is defined as dist(x, A) := infx̃∈A d(x, x̃). The quantity
(2.8) is a weighted and nonlocal Minkowski content [14, 15] of the ‘thickened boundary’ ∂εA := {x ∈
X : dist(x, ∂A) < ε}, cf. Fig. 2 in Section 1.2. For sufficiently smooth sets and measures ρ0/1, and for
small ε, one expects [1] that P̃erε(A; µ) behaves like a weighted perimeter of A, see [17] for similar
results.

Importantly, for two sets A, B ∈ B(X ) which differ only by a nullset with respect to some reference
measure ν the associated pre-perimeters will generally be different. Therefore, using the technique from
Section 2.1, we define the nonlocal perimeter with respect to ν as

ν-Perε(A; µ) := inf
B∈B(X )

A∼νB

P̃erε(B; µ). (2.9)

This way of defining a nonlocal and weighted perimeter generalizes approaches from [14, 15], which
deal with the case of the Lebesgue measure.

Remark 2.5. The nonlocal perimeter ν-Perε(·; µ) in (2.9) is a generalization of the nonlocal perimeter
studied in [14; 15; 19; 20] which can be recovered by setting X = Rd and by replacing w0ρ0 and
w1ρ1 by the Lebesgue measure Ld and choosing ν := Ld. Our results from Section 3, in particular
Proposition 3.7, show that (2.9) becomes

Perε(A) := 1
2ε

∫

Rd
ess oscBε(·)(1A) dx, (2.10)

where ess osc = ess sup − ess inf is the essential oscillation with respect to the Lebesgue measure.

Remark 2.6. (Asymmetry). It is obvious that the nonlocal perimeter (2.10) from [20] satisfies
Perε(A

c) = Perε(A) and the same is true for the usual local perimeter. For our perimeter (2.9), this
is not the case if w0ρ0 += w1ρ1.

Let us now reformulate the adversarial training problem as a regularization problem with respect
to the nonlocal perimeter (2.9). Our central observation is that the adversarial risk in (1.7) can be
decomposed into an unregularized risk and the pre-perimeter. Then, using Proposition 2.1, we will
rewrite (1.7) as a variational regularization problem for the perimeter.

Proposition 2.7. For any Borel set B ∈ B(X ), it holds

E(x,y)∼µ

[

sup
x̃∈Bε(x)

∣∣1B(x̃) − y
∣∣
]

= E(x,y)∼µ

[∣∣1B(x) − y
∣∣] + ε P̃erε(B; µ). (2.11)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/2/921/6986903 by guest on 03 June 2023



THE GEOMETRY OF ADVERSARIAL TRAINING 933

Proof. Disintegrating µ and doing elementary calculations yields

E(x,y)∼µ

[

sup
x̃∈Bε(x)

∣∣1B(x̃) − y
∣∣
]

− E(x,y)∼µ

[∣∣1B(x) − y
∣∣]

=
∫∫

X×{0,1}
sup

x̃∈Bε(x)

∣∣1B(x̃) − y
∣∣ dµ(x, y) −

∫∫

X×{0,1}

∣∣1B(x) − y
∣∣ dµ(x, y)

= w0

∫

X
sup
Bε(·)

1B dρ0 + w1

∫

X
sup
Bε(·)

1Bc dρ1 − w0

∫

X
1B dρ0 − w1

∫

X
1Bc dρ1

= w0

∫

X
sup
Bε(·)

1B − 1B dρ0 + w1

∫

X
1B − inf

Bε(·)
1B dρ1

= ε P̃erε(B; µ).
!

Now we can finally state the equivalence of the adversarial training problem (1.7) and the variational
regularization problem involving the nonlocal perimeter ν-Perε(·; µ). For this, we have to choose the
measure ν in the definition of the perimeter (2.9) such that ρ is absolutely continuous with respect to
the reference measure ν, written ρ 8 ν.

Proposition 2.8. (Perimeter-regularized problem). Let ν be a measure on X such that ρ 8 ν. Then, it
holds that

(1.7) = inf
A∈B(X )

E(x,y)∼µ

[∣∣1A(x) − y
∣∣] + ε ν-Perε(A; µ). (2.12)

Remark 2.9. (Geometric problem). Note that if the measures ρ0 and ρ1 have non-overlapping support,
(2.12) can indeed be brought into the form of the geometric problem (2.6) which generalizes the problem
studied in [21]. For this, we assume that there exists Ω ⊆ X such that suppρ1 ⊆ Ω ⊆ (suppρ0)

c. Then,
the first term in (2.12) equals

E(x,y)∼µ

[∣∣1A(x) − y
∣∣] = w0

∫

X
1A dρ0 + w1

∫

X
1Ac dρ1 = w0ρ0(A) + w1ρ1(A

c)

= w0ρ0(A ∩ Ωc) + w1ρ1(A
c ∩ Ω) = w0ρ0(A \ Ω) + w1ρ1(Ω \ A)

= ρ(A \ Ω) + ρ(Ω \ A) − w1ρ1(A \ Ω) − w0ρ0(Ω \ A)

= ρ(A \ Ω) + ρ(Ω \ A) − w1ρ1(Ω
c \ Ac) − w0ρ0(Ω \ A)

= ρ((A \ Ω) ∪ (Ω \ A)) = ρ(A5Ω).

This implies that (2.12) equals the geometric problem

inf
A∈B(X )

ρ(A5Ω) + ε ν-Perε(A; µ). (2.13)
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Proof. Fixing A ∈ B(X ) and taking the infimum over sets B ∈ B(X ) with A ∼ν B, we get from
Proposition 2.7 that

inf
B∈B(X )

A∼νB

E(x,y)∼µ

[

sup
x̃∈Bε(x)

∣∣1B(x̃) − y
∣∣
]

= inf
B∈B(X )

A∼νB

E(x,y)∼µ

[∣∣1B(x) − y
∣∣] + ε P̃erε(B; µ).

Now we note that for A ∼ν B, it holds

E(x,y)∼µ

[∣∣1B(x) − y
∣∣] = w0

∫

B
dρ0 + w1

∫

Bc
dρ1 = E(x,y)∼µ

[∣∣1A(x) − y
∣∣] ,

since A ∼ν B implies ν(A5B) = 0 which by the absolute continuity implies ρ(A5B) = 0. Hence, we
obtain

inf
B∈B(X )

A∼νB

E(x,y)∼µ

[

sup
x̃∈Bε(x)

∣∣1B(x̃) − y
∣∣
]

= E(x,y)∼µ

[∣∣1A(x) − y
∣∣] + ε inf

B∈B(X )
A∼νB

P̃erε(B; µ)

= E(x,y)∼µ

[∣∣1A(x) − y
∣∣] + ε ν-Perε(A; µ).

Finally, using Proposition 2.1 concludes the proof. !

3. Analysis of the adversarial training problem

In the previous section, we have shown that the adversarial training problem (1.7) is equivalent to
the variational regularization problem (2.12) involving a nonlocal perimeter term. Problems such as
(2.12) are very well understood in the context of inverse problems [5]. We will use the structure of
the objective in problem (2.12) to make strong mathematical statements about our original adversarial
training problem under very general conditions on the space (X ,d). The aim of this section is then to
use the insights stemming from the reformulation in terms of perimeter in order to perform a rigorous
analysis on the adversarial problem (1.7), focusing on proving existence of solutions and studying their
properties. In particular, we will define convenient notions of uniqueness of solutions and show the
existence of ‘regular’ solutions, at least in the Euclidean setting.

For this, we first introduce a nonlocal total variation which is associated with the perimeter (2.9)
and that turns out to be useful for proving existence. Then, we prove important properties of the
perimeter and the total variation related to convexity and lower semicontinuity. Here, the key ingredient
is to construct suitable representatives which attain the infimum in the definition of the perimeter
ν-Perε(·; µ). For this, we will have to focus on reference measures ν which satisfy a certain geometric
assumption. Finally, we can use these insights to prove existence of solutions to (1.7) and study their
geometric properties. Due to the lack of uniqueness of minimizers, we will investigate minimal and
maximal solutions.

3.1 The associated total variation

Similar to the nonlocal pre-perimeter (2.7) and perimeter (2.9), we can also define an associated pre-
total variation and total variation with respect to the measure ν of a measurable function u : X → R as
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T̃Vε(u; µ) := w0

ε

∫

X
sup

x̃∈Bε(x)
u(x̃) − u(x) dρ0(x) + w1

ε

∫

X
u(x) − inf

x̃∈Bε(x)
u(x̃) dρ1(x), (3.1)

ν-TVε(u; µ) := inf
v∈L∞(X ;ν)
v = u ν-a.e.

T̃Vε(v; µ). (3.2)

Remark 3.1. If X = Rd and w1ρ1 = w0ρ0 = 1/2Ld and ν = Ld, our results in this section, in
particular Proposition 3.11, show that the total variation reduces to

TVε(u; µ) = 1
2ε

∫

Rd
ess oscBε(x)(u) dx, (3.3)

which is precisely the nonlocal total variation associated to (2.10) which was studied in [19].

Remark 3.2. We could have defined T̃Vε and ν-TVε using the coarea formula. For the sake of clarity
we decided to define the functionals directly and prove the coarea formula later.

Having the total variation at hand, a natural convex relaxation of the perimeter-regularized
variational problem (2.12) to functions instead of sets is

inf
u∈L∞(X ;ν)

0≤u≤1, ν-a.e.

E(x,y)∼µ [|u(x) − y|] + ε ν-TVε(u; µ), (3.4)

where we again assume ρ 8 ν. Indeed, we will use this relaxation as an intermediate step in order to
prove existence for minimizers of (2.12). Notably, since the first term in (3.4) involves integrals with
respect to ρ0 and ρ1, as shown in the proof of Proposition 2.8, the condition ρ 8 ν implies that it makes
sense to perform the optimization in (3.4) over L∞(X ; ν) ⊆ L∞(X ; ρ).

3.2 Properties of the nonlocal perimeter

The nonlocal perimeter ν-Perε(·; µ) satisfies many of the same properties as the classical perimeter,
which will also ensure that the total variation (3.2) is well-defined and convex.

Proposition 3.3. The set function ν-Perε(·; µ) defined in (2.9) satisfies the following:

• 0 ≤ ν-Perε(A; µ) < ∞ for all sets A ∈ B(X ).

• ν-Perε(∅; µ) = ν-Perε(X ; µ) = 0.

• ν-Perε(A; µ) = ν-Perε(A
′; µ) if ν(A5A′) = 0.

• It is submodular, meaning that for all A, A′ ∈ B(X ) it holds

ν-Perε(A ∪ A′; µ) + ν-Perε(A ∩ A′; µ) ≤ ν-Perε(A; µ) + ν-Perε(A
′; µ).
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Remark 3.4. (Properties of the pre-perimeter). If we choose ν to be the measure defined by ν(∅) = 0
and ν(A) = ∞ for all A ∈ B(X ) \ {∅}, it holds P̃erε(A; µ) = ν-Perε(A; µ) for all A ∈ B(X ). Hence,
the pre-perimeter admits the same properties.

