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In classical theory, heat conduction in solids is regarded as a diffusion process driven by a temperature gradient,
whereas fluid transport is understood as convection process involving the bulk motion of the liquid or gas. In the
framework of ab initio theory, which is directly built upon quantum mechanics without relying on measured
parameters or phenomenological models, we observed and investigated the fluid-like convective transport of
energy carriers in solid heat conduction. Thermal transport, carried by phonons, is simulated in graphite by
solving the Boltzmann transport equation using a Monte Carlo algorithm. To capture convective transport, with
phonon distributions deviating significantly from equilibrium Bose-Einstein distribution, we determined phonon
interactions using ab initio approaches that go beyond relaxation time approximations. The presence of strong
momentum-conserved Normal scatterings in graphite introduces a regime for hydrodynamic phonon transport.
Fluid-like features, such as vortex and jet flow, are visualized and compared with classical theories on heat
diffusion and fluid convection. Our study on phonon convection enhances fundamental understandings of heat
conduction in solids from both atomic scale and quantum aspects, innovating thermal designs for future mi-
croelectronic devices and other thermal management applications. This potentially offers solutions for heat

dissipation challenges in the post-Moore era.

1. Introduction

Convection and diffusion are two basic facets of transport phenom-
ena. Convection involves a collective motion of particles due to external
forces, such as pressure differences and gravity, while diffusion stems
from the random walk of thermal motions, driving systems with a par-
ticle density gradient towards equilibrium. Traditionally, fluid transport
has been understood as convection processes involving the bulk motion
of molecules in liquid or gas flows [1]. In the classical theory of heat
transfer, heat conduction in solids is phenomenologically regarded as a
diffusive process, described by Fourier’s law; that is, heat flux is pro-
portional to the temperature gradient, but the microscopic picture of
such a diffusive process was untouched. With the establishment of
quantum theory, the quantization of lattice vibrations introduced the
concept of phonons. The lattice vibrations can be considered as the su-
perposition of elementary modes of harmonic waves, and the quantum
description of those elementary vibrations is known as a phonon.
Microscopically, heat conduction in nonmetals results from phonon
transport. Since phonons are quasi-particles, their momentum is not
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necessarily conserved during phonon-phonon interactions.

The Umklapp scatterings, which destroy momentum, inhibit the
collective motion of phonons and impede phonon convection [2].
Consequently, heat transport in solids predominantly exhibits diffusive
behavior, which has served as the foundation of the heat transfer theory
used across various engineering applications. However, when the
phonon-phonon interactions are dominated by momentum-conserved
Normal scatterings, a realm for phonon convection—or hydrodynamic
phonon transport—emerges. In the hydrodynamic regime, the transport
of phonons behaves like fluid. For example, thermal energy can propa-
gate like waves in an ocean, and the resistance to heat flux is dominated
by friction with the wall, similar to pipe flow, as described by simplified
models [3-8]. In comparison to diffusion, convection can be a more
efficient method of heat transfer. Despite their significance in thermal
applications, such as heat dissipation in microelectronic devices, the
real-space dynamics of phonon hydrodynamic processes have not been
thoroughly studied from an ab initio perspective.

Ab initio approaches serve as powerful tools for computing phonon
transport from first principles without using any measured parameters
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or phenomenological models. These approaches have been employed to
predict materials thermal properties and have achieved good agreement
with experiments [9-17]. As for hydrodynamic phonon transport, many
studies are based on classical models or partially incorporated with ab
initio input [3-8]. The Boltzmann transport equation, under Callaway’s
dual relaxation approximation [18], has been intensively employed to
study phonon hydrodynamic transport [5,8], while a comprehensive ab
initio treatment of phonon interactions beyond the dual relaxation
approximation has only been applied to investigate the dynamics of
convective phonon transport in steady-state or simple structures
[19-21]. Although the Green’s function method is based on ab initio, it is
limited to specific geometries [22]. Recently, the phonon vortex was
predicted to exist in graphene by phenomenological models [23] and
was later examined by the dual relaxation approximation with ab initio
determined relaxation time [24]. The dynamics of the phonon vortex
have not yet been fully investigated by an ab initio approach. Further-
more, theoretical investigations on the phonon vortex so far have been
limited to two-dimensional materials, which pose greater challenges for
experiments and applications compared to bulk materials.

