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In recent decades, science and engineering have been rev-
olutionized by a momentous growth in the amount of
available data. However, despite the unprecedented ease
with which data are now collected and stored, labeling data
by supplementing each feature with an informative tag re-
mains to be challenging. Illustrative tasks where the label-
ing process requires expert knowledge or is tedious and
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time-consuming include labeling X-rays with a diagnosis,
protein sequences with a protein type, texts by their topic,
tweets by their sentiment, or videos by their genre. In
these and numerous other examples, only a few features
may be manually labeled due to cost and time constraints.
How canwe best propagate label information from a small
number of expensive labeled features to a vast number of
unlabeled ones? This is the question addressed by semi-
supervised learning (SSL).

This article overviews recent foundational develop-
ments on graph-based Bayesian SSL, a probabilistic frame-
work for label propagation using similarities between fea-
tures. SSL is an active research area and a thorough review
of the extant literature is beyond the scope of this article.1

Our focus will be on topics drawn from our own research
that illustrate the wide range of mathematical tools and
ideas that underlie the rigorous study of the statistical accu-
racy and computational efficiency of graph-based Bayesian
SSL.

1. Semi-Supervised Learning (SSL)
Let us start by formalizing the problem setting. Suppose
we are given{(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 labeled data,{𝑥𝑖}𝑁𝑖=𝑛+1 unlabeled data, (1)

where (𝑥𝑖, 𝑦𝑖)𝑛𝑖=1 are independent draws from a random
variable with joint law L (𝑋, 𝑌), and {𝑥𝑖}𝑁𝑖=𝑛+1 are indepen-
dent draws from the marginal law L (𝑋). We refer to the𝑥𝑖’s as features and to the 𝑦𝑖’s as labels.2 Due to the cost
associated with labeling features, in SSL applications the
number 𝑛 of labels is usually small relative to the number𝑁 of features. The goal is then to propagate the few given
labels to the collection of all given features. Precisely, we
consider the problem of using all labeled and unlabeled
data to estimate the conditional mean function𝑓0(𝑥) ≔ 𝔼[𝑌|𝑋 = 𝑥]
at the given features {𝑥𝑖}𝑁𝑖=1. We call 𝑓0 the labeling func-
tion. For ease of exposition, we will restrict our attention to
regression and classification problems, where the labeled
pairs are generated from:

{𝑌 = 𝑓0(𝑋) + 𝜂, 𝜂 ∼ 𝒩(0, 𝛿2) regression,ℙ(𝑌 = 1|𝑋) = 𝑓0(𝑋) classification, (2)

with 𝛿 known in the regression setting. Regression and
classification are prototypical examples of SSL tasks with
real-valued and discrete-valued labels, respectively. To

1AMS Notices limits to 20 the references per article; for this reason, we refer to
[vEH20,GTKSSA20,SAY20b] for further pointers to the literature.
2In machine learning, features and labels are often referred to as inputs and out-
puts, respectively.

streamline the presentation, we focus on binary classifi-
cation where there are only two distinct classes, labeled
by 0 and 1. Several probabilistic models for binary clas-
sification are reviewed in [BLSZ18]. Extensions to non-
Gaussian noise or multi-class classification can be treated
in a similar fashion.

As its name suggests, SSL lies between supervised and un-
supervised learning. In supervised learning, the goal is to
use labeled data to learn the labeling function 𝑓0, so that it
may later be evaluated at new features. On the other hand,
unsupervised learning is concerned with using unlabeled
data to extract important geometric information from the
feature space, such as its cluster structure. SSL leverages
both labeled and unlabeled data in the learning procedure;
all given features are used to recover the geometry of the
feature space, and this geometric information is exploited
to learn 𝑓0.

Task Labeled Unlabeled
Supervised ! "

Unsupervised " !
Semi-supervised ! !

Relying on unlabeled data to estimate the labeling func-
tion may seem counterintuitive at first. Indeed, the ques-
tion of whether unlabeled data can enhance the learn-
ing performance in SSL has been widely debated, and dif-
ferent conclusions can be reached depending on the as-
sumed relationship between the label generating mecha-
nism and the marginal distribution of the features. We
will tacitly adopt the smoothness assumption —often satis-
fied in applications— that similar features should receive
similar labels. In other words, we assume that the label-
ing function varies smoothly along the feature space. Un-
der such a model assumption, one can intuitively expect
that unlabeled data may boost the learning performance:
uncovering the geometry of the feature space via the un-
labeled data facilitates defining a smoothness-promoting
regularization procedure for the recovery of the labeling
function. The main idea of the graph-based Bayesian ap-
proach to SSL is to use a graph-theoretical construction to
turn pairwise similarities between features into a probabilis-
tic regularization procedure.

2. Graph-Based Bayesian SSL
We will take a Bayesian perspective to learn the restriction
of 𝑓0 to the features, denoted𝑓𝑁 ≔ 𝑓0|{𝑥1,…,𝑥𝑁}.
We view 𝑓𝑁 as a vector in ℝ𝑁 , with coordinates 𝑓𝑁(𝑖) ≔𝑓0(𝑥𝑖). In the Bayesian approach, inference is performed
using a posterior distribution over 𝑓𝑁 , denoted 𝜇𝑁 . The pos-
terior density 𝜇𝑁(𝑓𝑁) will be large for functions 𝑓𝑁 that
are consistent with (𝑖) the given labeled data; and (𝑖𝑖) our
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belief that similar features should receive similar labels.
The posterior density is defined by combining a likelihood
function and a prior distribution that encode, respectively,
these two requirements:𝜇𝑁(𝑓𝑁)⏟⎵⏟⎵⏟

posterior

∝ 𝐿(𝑓𝑁; 𝑦)⏟⎵⏟⎵⏟
likelihood

𝜋𝑁(𝑓𝑁)⏟⎵⏟⎵⏟
prior

. (3)

Here and elsewhere 𝑦 ≔ {𝑦1, … , 𝑦𝑛} is used as a shortcut for
all given labels. We next describe, in turn, the definition of
likelihood and prior, followed by a discussion of how the
posterior distribution is used to conduct inference in the
Bayesian framework.
Likelihood function. The likelihood function encodes the
degree of probabilistic agreement of a labeling function𝑓𝑁 with the observed labels 𝑦, based on the model defined
by (1) and (2). The independence structure in (1) implies
that the likelihood factorizes as

𝐿(𝑓𝑁; 𝑦) ∶= ℙ(𝑦|𝑓𝑁) = 𝑛∏𝑖=1 ℙ(𝑦𝑖|𝑓𝑁),
and the Gaussian and binomial distributional assump-
tions in (2) give that

ℙ(𝑦𝑖|𝑓𝑁) = {(2𝜋𝛿2)−12 𝑒− |𝑦𝑖−𝑓𝑁(𝑖)|22𝛿2 regression,𝑓𝑁(𝑖)𝑦𝑖 [1 − 𝑓𝑁(𝑖)]1−𝑦𝑖 classification.
(4)

Note that the features are not involved in the definition of
the likelihood function; in particular, the likelihood func-
tion does not depend on the unlabeled data.
Prior distribution. The prior encodes the belief that the la-
beling function should take similar values at similar fea-
tures. We thus seek to design the prior so that its density𝜋𝑁(𝑓𝑁) is large for functions 𝑓𝑁 that vary smoothly along
the feature data. We will achieve this goal by defining the
prior as a transformation of a Gaussian random vector 𝑢𝑁
as follows:

𝜋𝑁 = {L (𝑢𝑁) regression,
L (Φ(𝑢𝑁)) classification.