Proof. The first statement follows from the fact that oscBε(x)(1B) ≤ 1 for all sets B ∈ B(X ) and ρ is a
probability measure. The second statement is obvious since oscBε(x)(1X ) = 0 for all x ∈ X . The third
statement follows from the very definition of the perimeter, involving the infimum over sets B ∈ B(X )

with ν(A5B) = 0.
Let us now prove submodularity. Elementary properties of the symmetric difference show

(A ∪ A′)5(B ∪ B′) ⊆ (A5B) ∪ (A′5B′),

(A ∩ A′)5(B ∩ B′) ⊆ (A5B) ∪ (A′5B′).

Using subadditivity of the measure ρ, this implies that for all B, B′ ∈ B(X ) with ν(A5B) = 0 and
ν(A′5B′) = 0, we can estimate

ν-Perε(A ∪ A′; µ) + ν-Perε(A ∩ A′; µ)

≤ w0

ε

∫

X
sup
Bε(·)

1B∪B′ − 1B∪B′ dρ0 + w1

ε

∫

X
1B∪B′ − inf

Bε(·)
1B∪B′ dρ1

+ w0

ε

∫

X
sup
Bε(·)

1B∩B′ − 1B∩B′ dρ0 + w1

ε

∫

X
1B∩B′ − inf

Bε(·)
1B∩B′ dρ1.

Since 1B∪B′ +1B∩B′ = 1B +1B′ and 1B − infBε(·) 1B = supBε(·) 1Bc −1Bc for all B, B′ ∈ B(X ), it suffices
to show

sup
Bε(x)

1B∪B′ + sup
Bε(x)

1B∩B′ ≤ sup
Bε(x)

1B + sup
Bε(x)

1B′ . (3.5)

Case 0: If the left-hand side is zero, we are done.
Case 1: Let us therefore assume that the first term in (3.5) is equal to one and the second one equal

to zero. This means that there exists y ∈ B ∪ B′ such that d(x, y) ≤ ε. In particular, at least one of the
two terms on the right-hand side in (3.5) is ≥ 1, which proves the inequality in this case.

Case 2: Now we assume that the second term is one. This implies that there exists y ∈ B ∩ B′ such
that d(x, y) ≤ ε. Hence, both terms on the right-hand side in (3.5) are = 1 which makes the inequality
correct independent of the first term. !

Next, we prove that the infimum in the definition of the perimeter (2.9) is actually attained. In fact,
for a suitable measure ν with ρ 8 ν, we even construct a precise representative, i.e. a set A0 ∈ B(X )

with A ∼ν A0 in the equivalence relation (2.4), which attains this minimal value. Even more, we show
that the perimeter coincides with the essential perimeter with respect to the measure ν. The measure ν

has to satisfy the following assumption.

Assumption 1. We assume that there exists a σ -finite measure ν on X such that

1. ρ 8 ν,

2. {x ∈ X : dist(x, suppρ) < ε} ⊆ suppν,
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3. ν is locally doubling (a Vitali measure), i.e.

lim sup
r↓0

ν(B2r(x))
ν(Br(x))

< ∞, for ν-a.e. x ∈ X . (3.6)

Remark 3.5. Let us comment on these assumptions

1. The absolute continuity ρ 8 ν is needed for proving the reformulation as variational
regularization problem, cf. Proposition 2.8.

2. The condition on suppν makes sure that problem (2.12) detects the effect of the adversary on the
balls around points in the support of ρ.

3. The doubling assumption (3.6) is a very weak assumption under which the Lebesgue differenti-
ation theorem (Theorem A.4 in Appendix A) is valid.

Remark 3.6. (Choice of the measure ν). If X = Rd, then one can utilize a full support Gaussian γ to
define ν := ρ + γ . In that case (1)–(3) are true by definition and it is straightforward to show that if
ρ is locally doubling, then so is ν, see also [34, p.81]. In turn, notice that if ρ is supported on finitely
many points (e.g. an empirical measure) or if ρ is absolutely continuous with respect to the Lebesgue
measure, then the measure ρ is locally doubling.

More generally, if (X ,d) is a finite-dimensional smooth Riemannian manifold (intrinsically defined
without the need of an Euclidean ambient space) with a Riemannian volume form ω, and finite total
volume, then ν can be taken to be of the form ν = ρ + ω.

Using such a measure ν, we can state the following proposition which says that (a) the infimum
in the definition of the perimeter (2.9) is attained and (b) that the perimeter can be expressed as the
essential perimeter with respect to ν.

Proposition 3.7. Under Assumption 1 for any A ∈ B(X ), there exists A0 ∈ B(X ) with A ∼ν A0 such
that

ν-Perε(A; µ) = P̃erε(A
0; µ). (3.7)

Furthermore, the perimeter admits the characterization

ν-Perε(A; µ) = w0

ε

∫

X
ν-ess sup

Bε(·)
1A − 1A dρ0 + w1

ε

∫

X
1A − ν-ess inf

Bε(·)
1A dρ1. (3.8)

For the proof of the proposition, we need a preparatory lemma which deals with the construction of
the representative set.

Lemma 3.8. Under Assumption 1 for any A ∈ B(X ), there exists A0 ∈ B(X ) with A ∼ν A0 such that

sup
Bε(x)

1A0 = ν-ess sup
Bε(x)

1A0 , inf
Bε(x)

1A0 = ν-ess inf
Bε(x)

1A0 , ∀x ∈ suppρ. (3.9)
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Proof. Let u = 1A and let D+, D− be the sets defined by

D+ :=
{

x ∈ suppρ : ν-ess sup
Bε(x)

u = 1, ν-ess inf
Bε(x)

u = 1

}

,

D− :=
{

x ∈ suppρ : ν-ess sup
Bε(x)

u = 0, ν-ess inf
Bε(x)

u = 0

}

.

Also, let Dε
+ and Dε

− be the sets

Dε
± :=

{
x ∈ Rd : dist(x, D±) < ε

}
.

We claim that Dε
+ and Dε

− are disjoint. Indeed, suppose for the sake of contradiction that there is a point
x̃ in their intersection. Then, we would be able to find x1 ∈ D+ and x0 ∈ D− such that x̃ ∈ Bε(x1) and
x̃ ∈ Bε(x0). In particular, we could find δ > 0 small enough such that

Bδ(x̃) ⊆ Bε(x1) ∩ Bε(x0).

In addition, since Dε
+ (or Dε

−) is by Assumption 1 a subset of the support of ν, we would conclude that
x̃ belongs to the support of ν and thus ν(Bδ(x̃)) > 0. However, this would be a contradiction, because
the above inclusion implies that, for example, ν-ess infBε(x1)

u = 0, contrary to the fact that x1 ∈ D+.
Since Dε

+ and Dε
− are disjoint, we can now define the function u0 as

u0(x) :=






1 if x ∈ Dε
+

0 if x ∈ Dε
−

u(x) if x ∈ Rd \ (Dε
+ ∪ Dε

−).

Notice that the function u0 is Borel measurable since the sets Dε
± are open sets. We claim that ν-a.e.,

it holds u = u0. To see this, notice that it suffices to show that u(x) = 1 for ν-a.e. x ∈ Dε
+ and that

u(x) = 0 for ν-a.e. x ∈ Dε
−; we can focus on the first case as the second one is completely analogous.

By definition of Dε
+, it holds

{
x ∈ Dε

+ : u(x) = 0
}

⊆
{

x ∈ Dε
+ : u(x) += lim

r→0

1
ν(Br(x))

∫

Br(x)
u(x̃) dν(x̃)

}
.

Notice that this is the case since for r > 0 small enough ν-a.e., it holds u = 1 in Br(x) when x ∈ Dε
+.

However, by the Lebesgue differentiation theorem applied to the measure ν and the measurable function
u (which is possible thanks to Assumption 1, see Theorem A.4), the latter set must have ν measure zero.
This implies our claim.

On the other hand, for every x ∈ D+, by definition of u0, we have

sup
Bε(x)

u0 = 1 = ν-ess sup
Bε(x)

u0, inf
Bε(x)

u0 = 1 = ν-ess inf
Bε(x)

u0
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and for every x ∈ D−

inf
Bε(x)

u0 = 0 = ν-ess inf
Bε(x)

u0, sup
Bε(x)

u0 = 0 = ν-ess sup
Bε(x)

u0.

Finally, if x ∈ supp(ρ) \ (D+ ∪ D−), we have

ν-ess sup
Bε(x)

u0 = 1, ν-ess inf
Bε(x)

u0 = 0.

In particular, we also have

ν-ess sup
Bε(x)

u0 = 1 = sup
Bε(x)

u0, ν-ess inf
Bε(x)

u0 = 0 = inf
Bε(x)

u0.

The set A0 is now defined as A0 := (u0)−1({1}). This concludes the proof. !

Remark 3.9. Notice that in the previous proof, specifically when we state that there is a δ > 0 such
that Bδ(x̃) ⊆ Bε(x1) ∩ Bε(x0), we implicitly use the fact that the adversarial model was defined in
terms of open balls Bε as opposed to closed balls. The bottom line is that the construction of u∗ in
the proof would not carry through if we replaced open with closed balls since in that case, the sets
Dε

±(appropriately modified) would not necessarily be disjoint.

Now we are ready to prove Proposition 3.7.

Proof. (Proof of Proposition 3.7). Using the construction from Lemma 3.8, the definition of the
perimeter (2.9), and the fact that sup ≥ ess sup, we compute

w0

ε

∫

X
ν-ess sup

Bε(·)
1A − 1A dρ0 + w1

ε

∫

X
1A − ν-ess inf

Bε(·)
1A dρ1

= w0

ε

∫

X
ν-ess sup

Bε(·)
1A0 − 1A0 dρ0 + w1

ε

∫

X
1A0 − ν-ess inf

Bε(·)
1A0 dρ1

= w0

ε

∫

X
sup
Bε(·)

1A0 − 1A0 dρ0 + w1

ε

∫

X
1A0 − inf

Bε(·)
1A0 dρ1

≥ ν-Perε(A; µ)

= inf
B∈B(X )

A∼νB

w0

ε

∫

X
sup
Bε(·)

1B − 1B dρ0 + w1

ε

∫

X
1B − inf

Bε(·)
1B dρ1

≥ inf
B∈B(X )

A∼νB

w0

ε

∫

X
ν-ess sup

Bε(·)
1B − 1B dρ0 + w1

ε

∫

X
1B − ν-ess inf

Bε(·)
1B dρ1

= w0

ε

∫

X
ν-ess sup

Bε(·)
1A − 1A dρ0 + w1

ε

∫

X
1A − ν-ess inf

Bε(·)
1A dρ1.

Hence, equality holds everywhere, which completes the proof. !
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3.3 Properties of the total variation

We start with an elementary homogeneity property of the total variation ν-TV(·; µ), which follow
immediately from its definition.

Proposition 3.10. The functional ν-TV(·; µ) defined in (3.2) satisfies the following for all measurable
functions u : X → R, c ∈ R and α ≥ 0:

ν-TV(αu + c; µ) = α ν-TV(u; µ).

Proof. The proof is trivial and we omit it. !
Now we prove the analogous result of Proposition 3.7 for the total variation. We rely heavily on the

construction from Lemma 3.8.