In this paper, we employ ab initio approaches based on density
functional theory to simulate the dynamics of hydrodynamic phonon
transport in real-space, focusing on a widely used bulk material,
graphite. The three-dimensional mode-resolved phonon Boltzmann
transport equation, complemented with ab initio phonon interactions
that go beyond the relaxation time approximation, is solved using a
deviational variance-reduced Monte Carlo algorithm [25-27]. Our
simulations reveal anomalous fluid-like behaviors, such as vortex and jet
flow, in the heat conduction of graphite, which extend beyond the un-
derstanding provided by classical heat transfer theory. Our work
broadens the knowledge of heat conduction in solids and provides in-
sights for thermal designs in future microelectronic industries.

2. Method
2.1. Boltzmann transport equation and ab initio scattering matrix

The phonon transport process is governed by phonon Boltzmann
transport equation (BTE) that describes the dynamics of the phonon
distribution function n(x,t) as a function of real space x and time t for
phonon modes labelled by wavevector q and polarization s,

ong on,
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where the phonon advection on the left-hand side is balanced by the
phonon scatterings on the right-hand side. v, = dw,s/dq is the phonon
group velocity, and @, is the phonon frequency determined by diago-
nalizing the dynamic matrix. For diffusive process, the phonon distri-
bution typically remains close to equilibrium, hence the scattering term
could be approximated by only considering the distribution deviation of
the single mode ¢s while treating other background modes as equilib-
rium, which is known as relaxation time approximation. While for hy-
drodynamic process, the phonon distribution is far away from
equilibrium Bose-Einstein distribution due to the collective motion of
phonons, so the deviation of all modes should be simultaneously
considered using a scattering matrix Q; ,¢ that quantifies the transition
rates from ¢'s to gs,

Ongq

where "25 is the equilibrium Bose-Einstein distribution function. If only
considering the diagonal terms and set the off-diagonal terms of Q¢
to zero, Eq. (2) reduces to relaxation time approximation. The scattering
matrix is ab initio determined by quantum perturbation theory [28]

considering three-phonon scattering processes. The details of the
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methodology to obtain the scattering matrix can be found in our pre-
vious work [15]. The only input of this ab initio approach is the inter-
atomic force constants, i.e., the expansion coefficients of the interatomic
potential with respect to the atomic displacements from equilibrium
positions. To get interatomic force constants of graphite, we start with
generating an irreducible set of displacement configurations on a
supercell with 588 carbon atoms. For each displacement configuration,
the interatomic forces were determined from the electron wave func-
tions derived by density functional theory [15-17,29,30] using Quan-
tum ESPRESSO package [31,32]. Then the interatomic force constants
are extracted by fitting the displacement-force set using the ALAMODE
package [33]. The cutoff radius of the third-order interatomic force
constants is 9 bohr. We used projector-augmented wave pseudopoten-
tials and non-local functional ‘vdW-DF-ob86’ for electron exchange and
correlation [34]. The convergence threshold for self-consistency is
10711, The kinetic energy cutoff for electronic wavefunctions is 120 Ry.
The Monkhorst-Pack grids for primitive and supercell are 14 x 14 x 6
and 2 x 2 x 2, respectively. All the parameters for the density functional
theory calculations have been carefully checked to make the uncertainty
of the forces acting on each atom less than 10~ Ry/bohr. The mesh of
the g-points for phonon transport is 50 x 50 x 8.