Here Φ ∶ ℝ → (0, 1) is a link function that ensures that in
the classification setting the prior samples take coordinate-
wise values in (0, 1). Section 3 will discuss how to use
graph-based techniques to define the covariance structure
of the latent vector 𝑢𝑁 so that 𝑢𝑁(𝑖) and 𝑢𝑁(𝑗) are highly
correlated if the features 𝑥𝑖 and 𝑥𝑗 are similar. We term
the approach “graph-based” because we will view each fea-
ture 𝑥𝑖 as a node of a graph, and use a matrix 𝑊 of pair-
wise similarities between features to define weighted edges.
Then, the covariance of 𝑢𝑁 will be defined using a graph-
Laplacian to penalize certain discrete derivatives of 𝑢𝑁 . In
applications, the pairwise similarities often take the form𝑊 𝑖𝑗 = 𝒦(𝜑(𝑥𝑖), 𝜑(𝑥𝑗)), where 𝜑 is a feature representation
map that embeds the feature space in a suitable Euclidean

space, and 𝒦 is a kernel function such as the squared ex-
ponential 𝒦(𝑠, 𝑡) = 𝑒−|𝑠−𝑡|2 , with | ⋅ | the Euclidean norm.

Note that labels are not used in the definition of the
prior; instead, the prior is designed using pairwise similar-
ities between all labeled and unlabeled features {𝑥𝑖}𝑁𝑖=1.
Bayesian inference. Bayes’s formula (3) combines likeli-
hood and prior to obtain the posterior distribution, used
to perform Bayesian inference. Beforemoving forward, no-
tice again that the prior is constructed solely in terms of
the features, whereas only the labels enter the likelihood
function. This insight will be important in later sections.

The posterior density 𝜇𝑁(𝑓𝑁) quantifies our degree of
belief that 𝑓𝑁 is the true (restricted) labeling function that
generated the given data. A natural point estimator for 𝑓𝑁
is hence the posterior mode,𝑓𝑁 ≔ argmax𝑔∈ℝ𝑁 𝜇𝑁(𝑔)

= argmax𝑔∈ℝ𝑁 log 𝐿(𝑔; 𝑦) + log 𝜋𝑁(𝑔). (5)

The right-hand side showcases that the posterior mode,
also known as the maximum a posteriori estimator, can be
found by optimizing an objective function comprising a
data misfit and a regularization term, defined by the log-
likelihood function and the log-prior density, respectively.
This observation reconciles the Bayesian approach with
classical optimization methods that —without a proba-
bilistic interpretation— recover the labeling function by
minimizing an objective that comprises data misfit and
regularization terms.

Under the Bayesian framework, however, the poste-
rior mean and the posterior median can also be used as
meaningful point estimators that can be robust to outliers
or model misspecification. Moreover, in addition to en-
abling point estimation, the posterior distribution also al-
lows one to quantify the uncertainty in the reconstruction
of the labeling function by computing Bayesian confidence
intervals, correlations, or quantiles. All these quantities
can be expressed as expectations with respect to the poste-
rior distribution. As will be detailed later, sampling algo-
rithms such as Markov chain Monte Carlo may be used to
approximate these posterior expectations.
Illustrative example. Figure 1 contains a synthetic binary
classification toy example where the features are sam-
pled from two disjoint semi-circles, corresponding to two
classes. We are given 𝑁 = 200 features, with only 𝑛 = 10
of them labeled (marked with red dots), and aim to clas-
sify the unlabeled ones. Using a graph-based prior defined
following the ideas in Section 3, we compute the poste-
rior mean —which estimates the probability with which
each data point belongs to the lower semi-circle— and the
posterior standard deviation—which represents the uncer-
tainty in the estimation. Thresholding the posterior mean
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Figure 1. Posterior inference for a synthetic dataset. Each
circle represents a feature. Labeled features are marked with
red dots. Upper: posterior mean of probabilities of cluster
assignment. Lower: the corresponding posterior standard
deviations.

at 0.5 for classification, the results indicate very high ac-
curacy, with lower uncertainty in the reconstruction near
labeled features. This example demonstrates a typical sce-
nario in SSL, where the geometric information carried by
the unlabeled data helps to achieve good learning perfor-
mance with few labels.
Outline. Having introduced the graph-based Bayesian for-
mulation of SSL, we are ready to outline the questions that
will be explored in the rest of this article, along with their
practical motivation:

1. Prior Design: How to define the latent field 𝑢𝑁 so that
the prior 𝜋𝑁 promotes smoothness, facilitates com-
putationally efficient inference, and yields a posterior
that achieves optimal estimation for a large class of
labeling functions?

2. Posterior Continuum Limit: For a fixed number 𝑛 of
labels, do the graph-based posteriors 𝜇𝑁 converge to a
well-defined probabilitymeasure in the limit of a large
number 𝑁 of features?

3. Posterior Sampling: Can we design sampling algo-
rithms whose rate of convergence does not deteriorate
in the large 𝑁 limit?

4. Posterior Contraction: In the joint limit where both𝑁 and 𝑛 are allowed to grow, does the posterior distri-
bution concentrate around the true labeling function?
How should 𝑁 scale with 𝑛 to achieve optimal estima-
tion?

These questions, along with their interrelations, will be
considered in the next four sections. We will focus on
graph-based Bayesian SSL, but related asymptotic analyses
of SSL include [NSZ09, BHL+21]. An overarching theme
in our Bayesian setting will be to guarantee that the prior
and the posterior distributions are well defined in the limit
of a large number of features (interpreted as graph nodes).
This idea is formalized through the study of continuum lim-
its that play an essential role in understanding the statisti-
cal performance of graph-based Bayesian SSL and the scal-
ability of sampling algorithms.

In order to set the theory on a rigorous footing, we
will adopt the manifold assumption that the features lie on
a hidden low-dimensional manifold [BN04] embedded
in an Euclidean space; for the study of posterior contrac-
tion, 𝑓0 will be assumed to be a smooth function defined
in this manifold. We emphasize that the manifold set-
ting is used only for theoretical insight, but the method-
ology is applicable beyond this setting. The manifold as-
sumption is widely adopted inmachine learning and high-
dimensional statistics, and encapsulates the empirical ob-
servation that high-dimensional features often exhibit low-
dimensional structure.

We end this section by showing, in a concrete applica-
tion, the interpretation of features and labels, as well as
the intuition behind manifold and smoothness assump-
tions. The MNIST dataset {𝑥𝑖}𝑁𝑖=1 consists of 𝑁 = 60000
images of hand-written digits from 0 to 9. We may want
to classify images given labels {𝑦𝑖}𝑛𝑖=1 with 𝑦𝑖 ∈ {0, … , 9}
and 𝑛 ≪ 𝑁. Each image 𝑥𝑖 ∈ ℝ𝑑 is a 𝑑 = 784-dimensional
vector, but the space of digits has been estimated [HA05]
to have dimension around 𝑚 = 10, and can be concep-
tualized as an 𝑚-dimensional manifold embedded in ℝ𝑑.
The smoothness assumption reflects the idea that images
that are similar are likely to correspond to the same digit,
and should therefore receive the same label. As in the syn-
thetic example of Figure 1 we need to construct a suitable
prior for functions over the features 𝑥𝑖 and study posterior
sampling algorithms.
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3. Prior Design
In this section we discuss the definition of the Gaussian
random vector 𝑢𝑁 used to specify the prior 𝜋𝑁 . It will
be convenient to think of 𝑢𝑁 as a random function overℳ𝑁 ≔ {𝑥1, … , 𝑥𝑁}, or a random process discretely indexed
byℳ𝑁 . We will denote by 𝑢𝑁(𝑖) ≔ 𝑢𝑁(𝑥𝑖) the value of the𝑖th coordinate of 𝑢𝑁 . Such notation will help highlight
the analogies between the design of our discretely indexed
random vector 𝑢𝑁 and the design of Gaussian processes
(GPs) in Euclidean domains.