Proposition 3.11. Under Assumption 1, for any u ∈ L∞(X ; ν), there exists u0 ∈ L∞(X ; ν) such that
u = u0 holds ν-almost everywhere and

ν-TVε(u; µ) = T̃Vε(u
0; µ). (3.10)

Furthermore, the total variation admits the characterization

ν-TVε(u; µ) = w0

ε

∫

X
ν-ess sup

Bε(·)
u − u dρ0 + w1

ε

∫

X
u − ν-ess inf

Bε(·)
u dρ1. (3.11)

Proof. The proof works just as the proof of Proposition 3.7, however, using Lemma 3.12 below. !
The following lemma extends the construction of Lemma 3.12 from sets to functions. The proof is

given in Appendix C.

Lemma 3.12. Under Assumption 1 for any Borel measurable function u ∈ L∞(X ; ν), there exists u0 :
X → R such that u = u0 holds ν-almost everywhere and

sup
Bε(x)

u0 = ν-ess sup
Bε(x)

u0, inf
Bε(x)

u0 = ν-ess inf
Bε(x)

u0, ∀x ∈ suppρ. (3.12)

In fact, the nonlocal perimeter and total variation are connected via a coarea formula, as it is the case
for their local counterparts. Thanks to the characterizations as essential perimeter and total variation
from Propositions 3.7 and 3.11, the proof becomes very simple.

Proposition 3.13. (Coarea formula). Under Assumption 1, it holds for any u ∈ L∞(X ; ν) that

ν-TVε(u; µ) =
∫

R
ν-Perε({u ≥ t}; µ) dt. (3.13)

Proof. Let us first assume that u ≥ 0.
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Using Propositions 3.7 and 3.11, the layer cake representation, monotone convergence to swap
integrals and supremum/infima, and Tonelli’s theorem to swap integrals, we can compute

ν-TVε(u; µ) = w0

ε

∫

X
ν-ess sup

Bε(·)
u − u dρ0 + w1

ε

∫

X
u − ν-ess inf

Bε(·)
u dρ1

= w0

ε

∫

X
ν-ess sup

Bε(·)

∫ ∞

0
1{u≥t} dt −

∫ ∞

0
1{u≥t} dt dρ0

+ w1

ε

∫

X

∫ ∞

0
1{u≥t} dt − ν-ess inf

Bε(·)

∫ ∞

0
1{u≥t} dt dρ1

=
∫ ∞

0

(
w0

ε

∫

X
ν-ess sup

Bε(·)
1{u≥t} − 1{u≥t} dρ0

+ w1

ε

∫

X
1{u≥t} − ν-ess inf

Bε(·)
1{u≥t} dρ1

)
dt

=
∫ ∞

0
ν-Perε({u ≥ t}) dt.

In the general case, we have that ν-a.e. it holds m ≤ u ≤ M for some m, M ∈ R with m ≤ M. We
can define the function ũ := u − m, which satisfies ũ ≥ 0 and hence

ν-TV(ũ; µ) =
∫ ∞

0
ν-Per({ũ ≥ t}; µ) dt. (3.14)

Using Proposition 3.10, it holds

ν-TV(ũ; µ) = ν-TV(u − m; µ) = ν-TV(u; µ).

Furthermore, the perimeter integral satisfies

∫ ∞

0
ν-Per({ũ ≥ t}; µ) dt =

∫ ∞

0
ν-Per({u ≥ t + m}; µ) dt =

∫ ∞

m
ν-Per({u ≥ t}; µ) dt.

Plugging these two reformulations into (3.14) shows

ν-TV(u; µ) =
∫ ∞

m
ν-Per({u ≥ t}; µ) dt =

∫

R
ν-Per({u ≥ t}; µ) dt.

!
The main consequence of the previous properties of the perimeter and the total variation is that the

the latter constitutes a convex and weak-* lower semicontinuous functional on L∞(X ; ν).
Showing the weak-* lower semicontinuity on L∞(X ; ν) requires a little bit more work. For this,

we need a couple of preparatory lemmas. These depend on the validity of the Lebesgue differentiation
theorem which requires the doubling condition in Assumption 1.
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Lemma 3.14. Assume that (X ,d, ν) is a Vitali metric measure space, meaning that ν satisfies (3.6),
assume that ν is σ -finite and suppose that uk ⇀∗ u in L∞(X ; ν). Then, for ν-almost every x ∈ X and
all ε > 0

lim sup
k→∞

ν-ess inf
Bε(x)

uk ≤ u(x) ≤ lim inf
k→∞

ν-ess sup
Bε(x)

uk.

Proof. Since ν is σ -finite, L∞(X ; ν) is the dual of L1(X ; ν) and hence by definition of weak-*
convergence (see Appendix A), it holds

∫

X
u φ dν = lim

k→∞

∫

X
uk φ dν, ∀φ ∈ L1(X ; ν).

Choosing φ = 1
ν(Br(x))

1Br(x) for r > 0, it holds that

1
ν(Br(x))

∫

Br(x)
u dν = lim

k→∞
1

ν(Br(x))

∫

Br(x)
uk dν.

Hence, using Theorem A.4, we obtain for ν-a.e. x ∈ X any ε > 0

u(x) = lim
r↓0

1
ν(Br(x))

∫

Br(x)
u dν

= lim
r↓0

lim
k→∞

1
ν(Br(x))

∫

Br(x)
uk dν

≤ lim sup
r↓0

lim inf
k→∞

ν-ess sup
Br(x)

uk

≤ lim inf
k→∞

ν-ess sup
Bε(x)

uk.

Similarly, one establishes the inequality u(x) ≥ lim supk→∞ ν-ess infBε(x) uk. !

Lemma 3.15. Under the conditions of Lemma 3.14, it holds for ν-a.e. x ∈ X and all ε > 0

ν-ess sup
Bε(x)

u ≤ lim inf
k→∞

ν-ess sup
Bε(x)

uk,

ν-ess inf
Bε(x)

u ≥ lim sup
k→∞

ν-ess inf
Bε(x)

uk.

Proof. Let us choose 0 < δ < ε. For ν-almost every y ∈ X , Lemma 3.14 implies

u(y) ≤ lim inf
k→∞

ν-ess sup
Bδ(y)

uk.
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Taking the ν-ess sup over y ∈ Bε−δ(x) yields

ν-ess sup
Bε−δ(x)

u ≤ ν-ess sup
y∈Bε−δ(x)

lim inf
k→∞

ν-ess sup
Bδ(y)

uk

≤ lim inf
k→∞

ν-ess sup
y∈Bε−δ(x)

ν-ess sup
Bδ(y)

uk

≤ lim inf
k→∞

ν-ess sup
Bε(x)

uk.

Choosing δ > 0 arbitrarily small yields

ν-ess sup
Bε(x)

u ≤ lim inf
k→∞

ν-ess sup
Bε(x)

uk.

Applying this reasoning to −uk, one shows analogously that

lim sup
k→∞

ν-ess inf
Bε(x)

uk ≤ ν-ess inf
Bε(x)

u.

!
Now we are ready to prove the following proposition which states important properties of the total

variation.

Proposition 3.16. Under Assumption 1, the functional ν-TVε(·; µ), defined in (3.2), is a positively
homogeneous, weak-* lower semicontinuous and convex functional on L∞(X ; ν). Lower semicontinuity
is understood in the sense that

uk ⇀∗ u in L∞(X ; ν) <⇒ ν-TVε(u; µ) ≤ lim inf
k→∞

ν-TVε(uk; µ).

Proof. The positive homogeneity was already proved in Proposition 3.10. To prove lower semicontinu-
ity, we use Proposition 3.11 to write

ν-TVε(u; µ) = w0

ε

(∫

X
ν-ess sup

Bε(x)
u dρ0 −

∫

X
u dρ0

)

+ w1

ε

(∫

X
u dρ1 −

∫

X
ν-ess inf

Bε(x)
u dρ1

)

= w0

ε

(∫

X
ν-ess sup

Bε(x)
u

dρ0

dν
dν −

∫

X
u

dρ0

dν
dν

)

+ w1

ε

(∫

X
u

dρ1

dν
dν −

∫

X
ν-ess inf

Bε(x)
u

dρ1

dν
dν

)
,

where dρi
dν denotes the Radon–Nikodým derivative of ρi with respect to ν (note that ρ 8 ν and ρ =

w0ρ0 + w1ρ1 implies ρi 8 ν for i ∈ {0, 1}). Let (uk)k∈N ⊆ L∞(X ; ν) be a sequence such that uk ⇀∗ u
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as k → ∞ where u ∈ L∞(X ; ν). Then, it holds

∫

X
ν-ess sup

Bε(x)
u

dρ0

dν
dν ≤

∫

X
lim inf
k→∞

ν-ess sup
Bε(x)

uk
dρ0

dν
dν ≤ lim inf

k→∞

∫

X
ν-ess sup

Bε(x)
uk

dρ0

dν
dν.

Note that, being a weakly-* convergent sequence, {uk}k∈N is uniformly bounded in L∞(X ; ν) by some
constant C > 0. Furthermore,

∫
X C dρ0

dν dν = Cρ0(X ) < ∞ which justifies an application of Fatou’s
lemma to the sequence ν-ess supBε(x) uk + C for the second inequality. One argues analogously for the
other integral containing the ν-ess inf, using the reverse Fatou lemma.

Furthermore, since dρi
dν ∈ L1(X ; ν) for i ∈ {0, 1}, weak-* convergence of uk to u directly implies

∫

X
u

dρi

dν
dν = lim

k→∞

∫

X
uk

dρi

dν
dν, i ∈ {0, 1}.

Hence, we have established weak-* lower semicontinuity of ν-TV.
Convexity is a direct consequence of the submodularity of the perimeter, the coarea formula from

Proposition 3.13 and the lower semicontinuity; the proof works just as in [17, Prop. 3.4]. !

3.4 Existence of solutions

We have completed all preparations to finally state our existence result for the adversarial problem (1.7).
The proof uses the direct method to establish existence of a minimizer of the variational problem (2.12).
Then, we use the representative constructed in Proposition 3.7 to turn this minimizer into a minimizer
of the original problem (1.7). This last step is shown in the following lemma.

Lemma 3.17. Let A ∈ B(X ) be a solution of (2.12). Then A0, constructed in Proposition 3.7, is a
solution of (1.7).

Proof. Using Proposition 2.8 and 3.7, we get

E(x,y)∼µ

[∣∣1A0 − y
∣∣] + ε P̃erε(A

0; µ) = E(x,y)∼µ

[∣∣1A − y
∣∣] + ε ν-Perε(A; µ)

= inf
A∈B(X )

E(x,y)∼µ

[∣∣1A − y
∣∣] + ε ν-Perε(A; µ)

= inf
A∈B(X )

E(x,y)∼µ

[∣∣1A − y
∣∣] + ε P̃erε(A; µ),

which, thanks to Proposition 2.7, is equivalent to A0 solving (1.7). !

Theorem 3.18. (Existence of Minimizers). Under Assumption 1, there exists a solution A ∈ B(X ) of
problem (1.7).

Proof. Let (Ak)k∈N ⊆ B(X ) be a minimizing sequence of (2.12) which is trivially bounded in
L∞(X ; ν). Using weak-* precompactness of bounded subsets of L∞(X ; ν) (see Theorem A.6 in
Appendix A), we know that there exists u ∈ L∞(X ; ν) such that a subsequence (which we don’t relabel)
satisfies 1Ak

⇀∗ u in L∞(X ; ν). Furthermore, from Lemma 3.14, we know that 0 ≤ u(x) ≤ 1 for ν-a.e.
x ∈ X .