2.2. Deviational variance-reduced Monte Carlo algorithm

The BTE with full scattering matrix is solved by the recently devel-
oped deviational variance-reduced Monte Carlo algorithm [25-27]. The
deviational variance-reduced Monte Carlo approach has been demon-
strated to quantify phonon transport and provide agreement with ex-
periments in our recent studies [25,26]. In Monte Carlos method, large
quantities of sample particles are initialized in real space with assigned
phonon modes based on equilibrium Bose-Einstein distribution, and
then loop over advection-scattering-sampling procedures to simulate the
transport dynamics. In advection procedure, the sample particle moves
with group velocity. In scattering procedure, the sample particle
changes its mode according to scattering matrix. Temperature and heat
flux field are sampled in sampling procedure. Different from conven-
tional Monte Carlo algorithm, our method solves the deviational
energy-based Boltzmann transport equation,

00y,
ot
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where 8fys = hwgs(ngs 7n25) is the deviational energy of phonon mode gs,
and A, ¢ = Qo 04 /w,¢ is the matrix that describes the energy ex-
change between phonon modes through phonon scatterings. Each
sample particle carries a positive or negative unit energy that contrib-
utes to the energy deviation from equilibrium distribution. This
formalism can provide two benefits: i) The energy can be strictly
conserved in scattering procedure by fixing the number of sampling
particles. ii) Since the deviation from the equilibrium distribution is
much smaller than the distribution itself, sampling the deviation from
equilibrium significantly reduces the stochastic uncertainty compared
with sampling the distribution function. Based on this deviational
variance-reduced Monte Carlo algorithm, the phonon BTE can be effi-
ciently solved.

Another challenging to simulate hydrodynamic process is to deal
with the full scattering matrix, which makes our scattering algorithm
different from the case under relaxation time approximation [35-38].
Under relaxation time approximation, the scattering probability P
under a time interval At is determined by relaxation time 7,

A
Py =1-— exp< - T—t> 4)
qs

and Phonons re-distribute to equilibrium after scattering. However, with
full scattering matrix, the sample particles change their mode following
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a probability matrix,

P(Af) =M =~ T+ AAt )

where I is identity matrix. And phonons are re-distributed as

5f,s(1 4 A1) pr s (AN (1) (6)
qs

The scattering procedure requires more considerations than directly
simulated Eq. (6) using a stochastic method, because both P, ¢ and df;
can be either positive and negative, and simply flipping the sign of Jf,y
could break the energy conservation. To account for this complexity,

Eq. (6) can be mathematically rewritten as

80 = SsgnlP ) e 201 {”i@f) T]%(ﬂ

n=1 pq.
)
where sgn is the sign function, and
Pgs = Z|qu, qu’| (8a)
qs
Py = Z }qu, q\’} (8b)

q.\-\Pq‘ o <0

The Eq. (7) can be implemented through the following algorithm
[27]:
For a sample particle at mode j with carried energy e,

(1) Transit particle to mode i that satisfies

pi Pi

)

where R is a random variable uniformly distributed in [0,1).

(2) IfP;; <0,
i) update the energy carried by this sample particle as ¢ = — ¢,
ii) generate two new particles in mode j with carried energy € and
process each by going to step (1).

Based on this algorithm, the energy conservation can be rigidly
enforced in scattering procedure. However, the generation of additional
particles can boost up the particle numbers in the simulation domain
and generate errors due to out of memory. To solve this problem, a
cancellation procedure is arranged after scattering procedure to remove
particle pairs that carry opposite energies and are in the same phonon
mode and spatial cell.

2.3. Sampling of temperature

In deviational variance-reduced Monte Carlo algorithm, the devia-
tion of the local temperature T away from the background equilibrium
temperature Teq, AT = T — T, is derived from the local deviational
energy,

AT(X t) qu afql(x l)

(10
where C is the volumetric specific heat at T,q.

2.4. Boundary conditions

Three types of boundary conditions can be applied in Monte Carlo
simulation, the specular, diffusive, and equilibrium temperature
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boundary conditions. For specular boundary condition, the sample
particles are reflected by the boundary by changing the sign of their
velocity component perpendicular to the surface. For diffusive boundary
condition, the sample particles that carry deviational energy &fy,
randomly change its mode at the boundary according to the distribution
of the mode-dependent specific heat C,, since the deviational energy
under the temperature rise AT contained by phonon mode gs is CsAT. In
a diffusive boundary scattering process, the velocities and the moving
directions of the reflected phonons are randomly distributed. At the
boundaries maintained at equilibrium temperature, AT is fixed at zero,
hence the sample particles are removed once arrive at those boundaries.