In GP methodology, it is important to impose adequate
smoothness assumptions. For instance, in the popular
Matérn class of GPs (to be defined shortly in Section 3.2)
in Euclidean space, the mean square differentiability of
sample paths is tuned by a smoothness parameter. How-
ever, here we seek to define a discretely indexed random
vector over abstract features—not necessarily embedded
in Euclidean space—and the usual notions of smoothness
are not readily applicable. To circumvent this issue, we
will rely on a matrix 𝑊 of pairwise similarities between
features. At a high level, we would like 𝑢𝑁 to be a ran-
dom function that varies smoothly over ℳ𝑁 with respect
to the pairwise similarities, i.e., the function values 𝑢𝑁(𝑖)
and 𝑢𝑁(𝑗) for 𝑖 ≠ 𝑗 should be close if the similarity 𝑊 𝑖𝑗
between 𝑥𝑖 and 𝑥𝑗 is high. In other words, if we view the
featuresℳ𝑁 as a graphwhose edge information is encoded
in the similarity matrix 𝑊 , then we wish 𝑢𝑁 to be regular
with respect to the graph structure of (ℳ𝑁,𝑊). Techniques
from spectral graph theory will allow us to construct a ran-
dom vector that fulfills this smoothness requirement.
3.1. GPs over graphs. Graph-Laplacians, reviewed here
succinctly, will be central to our construction. Given the
similarity matrix 𝑊 ∈ ℝ𝑁×𝑁 , let 𝐷 ∈ ℝ𝑁×𝑁 be the diago-
nal matrix with entries 𝐷𝑖𝑖 = ∑𝑁𝑗=1 𝑊 𝑖𝑗. The unnormalized
graph-Laplacian is then the matrix Δ𝑁 = 𝐷 − 𝑊 . Several
normalized graph-Laplacians can also be considered (see,
e.g., [vL07]), but for our purpose we will focus on the un-
normalized one. From the relation

𝑣𝑇Δ𝑁𝑣 = 12 𝑁∑𝑖,𝑗=1𝑊 𝑖𝑗|𝑣(𝑖) − 𝑣(𝑗)|2, 𝑣 ∈ ℝ𝑁 (6)

we readily see that Δ𝑁 is positive semi-definite. Moreover,
(6) implies that if we identify 𝑣 with a function over ℳ𝑁 ,
then 𝑣’s that change slowly with respect to the similarities
lead to smaller values of 𝑣𝑇Δ𝑁𝑣. This observation suggests
considering Gaussian distributions of the form 𝒩(0, Δ−1𝑁 )
since its negative log density is proportional to (6) (up to
an additive constant) and therefore favors those “smooth”𝑣’s. However Δ𝑁 is singular, and the above Gaussian
would be degenerate. To remedy this issue, and to fur-
ther exploit the regularizing power of Δ𝑁 , we will instead

consider 𝑢𝑁 ∼ 𝒩(0, (𝜏𝐼𝑁 + Δ𝑁)−𝑠) (7)

with 𝜏, 𝑠 > 0 and 𝐼𝑁 the identity matrix. Here we have two
additional parameters 𝜏 and 𝑠 which enhance the model-
ing flexibility. Roughly speaking, 𝜏 and 𝑠 control, respec-
tively, the inverse lengthscale and smoothness of the sam-
ples (interpreted as functions over the graph). To see this,
we can write the Karhunen-Loève expansion of 𝑢𝑁 in (7)

𝑢𝑁 = 𝑁∑𝑖=1(𝜏 + 𝜆𝑁,𝑖)−𝑠/2𝜉𝑖𝜓𝑁,𝑖 𝜉𝑖 i.i.d.∼ 𝒩(0, 1), (8)

where {(𝜆𝑁,𝑖, 𝜓𝑁,𝑖)}𝑛𝑖=1 are the eigenvalue – eigenvector
pairs of Δ𝑁 with increasingly ordered eigenvalues. The
eigenvectors become more oscillatory as 𝑖 increases, and
therefore a larger 𝑠 —which implies faster decay of the
coefficients— yields more regular sample paths, whereas a
larger 𝜏 incorporatesmore essential frequencies andmakes
the sample paths more oscillatory. Figures 2a, 2b and
2c demonstrate this behavior for three sets of parameters
when the 𝑥𝑖’s are sampled from the unit circle. Finally, to
further enhance the modeling flexibility, one can replace𝜏𝐼𝑁 with a vector 𝜏𝑁 with positive entries. Doing so intro-
duces a form of nonstationary local behavior, as shown in
Figure 2d, where 𝜏𝑁 increases from 1 (the left end) to 30
(the right end).
3.2. Connection with Matérn GP. Besides the regular-
izing effect of the graph-Laplacian described above, the
Gaussian distribution (7) is also motivated by a close con-
nection to Matérn GPs on Euclidean spaces. To start with,
recall that the Matérn covariance function takes the follow-
ing form

𝑐(𝑥, 𝑥′) = 𝜎2 21−𝜈Γ(𝜈) (𝜅|𝑥 − 𝑥′|)𝜈 𝐾𝜈 (𝜅|𝑥 − 𝑥′|) , (9)

for 𝑥, 𝑥′ ∈ ℝ𝑑. Here Γ is the gamma function and 𝐾𝜈 is the
modified Bessel function of the second kind. The Matérn
GP is a GP with the Matérn covariance function. It is a
popular modeling choice in Bayesian methodology due to
the flexibility offered by the three parameters 𝜎, 𝜈, 𝜅 that
control, respectively, the marginal variance, sample path
smoothness, and correlation lengthscale. As we will see
shortly, it turns out that we can view the finite dimensional
Gaussian (7) as a discrete analog of the Matérn GP where
the parameters 𝜈 and 𝜅 play similar roles as our 𝜏 and 𝑠.