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/2/921/6986903 by guest on 03 June 2023



THE GEOMETRY OF ADVERSARIAL TRAINING 945

Let us first show that the empirical risk E(x,y)∼µ

[∣∣∣u(x) − y
∣∣∣
]

is weak-* lower semicontinuous, in
fact even continuous, along this sequence. For this, we compute is as

E(x,y)∼µ [|u(x) − y|] = w0

∫

X
|u(x)| dρ0(x) + w1

∫

X
|u(x) − 1| dρ1(x)

= w0

∫

X
u(x)

dρ0

dν
dν(x) + w1

∫

X
(1 − u(x))

dρ1

dν
dν(x)

= lim
k→∞

w0

∫

X
1Ak

(x)
dρ0

dν
dν(x) + w1

∫

X
(1 − 1Ak

(x))
dρ1

dν
dν(x)

= lim
k→∞

E(x,y)∼µ

[∣∣1Ak
(x) − y

∣∣] .

Using Proposition 3.16 and the fact that ν-TV(1A; µ) = ν-Perε(A; µ) for all A ∈ B(X ), we infer
that

E(x,y)∼µ [|u(x) − y|] + ε ν-TVε(u; µ) ≤ lim inf
k→∞

E(x,y)∼µ

[∣∣1Ak
(x) − y

∣∣] + ε ν-Perε(1Ak
; µ)

= inf
A⊆B(X )

E(x,y)∼µ

[∣∣1A(x) − y
∣∣] + ε ν-Perε(A; µ).

(3.15)

For t ∈ [0, 1], define the set At := {u ≥ t}. It trivially holds

inf
A⊆B(X )

E(x,y)∼µ

[∣∣1A(x) − y
∣∣] + ε ν-Perε(A; µ) ≤ E(x,y)∼µ

[∣∣1At
(x) − y

∣∣] + ε ν-Perε(At; µ).

Aiming for a contradiction, we assume this inequality to be strict on a subset of [0, 1] with positive
Lebesgue measure. Integrating over t ∈ [0, 1] and using Proposition 3.13, we get

inf
A⊆B(X )

E(x,y)∼µ

[∣∣1A(x) − y
∣∣] + ε ν-Perε(A; µ)

<

∫ 1

0
E(x,y)∼µ

[∣∣1At
(x) − y

∣∣] + ε ν-Perε(At; µ) dt

= E(x,y)∼µ [|u(x) − y|] + ε ν-TVε(u; µ),

which contradicts (3.15). Hence, the inequality is an equality which shows that also At is a minimizer
of (2.12) for almost all t ∈ [0, 1]. In particular, Lemma 3.17 shows that A0

t solves (1.7) for almost every
t ∈ [0, 1]. !

The previous proposition establishes the existence of minimizers of the adversarial problem (1.7).
However, it is not yet clear whether minimizers are unique or regular (of course considering equivalence
classes modulo ν). However, since the problem is not strictly convex in nature—cf. the relaxation
(3.4)—in general uniqueness cannot be expected. This can trivially arise due to a separation between
the supports of ρ0 and ρ1, as evidenced by the following example.

Example 3.19. Fixing ε > 0, suppose that µ is given by four Dirac masses centered at (±ε, ±ε) in R2

and that opposing corners are (deterministically) given the same label, namely ρ0 = 1
2δ(ε,−ε) + 1

2δ(−ε,ε)
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Fig. 3. Situation from Example 3.19 with non-unique, smooth minimizers. Here, the four Dirac masses are displayed as well as
the balls of radius ε which surround them. Infinitely many minimizers of the adversarial risk exist, we display here the largest and
smallest possible minimizers in blue color.

and ρ1 = 1
2δ(−ε,−ε) + 1

2δ(ε,ε), and w0 = w1 = 1
2 . Then, it is straightforward to check that any set A

such that Bε((ε, ε)) ⊆ A, Bε((−ε, −ε)) ⊆ A, Bε((−ε, ε)) ∩ A = ∅ and Bε((ε, −ε)) ∩ A = ∅ will be
minimizers of the adversarial risk: indeed any such set has zero risk. The largest and smallest such sets
(in blue color) are demonstrated in Fig. 3.

The previous example demonstrates that one cannot hope for any type of uniqueness or even that
all minimizers will necessarily be regular. Although the previous example utilized Dirac masses for
simplicity, we suspect that many of the same issues can arise for distributions with smooth densities.

Despite the previous considerations, it is possible to obtain some positive results. In particular, we
can define notions of maximal and minimal minimizers to (1.7) which are then shown to be unique.
Moreover, we show that although there may be irregular minimizers, we can always find regular
minimizers provided that we define an appropriate notion of regularity relative to the metric d.

Proving this will be the content of the following two sections.

3.5 Extremal solutions

For notational convenience, we define the adversarial risk associated to (1.7) as

R̃ε(A) := E(x,y)∼µ

[

sup
x̃∈Bε(x)

∣∣1A(x̃) − y
∣∣
]

= E(x,y)∼µ

[∣∣1A(x) − y
∣∣] + ε P̃erε(A; µ). (3.16)

To begin, we prove submodularity of the adversarial risk and show that the set of minimizers is closed
under unions and intersections.

Lemma 3.20. The adversarial risk is submodular, meaning that it satisfies

R̃ε(A ∪ B) + R̃ε(A ∩ B) ≤ R̃ε(A) + R̃ε(B), ∀A, B ∈ B(X ). (3.17)
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Fig. 4. The maximal and minimal sets (in blue color) associated with a particular distribution of point masses. Here, the maximal
and minimal sets have boundaries that cannot even be represented as graphs of a function at every point. In this case, any
intermediate set, in the sense of inclusion, will also be a minimizer, and many smooth minimizers are possible.

Proof. We first notice that

E(x,y)∼µ

[∣∣1A(x) − y
∣∣] + E(x,y)∼µ

[∣∣1B(x) − y
∣∣] = E(x,y)∼µ

[∣∣1A∩B(x) − y
∣∣] + E(x,y)∼µ

[∣∣1A∪B(x) − y
∣∣] .

This fact can be directly proved by decomposing X into A∩B, B\A, A\B and X \ (A∪B), splitting the
integrals and then reassembling. Together with the submodularity of the pre-perimeter (cf. Remark 3.4),
this implies the assertion. !

Proposition 3.21. Let A and B be minimizers of the adversarial problem (1.7) with parameter ε ≥ 0.
Then, both A ∩ B and A ∪ B are both also minimizers.

Proof. Using Lemma 3.20, it is immediate that, for any A, B, either R̃ε(A ∪ B) ≤ R̃ε(A)+R̃ε(B)
2 or

R̃ε(A ∩ B) ≤ R̃ε(A)+R̃ε(B)
2 : suppose that the former is true. Then, if A and B are both minimizers then we

immediately obtain that A ∪ B is also a minimizer. Subtracting the minimal risk from both sides then
also implies that R̃ε(A ∩ B) = R̃ε(A). The other case is completely analogous. !

We now proceed to introduce the setting under which we can make sense of maximal and minimal
solutions to problem (1.7). In fact, we first work with the relaxed problem (2.12) and then use
Lemma 3.17 to obtain statements about the original problem (1.7). We introduce the following notation
for sets A, A′ ∈ B(X ):

A =ν A′ : ⇐⇒ 1A(x) ≤ 1A′(x) for ν-a.e. x ∈ X . (3.18)

Notice that the relation =ν above induces a partial order in the set of equivalence classes of ∼ν , in other
words in the quotient σ -algebra Bν(X ). We now define maximal and minimal solutions and show their
existence and uniqueness, see Fig. 4 for an example.

Definition 3.22. (Maximal (minimal) solutions). We say that A ∈ B(X ) is a maximal (minimal)
solution of (2.12) if A is a solution with the property that any other solution A′ ∈ B(X ) to (2.12)
satisfying A =ν A′ (A′ =ν A) must satisfy A ∼ν A′.
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948 L. BUNGERT ET AL.

Proposition 3.23. Assume that ν is a finite measure on X . Then, there exists a unique maximal
(minimal) solution to problem (2.12) up to ν-equivalence. The maximal solution is denoted with Amax,
while the minimal solution is denoted with Amin.

Proof. We follow an argument in [20] and proceed as follows. Since ν is a finite measure

m := sup{ν(A) : A solution of (2.12)} < ∞.

Take a maximizing sequence {An}n∈N ⊆ B(X ) in the definition of m so that limn→∞ ν(An) = m. From
Proposition 3.21, we know that for each n ∈ N, the set

⋃n
k=1 Ak is also a solution to problem (2.12). Let

A := ⋃∞
k=1 Ak, then it holds

1⋃n
k=1 Ak

→ 1A, in L1(X ; ν) as n → ∞.

From the above strong convergence, it is immediate that A is also a solution to (2.12) and we have

m = lim
n→∞ ν(An) ≤ lim

n→∞ ν

(
n⋃

k=1

Ak

)

= ν(A) ≤ m.

Now, notice that if there was a solution A′ such that A =ν A′ and A +∼ν A′, then we would have
m = ν(A) < ν(A′) which would contradict the definition of m. Likewise, if there were two solutions
A, A′ with ν(A) = m = ν(A′) and the two sets were not equivalent, then by taking their union we
would be able to obtain a solution with ν-volume strictly larger than m. This shows the existence and
uniqueness of maximal solutions. A similar proof can be used to deduce the existence and uniqueness
of minimal solutions. !

We can also introduce a notion of maximality and minimality of solutions for problem (1.7), at least
when restricting to a class of solutions obtained by considering specific representatives of solutions
A ∈ B(X ) to (1.7). In contrast to the definition of A0 in Lemma 3.8, which in general is representative
dependent, the following notions are independent of the representative of A in the quotient σ -algebra
Bν(X ). Given A ∈ B(X ), we define Borel sets A+ and A− through their indicators according to the
formulas

1A+(x) :=






1 if x ∈ supp(ν) and lim supr↓0
ν(Br(x)∩A)
ν(Br(x))

> 0,

1 if x /∈ supp(ν),
0 if x ∈ supp(ν) and lim supr↓0

ν(Br(x)∩A)
ν(Br(x))

= 0,

x ∈ X ,

1A−(x) :=






1 if x ∈ supp(ν) and lim infr↓0
ν(Br(x)∩A)
ν(Br(x))

= 1,

0 if x /∈ supp(ν),
0 if x ∈ supp(ν) and lim infr↓0

ν(Br(x)∩A)
ν(Br(x))

< 1,

x ∈ X .

Notice that for any Borel set A, we have A− ⊆ A+. In addition, notice that A+ = (A+)0 as well as
A− = (A−)0. In particular, if A is a solution to problem (2.12), then both A+ and A− are solutions to
problem (1.7) according to Lemma 3.17.

The next is an immediate consequence of Proposition 3.23 and the above definitions.
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Corollary 3.24. Assume that ν is a finite measure. Among the set of solutions to problem (1.7) of the
form A+ for some solution A ∈ B(X ) of problem (2.12), A+

max is maximal in the sense of inclusions.
Likewise, among the set of solutions to problem (1.7) of the form A− for some solution A of problem
(2.12), A−

min is maximal in the sense of inclusions. In addition, A−
min ⊆ A+

max.