3. Result and discussion
3.1. Hydrodynamic transport regime

In Fig. 1a, we derive the thermal conductivity of isotopically pure
graphite nanowire with diffusive boundary and 4-um-width square
cross-section by solving the BTE through deviational variance-reduced
Monte Carlo algorithm. The thermal conductivity of materials can be
determined by sampling the heat flux under applied temperature
gradient. The temperature gradient is applied by adding a source term to
the governing equation,
08f s

fq Z Aqs. oy
qs

Vs Vfys = 8f,; — CoevqeVT (11)

ot

where the source term on the right-hand side arises because ffl)s varies in
space when there is a temperature gradient. In our Monte Carlo algo-
rithm, VT can emit sample particles that carries deviational energy,
leading to non-equilibrium. For the simulation setup, we initialize the
sample particles at x = 0, t = 0, distributed randomly over the cross-
section area. The modes are assigned based on the distribution of |Cyvgs-
VT| with the sign of the carried unit energy opposite to the sign of
vesVT. Then we simulate the evolution of the sample particles and
sample the total heat flux as a function of time, yielding the transient
heat flux in response to the heating pulse at t = 0. We employed a time
step of 0.1 ps and used a 20 x 20 spatial mesh at the nanowire cross-
section, which has been confirmed to achieve convergence. In the end,
we integrate the responsive heat flux cumulatively over time to deter-
mine the steady-state heat flux under VT, and derive the thermal con-
ductivity of nanowire. The numerical procedure has been validated by
comparing with semi-analytical approximate solutions in Appendix A.

Based on Monte Carlos algorithm, we deterministically recovered the
resistance to hydrodynamic heat flux caused by the friction with nano-
wire wall, analogous to Poiseuille flow in fluids. As shown in Fig. 1a, the
calculated thermal conductivity decreases at low and high temperature
limit, forming a peak near 100 K. The temperature-dependent thermal
conductivity of graphite nanowire can be attributed into three regimes.
At low temperature, the phonon mean free path (i.e., the distance a
phonon travels between consecutive scatterings) exceeds the nanowire
width, causing the phonons to ballistically bounce back and forth be-
tween boundaries. In this regime, the thermal conductivity increases
with temperature due to the increase of the high energy phonons. At
high temperature, thermal energy diffuses along the nanowire, and in
this regime, the thermal conductivity drops with increasing temperature
due to the increased anharmonic scatterings. In the intermediate hy-
drodynamic regime, the heat flux flows in the nanowire like Poiseuille
flow, and the thermal resistance is partially contributed by the friction
with boundary. As shown by the inset of Fig. 1a, the drifting velocity of
the collective phonon flux is near zero at the nanowire boundary due to
diffusive scattering, increases as it moves away from the boundary, and
peaks at the center of nanowire.
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Fig. 1. Ab initio analysis of hydrodynamic phonon transport in isotopically pure graphite. a) Thermal conductivity of 4-um-width graphite nanowire in
ballistic, hydrodynamic, and diffusive regimes as a function of temperature. b) Temperature field response to a heat pulse under a background temperature of 100 K.
The temperature field determined by the phonon Boltzmann transport equation (black solid) is a superposition of the diffusive (red solid) and hydrodynamic (blue
solid) components, and shows noticeable difference from the heat diffusion equation solution (back dashed). ¢) Visualization of hydrodynamic wave pack propa-
gation. The inset shows the fitting of the slow and fast processes occurring during the intensity decay of the temperature wave. d) Window for hydrodynamic

phonon transport.

