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Abstract

Background Identification and quantitation of newly synthesized proteins (NSPs) are critical to understanding protein dynam-
ics in development and disease. Probing the nascent proteome can be achieved using non-canonical amino acids (ncAAs) to
selectively label the NSPs utilizing endogenous translation machinery, which can then be quantitated with mass spectrometry.
We have previously demonstrated that labeling the in vivo murine proteome is feasible via injection of azidohomoalanine
(Aha), an ncAA and methionine (Met) analog, without the need for Met depletion. Aha labeling can address biological
questions wherein temporal protein dynamics are significant. However, accessing this temporal resolution requires a more
complete understanding of Aha distribution kinetics in tissues.

Results To address these gaps, we created a deterministic, compartmental model of the kinetic transport and incorporation
of Aha in mice. Model results demonstrate the ability to predict Aha distribution and protein labeling in a variety of tis-
sues and dosing paradigms. To establish the suitability of the method for in vivo studies, we investigated the impact of Aha
administration on normal physiology by analyzing plasma and liver metabolomes following various Aha dosing regimens.
We show that Aha administration induces minimal metabolic alterations in mice.

Conclusions Our results demonstrate that we can reproducibly predict protein labeling and that the administration of this
analog does not significantly alter in vivo physiology over the course of our experimental study. We expect this model to be
a useful tool to guide future experiments utilizing this technique to study proteomic responses to stimuli.
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Introduction

The use of non-canonical amino acid (ncAA) labeling
for selective identification of newly synthesized proteins
(NSPs) in mammalian cells was first introduced by Diet-
erich er al.! and has since been applied to study several
biological systems (see reviews>>). In this technique, an
ncAA, typically a methionine (Met) analog, is introduced
to the biological system of interest and incorporated into
newly synthesized polypeptide chains using endogenous
or engineered cellular translational machinery. Distinc-
tion of nascent proteins from the constituent proteome
is enabled by reactive chemical groups, such as azides
and alkynes, which can be covalently modified via azide-
alkyne cycloaddition (a click chemistry reaction).> As
such, ncAA-labeled NSPs can be selectively conjugated
to affinity or fluorescent tags for identification or visualiza-
tion, respectively.'*

This technique has been successfully employed to probe
protein dynamics in a variety of bacterial®~’ and mamma-
lian cells in vitro,2 !0 as well as model organisms in vivo,
including zebrafish!! and Xenopus.'> More recently, ncAA
labeling has also been shown to be effective in identifying
NSPs in rodents.'*~!> Unlike similar techniques such as
stable isotope labeling, wherein proteins in low abundance
are often undetected due to the absence of an enrichment
method for selective isolation of newly synthesized labeled
proteins from the pool of more abundant unlabeled pro-
teins, ncAAs offer chemical handles that can be used for
enriching NSPs.’> The expanding applications of ncAA
labeling will therefore enable previously inaccessible
biological questions, wherein understanding the temporal
dynamics of protein synthesis and turnover is critical, to
be addressed.

Dietary administration of ncAA, typically enhanced
with a Met-free diet, has been shown to achieve adequate
labeling efficiency in rodents.'*!® However, as an essential
amino acid, Met deprivation may affect normal physiol-
ogy, particularly over longer labeling periods. Notably,
the presence of Met in mammalian diet is critical for nor-
mal embryonic development, '’~!* which constrains this
method to studies of adult animals. Our group has previ-
ously demonstrated that labeling the adult and embryonic
murine proteomes can instead be achieved via systemic
injection of ncAAs without the need for Met deple-
tion.'*** Compared to feeding with an ncAA-enriched diet,
the injection method achieves global proteome labeling in
a shorter period of time, which enables the detection of
proteins synthesized shortly after injection and proteins
with high turnover rates.?° Although direct comparisons
of Aha administration techniques have not been previously
studied, parenteral administration also reduces inherent
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variability, bypassing hepatic metabolism and eliminating
confounding fluctuations in feeding patterns and intesti-
nal absorption.?! Nevertheless, the injection technique
requires technical expertise and may cause distress to
animals.

Despite the application of ncAA labeling in a number
of studies to decipher complex cellular processes in animal
models,3:15:16.22 understanding of the kinetics of ncAA
distribution in tissues, especially as it pertains to rates of
protein incorporation and loss by degradation, is lacking.
Determination of the timescale of ncAA uptake by tissues
following administration and the lag time before maximum
protein labeling are critical information for the design of
robust temporal experiments to study the nascent proteome.
Predicting ncAA kinetics in murine models will also enable
optimizing the dosing regimen to attain the ideal concen-
trations to achieve sufficient protein labeling in the desired
tissue over the course of the study.

The aim of this study was to characterize the distribu-
tion kinetics of azidohomoalanine (Aha), a widely used Met
analog, in mice following subcutaneous injection, and to
investigate the impact on normal physiology. To study the
biodistribution of Aha, we measured the concentration in
the plasma, liver, kidney, brain and hindlimb skeletal mus-
cle using liquid chromatography-tandem mass spectrometry
(LC-MS/MS) over a period of 24 h. This dataset was used
to develop a deterministic compartment model of small mol-
ecule kinetics that characterizes the movement of freely dif-
fusive Aha (fAha) throughout the mouse circulatory system
and into tissues. In addition, we used fluorescent western
blotting to measure protein labeling in these tissues during
the same period. This second dataset was used to inform a
model of relative protein labeling (pAha) as a function of
fAha availability to characterize both the predicted labeling
profile for a given experimental treatment of Aha and the
relative synthesis and degradation rates of Aha-labeled pro-
teins. We demonstrate that this model can be used to charac-
terize nascent protein synthesis and turnover within distinct
tissues. Furthermore, we validated the capability of this
model to predict NSP labeling under more complex, multiple
injection dosing paradigms, which can be a tool to guide the
design of future experiments utilizing Aha labeling.