Proof. Notice that if A =ν A′, we immediately have A+ ⊆ (A′)+ and A− ⊆ (A′)−. Since we have
Amin =ν A =ν Amax for any solution A of (2.12), the first part of the corollary follows. The inclusion
A−

min ⊆ A+
max follows from A−

min ⊆ A+
min ⊆ A+

max. !

3.6 Regularity

The goal of this section is to prove that, in an Euclidean setting, it is possible to construct a smooth
minimizer of the adversarial problem. We offer a direct construction, under which normal vectors of the
boundary are Hölder continuous and shall prove the following statement.

Theorem 3.25. Consider the case where X = Rd, equipped with the standard Euclidean metric. Then,
for any ε > 0, there exists a minimizer B ∈ B(Rd) to the adversarial problem (1.7) which is locally the
graph of a C1,1/3 function.

We will first deduce a series of regularity properties of minimizers that, although not as strong
as those in Theorem 3.25, hold for general metric measure spaces (X , d, ν) satisfying Assumption 1,
before proceeding to the proof of Theorem 3.25.

We start by introducing some fundamental concepts of mathematical morphology. In particular, we
define the following important concepts from mathematical morphology (see, e.g. Chapter 2 in [54]).

Definition 3.26. (Morphology). Let A ⊆ X be a set and ε > 0. We define its

• dilation as Aε := {x ∈ X : dist(x, A) < ε},
• erosion as A−ε := {x ∈ X : dist(x, Ac) ≥ ε},
• closing as clε(A) := (Aε)−ε,

• opening as opε(A) := (A−ε)ε.

Notice that all these sets are measurable as they are open or closed sets. In the following proposition,
we collect a couple of important properties of these operations, which can be proved in a straightforward
way (see [33]).

Proposition 3.27. The following statements hold true:

• clε(A) is a closed set that contains A,

• opε(A) is an open set contained in A,

• clε(A)ε = Aε,

• opε(A)−ε = A−ε,

• A−ε = ((Ac)ε)c,

• clε(Ac) = opε(A)c.
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The following definition of one-sided regularity of sets is strongly connected to the opening and
closing procedures.

Definition 3.28. (Inner and outer regularity). A set A ⊆ X is called ε inner regular relative to the
metric d if, for any point, x ∈ ∂A, then there exists a point y ∈ X so that d(x, y) = ε and Bε(y) ⊆ A. A
set A ⊆ X is called ε outer regular relative to the metric d if instead we can always find such a y ∈ X
satisfying the inclusion Bε(y) ⊆ Ac.

Note that by definition, for any set A ⊆ X , its closing clε(A) is ε outer regular, whereas its opening
opε(A) is ε inner regular. Furthermore, in X = Rd equipped with the Euclidean metric, it was shown in
[39] that a set which is both ε inner and outer regular has a C1,1 boundary.

A similar concept of regularity, called pseudo-certifiable robustness, is introduced and used in [3].
There, a set A is called pseudo-certifiably robust if every point in the set (or its complement) is an
element of an ε-ball contained in the set (or its complement). It is easy to show that this notion of
regularity implies inner and outer regularity in the sense of Definition 3.28.

We now show that the opening and closing operations do not increase the adversarial risk (3.16). As
a consequence, the operations turn minimizers into minimizers.

Lemma 3.29. For A ∈ B(X ), it holds

R̃ε(clε(A)) ≤ R̃ε(A), R̃ε(opε(A)) ≤ R̃ε(A).

Proof. Using Proposition 3.27, we can rewrite the adversarial risk as follows:

R̃ε(A) = w0

∫

X
sup
Bε(x)

1A dρ0(x) + w1

∫

X
sup
Bε(x)

1Ac dρ1(x)

= w0ρ0(A
ε) + w1ρ1((A

c)ε)

= w0ρ0(A
ε) + w1 − w1ρ1(((A

c)ε)c)

= w0ρ0(A
ε) + w1 − w1ρ1(A

−ε).

Using Proposition 3.27 again, we get

R̃ε(clε(A)) = w0ρ0(clε(A)ε) + w1 − w1ρ1(clε(A)−ε)

≤ w0ρ0(A
ε) + w1 − w1ρ1(A

−ε) = R̃ε(A),

R̃ε(opε(A)) = w0ρ0(opε(A)ε) + w1 − w1ρ1(opε(A)−ε)

≤ w0ρ0(A
ε) + w1 − w1ρ1(A

−ε) = R̃ε(A). !

Corollary 3.30. Let A ∈ B(X ) be a minimizer of (1.7). Then, opε(A) and clε(A) are also minimizers.

We can now show that one can always construct a closed and ε outer regular maximal set and an
open and ε inner regular minimal set which solves the adversarial problem (1.7).

Proposition 3.31. Assume that ν is a finite measure.
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There exist two solutions A′
+ and A′

− to (1.7) with the following properties:

1. A′
− ⊆ A′

+.

2. A′
+ is a closed set and A′

− is an open set.

3. A′
+ is ε outer regular relative to the metric d and A′

− is ε inner regular with respect to the metric
d.

4. Amax ∼ν A′
+ and Amin ∼ν A′

−.

Proof. Let A′
+ := clε(A+

max) and let A′
− := opε(A

−
min). Notice that by Corollaries 3.24 and 3.30, we

have

A′
− ⊆ A−

min ⊆ A+
max ⊆ A′

+.

Steps (2) and (3) on the other hand follow directly from the definitions of A′
± as closing and opening.

Finally, since Amax (and hence also A+
max) is a maximal solution of (2.12), and by definition A′

+ ⊇ A+
max,

it has to hold A′
+ ∼ν A+

max ∼ν Amax. An analogous argument applies to A′
−. !

Remark 3.32. In the case where X = Rd under the standard Euclidean metric, one can directly
conclude some mild regularity of maximal and minimal sets. For example, using the results in [47],
one may conclude that the boundaries of the maximal and minimal sets are sets of locally finite classical
perimeter of order ε−1; see [2] for a definition of classical perimeter. Similar results were examined
in [36]. Furthermore, at any point where curvatures are defined the outer (inner) regularity provides a
uniform ε−2 upper (lower) bound on the sectional curvatures. However, as manifest in the example in
Fig. 4, the maximal and minimal sets need not have boundaries that are even graphs of functions at every
point.

The next statement asserts that any intermediate set between the opening and the closing of a
minimizer is again a minimizer.

Proposition 3.33. Let A ∈ B(X ) be a minimizer of (1.7) and let B ∈ B(X ) satisfy

opε(A) ⊆ B ⊆ clε(A).

Then, B is also a minimizer of (1.7).

Proof. We abbreviate Â = clε(A) and Ã = opε(A) and notice that Ã ⊆ Â. Furthermore, we notice that
by the definition of closing and opening, we have

(Â)−ε = (Ã)−ε,

which in turn implies that for any set B ∈ B(X ) with Ã ⊆ B ⊆ Â, it holds B−ε = (Â)−ε. Similarly, we
have Ãε ⊆ Bε ⊆ (Â)ε. We then note that as in the proof of Lemma 3.29

R̃ε(A) = w0ρ0(A
ε) + w1ρ1((A

−ε)c).

However, given the previous set inclusions, and the fact that thanks to Corollaries 3.30, it holds R̃ε(Â) =
R̃ε(Ã), this then gives that R̃ε(B) = R̃ε(Ã) or in other words B also minimizes the adversarial risk. !
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Fig. 5. A set which satisfies clε(opε(A)) = A but is not inner regular.

It might be tempting to think that one could just consider the opening of the closing (or vice versa)
of a set to generate a minimizer which is both outer and inner regular. However, this approach fails
in general, as the following example shows. Even worse, revisiting Fig. 3 in Example 3.19 shows that
in some cases, there is no adversarial minimizer which is both ε inner and outer regular: indeed, a
minimizer of that problem can be at most (

√
2 − 1)ε ≈ 0.41ε inner and outer regular. Hence, care must

be taken in order to demonstrate the existence of a regular minimizer to the adversarial classification
problem.

Example 3.34. In this example, we consider the set A given by the union of two balls with radius ε > 0
with two non-convex triangles, as depicted in Fig. 5. The set can be defined as A := clε(Bε(−ε, 0) ∪
Bε(ε, 0)). It satisfies opε(A) = Bε(−ε, 0) ∪ Bε(ε, 0), and hence, clε(opε(A)) = A. Still, it is not inner
regular since the boundary points which are contained in the two triangles do not possess a touching ball
with radius ε that is contained in A.

The previous example demonstrates that it is not possible to generate ε-regular sets by solely
utilizing the opening and closing of a set. The example shown in Fig. 4 demonstrates that the maximal
and minimal sets need not have boundaries that are even locally the graph of a function.

We now proceed to prove our central regularity result, Theorem 3.25. Note that, although generating
an inner and outer regular minimizer through morphological operations is not possible, it is plausible
that one could construct a minimizer which is more regular (for example, possessing a C1,1 boundary),
but we leave that question to later work.

Proof. (Proof of Theorem 3.25). Again, we abbreviate Â = clε(A) and Ã = opε(A). We notice that Â is
ε outer regular, while Ã is ε inner regular, and that Ã ⊆ Â. Thanks to Proposition 3.33 any B ∈ B(Rd)

with Ã ⊆ B ⊆ Â is a minimizer, see Fig. 6 for an illustration. We now turn to constructing B with the
desired properties.

We recall (cf. [38, Section 13.1] or originally in [40]) that for any open set V , there exists a
regularized (signed) distance function dr ∈ C∞((∂V)c) satisfying

1
2

≤ dr(x)

d̄(x, V)
≤ 3

2
, |∂αdr(x)| ≤ cα

|dr(x)||α|−1 . (3.19)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/2/921/6986903 by guest on 03 June 2023



THE GEOMETRY OF ADVERSARIAL TRAINING 953

Fig. 6. Nested sets Ã ⊆ B ⊆ Â in the proof of Theorem 3.25. Ã is inner regular and Â is outer regular. The whole region between
∂Ã and ∂Â is (Ã ∪ Âc)c and the boundary of B is by construction a smooth curve contained in that set.

Here, d̄(x, V) is the signed distance with respect to the Euclidean metric, namely

d̄(x, V) :=
{

infy∈V |x − y| if x ∈ Vc,
− infy∈Vc |x − y| if x ∈ V .

As we will need to check a more detailed property of the function dr, we briefly give its definition: we
let φ ∈ C∞

c (Rd) be a non-negative function with support on the unit ball and integral 1. We define

G(x, t) =
∫

Rd
d̄

(
x − t

y
2

, V
)

φ(y) dy.

One can show that there exists a unique solution to G(x, t) = t, and we let dr be that unique solution,
namely G(x, dr(x)) = dr(x). Indeed, as proved in [40], this follows from Banach fixed point theorem
and the fact that G(x, ·) is Lipschitz with Lipschitz constant strictly less than 1.