3.2. Propagation of hydrodynamic wave packet

To elucidate the transport physics in hydrodynamic regime, the dy-
namics of the phonon transport in graphite at 100 K is simulated by this
ab initio approach. Fig. 1b shows the evolution of temperature field
response to a given heat pulse at t = 0 and x = 0. The simulation domain
has been made long enough to make sure the propagating phonon
density waves do not reach the other boundary. We observed two
components of the temperature field, the diffusive and the hydrody-
namic component. The two components are extracted by fitting the
overall temperature profile with two Gaussian functions. Since the
thermal diffusion is driven by phonon density gradient, the diffusive
component always has the maximum at the boundary. On the other
hand, hydrodynamic component is a propagating wave packet. The
temperature field calculated by phonon Boltzmann transport equation
exhibits remarkable difference from the solution of the heat diffusion

equation,
1 ( x )
ex, _——
Vanat r dat

where «a is the thermal diffusivity. This contrast showcases the pro-
nounced deviation of the propagative hydrodynamic heat transport
away from the conventional heat diffusion. Fig. 1¢ shows the propaga-
tion of the hydrodynamic wave packet, characterized by diminishing
intensity and broadening width. The moving wave pack demonstrates
typical characteristics of fluid. The inset of Fig. 1c represents the decay
of the wave intensity, fitted by dual exponential terms, suggesting the

T(x,1) = 12

decay of the wave packet involves two processes. The timescale of the
rapid process is comparable to the phonon lifetime, thus, during this
process, phonons experience insufficient scatterings and transport
ballistically analogy to radiation. The rapid process fades within 1 ns,
indicating that ballistic component is negligible at the time points shown
in Fig. 1b. During the slow process, despite adequate scatterings
occurring among the phonons within the wave packet, the wave packet
still propagates collectively due to momentum-conserving Normal
scatterings. From the slow process, we extract the propagation length I,
of the hydrodynamic wave shown in the inset of Fig. 1c.

3.3. Window of hydrodynamics transport

Utilizing ab initio Monte Carlo simulation, we are able to identify the
length scale and temperature where the hydrodynamic phonon trans-
port can be observed. At the scale far larger than [, the hydrodynamic
waves extinct, leading to thermal transport governed by diffusion of
phonons. When reducing the scale to phonon mean free path, the pho-
nons travel ballistically and no longer support the continuity condition
for hydrodynamic process. Therefore, the propagation length [, and
ballistic limit I, defines a window for hydrodynamic regime as shown in
Fig. 1a and d. The ballistic limit can be estimated as mode-averaged
phonon mean free path,

qu CosNgs

A==2—"—
Zq.\ qu"

13)
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where C; is the volumetric specific heat and Ay = [vgs|7,s is the phonon
mean free path of the phonon mode ¢s. The calculated window for hy-
drodynamic phonon transport is shown in Fig. 1d. From Fig. 1d, the
hydrodynamic process exists in isotopically pure graphite up to 250 K at
the length around 0.14 pm.

3.4. Quantified strong normal scatterings in Graphite

The hydrodynamic phonon transport is caused by strong Normal
scatterings compared with Umklapp scatterings. As shown in Fig. 2a, the
Normal scatterings can strictly conserve the momentum of phonons
defined as g, while the Umklapp scatterings cannot. Since the phonon
wavelength are always longer than the lattice parameters, the phonon
wave vectors should always stay inside the I'-centered first Brillouin
Zone. Once a phonon scattering process generates a phonon mode out of
the first Brillouin Zone, the phonon wave vector will be transformed
back to the first Brillouin Zone based on translational invariance as
shown in Fig. 2a, which as a result destroys the phonon momentum.
Strong Umklapp scatterings could prevent a large deviation from equi-
librium distribution, keep the average phonon velocity near zero, and
avoid convective phonon transport. On the other hand, the Normal
scatterings can maintain the momentum of the phonon flux, which
makes the phonon flows behave like fluid.