The key connection is the stochastic partial differential
equation (SPDE) representation of Matérn GP proved by
[Whi63], which says that the Matérn GP 𝑢 is the unique
stationary solution to

(𝜅2 − Δ)𝜈/2+𝑑/4𝑢 = 𝜎√(4𝜋)𝑑/2Γ(𝜈 + 𝑑/2)𝜅2𝜈Γ(𝜈) 𝒲, (10)
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Figure 2. Plots of samples of (7) for different 𝜏’s and 𝑠’s when the 𝑥𝑖’s are sampled from the unit circle. The second row unfolds
the plots in the first to the interval [0, 2𝜋] for better visualization of the fluctuations.

where Δ is the usual Laplacian and 𝒲 is a spatial white
noise with unit variance. With this inmind, we can rewrite
(7) in a similar fashion as(𝜏𝐼𝑁 + Δ𝑁)𝑠/2𝑢𝑁 = 𝒲𝑁, (11)

where 𝒲𝑁 ∼ 𝒩(0, 𝐼𝑁). Now, ignoring the marginal vari-
ance in (10), one can immediately see (11) as a discrete
analog of (10) under the relation 𝑠 = 𝜈 + 𝑑/2 and 𝜏 = 𝜅2.
In other words, we can interpret (7) as a Matérn GP over
the graph (ℳ𝑁,𝑊).
3.3. Prior continuum limit. If we impose certain assump-
tions on the graph (ℳ𝑁,𝑊), it can be shown that our
graph Matérn GP 𝑢𝑁 is not only a discrete analog of the
usual Matérn GP, but a consistent approximation of cer-
tain continuum Matérn-type GPs. To formalize this stat-
ment, we rely on the manifold assumption that we had
previously foreshadowed. Suppose now that the 𝑥𝑖’s are
independently sampled from the uniform distribution in
the manifold ℳ. We then have the following result (see
[GTSA18, Theorem 4.2 (1)] and [SAY20a, Theorem 4.2]
for the formal version):

Result 3.1. Under a manifold assumption, the graph Matérn
GP (7) converges to a Matérn-type GP onℳ provided that the
similarity 𝑊 is suitably defined and the smoothness parameter𝑠 is sufficiently large.

We next provide some further context for this result.
First, the limiting Matérn-type GP on ℳ is defined by𝑢 ∼ 𝒩(0, (𝜏𝐼 − Δℳ)−𝑠), (12)

where 𝐼 is the identity and Δℳ is the Laplace-Beltrami op-
erator (the manifold analog of the usual Laplacian) onℳ. By convention, Δℳ is a negative semi-definite opera-
tor, which explains the minus sign. Just as the connection
between (7) and the SPDE representation of Matérn GP,
we can see (12) as a manifold analog of Matérn GP de-
fined by lifting (10). In particular, we can write a similar
series representation of (12)

𝑢 = ∞∑𝑖=1(𝜏 + 𝜆𝑖)−𝑠/2𝜉𝑖𝜓𝑖, 𝜉𝑖 i.i.d.∼ 𝒩(0, 1), (13)

in terms of the eigenpairs {(𝜆𝑖, 𝜓𝑖)}∞𝑖=1 of −Δℳ . The eigen-
functions encode rich information about the geometry ofℳ and form a natural basis of functions over ℳ. Com-
paring (8) and (13), it is reasonable to expect that large 𝑁
convergence will hold provided that we have convergence
of the corresponding eigenvalues and eigenfunctions. To
achieve this, we need to carefully construct the similarity
matrix𝑊 so that the graph-LaplacianΔ𝑁 is a good approxi-
mation of−Δℳ . If we assume thatℳ is an𝑚-dimensional
compact submanifold of ℝ𝑑, then this is indeed the case if
we set 𝑊 𝑖𝑗 = 2(𝑚 + 2)𝑁𝜈𝑚ℎ𝑚+2𝑁 𝟏{|𝑥𝑖 − 𝑥𝑗| < ℎ𝑁}, (14)

where 𝜈𝑚 is the volume of the𝑚-dimensional unit ball andℎ𝑁 is a user-chosen graph connectivity parameter satisfy-
ing (log𝑁)𝑐𝑚𝑁1/𝑚 ≪ ℎ𝑁 ≪ 1𝑁1/2𝑠 , (15)
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with 𝑐𝑚 = 3/4 if 𝑚 = 2 and 𝑐𝑚 = 1/𝑚 otherwise. Small
values of ℎ𝑁 induce sparse graphs, which are easier to
work and compute with; see Section 3.4 below. However,
very small values of ℎ𝑁 render graphs that are so weakly
connected that they cannot induce any level of smooth-
ness in the functions that are likely to be generated by
the prior 𝜋𝑁 . It is thus important to set the connectiv-
ity ℎ𝑁 appropriately in order to take advantage of sparsity
while at the same time recovering the geometric informa-
tion of ℳ. The specific lower bound in (15) characterizes
the level of resolution of the implicit discretization of the
manifold induced by the 𝑥𝑖’s. We require ℎ𝑁 to be larger
than this quantity to capture the geometry of the under-
lying manifold. Under these conditions on ℎ𝑁 , it can be
shown that Δ𝑁 converges spectrally towards −Δℳ . Other
types of graphs such as 𝑘-nearest neighbors and variable
bandwidth graphs can also be employed, and recent work
[GT19] have shown spectral convergence in these settings.
3.4. Sparsity. So far we have discussed the construction
of our prior from a modeling perspective, motivated by
the regularizing power of the graph-Laplacian and the con-
nection with usual Matérn GPs. We close this subsection
by mentioning its sparseness. Notice that with our choice
of weights (14), the similarity matrix 𝑊 —and hence the
graph-Laplacian Δ𝑁— are sparse. Indeed, one can show
that for

ℎ𝑁 ≍ √(log𝑁)𝑐𝑚𝑁1/𝑚
the number of nonzero entries of Δ𝑁 is 𝑂(𝑁3/2). There-
fore, for small integer 𝑠 in (7), we are left with a Gaussian
with sparse precision matrix, and numerical linear algebra
methods for sparse matrices can be employed to speed-up
computation. This is important for posterior inference al-
gorithms that may require factorizing Δ𝑁 . Similar conclu-
sions can be reached with 𝑘-nearest neighbors graphs.

4. Posterior Continuum Limit
In this section we discuss the convergence of the posterior𝜇𝑁 for large 𝑁 (and fixed 𝑛) towards a continuum posterior𝜇 defined later. For now, it suffices to note that the contin-
uum posterior is naturally characterized as a probability
distribution over the space 𝐿2(ℳ). When formalizing a no-
tion of convergence for posteriors, a challenge arises: the
measures 𝜇𝑁 and 𝜇 are probability measures defined over
different spaces, i.e., 𝐿2(ℳ𝑁) and 𝐿2(ℳ), respectively. In
what sense should these measures be compared? In what
follows, we present a possible solution to this question,
which also arises in the rigorous analysis of continuum
limits for prior distributions considered in the previous
section.
4.1. Lifting to the space 𝒫(𝑇𝐿2). In order to compare the
measures 𝜇𝑁 and 𝜇, we start by introducing a space where

we can directly compare functions in 𝐿2(ℳ𝑁) with func-
tions in 𝐿2(ℳ). We let 𝑇𝐿2 be the set:𝑇𝐿2 ≔ {(𝜃, 𝑔)∶ 𝜃 ∈ 𝒫(ℳ), 𝑔 ∈ 𝐿2(ℳ, 𝜃)}.
In words, 𝑇𝐿2 is the collection of pairs of the form (𝜃, 𝑔),
where 𝜃 is a probability measure over ℳ and 𝑔 is an ele-
ment in 𝐿2(ℳ, 𝜃). For us, the most important choices for 𝜃
are the empirical measure associated to the samples 𝑥𝑖 and
the data generating distribution L (𝑋). We use the simpli-
fied notation 𝐿2(ℳ𝑁) and 𝐿2(ℳ) to denote the 𝐿2 spaces
for these two choices of 𝜃. 𝑇𝐿2 can be formally interpreted
as a fiber bundle over the manifold 𝒫(𝑀): each 𝜃 ∈ 𝒫(𝑀)
possesses a corresponding 𝐿2 fiber.