We let d̃1 and d̃2 be regularized distance functions for the sets Ã and Âc, respectively. By considering
the function d̃1/d̃2, we may use Sard’s theorem, which applies as the function is C∞, to find a κ ∈
[1/2, 2] so that κ is a regular value of d̃1/d̃2 on the set (Ã ∪ Âc)c. Here, we recall that a regular value
of a function is one so that the gradient does not vanish on the entire set {x ∈ Rd : d̃1(x)/d̃2(x) = κ}.
Our candidate set B will now be B := {x ∈ Rd : d̃1(x) ≤ κ d̃2(x)}. Due to the first part of (3.19), we
know that the signs of the original distance functions to the sets Ã, Âc and the signs of their regularized
versions coincide. From this observation, it is now straightforward to see that Ã ⊆ B ⊆ Â, and hence,
B is a minimizer of the adversarial problem according to Proposition 3.33: thanks to the fact that κ is a
regular value, anywhere in the interior of (Ã ∪ Âc)c, we may express the boundary of B as the graph of
a C∞ function. In light of the main result in [39], we also have that this set is locally the graph of a C1,1

function away from (Ã ∪ Âc)c. Thus, it only remains to check the regularity up to the boundary points
of (Ã ∪ Âc)c.
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To this end, we need to establish regularity estimates on ∇d̃1 and ∇d̃2 which hold uniformly at
points on the boundary of B near where the boundaries of Ã and Â coincide. To begin, we notice that

∂idr(x) =
∫

Rd ∂id̄
(
x − dr(x)

y
2 , V

)
φ(y) dy

1 + 1
2

∫
Rd ∂id̄

(
x − dr(x)

y
2 , V

)
φ(y) dy

.

Using the fact that |∇d̄| ≤ 1 a.e. and that z ,→ z
1+z/2 is uniformly Lipschitz on [−1, ∞), it then suffices

to estimate the continuity of x ,→
∫

Rd ∇d̄(x − dr(x)
y
2 , V)φ(y) dy. To this end, let us consider x1, x2 in

the set where 1/2 < d̃1
d̃2

< 2. For such points, let us denote

D(x1, x2) = min(d̃1(x1), d̃2(x1), d̃1(x2), d̃2(x2)).

We notice that, by the choice of x1, x2, it holds that D(x1, x2) ≥ 0 and

2D(x1, x2) ≥ max(d̃1(x1), d̃2(x1), d̃1(x2), d̃2(x2)). (3.20)

We consider separately two cases. First, if

εα|x1 − x2|α ≤ D(x1, x2),

we then use the classical estimate (3.19) to show that

|∇dr(x1) − ∇dr(x2)| ≤ C
|x1 − x2|

min(d̃1(x1), d̃2(x1), d̃1(x2), d̃2(x2))
≤ Cε−α|x1 − x2|1−α .

On the other hand, for the opposite case where

εα|x1 − x2|α ≥ D(x1, x2),

by using the estimate from Lemma 3.35 below along with equation (3.20) and the fact that φ has compact
support we then may deduce that

|∇dr(x1) − ∇dr(x2)| ≤ C
∣∣∣∣

∫

Rd
∇d̄

(
x1 − dr(x1)

y
2

, V
)

φ(y) dy −
∫

Rd
∇d̄

(
x2 − dr(x2)

y
2

, V
)

φ(y) dy
∣∣∣∣

≤ C
∫

Rd
ε−1

(∣∣∣x1 − dr(x1)
y
2

− x2 + dr(x2)
y
2

∣∣∣ + 2D(x1, x2)
)

φ(y) dy

≤ Cε−1
(
|x1 − x2| +

√
D(x1, x2)

)

≤ Cε−1|x1 − x2| + Cεα/2−1|x1 − x2|α/2.

Setting α = 2/3 and applying the result to the regularized distance functions d̃1, d̃2 then establishes the
fact that the function defining ∂B is uniformly C1,1/3, even up to the boundary, concluding the proof. !
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We notice that in the previous proof, the dependence on ε in the continuity estimates near the
boundary is explicit and improves as ε increases. This intuitively makes sense, and although our current
estimates in the ‘interior’ of our bad region do not give explicit dependence upon ε, it seems plausible
that the dependence on ε should be good.

We now give the central geometric lemma used in the proof of Theorem 3.25.

Lemma 3.35. Let Ã ⊆ Rd be ε inner regular, let Â ⊆ Rd be ε outer regular and let Ã ⊆ Â. Let x, y ∈ Â\Ã,
and let both be points of differentiability of the distance function from both Ã and Â. Define

D(x, y) := max(d(x, Ã), d(x, Â), d(y, Â), d(y, Ã)).

Then

|∇d(x, Ã) − ∇d(y, Ã)| ≤ Cε−1
(
|x − y| +

√
D(x, y)

)
,

at any points x, y where the distance is differentiable (which holds a.e. by Rademacher’s theorem).

Proof. This lemma is a direct extension of the work in [39] to our setting, and this proof expands upon
the four ball lemma given therein. We recall that the gradient of the distance function is given by the unit
vector pointing away from the closest point in the set. Let ux = ∇d(x, Ã), uy = ∇d(y, Ã), vx = ∇d(x, Â)

and vy = ∇d(y, Â). Let x̃, ỹ be the closest points in Ã to x and y, and let x̂, ŷ be the closest points in Â to
x and y. By the regularity conditions, we know that there are four balls

B̃x = Bε(x̃ − εux), B̃y = Bε(ỹ − εuy), B̂x = Bε(x̂ − εvx), B̂y = Bε(ŷ − εvy),

which satisfy B̃i ∩ B̂j = ∅ for any i, j ∈ {x, y}, and so that x̃, ỹ do not belong to either B̃x or B̃y. We also

notice that |x̃ − x̂| ≤ 2 max(d(x, Ã), d(x, Â)).
We then choose the smallest positive values of δ̃x and δ̃y so that boundaries of the dilations (B̃x)

δ̃x

and (B̃y)
δ̃y touch the boundaries of either B̂x or B̂y at exactly one point. From here on, we will assume

that (B̃x)
δ̃x touches B̂x and (B̃y)

δ̃y touches B̂y, as the other cases may be handled analogously. Call the

points where those boundaries coincide x̄ and ȳ. We note that clearly δ̃x ≤ 2 max(d(x, Ã), d(x, Â) and
δ̃y ≤ 2 max(d(y, Ã), d(y, Â).

We may directly apply the four ball lemma from [39] to conclude that the unit vectors ūx, ūy from
the center of each ball to x̄ and ȳ satisfy

|ūx − ūy| ≤ Cε−1|x̄ − ȳ|. (3.21)

It then remains only to bound the difference between the ‘bar’ variables and the original ones.
Let ūx be the unit vector pointing from the center of (B̃x)

δ̃x to x̄. We then may compute

cos(θ(ūx, ux))(ε + d(x, Ã)) + cos(θ(−ūx, vx)(ε + d(x, Â)) = 2(ε + δ̃x),

where we are letting θ(·, ·) denote the angle between the vectors. We may conclude that θ(−ūx, vx) and
θ(ūx, ux) are bounded by a constant times

√
D(x, y). By using the law of cosines, we may compute that
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|ux − ūx| < Cε−1√D(x, y) and that |x̄ − x| < C
√

D(x, y). Using the triangle inequality and combining
with (3.21) then concludes the proof. !

4. Other adversarial models

We finish the paper with a couple of generalizations and a discussion on similar adversarial models,
some of which also give rise to L1 + TV problems. In this section, we keep the discussion rather formal
in order to not distract from the main messages that we want to convey. We also do not make any attempt
to interpret or expound upon these models: the goal is simply to identify alternative adversarial models
which have analogous variational forms.

4.1 Regression problems

Instead of studying binary classification, one can also study adversarial regression problems of the form

inf
u∈L1(X ;ρ)

E(x,y)∼µ

[

sup
x̃∈Bε(x)

|u(x̃) − y|
]

, (4.1)

where y can now take any real value. Subtracting the empirical risk, one can easily show that this
problem can be reformulated as

inf
u∈L1(X ;ρ)

E(x,y)∼µ [|u(x) − y|] + ε T̃Vε(u; µ), (4.2)

where the total variation is now given by

T̃Vε(u; µ) = 1
ε

∫∫

X×Y
sup

x̃∈Bε(x)

[|u(x̃) − y| − |u(x) − y|
]

dµ(x, y)

= 1
ε

∫

X

∫

π−1
1 (x)

sup
x̃∈Bε(ξ)

[|u(x̃) − y| − |u(ξ) − y|
]

dµx(ξ , y) dρ(x).
(4.3)

In the disintegrated formulation, π1 : X × Y → X denotes the projection onto the first factor, ρ :=
(π1)*µ is the first marginal of µ, and (µx)x∈X ⊆ P(X × Y) is a family of disintegrations of µ.

As before, one has to define an essential version of this total variation to have a well-defined
functional and introduce the measure ν as in Section 3. The analysis performed that there can be
generalized to this regression setting; however, in the regression context, the interpretation of the
associated perimeter is not obvious. Indeed, (4.3) is a highly data-dependent convex regularization
functional. This provides theoretical motivation for recent work which studies data-driven convex
regularizers for solving inverse problems; see, e.g. [46]. To make this connection a bit clearer, we assume
for simplicity that the data y are given by f (x). In this case, (4.2) reduces to the simpler formula

inf
u∈L1(X ;ρ)

{∫

X
|u(x) − f (x)| dρ(x) +

∫

X
sup

x̃∈Bε(x)

[|u(x̃) − f (x)| − |u(x) − f (x)|
]

dρ(x)

}

. (4.4)
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4.2 Random perturbation

Let us consider random perturbations, i.e.

inf
A∈B(X )

E(x,y)∼µ

[
Ex̃∼νx

[∣∣1A(x̃) − y
∣∣]] , (4.5)

where ‘nature’ chooses x̃ randomly following the law of a family of probability measures (νx)x∈X .
One natural candidate for such νx would be associated with a random walk [43]. Since in this setting,
there is no adversarial attack in the game-theoretic sense, which would involve some sort of min-max
structure, one cannot rewrite this problem as a variational regularization problem. Indeed, subtracting
the empirical risk E(x,y)∼µ[|1A(x) − y|] from the objective does not yield a non-negative term.

However, in the case that X is a vector space, we can use the law of total expectation (disintegration)
and a change of variables to obtain

E(x,y)∼µ

[
Ex̃∼νx

[∣∣1A(x̃) − y
∣∣]]

= w0

∫

X

∫

X
1A(x̃) dνx(x̃) dρ0(x) + w1

∫

X

∫

X
1Ac(x̃) dνx(x̃) dρ1(x)

= w0

∫

X

∫

X
1A(x + x̃) d(Tx)*νx(x̃) dρ0(x) + w1

∫

X

∫

X
1Ac(x + x̃) d(Tx)*νx(x̃) dρ1(x),

where Tx : X → X is defined by Tx(x̃) = x̃ − x. If the push forward measure (Tx)*νx does not depend
on x, which is the case, e.g. whenever νx := (T−x)*ν for some measure ν, we can abbreviate it by ν, and
we can rewrite this as

E(x,y)∼µ

[
Ex̃∼νx

[∣∣1A(x̃) − y
∣∣]] = w0(ν 0 ρ0)(A) + w1(ν 0 ρ0)(A

c) = E(x,y)∼µ̃

[∣∣1A(x) − y
∣∣] ,

where the measure µ̃ has the marginals (π1)*µ̃ = ν 0 ρ and (π2)*µ̃ = (π2)*µ.
Hence, the random perturbation in (4.5) does not actually lead to an adversarial model, but rather,

it replaces the data distribution ρ in the space X with the convolution ν 0 ρ and likewise changes the
conditionals ρ0 and ρ1 to ν 0 ρ0 and ν 0 ρ1. We note that this structure is still similar to the form of R̃ε

shown in the proof of Lemma 3.29. Problems with similar structure have also been considered in the
context of decentralized optimal control [61].