To quantitatively verify the strong Normal scattering in graphite, we
demonstrate the ratio of normal scattering rates 7y! to total scattering
rates 7, at 100 K at g, = 0 plane for the selected phonon branches in
Fig. 2b, indicating vast majority of the phonon modes are dominated by
normal scatterings. In the flexural acoustic (ZA), transverse acoustic
(TA), longitudinal acoustic (LA), and first flexural optical (ZO1)
branches presented in Fig. 2b, around 84% of the phonon modes exhibit
Normal scattering rates surpassing Umklapp scattering rates. In the
remaining 8 optical branches which are occupied by only 5% of the
phonons, half of the phonon modes still present Normal scattering rates
exceeding Umklapp scattering rates. The strong Normal scattering in
Graphite is the reason of the observed hydrodynamic phonon transport.

3.5. Hydrodynamic phonon vortex

As a further step, we simulate the phonon transport in hydrodynamic
regime and compared with the transport features derived from heat
diffusion model and fluid model (see Appendix B). The heat diffusion
equations and fluid equations are solved by finite element methods
using COMSOL Multiphysics [39]. We observed convective features in
solid heat conduction due to hydrodynamic phonon transport.

In Fig. 3a-c, heat transport in a 1-ym-wide square disk at a back-
ground temperature of 100 K is simulated using the phonon BTE and

a)
ky
‘ kx

Normal scattering

ky

Umklapp scattering
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compared with results from the heat diffusion and fluid model. In the
heat diffusion model and phonon BTE, a 0.2-pm-width heating source
and cooling source are positioned at the top edge of the left boundary
and the right edge of the bottom boundary, respectively. In the fluid
model, the heating and cooling sources are replaced with fluid inlet and
outlet. The insulative, slip, and specular boundary conditions are
applied in the heat diffusion model, fluid model, and phonon BTE,
respectively. Fig. 3a-c shows the resultant flux fields with streamlines.
Fig. 3a demonstrates the absence of vortex in heat flux as calculated by
heat diffusion model, since the vortex cannot be generated through
diffusion processes. Fig. 3b shows a vortex at the corner by fluid model,
as indicated by the streamlines. In Fig. 3c, the phonon flux by BTE also
demonstrates a vortex at the corner, which illustrates the convective
feature in solid heat conduction due to the hydrodynamic phonon
transport.

To explore the formation conditions of the phonon vortex, we
investigate the effects of disk size and background temperature in Fig. 3d
and e, respectively. In Fig. 3d, we compute the heat flux fields for square
widths ranging from 50 nm to 7.5 pm, maintaining a fixed flux density at
the heating and cooling sources and a constant background equilibrium
temperature. We observe that as the width of the square increases from
1 pm to 3 pm, the vortex at the top right corner disappears. Regarding
the vortex at the bottom left corner, its size grows from approximately
0.5 pm to around 1.2 pm when the width of the square extends from 1
pm to 3 pm, and remains constant as the square width further increases
to 5 pm. At 1 pm width, the size of the vortex is limited by the di-
mensions of the square disk. As the square width expands, the size of the
vortex is no longer constrained by the geometry and becomes compa-
rable with the average phonon mean free path. When the width of the
square further increases to 7.5 pm, the phonon vortex disappears as the
phonon density wave originating from the heating source cannot prop-
agate a sufficiently long distance to form a vortex in such a large disk.
Consequently, at a width of 7.5 pm, thermal transport transits from
convective to diffusive. On the other hand, as the size of the disk de-
creases, the streamlines gradually become increasingly tortuous. At 100
nm width, the vortex at the top right corner splits into two. Furthermore,
at 50 nm width, phonons travel ballistically without sufficient scatter-
ings since the size of the disk becomes less than the phonon mean free
path, leading the flux field and streamline to appear more chaotic due to
the anisotropic nature of the crystal along various orientations. In
Fig. 3e, we compute the heat flux field under varying background
equilibrium temperature, while fixing the geometry. As the temperature
increases, the thermal transport transit from convective to diffusive due
to the reduced propagation length of phonon density wave. At 150 K, the
vortex at top right corner disappears, and at 200 K, the vortex at bottom
left corner vanishes. In contrast, with the decrease of temperature, the