We endow 𝑇𝐿2 with the following distance:𝑑𝑇𝐿2((𝜃1, ℎ1), (𝜃2, ℎ2))2 ≔inf𝛾∈Γ(𝜃1,𝜃2)∬ℳ×ℳ(𝑑2ℳ(𝑥, ̃𝑥) + |ℎ1(𝑥) − ℎ2( ̃𝑥)|2) 𝑑𝛾(𝑥, ̃𝑥),
where Γ(𝜃1, 𝜃2) represents the set of couplings between𝜃1 and 𝜃2 —that is, the set of probability measures onℳ × ℳ whose first and second marginals are 𝜃1 and 𝜃2,
respectively— and 𝑑ℳ denotes the geodesic distance inℳ. It is possible to show that the 𝑑𝑇𝐿2 metric is, indeed,
a distance function. Moreover, the topology induced by𝑑𝑇𝐿2 in each fixed fiber 𝐿2(ℳ, 𝜃) coincides with the topol-
ogy induced by the natural topology of the Hilbert space𝐿2(ℳ, 𝜃), a fact that motivates the notation 𝑇𝐿2, which sug-
gests an 𝐿2-like convergence after transportation. We refer
to [TPK+17] for further details.

We proceed to define a notion of convergence for the
posteriors 𝜇𝑁 as 𝑁 → ∞. As discussed above, the 𝑇𝐿2
space allows us to see 𝐿2(ℳ𝑁) and 𝐿2(ℳ) as subsets of the
bigger common space 𝑇𝐿2. In turn, the measures 𝜋 and𝜋𝑁 , as well as the measures 𝜇 and 𝜇𝑁 , can then be all in-
terpreted as probability measures on the space 𝑇𝐿2. Using
this “lifting” we can now interpret the statement 𝜇𝑁 → 𝜇
as 𝑁 → ∞, as a statement about the weak convergence
of probability measures in the metric space 𝑇𝐿2. Further
properties of the space 𝑇𝐿2 allow us to use a collection of
theorems, such as Portmanteau’s and Prokhorov’s, to char-
acterize convergence and compactness in the space 𝒫(𝑇𝐿2).

After specifying the notion of convergence of 𝜇𝑁 to-
wards 𝜇, we can now present a result, rigorously stated in
[GTSA18].

Result 4.1. Under a manifold assumption, the graph-based
posterior 𝜇𝑁 converges to a continuum limit posterior 𝜇 over
functions on ℳ, provided that the similarity 𝑊 is suitably de-
fined and the smoothness parameter 𝑠 is sufficiently large.

Further context for this result will be given next.
4.2. Convergence of posteriors. Now that we have dis-
cussed the precise way in which we formalize the conver-
gence of 𝜇𝑁 towards 𝜇, we proceed to characterize 𝜇 and
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describe the tools used to deduce this convergence. For
ease of exposition, we focus on the regression setting.

First, we notice that the posterior distribution 𝜇𝑁 , in-
troduced in Section 2 via Bayes’s formula, can be charac-
terized variationally. Indeed, 𝜇𝑁 is the solution to the op-
timization problem𝜇𝑁 = argmin𝜈𝑁 𝐽𝑁(𝜈𝑁),
where, for 𝜈𝑁 ∈ 𝒫(𝐿2(ℳ𝑁)),

𝐽𝑁(𝜈𝑁) ≔ 𝐷KL(𝜈𝑁‖𝜋𝑁) +∫𝐿2(ℳ𝑁) ℓ(𝑓𝑁; 𝑦) 𝑑𝜈𝑁(𝑓𝑁).
Here 𝐷KL denotes the Kullback-Leibler divergence andℓ(𝑓𝑁; 𝑦) denotes the negative log-likelihood. The first term
in 𝐽𝑁 will be small if 𝜈𝑁 is close to the prior 𝜋𝑁 , while the
second term will be small if 𝜈𝑁 gives significant mass to𝑓𝑁 ’s that are consistent with the labeled data. Thererfore,
the minimizer 𝜇𝑁 of 𝐽𝑁 represents a compromise between
matching prior beliefs and matching the observed labels.
Following this variational characterization, we define the
continuum posterior 𝜇 in direct analogy with the graph
setting: 𝜇 = argmin𝜈 𝐽(𝜈),
where, for 𝜈 ∈ 𝒫(𝐿2(ℳ)),

𝐽(𝜈) ≔ 𝐷KL(𝜈‖𝜋) +∫𝐿2(ℳ) ℓ(𝑓; 𝑦) 𝑑𝜈(𝑓).
The energies 𝐽𝑁 and 𝐽 can be extended to 𝒫(𝑇𝐿2) by setting
them to be infinity outside the fibers 𝐿2(ℳ𝑁) and 𝐿2(ℳ),
respectively. This extension is convenient so as to have
a collection of functionals defined over a common space.
The variational characterization opens the door to the use
of tools in the calculus of variations, which allow to prove
the convergence ofminimizers of variational problems. In-
deed, the following three statements together imply the
convergence of theminimizer of 𝐽𝑁 towards theminimizer
of 𝐽, that is, the desired convergence of posteriors.
1. For every converging sequence 𝜈𝑁 → 𝜈 we havelim inf𝑁→∞ 𝐽𝑁(𝜈𝑁) ≥ 𝐽(𝜈).
2. For every 𝜈 there exists a sequence {𝜈𝑁}∞𝑁=1 such thatlim sup𝑁→∞ 𝐽𝑁(𝜈𝑁) ≤ 𝐽(𝜈).
3. Every sequence {𝜈𝑁}∞𝑁=1 in 𝒫(𝑇𝐿2) satisfyingsup𝑁 𝐽𝑁(𝜈𝑁) < ∞

is precompact.
As it turns out, it is possible to prove that, under the as-
sumptions of Result 4.1, these three statements hold simul-
taneously with probability one. The structure of 𝐽𝑁 and𝐽 —where prior and likelihood appear separately— facili-
tates the analysis. The most delicate part is to compare the
prior distributions 𝜋𝑁 and 𝜋, that is, the first terms of 𝐽𝑁

and 𝐽. To provide some further intuition, we recall that a
random variable 𝑢𝑁 sampled from the discrete prior 𝜋𝑁
takes the form:

𝑢𝑁 = 𝑁∑𝑖=1(𝜏 + 𝜆𝑁,𝑖)−𝑠/2𝜉𝑖𝜓𝑁,𝑖 𝜉𝑖 i.i.d.∼ 𝒩(0, 1),
while a sample 𝑢 from the continuum prior 𝜋 takes the
form:

𝑢 = ∞∑𝑖=1(𝜏 + 𝜆𝑖)−𝑠/2𝜉𝑖𝜓𝑖.
Here we use the same random variables 𝜉𝑖 in both 𝑢 and𝑢𝑁 , thereby coupling the measures 𝜋𝑁 and 𝜋. It can be
shown that the 𝑇𝐿2 distance between 𝜓𝑁,𝑖 and 𝜓𝑖 can be
controlled with very high probability for all 𝑖 up to some
mode 𝑏 smaller than𝑁. We can thus expect that the sumof
the first 𝑏 terms in 𝑢𝑁 is close, in the 𝑇𝐿2 sense, to the sum
of the first 𝑏 terms in 𝑢. For modes larger than 𝑏, on the
other hand, it will not be possible to obtain decaying esti-
mates for the distance between the corresponding discrete
and continuum eigenfunctions. This is to be expected as
the graph cannot resolve the geometry of the manifoldℳ
at lengthscale ∼ ℎ. To control the higher modes, we must
use the fact that the terms (𝜏+ 𝜆𝑖)−𝑠/2 can be controlled by
a factor of the form ∼ 𝑏−𝑠/𝑚, as it follows from the well-
known Weyl’s principle describing the growth of eigenval-
ues of Laplace-Beltrami operators on compact manifolds.
Here it is worth recalling our discussion in earlier sections
regarding the level of regularity induced by higher value
of 𝑠: a large enough value of 𝑠 can be used to control the
contribution of high order modes. The above argument
eventually leads to the following estimate:

min𝛾∈Γ(𝜋𝑁,𝜋)∫𝑇𝐿2 ∫𝑇𝐿2(𝑑𝑇𝐿2(𝑣𝑁, 𝑣))2𝑑𝛾(𝑣𝑁, 𝑣)≤ 𝔼 [𝑑𝑇𝐿2(𝑢𝑁, 𝑢)2] → 0,
as 𝑁 → ∞. In other words, in the Wasserstein space over𝑇𝐿2, the measure 𝜋𝑁 converges towards 𝜋 as 𝑁 → ∞, and
thus, the convergence holds also in the weak sense, im-
plying the convergence of the prior terms. With the con-
vergence of priors in hand, the proofs of statements 1-2-3
reduce to a careful use of lower semi-continuity properties
of the Kullback-Leibler divergence. We refer to [GTSA18]
for further details, and describe next why establishing con-
tinuum limits for posterior distributions is important in
the design of scalable algorithms for posterior sampling.

5. Posterior Sampling
As noted in Section 2, the construction of point estimates
and confidence intervals in Bayesian inference rests upon
computing expectations with respect to the posterior distri-
bution. For instance, finding the posterior mean, marginal
variances, and quantiles requires one to compute 𝔼𝜇𝑁 [ℎ]
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for various test functions ℎ ∶ ℝ𝑁 → ℝ. When the poste-
rior is not tractable —such as in SSL classification— expec-
tations can be approximated using sampling algorithms.
The goal of this section is to show how the continuum
limit of posteriors described in Section 4 can be exploited
to design Markov chain Monte Carlo (MCMC) sampling
algorithms with a rate of convergence that is independent
of the number 𝑁 of features. Subsection 5.1 contains the
necessary background on the Metropolis-Hastings MCMC
algorithm. In Subsection 5.2 we introduce the graph pre-
conditioned Crank-Nicolson (pCN) algorithm, a Metropolis-
Hastings scheme that exploits the continuum limit to en-
sure scalability to large datasets. Finally, in Section 5.3 we
discuss how the large 𝑁 scalability of the graph pCN algo-
rithm can be formalized through the notion of uniform
spectral gaps.
5.1. Metropolis-Hastings sampler. Metropolis-Hastings
MCMC is one of the most widely used algorithms in sci-
ence and engineering, and is a cornerstone of computa-
tional Bayesian statistics. The basic idea is simple: for a
given sample size 𝐾, the Metropolis-Hastings sampler ap-
proximates

𝔼𝜇𝑁 [ℎ] ≈ 1𝐾 𝐾∑𝑘=0 ℎ(𝑓(𝑘)𝑁 ), (16)

where {𝑓(𝑘)𝑁 }𝐾𝑘=0 are samples from a Markov chain whose
kernel 𝑝MH satisfies detailed balance with respect to 𝜇𝑁 ,
that is,𝜇𝑁(𝑓) 𝑝MH(𝑓, 𝑔) = 𝜇𝑁(𝑔) 𝑝MH(𝑔, 𝑓), ∀𝑓, 𝑔. (17)

The detailed balance condition (17) guarantees that 𝜇𝑁 is
the stationary distribution of the Markov chain, and, con-
sequently, 𝑓(𝑘)𝑁 will be approximately distributed as 𝜇𝑁 for
large 𝑘, under mild assumptions.

The Metropolis-Hastings algorithm is built upon an ac-
cept/reject mechanism that turns a given proposal kernel
into a Metropolis-Hastings Markov kernel 𝑝MH that satis-
fies the desired detailed balance condition.

Given the 𝑘-th sample 𝑓(𝑘)𝑁 , the (𝑘 + 1)-th sample is ob-
tained following a two-step process. First, a proposed
move is sampled 𝑔(𝑘)𝑁 ∼ 𝑞(𝑓(𝑘)𝑁 , ⋅) from the given proposal
kernel 𝑞. Second, the proposed move is accepted with
probability 𝑎(𝑓(𝑘+1)𝑁 , 𝑔(𝑘+1)𝑁 ) and rejected with probability1 − 𝑎(𝑓(𝑘+1)𝑁 , 𝑔(𝑘+1)𝑁 ). If the move is accepted, one sets𝑓(𝑘+1)𝑁 = 𝑔(𝑘+1)𝑁 ; if rejected, 𝑓(𝑘+1)𝑁 = 𝑓(𝑘)𝑁 . The Metropolis-
Hastings acceptance probability

𝑎(𝑓, 𝑔) ≔ min{1, 𝜇𝑁(𝑔)𝜇𝑁(𝑓) 𝑞(𝑔, 𝑓)𝑞(𝑓, 𝑔) }

is defined in such a way that the procedure renders a
Markov chain whose kernel 𝑝MH satisfies (17). Moreover,
under mild assumptions the distribution 𝜇(𝑘)𝑁 of the 𝑘-th
sample 𝑓(𝑘)𝑁 converges to 𝜇𝑁 as 𝑘 → ∞. How fast this con-
vergence occurs—and, as a consequence, how accurate the
approximation (16) is for a given sample size𝐾—depends
crucially on the choice of proposal kernel 𝑞. In the follow-
ing subsection we introduce the graph pCN algorithm: a
Metropolis-Hastings MCMC algorithm that uses a specific
proposal kernel to ensure that the rate of convergence of
the chain 𝜇(𝑘)𝑁 to the posterior 𝜇𝑁 does not deteriorate in
the large 𝑁 limit.
5.2. The graph pCN algorithm. The proposal kernel𝑞pCN of the graph pCN algorithm [BLSZ18] is chosen so
that it satisfies detailed balance with respect to the prior
distribution 𝜋𝑁 . For ease of exposition, we present the al-
gorithm in the regression setting. Let 𝜗 ∈ (0, 1) be a tuning
parameter, and set𝑔(𝑘)𝑁 = (1 − 𝜗2)1/2𝑓(𝑘)𝑁 + 𝜗 𝜉(𝑘)𝑁 , 𝜉(𝑘)𝑁 ∼ 𝜋𝑁, (18)

where 𝜋𝑁 is the prior on 𝑓𝑁 introduced in Section 3, with
covariance 𝐶𝑁 . A direct calculation shows that the Markov
kernel 𝑞pCN(𝑓, ⋅) = 𝒩((1 − 𝜗2)1/2𝑓, 𝜗2𝐶𝑁)
implicitly defined by the proposal mechanism (18) satis-
fies detailed balance with respect to 𝜋𝑁 . Therefore, for
the graph-pCN algorithm, the Metropolis-Hastings accep-
tance probability is given by

𝑎pCN(𝑓, 𝑔) = min{1, 𝜇𝑁(𝑔)𝜇𝑁(𝑓) 𝑞pCN(𝑔, 𝑓)𝑞pCN(𝑓, 𝑔) }= min{1, 𝐿(𝑔; 𝑦)𝜋𝑁(𝑔)𝐿(𝑓; 𝑦)𝜋𝑁(𝑓) 𝑞pCN(𝑔, 𝑓)𝑞pCN(𝑓, 𝑔) }= min{1, 𝐿(𝑔; 𝑦)𝐿(𝑓; 𝑦)},
where we used detailed balance of 𝑞pCN with respect to 𝜋𝑁
in the last equation. Note that the probability of accepting
a move is hence completely determined by the value of the
likelihood at the proposed move relative to its value at the
current state of the chain. In particular, moves that lead to
a higher likelihood are always accepted. Putting everything
together, the graph pCN algorithm [BLSZ18,GTKSSA20] is
outlined in Algorithm 1.