4.3 Random perturbation with adversarial decision

A similar model to the one from the previous section, however containing an adversarial action, is the
following:

inf
A∈B(X )

E(x,y)∼µ

[
Eξ∼νx,ε

[
max

x̃∈{ξ ,x}

∣∣1A(x̃) − y
∣∣
]]

. (4.6)

In words, in the above model, ‘nature’ randomly draws a point ξ according to a probability measure (e.g.
determined by a random walk) νx,ε, which can depend on x and a parameter ε > 0, and the adversary
can either use this proposed perturbation or reject it. The adversary’s decision is, of course, based on
whether the randomly chosen point ξ creates a larger loss than the attacked point x. For example, if the
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attacked point x lies in A and this point should have the label 1, the adversary can do nothing if it draws
another point in A. Only if νx,ε draws a point outside of A will the adversary accept it. This adversarial
model is reminiscent of [37], where mean curvature flow is obtained as a limit of a game theoretical
problem in which an adversary chooses between alternatives.

As it turns out, problem (4.6) can be rewritten as

inf
A∈B(X )

E(x,y)∼µ

[∣∣1A(x) − y
∣∣] + ε T̂Vε(1A), (4.7)

where the total variation functional T̂Vε takes the form

T̂Vε(u) := w0

ε

∫

X

∫

X
(u(x̃) − u(x))+ dνx,ε(x̃) dρ0(x)

+ w1

ε

∫

X

∫

X
(u(x) − u(x̃))+ dνx,ε(x̃) dρ1(x).

(4.8)

Since here the adversarial decision takes place on the finite set {ξ , x}, this problem is much easier to
analyze and does not require a redefinition using an essential total variation or perimeter. For instance,
if νx,ε 8 ρ for all x ∈ X , then one can simply work on L∞(X ; ρ). Indeed, this is a highly relevant case
as the following example shows.

Example 4.1. If ρ0 = ρ1, w0 = w1, then this reduces to the following nonlocal total variation energy:

1
ε

∫

X

∫

X
|u(x) − u(x̃)| dνx,ε(x̃) dρ(x),

whose properties and associated gradient flow have been analyzed in the framework of metric random
walk spaces [43]. This nonlocal total variation functional has furthermore been extensively applied in
image processing, see [31, 64].

If we assume that the random walk νx,ε has the special structure dνx,ε
dρ (x̃) = ηε(x − x̃) for some

function ηε : X → R, we obtain

1
ε

∫

X

∫

X
ηε(x − x̃)|u(x) − u(x̃)| dρ(x̃) dρ(x). (4.9)

For the special case when ρ = 1
N

∑N
i=1 δxi

is an empirical measure, (4.9) reduces to the graph total
variation

1
ε

N∑

i,j=1

ηε(xi − xj)|u(xi) − u(xj)|. (4.10)

Total variations of these forms and their limits as ε → 0 have been intensively analyzed in the context
of graph-based clustering methods and trend filtering, see, e.g. [28–30]. Typical choices for ηε are
ηε(z) = 1

εd 1Bε(x)(z) or ηε(z) = 1
εd exp(−|z/ε|2).
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4.4 General loss functions

One can also study adversarial problems with a more general loss function. The baseline model for this
endeavour is the following generalization of (1.7):

inf
A∈B(X )

E(x,y)∼µ

[

sup
x̃∈Bε(x)

'(1A(x̃), y)

]

. (4.11)

Subtracting the empirical risk, we can decompose the adversarial risk as

E(x,y)∼µ

[

sup
x̃∈Bε(x)

'(1A(x̃), y)

]

= E(x,y)∼µ

[
'(1A(x), y)

]
+ ε T̃Vε(1A; µ), (4.12)

where the total variation is given by

T̃Vε(u; µ) = w0

ε

∫

X
sup

x̃∈Bε(x)
'(u(x̃), 0) − '(u(x), 0) dρ0(x)

+ w1

ε

∫

X
sup

x̃∈Bε(x)
'(u(x̃), 1) − '(u(x), 1) dρ1(x).

(4.13)

For instance, for the cross entropy loss '(u, y) = −y log u − (1 − y) log(1 − u), this simplifies to

T̃Vε(u; µ) = w0

ε

∫

X
log(1 − u(x)) − inf

x̃∈Bε(x)
log(1 − u(x̃)) dρ0(x)

+ w1

ε

∫

X
log u(x) − inf

x̃∈Bε(x)
log u(x̃) dρ1(x), 0 ≤ u ≤ 1,

(4.14)

which is similar to our total variation (3.1) applied to log u instead of u. Notice that in general problem
(4.11) and its relaxation to functions 0 ≤ u ≤ 1 may not coincide, as the cross entropy example suggests.
For general loss functions (4.13) is more difficult to interpret: this is a primary reason that we restricted
our analysis to the case '(u, y) = |u − y|.

5. Conclusions

In this paper, we have studied adversarial training problems in a variety of non-parametric settings and
have established an equivalence with regularized risk minimization problems. The regularization terms
in these risk minimization problems are explicitly characterized and correspond to a type of nonlocal
perimeter/total variation. Our work provides new conceptual insights for adversarial training problems
and introduces new mathematical tools for their quantitative analysis. In particular, we have used tools
from the calculus of variations to rigorously prove the existence of solutions, we have identified a
convex structure of the problem that allows us to introduce appropriate notions of maximal and minimal
solutions and in turn introduced a convenient notion of uniqueness of solutions, and finally, we have
presented a collection of results on the existence of regular solutions to the original adversarial training
problem.
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Some research directions that stem from this work include: (1) the extension of the analysis
presented in this work to multi-label classification settings, (2) investigating a sharper analysis of the
regularity properties of solutions to adversarial training problems in both the Euclidean setting, as well
as for more general distance functions and spaces.

In addition, as already discussed in the introduction, part of the motivation for this work came from
the work [59] where one of the main objectives was to study the regularization effect of adversarial
training on the decision boundaries of optimal robust classifiers (starting with the Bayes classifier at
ε = 0). The structure of solutions studied in the present paper allows us to make the line of work
initiated in [59] more concrete and to approach it with a larger set of mathematical tools at hand. In
particular, this work raises the question of whether it is possible to track maximal (minimal) solutions
to adversarial training problems as ε grows from 0 to infinity. In words, we are interested in defining a
suitable notion of solution path (Aε)ε>0 for the family of adversarial training problems (1.7). The study
of solution paths, in particular their algorithmic use and regularity, has quite some tradition in the field
of variational regularization methods, see, e.g. [10, 52, 58], but in the context of adversarial training less
is known about their properties. Notice that one important difference with the standard regularization
setting is that the equivalent regularization formulation of (1.7) has a regularization functional that
changes with the regularization parameter ε. This feature makes the analysis more challenging.

It is also interesting to consider the asymptotics as ε ↓ 0. In the special case where (X ,d) is Rd with
the Euclidean metric and wiρi is replaced by Ld, the functionals Perε(·; µ) are known to Γ -converge
to the classical perimeter as ε ↓ 0 [18]. In our more general setting, it is particularly interesting to
investigate which information of the measures ρ0 and ρ1 ‘survives’ in the limit as ε ↓ 0 and whether a
Γ -convergence result can be proven.

Finally, in this regime, the proof of our regularity result Theorem 3.25 deteriorates and one can at
most expect a set of finite perimeter.
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A. Technical definitions

In this section, we provide various technical definitions used throughout this work.

Definition A.1. (Hölder spaces and sets). Let U ⊆ Rd be an open subset of Rd. For 0 < α ≤ 1 a
function f : U → R is called α-Hölder continuous if

sup
{ | f (x) − f (y)|

|x − y| α
: x, y ∈ U, x += y

}
< ∞.

For k ∈ N, a function f : U → R is said to belong to Ck,α(U) if it is k times differentiable on U and its
kth derivatives are α-Hölder continuous on U. We say that an open subset of Rd belongs to Ck,α if it can
be locally represented as the subgraph of a Ck,α(U) function.

Definition A.2. (Push-forward measure). Let (X1, Σ1), (X2, Σ2) be two measurable spaces and let
f : X1 → X2 be measurable. Given a measure µ on X1, we define the push-forward measure on X2 by
the formula

f*µ(B) := µ({x ∈ X1 : f (x) ∈ B}),

where B is an arbitrary set in Σ2.
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The next proposition is a classical result in measure theory and may be found, e.g. in [9],
Section 3.1.

Proposition A.3. (Hahn decomposition). Let µ be a signed measured on a measure space (X, Σ). Then,
there exists two measurable sets P, N so that P ∪ N = X, P ∩ N = ∅ and so that µ(E) ≥ 0 for all E ⊆ P
and µ(F) ≤ 0 for all F ⊆ N.

Theorem A.4. (Lebesgue differentiation theorem, see, e.g. Section 3.4 in [34]). Let (X ,d, ν) be a metric
measure space with ν satisfying (3.6), and let f ∈ L1(X , ν). Then, for ν-almost every x ∈ X , we have
that

lim
r↓0

1
ν(B(x, r))

∫

B(x,r)
f (y) dν(y) = f (x).

Definition A.5. (Weak-* convergence and compactness). Let X be a Banach space of R with dual X∗.
We say that a sequence (yk)k∈N ⊆ X∗ is weak-* convergent to y ∈ X∗ if

lim
k→∞

yk(x) = y(x), ∀x ∈ X.

Theorem A.6. (Banach–Alaoglu). Let X be a Banach space of R with dual X∗. Then, any bounded
subset of X∗ is precompact in the weak-* topology.

B. Alternative formulations of the adversarial problem

At this point, we review a few other established formulations of the adversarial problem and add
pointers towards the relevant literature. These reformulations provide different ways of understanding
and analyzing the original adversarial problem.

B.1 Open vs closed balls

We would like to continue the discussion in Remark 1.3 and elaborate on why the adversarial model
with open balls that we study here does not require the universal σ -algebra. We observe that the closed
norm balls model which was considered in [3, 50] suffers from the problem that

sup
Bε(x)

1A = 1A⊕ε ,

where the set A⊕ε := ⋃
x∈A Bε(x) is in general not Borel measurable even though A might be. Here,

Bε(x) := {y ∈ X : d(x, y) ≤ ε} denotes the closed ε-ball around x ∈ X . One can sandwich A⊕ε

between open and closed parallel sets (in particular Borel sets) like this

{x ∈ X : dist(x, A) < ε} ⊆ A⊕ε ⊆ {x ∈ X : dist(x, A) ≤ ε},
but the inclusions may be strict in general, see [50]. The situation is markedly different for open balls,
where one has

sup
Bε(x)

1A = 1A⊕ε ,

where A⊕ε := ⋃
x∈A Bε(x) is an open set and satisfies the following.
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Lemma B.1. It holds that

{x ∈ X : dist(x, A) < ε} =
⋃

x∈A

Bε(x).

Proof. Let y ∈ X such that dist(y, A) < ε. Then, there exists a sequence of points (xk)k∈N ⊆ A
with limk→∞ d(y, xk) = dist(y, A) < ε. Hence, there exists K ∈ N such that for all k ≥ K, it holds
d(y, xk) < ε and therefore

y ∈
⋃

k≥K

Bε(xk) ⊆
⋃

x∈A

Bε(x).