10 09 08 0.7 06 05
-1/,.-1
N /Trotal

Fig. 2. Intrinsic phonon spectral properties that lead to strong phonon hydrodynamic. a) Schematic of Normal scattering and Umklapp scattering. b) Portion of
Normal scatterings at g, = O for selected phonon branches, including flexural acoustic (ZA), transverse acoustic (TA), longitudinal acoustic (LA), and first flexural

optical (ZO1) branches.
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50K 75K 100K

150K

200K 350K

Fig. 3. Flux fields and streamlines of vortex generated at the corner of a square disk. (a-c) Comparison in a 1-pym-width square disk at 100 K among (a) heat
diffusion model, (b) fluid model, and (c) Boltzmann transport equations with ab initio phonon interactions. (d) Compare the effects of varying disk size under a fixed
background temperature at 100 K. (e) Compare the effects of varying background temperature with fixed disk width at 1 pm. Both (d) and (e) are derived from
Boltzmann transport equations with ab initio phonon interactions. The colormap represents the magnitude of flux density, the red curve shows the streamlines, and

the red arrow indicates the flow direction.

thermal transport transit from convective to ballistic due to increased
phonon mean free path. At 50 K, the flux field and streamline exhibit
chaotic and tortuous patterns. Based our study, we found that the
convective phonon transport occurs within a specific range of size and
temperature. At lower temperatures or smaller sizes, when the phonon
mean free path exceeds the size of the domain, the thermal transport
becomes ballistic. On the other hand, at higher temperatures or larger
sizes, when the propagation length of phonon density wave is shorter
than the size of the domain, the thermal transport becomes diffusive.

3.6. Hydrodynamic phonon jet

To further explore the characteristics of hydrodynamic phonon
transport, we use ab initio Monte Carlo simulations to demonstrate the
formation of a phonon jet flow arising from the propagation of phonon
wave packets in hydrodynamic regime. In Fig. 4a-c, we simulate the
transport process of the jet flow at 100 K, originating from a 0.2-pm-
width inlet or heat source. In the heat diffusion model, we apply thermal
insulation boundary condition at left and side boundaries, and fixed
temperature boundary condition at right boundary. In the fluid model,
we apply no-slip, slip, and open boundary condition for left, side, and
right boundaries, respectively. In phonon BTE, we apply diffusive,
specular, and equilibrium temperature boundary condition for left, side,
and right boundaries, respectively. The simulation domain is sufficiently
large to ensure negligible effects from the side and right boundaries on
the demonstrated region. In a heat diffusion process, as shown in Fig. 4a,
the isocontour of the flux density shows a semicircle shape, reflecting
the uniform distribution of flux density from a point heater over various
angles. While for fluid in Fig. 4b, the jet flow is highly directional due to

the bulk motion of the fluid. Similarly, in Fig. 4c, the heat flux field by
phonon BTE also demonstrates a strong directional characteristic,
illustrating fluid-like features in solid heat transfer due to phonon con-
vection. Our simulations in real geometries uncover the fluid-like
convective features of heat conduction in solids.

To comprehensively understand the behavior of the phonon jet flow,
we examined the impact of inlet width and background temperature
based on phonon BTE in Fig. 4d and e, respectively. As both the inlet
width and temperature decrease, the phonon jet flow becomes more
directional due to longer phonon mean free path relative to the char-
acteristic length of the thermal transport. Conversely, as the inlet width
and temperature rise, the phonon jet flow gradually become less direc-
tional and approaches to diffusive transport due to the increased phonon
scatterings that diminish the directional nature of the flow.