Notice that the prior distribution —and hence the unla-
beled features— are only used in the proposal step, while
the likelihood function —and hence the labels— are only
used in the accept/reject step. Therefore, one would expect
that the acceptance rate should not fundamentally depend
on the number of unlabeled features, provided that the
prior approaches a continuum limit and the number of
labels are kept fixed. This insight can be formalized into
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Algorithm 1 Graph pCN.

Input: Prior 𝜋𝑁 , likelihood 𝐿(⋅; 𝑦), 𝜗 ∈ (0, 1).
Initialize: Pick 𝑓(0)𝑁 .
For 𝑘 = 0, 1, 2, . . .do:
1. Proposal step: Set𝑔(𝑘)𝑁 = (1 − 𝜗2)1/2𝑓(𝑘)𝑁 + 𝜗 𝜉(𝑘)𝑁 , 𝜉(𝑘)𝑁 ∼ 𝜋𝑁.
2. Accept/reject step: Compute

𝑎(𝑔(𝑘)𝑁 , 𝑓(𝑘)𝑁 ) ≔ min{1, 𝐿(𝑔(𝑘)𝑁 ; 𝑦)𝐿(𝑓(𝑘)𝑁 ; 𝑦)}
and set

𝑓(𝑘+1)𝑁 ≔ {𝑔(𝑘)𝑁 w.p. 𝑎(𝑔(𝑘)𝑁 , 𝑓(𝑘)𝑁 ),𝑓(𝑘)𝑁 w.p. 1 − 𝑎(𝑔(𝑘)𝑁 , 𝑓(𝑘)𝑁 ).
3. 𝑘 → 𝑘 + 1.
Output: 𝑓(𝑘)𝑁 , 𝑘 = 0, 1, . . .

a rigorous guarantee of algorithmic scalability, discussed
next.
5.3. Uniform spectral gap. As noted above, under mild
assumptions on the likelihood function, it is possible to
show that the distribution 𝜇(𝑘)𝑁 of the 𝑘-th sample 𝑓(𝑘)𝑁 of
the pCN algorithm converges to 𝜇𝑁 in the large 𝑘 limit.
More precisely, for a suitable distance 𝑑 between probabil-
ity measures, one can show that there are constants 𝑐 > 0
and 𝜖𝑁 ∈ (0, 1) such that𝑑(𝜇(𝑘)𝑁 , 𝜇𝑁) ≤ 𝑐 (1 − 𝜖𝑁)𝑘, 𝑘 = 0, 1, …
The largest 𝜖𝑁 satisfying this requirement is called the spec-
tral gap of the chain. A large spectral gap implies fast con-
vergence of the chain. In particular, a positive spectral gap
is sufficient to ensure the consistency and asymptotic nor-
mality of the estimator (16) for suitable test functions. It
is therefore important to understand if the spectral gaps 𝜖𝑁
deteriorate (i.e. decay to zero) as 𝑁 grows. The following
result, formalized in [GTKSSA20], indicates that the spec-
tral gaps for the graph pCN algorithm are uniform, mean-
ing that they are bounded from below by a positive con-
stant independent of 𝑁.

Result 5.1. Under the conditions that ensure the existence of a
continuum limit for the posteriors 𝜇𝑁 , the graph pCN algorithm
has a uniform spectral gap in Wasserstein distance.

The result hinges on the continuum limit of posteriors
discussed in Section 4 and on the use of the graph pCN
algorithm, which exploits it. Standard MCMC algorithms
based on random walks or Langevin dynamics fail to sat-
isfy a uniform spectral gap. The proof is based on a weak
Harris theorem [HMS11] that provides necessary condi-
tions for the existence of a Wasserstein spectral gap. An𝐿2 spectral gap can be obtained as a corollary.

6. Posterior Contraction
In Section 4 we studied convergence of posteriors 𝜇𝑁 to-
wards their continuum limit as 𝑁 → ∞ with 𝑛 fixed. The
previous section showed that exploiting this continuum
limit is essential in order to design sampling algorithms
that scale to large number𝑁 of features. In this section, we
study the performance of graph-based Bayesian SSL when
both 𝑁 and 𝑛 tend to infinity. The analysis of this double
limit discerns if, and how, unlabeled data enhances the
learning performance. We provide an affirmative answer
for regression and classification, with a quantitative analy-
sis of the scaling of 𝑁 with 𝑛 required to achieve optimal
learning performance.

Subsection 6.1 formalizes the problem setting and our
criterion used to quantify the learning performance. We
then show in Subsection 6.2 how the performance of
graph-based Bayesian SSL can be analyzed by bringing to-
gether the continuum limit of graph-based priors in Sub-
section 3.3 with the theory of Bayesian nonparametrics.
6.1. Background. To formalize our setting, recall that we
are given labeled data {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 sampled independently
from the model (2) and unlabeled data {𝑥𝑖}𝑁𝑛𝑖=𝑛+1 sampled
independently from L (𝑋). Notice that we have intro-
duced a subscript to the total number 𝑁𝑛 of features since
we are interested in studying its scaling with respect to 𝑛.
We assume that the labels are generated from a fixed truth𝑓0 and aim to study the performance of learning 𝑓0 with
the graph-based Bayesian approach. For our theory, we
will view the truth 𝑓0 as a function defined on the mani-
fold from where the features are assumed to be sampled.

We will use the notion of posterior contraction rates
[GGvdV00] to quantify the learning performance. This
concept, which we will overview in what follows, provides
a rigorous footing for the analysis of Bayesian techniques
from a frequentist perspective. We will say that the poste-
riors 𝜇𝑁𝑛 contract around 𝑓0 with rate 𝛿𝑛 if, for all suffi-
ciently large 𝑀 > 0,

𝜇𝑁𝑛(𝑓 ∈ ℝ𝑁𝑛 ∶ ‖𝑓 − 𝑓0‖𝑛 ≤ 𝑀𝛿𝑛) 𝑛→∞−−−→ 1 (19)

in probability, where

‖𝑓 − 𝑓0‖2𝑛 ≔ 1𝑛 𝑛∑𝑖=1 |𝑓(𝑥𝑖) − 𝑓0(𝑥𝑖)|2.
Here again we identify a vector in ℝ𝑁𝑛 with a function
over {𝑥𝑖}𝑁𝑛𝑖=1. The convergence (19) implies that, asymptot-
ically, the sequence of posteriors 𝜇𝑁𝑛 will be nearly sup-
ported on a ball of radius𝑂(𝛿𝑛) around 𝑓0|{𝑥1,…,𝑥𝑁𝑛 }. There-
fore, 𝛿𝑛 characterizes the rate at which the posterior “con-
tracts” around 𝑓0, and can be intuitively interpreted as the
convergence rate of the posterior distribution towards the
truth. As a consequence of the convergence (19), the point
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estimator𝑓𝑛 ≔ argmax𝑔∈ℝ𝑁𝑛 [𝜇𝑁𝑛(𝑓 ∈ ℝ𝑁𝑛 ∶ ‖𝑓 − 𝑔‖𝑛 ≤ 𝑀𝛿𝑛)]
converges (in probability) to 𝑓0 with the same rate 𝛿𝑛. This
observation provides convergence rates for Bayesian point
estimators that can be compared with the optimal rates
from the minimax theory of statistical inference.
6.2. Performance and unlabeled data. We have the fol-
lowing result, formalized in [SAY20b, Theorem 2.1].