This establishes the inclusion ‘⊆’. For the converse inclusion, let y ∈ ⋃
x∈A Bε(x). Then, there exists

x ∈ A such that y ∈ Bε(x) and therefore

dist(y, A) ≤ d(y, x) < ε,

which establishes the inclusion ‘⊇’ and concludes the proof. !

B.2 ∞-Wasserstein DRO problem

It is well-known [50] that the closed ball adversarial problem is indeed a DRO problem in the form
of (1.1) with respect to a special ∞-Wasserstein distance. To this end, we introduce an ∞-Wasserstein
distance between two measures µ and µ̃ as

W∞(µ, µ̃) := inf
π∈Γ (µ,µ̃)

π -ess sup c∞, (B1)

where the cost function is given by

c∞ :
(
X × {0, 1}

)2 → [0, +∞], (B2a)

c∞
(
(x, y), (x̃, ỹ)

)
:=

{
d(x, x̃) if y = ỹ,
+∞ if y += ỹ.

(B2b)

Proposition B.2. ([50]). Let X be Polish. Then, the adversarial risk of A ∈ B(X ) can be reformulated
as

E(x,y)∼µ

[

sup
x̃∈Bε(x)

∣∣1A(x̃) − y
∣∣
]

= sup
µ̃∈P(X×{0,1})

W∞(µ,µ̃)≤ε

E(x,y)∼µ̃

[∣∣1A(x) − y
∣∣] . (B3)

B.3 Dual of an optimal transport problem

It is also known [6, 50, 59] that the adversarial problem may be reformulated as the dual of an optimal
transport problem. The following result is stated in the setting X = Rd endowed with the Euclidean
distance but can be generalized to arbitrary metric spaces in a straightforward way. Let µS be the
probability distribution on X × {0, 1} defined as

µS := TS
* µ, where TS(x, y) := (x, 1 − y), ∀(x, y) ∈ X × {0, 1}.
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The map TS can be interpreted as a transformation that leaves features unchanged while swapping labels.
The following statement is proven in [59].

Proposition B.3. (cf. [59, Corollary 3.2). Let cε : (Rd × {0, 1})2 → R be the function defined by

cε(z1, z2) := 1{|x1−x2|>2ε}∪{y1 +=y2},

where we write zi = (xi, yi). Then,

inf
A∈B(X )

E(x,y)∼µ

[

sup
x̃∈Bε(x)

∣∣1A(x̃) − y
∣∣
]

= 1
2

− 1
2

inf
π∈Γ (µ,µS)

∫∫

(Rd×{0,1})2
cε(z1, z2) dπ(z1, z2). (B4)

This type of result was first established independently in [6, 50] where the balanced case w0 = w1 =
1/2 was considered. The OT problem on the right-hand side of (B4) is an alternative way to compute
the optimal adversarial risk. This alternative has clear advantages over the original formulation of the
problem in situations such as when µ is an empirical measure (the standard setting in practice). Indeed,
in that setting, problem (1.7) is in principle an infinite dimensional problem, while the OT problem
will always be finite dimensional. One may speculate further and wonder whether there is a connection
between solutions to the OT problem and optimal adversarially robust classifiers, or in other words,
whether one can construct adversarially robust classifiers from a solution to the OT problem. This is
indeed the case and such results will be elaborated on in future work.

C. Additional proofs

Here, we prove Lemma 3.12, which we restate for convenience.

Lemma C.1. Under Assumption 1 for any Borel measurable function u ∈ L∞(X ; ν), there exists u0 :
X → R such that u = u0 holds ν-almost everywhere and

sup
Bε(x)

u0 = ν-ess sup
Bε(x)

u0, inf
Bε(x)

u0 = ν-ess inf
Bε(x)

u0, ∀x ∈ suppρ. (C1)

Proof. Step 1: Let t1, t2, t3, . . . be an enumeration of the rational numbers. In what follows, we construct
a collection of measurable sets A0

t1 , A0
t2 , A0

t3 , . . . satisfying the following properties:

1. For every k, we have {u ≥ tk} ∼ν A0
tk .

2. For every k, A0
tk satisfies (3.9).

3. For any two k += l, if tk < tl, then 1A0
tl
(x) ≤ 1A0

tk
(x) for every x ∈ suppν.

We construct these sets inductively. First, following the proof of Lemma 3.8 applied to the set A =
{u ≥ t1}, we obtain the set A0

t1 defined through its indicator function according to

1A0
t1
(x) :=






1 if x ∈ Dε
+(t1),

0 if x ∈ Dε
−(t1),

1{u≥t1} if x ∈ Rd \ (Dε
+(t1) ∪ Dε

−(t1)).

In the above, we use the notation Dε
+(t1), Dε

−(t1), as well as the notation D+(t1), D−(t1), to denote the
sets introduced in the proof of Lemma 3.8 emphasizing that these sets are associated to the set {u ≥ t1}.

Now, suppose that we have constructed the sets A0
t1 , . . . , A0

tL (in terms of associated sets
D+(tl), D−(tl), Dε

+(tl), Dε
−(tl) for every l = 1, . . . , L) and suppose that these sets satisfy (1)–(3)
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when restricted to k, l ∈ {1, . . . , L}. We now discuss how to construct the set A0
tL+1

. Suppose that
tk < tL+1 < tl for some k, l ∈ {1, . . . , L} and suppose that these indices are chosen so that there is
no element in {t1, . . . , tL} strictly between tk and tl (if tL+1 was bigger, or smaller, than all the tk with
k = 1, . . . , L, a similar construction to the one we exhibit next would apply and because of this, we
focus on the case mentioned earlier for brevity). We start by defining

1ÃtL+1
(x) :=






1 if x ∈ Dε
+(tL+1),

0 if x ∈ Dε
−(tL+1),

1{u≥tL+1}(x) if x ∈ Rd \ (Dε
+(tL+1) ∪ Dε

−(tL+1)),

obtained following the construction in Lemma 3.8 when applied to the set {u ≥ tL+1}. We now
modifyÃtL+1

slightly to eventually satisfy property (3). Indeed, since {u ≥ tl} ⊆ {u ≥ tL+1} ⊆ {u ≥ tk}
and A0

tk ∼ν {u ≥ tk}, A0
tl ∼ν {u ≥ tl}, ÃtL+1

∼ν {u ≥ tL+1}, we conclude that

1A0
tl
(x) ≤ 1{u≥tL+1}(x) ≤ 1A0

tk
(x)

for every x ∈ Rd \ NL+1, where NL+1 is some ν-null set. We then define

1A0
tL+1

(x) :=





1A0

tl
(x) if x ∈ (Rd \ (Dε

+(tL+1) ∪ Dε
−(tL+1))) ∩ NL+1,

1ÃtL+1
(x) otherwise.

It is evident that A0
tL+1

is ν-equivalent to {u ≥ tL+1} and that it satisfies (3.9) (since we do not

modify the ÃtL+1
inside D+

ε (tL+1) or D−
ε (tL+1)). It remains to show that for every x ∈ suppν, we

have 1A0
tl
(x) ≤ 1A0

tL+1
(x) ≤ 1A0

tk
(x). By definition of A0

tL+1
and the relation between A0

tk and A0
tl , the

inequality is immediate if x ∈ Rd \ (Dε
+(tL+1) ∪ Dε

−(tL+1)). Thus, it suffices to show the inequality
when x ∈ Dε

+(tL+1) (as the case x ∈ Dε
−(tL+1) is completely analogous). In turn, we just have to show

that 1A0
tk
(x) = 1. Now, notice that x ∈ Dε

+(tL+1) means that there is x1 ∈ suppρ such that x1 ∈ D+(tL+1)

and d(x, x1) < ε. In particular, 1{u≥tL+1}(x̃) = 1 for ν-a.e. x̃ ∈ Bε(x1). Given that {u ≥ tL+1} ⊆ {u ≥ tk},
we also have that 1{u≥tk}(x̃) = 1 for ν-a.e. x̃ ∈ Bε(x1), and hence, x1 ∈ D+(tk). We conclude that
x ∈ Dε

+(tk) and in turn that 1A0
tk
(x) = 1.

Step 2: Using the family of sets A0
t1 , A0

t2 , A0
t3 , . . . , we construct the function u0 according to

u0(x) := sup{t ∈ Q : x ∈ A0
t }.

We now show the following relations between level sets of u0 and the sets A0
t : for every t ∈ Q, we

have

1A0
t
(x) ≤ 1{u0≥t}(x), ∀x ∈ suppν, (C2)

and for every s, t ∈ Q with s < t, we have

1{u0≥t}(x) ≤ 1A0
s
(x), ∀x ∈ suppν. (C3)

Inequality (C2) follows from the fact that if x ∈ A0
t , then by definition of u0, we have u0(x) ≥ t. So

in this case, we actually have the stronger condition A0
t ⊆ {u0 ≥ t}.

To obtain inequality (C3) take x ∈ suppν such that u0(x) ≥ t. Then, there must exist a rational r ≥ s
such that x ∈ A0

r for otherwise u0(x) would be less than s. From property (3) of the sets A0, we deduce
that x ∈ A0

s also.
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Step 3: We now show that u0 satisfies (C1). To see this, let x ∈ suppρ and suppose for the sake of
contradiction that supBε(x) u0 > ν-ess supBε(x) u0. Pick t ∈ Q strictly between these two values. Then,
there is x̃ ∈ Bε(x) (notice that x̃ ∈ suppν) such that u0(x̃) ≥ t. In particular, from (C3), it follows that
1A0

s
(x) = 1 for a rational s with s < t that is also strictly larger than ν-ess supBε(x) u0, and in turn, we

deduce that supBε(x) 1A0
s

= 1. On the other hand, from the fact that ν-ess supBε(x) u0 < s, it is clear that
ν({u0 ≥ s}∩Bε(x)) = 0, and thus, if we combine with (C2), we deduce that ν(A0

s ∩Bε(x)) = 0 also. This
means that ν-ess supBε(x) 1A0

s
= 0, contradicting in this way property (2) for the set A0

s . In conclusion:
for every x ∈ suppρ, we have supBε(x) u0 = ν-ess supBε(x) u0.

To show the second part of (C1), we follow a similar strategy. Namely, suppose for the sake of
contradiction that there is x ∈ suppρ such that infBε(x) u0 < ess infBε(x) u0. Let s be a rational number
strictly between these two values. Then, there is x̃ ∈ Bε(x) such that u0(x̃) < s and thus we must
have x̃ /∈ A0

s . In particular, we have infBε(x) 1A0
s

= 0. Picking now a rational t strictly between s and
ess infBε(x) u0, we conclude that 1{u0≥t} = 1 ν-a.e. x̃ ∈ Bε(x). By (C3), the same is true when we replace
{u0 ≥ t} with A0

s . Thus, we conclude that ess infBε(x) 1A0
s

= 1, contradicting property (2) for the set A0
s .

In conclusion: for every x ∈ suppρ we have infBε(x) u0 = ess infBε(x) u0.
Step 4: Finally, we can combine property (1) of the sets A0, inequalities (C2) and (C3), and a similar

argument (i.e. by contradiction) to the one used in Step 3, in order to conclude that u0 = u holds
ν-a.e. !
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