4. Conclusion

In summary, we investigate the convection of phonons in heat con-
duction processes based on ab initio approaches. The hydrodynamic
phonon transport is simulated by solving the phonon BTE with the
scattering matrix determined by quantum perturbation theory using ab
initio approaches based on density functional theory. The fluid-like
features such as vortex and jet flow are captured by the BTE beyond
relaxation time approximation and compared with the heat diffusion
model based on Fourier’s law and the fluid model based on Navier-
Stokes equation. We observed the fluid-like convective features in heat
conduction that was missed in classical heat transfer theory. This work
expands the fundamental understandings of the heat conduction from
quantum theory and atomistic scale simulations. The investigations on
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50K 100 K
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Fig. 4. Flux fields and streamlines of a jet flow. (a-c) Comparison in a jet flow at 100 K originating from a 0.2-pm-width inlet among (a) heat diffusion model, (b)
fluid model, and (c) Boltzmann transport equations with ab initio phonon interactions. (d) Compare the effects of varying inlet widths under a fixed background
temperature at 100 K. (e) Compare the effects of varying background temperature with fixed inlet width at 0.2 pm. Both (d) and (e) are derived from Boltzmann
transport equations with ab initio phonon interactions. The colormap represents the magnitude of flux density, the red curve shows the streamlines, and the red arrow

indicates the flow direction.

the phonon convection could innovate the thermal design of the future
microelectronic industries [26,40,41] and other thermal management
applications [42-44], which potentially opens opportunities to address
the heat dissipation issues in the post-Moore era.
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To fully validate our numerical procedure, we compared our calculated size-dependent nanowire thermal conductivity with the semi-analytical
approximate solutions [45]. Under temperature gradient VT, the phonon distribution (n,) deviates from equilibrium Bose-Einstein distribution

(ngs), and can be expanded as

ond,
I
qs

@ 9T

F VT

(A1)
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where ¢s denotes a phonon mode with wavevector ¢ and polarization s, and F is the expansion coefficient that quantifies the deviation of phonon
distribution. Given that the cross-plane phonon mean free path is shorter than the width of the nanowire, while the in-plane phonon mean free path
exceeds the width, we assume that confinement occurs only in the in-plane direction. By solving Boltzmann transport equation with relaxation time
approximation, F(y) varies with the distance to boundary y, and can be approximately expressed as

” y w
Fqs{l —exp(—Ayvq)], 0<y 37

W—y\] W
F2l1 - - L cy<W
qs|: exp( A_v-qx >] / 2 = y -

where W is the width of the nanowire, and Ay 4 = \vy‘qsms is the in-plane phonon mean free path. Here, a diffusive boundary condition is applied,
assuming phonons are fully equilibrium at the boundary, i.e., F4s(y = 0) = 0. F; is the F,, in bulk materials and can be obtained by solving Boltzmann

Fy ) = (A2)

transport equation through self-consistent iterations [15].
When applying VT along the nanowire, the heat flux J is given by J = [}, gV (ngs(y) — nd)ds = — SkVT, where S denotes the cross-
sectional area and a represents the projection along nanowire. From this, the thermal conductivity of nanowire, «, can be subsequently derived as

qs” qs

1 -
K= N;quv F (A3)

where FZS is cross-section average of Fy (y),

- 4A, w
Fl = F2od1 2200 - - A
S U ]} .

In Fig. 5, we compared the ab inito Monte Carlo results with semi-analytical approximate solution, focusing on graphite nanowire along the
armchair orientation. The agreement shown in Fig. 5 validates our numerical approach. At W = 0.1 um, the semi-analytical solution slightly over-
estimates the thermal conductivity due to the neglect of confinement in the cross-plane direction. At W > 0.5 um, semi-analytical solution slightly
underestimates the thermal conductivity due tlzué (i)rgnlication of relaxation time approximation.

2000

1500

1000

500 Semi-analytical

oAb initio Monte Carlo

Thermal conductivity (W/mK)

0 | 1 L
0.01 0.1 1 10 100
Nanowire width (um)

Fig. 5. Comparison between ab inito Monte Carlo results and semi-analytical approximate solution.

Appendix B

In fluid model, we consider a steady-state laminar flow. The equation set is as follows,

pVeu =0 (B1)

pV)u = V-(—pl+p(Vu+(Vu)")) (B2)

where Eq. (B1) and Eq. (B2) are the continuity equation and Navier-Stokes momentum equation, respectively. u is velocity. p and u are density and
dynamic viscosity, respectively. In Fig. 3¢, a pressure difference at 10 kPa is applied between inlet and outlet. In Fig. 4c, the inlet velocity is set to be 15
m/s.
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