Result 6.1. Under a manifold assumption, optimal posterior
contraction rates can be achieved if 𝑁𝑛 ≳ 𝑛2𝑚.

The result suggests that unlabeled data helps and gives
a quantitative required scaling of unlabeled and labeled
data. We will now illustrate the main ideas behind it. First
of all, in order for the unlabeled data to help, there should
be some correlation between the truth 𝑓0 and the marginal
distribution of𝑋 . This then relates back to themanifold as-
sumption that we have used throughout. The intuition is
then that if the truth 𝑓0 is a smooth function over the man-
ifold, a better understanding of the underlying geometry
through the unlabeled data may improve the learning of𝑓0. This, in terms of our graph-based prior, is reflected by
the fact that it is constructed using all of the features. Since
the graph-based prior approximates an underlying contin-
uum prior on the manifold, incorporating the unlabeled
data allows one to get a better approximation at the level
of the prior, which leads to better learning performance at
the level of the posterior.

Another important ingredient in our analysis is that the
continuum prior gives optimal learning performance. Re-
call that the continuum prior is the Matérn type GP as in
(12) or (13) and 𝑠 characterizes the smoothness properties
of the sample paths. It turns out that if the truth 𝑓0 is 𝛽-
regular (belonging to a Besov-type space 𝐵𝛽∞,∞), then the
posteriors with respect to the continuumprior with param-
eter 𝑠 = 𝛽 + 𝑚/2 contract around 𝑓0 with rate 𝑛−𝛽/(2𝛽+𝑚)
(up to logarithmic factors), which is the minimax optimal
rate of estimating a 𝛽-regular function. The key is that, for
optimal performance, the prior smoothness parameter 𝑠
needs to match (up to an additive constant that depends
only on the intrinsic dimension) the smoothness 𝛽 of the
truth 𝑓0. This agreement is also neededwhenworking with
Matérn GPs on Euclidean spaces.

Now the final step is to combine the above two main
observations:
1. The graph-based prior approximates the continuum

prior.
2. The continuum prior gives optimal posterior contrac-

tion rates.
A result from the Bayesian nonparametrics literature then
implies that if the graph-based prior approximates the

continuum prior sufficiently well (satisfying an error rate
of 𝑛−1 in an 𝐿∞ version of the 𝑑𝑇𝐿2 metric introduced in
Section 4), then the graph-based prior gives the same pos-
terior contraction rates as the continuum prior, which is
again optimal. Therefore the remaining piece is to quan-
tify the approximation error of the continuum prior by the
graph-based prior, which is shown to be on the order of𝑁−1/2𝑚𝑛 . Therefore the scaling in Result 6.1 is obtained by
matching 𝑛−1 and 𝑁−1/2𝑚𝑛 . The message is that the conver-
gence rate of the graph-based prior suffers from the curse
of dimensionality, which is not surprising since the resolu-
tion of the 𝑥𝑖’s scales like 𝑁−1/𝑚𝑛 . But the abundance of the
unlabeled data alleviates such an issue and leads to an ac-
curate approximation of the underlying continuum prior,
based on which optimal performance can be achieved.

7. Summary and Open Directions
In this article we have overviewed the graph-based
Bayesian approach to SSL. We have emphasized how the
study of continuum limits provides a rigorous foundation
for the design of prior distributions and sampling algo-
rithms with large number of features, and is also a key
ingredient in the statistical analysis of posterior contrac-
tion. The foundations of graph-based Bayesian learning
are still emerging, and we expect that future contributions
will require the development and the synergistic use of
a broad range of mathematical tools, including topology,
calculus of variations, spectral graph theory, ergodicity of
Markov chains, optimal transport, numerical analysis, and
Riemannian geometry. We conclude this article with some
theoretical, methodological, and applied open directions.
7.1. Theory. The uniform spectral gap of the graph pCN
algorithm ensures its independent rate of convergence in
the limit 𝑁 → ∞ with fixed number 𝑛 of labels. How-
ever, the rate of convergence of this algorithm would de-
teriorate in the joint limit 𝑁, 𝑛 → ∞. The exploration of
MCMC algorithms that scale in this joint limit is an in-
teresting open direction. The contraction of the posterior
distribution in this regime has been discussed in Section
6. Existing results assume an a priori known smoothness
of the labeling function in order to achieve optimal con-
traction rates. We believe these results can be extended to
achieve statistical adaptivity: the smoothness could, in prin-
ciple, be inferred without hindering the contraction rate.
This is an interesting theoretical question, which may also
lead to the design of more flexible prior models. Finally,
the manifold assumption that our continuum limits rely
on is an idealization of the intuitive idea that features often
contain some low-dimensional structure while living in a
high-dimensional ambient space. In applications, how-
ever, data are noisy and it is important to ensure that algo-
rithms designed under a manifold assumption are not sen-
sitive to small perturbations in the data. In this regard, the
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paper [GTSAY19] explores how performing local averages
of noisy features can improve the learning performance
on noisy point clouds. In addition to relaxing the man-
ifold assumption to account for noisy data, it would be
interesting to further develop mathematical foundations
for graph-based Bayesian SSL under a cluster assumption
(which says that data belonging to the same cluster tend
to share the same label).
7.2. Methodology. The design of graph-based prior GPs
in SSL takes inspiration from, and shares ideas with, the
design of GPs in spatial statistics, where numerous tech-
niques have been developed to enhance the scalability of
GP methodology to large datasets. Some of these connec-
tions are investigated in [SAY20a], but there are still numer-
ous opportunities for cross-pollination of ideas. For in-
stance, [SAY21] analyzes the finite element approach from
spatial statistics using the techniques outlined in Section
6. A related topic that deserves further research is the mod-
eling of flexible nonstationary graph-based GPs by appro-
priate choice of graph-Laplacian and similarities between
features. Finally, an important asset of the Bayesian per-
spective is its ability to provide uncertainty quantification.
However, how best to utilize the Bayesian probabilistic
framework in the SSL context also requires further research.
We envision new opportunities to develop active learning
strategies for the adaptive labeling of features.
7.3. Applications. The ideas and techniques that under-
pin the foundations and algorithms outlined in this arti-
cle are bound to be useful beyond the SSL regression and
classification problems that have been our focus. Graph-
based Bayesian techniques can find application, for in-
stance, in nonlinear inverse problems. In this direction,
[HJKSA22, HSAY20] investigate PDE-constrained inverse
problems on manifolds, where both the prior distribu-
tion and the likelihood function involve differential opera-
tors supplemented with appropriate boundary conditions.
Graphical approximations of these operators call for new
continuum limit analyses.
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