In addition to the kinetic analysis, we compared the
effect of the various Aha dosing regimens on the metabo-
lome of Aha-injected mice with that of non-injected con-
trols. LC—MS analyses of plasma and liver metabolomes
indicated few statistically significant metabolic changes
occur in response to Aha labeling. Taken together, these
results provide a fundamental understanding of the inter-
relation between the distribution kinetics of the ncAA into
murine tissues and the associated degree of protein labeling,
as well as the potential impact of ncAA injection on normal

physiology.



An Integrative Biology Approach to Quantify the Biodistribution of Azidohomoalanine In Vivo 101

Results

Kinetic Model of Aha Biodistribution Describes
Transport and Exchange

To capture the dynamics of free Aha (fAha) distribu-
tion in vivo, an in silico model system of ordinary dif-
ferential equations (ODEs) was generated describing the
physiological processes of small molecule transport. All
model and code files are accessible at the Kinzer-Ursem
lab GitHub repository (Additional File 1: S1). Descrip-
tions of the model, equations, and parameter values are
also provided in Additional File 1 (S2-S5). To mimic the
injection site of our subcutaneous dosing paradigm, fAha
was introduced into the model at a non-localized reservoir.
From this reservoir, fAha enters the murine circulatory
system at a rate that is a function of reservoir concentra-
tion and transport kinetics and is distributed to distinct
tissue compartments (Fig. 1).

Within each compartment, the time-dependent rate of
change of the fAha plasma concentration ([fAha,]) avail-
able for exchange with each tissue can be described as
a mass balance with two stages: transport and exchange.
The transport stage is governed by circulatory blood flow.

Gut
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fAha,
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fAha, fAha,
1 03
fAha, fAha,
J !
PAha, pAha,

X

d[fAha ]X 0,
( dt p >tral’lS]J0rt B V([fAhap]SYS"V B [fAhal’]x) (1)

where Q, is the blood flow rate between tissue ‘x’ and a sys-
temic venous reservoir (sysrv), and V, is the corresponding
volume of plasma relevant to each tissue (Q/V represented as
a lumped constant gb, Additional File 1: S2, S3). All kinetic
parameters for circulatory transport were normalized by tis-
sue mass to compare relative perfusion rates between tissue
compartments of differing size. Once localized to a tissue,
fAha in the plasma can also be exchanged across the cell
membrane with the intracellular Aha concentration ([fAha,])
and is described as follows:

d[fAha,]
< —px > = ke,x [fAhat]x - ki,x [fAhap] X (2)
dt exchange
d(fAha,],
< T > exchange = kisX [fAhaP]x - kg‘x [fAhat] * (3)

where k; . and k, , are the tissue specific import and export
rates (min~!-mg~!) for fAha across the cell membrane.
The liver tissue, kidney plasma, and gut lumen compart-
ments were assigned additional system removal terms (k, ,,
Additional File 1: S2, S3) accounting for excretion and
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Figure 1 Biodistribution of free Aha (fAha) via transport and
exchange. Introduced at a distinct injection site, fAha is allowed to
enter the circulation at a systemic venous reservoir. Driven by circu-
lation, fAha is passed through the arterial system (red) into distinct
tissue compartments where exchange occurs at tissue specific rates.
Arrows indicate directional movement of fAha. Each tissue compart-
ment consists of two sub-compartments: plasma available for surface

exchange (red to blue gradient) and an intracellular volume (illus-
trated here as the bottom compartments: from left to right muscle,
liver, brain, and kidney). fAha is incorporated into protein (pAha) in
the intracellular volume. A mechanism for oral dosing (via plasma
exchange with the gastrointestinal lumen) is illustrated and was
included in the model, but not utilized in this study.
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metabolization of fAha. The transport and exchange equa-
tions describing fAha distribution were combined into a sin-
gle system of ODEs parameterized and bound within reason-
able ranges for a model of small molecule pharmacokinetics
(Additional File 1: S2-S5).2328

Kinetic Model of Protein Labeling Captures Aha
Incorporation

Within each tissue compartment, fAha, is incorporated into
proteins (pAha) via protein synthesis. As a Met analog, Aha
is able to bind to methionyl-tRNA synthase, albeit at a much
slower rate (k.. K,,~' Aha: 1.42E-3, Met: 5.47E-1 pM ™!
s71).2° Therefore, at concentrations comparable to normal
physiological [Met] for mice fed a methionine adequate
diet (MAD) ([free Met] ~ 4.4 ug g~''*), Aha binding to the
methionyl-tRNA synthase is much slower than Met, yield-
ing Aha incorporation into NSPs of less than 10% by pre-
vious estimates.'* We therefore made a modeling assump-
tion that [fAha,] is negligibly depleted by incorporation into
protein (further justification, Additional File 1: S2) and that
recycling of Aha (as a non-canonical analog of an essen-
tial amino acid) is also negligible at the scale of plasma
clearance.

[fAha,| < [pAha,| )
d[fAh d[fAh
<—[f “’]X> = —k,[fAha,], ~ 0 < (—[f a’]~‘)
dr synthesis dt transport
)
dlpAha,),
— =k, [fAha,], =k, |pAha,] 6)
dt synthesis *

where k; . and k;  are the tissue-specific (denoted for tissue
‘x’ as above) rate constants of incorporation of Aha into
proteins due to synthesis and loss of Aha-labeled proteins
due to degradation. These equations describing Aha labe-
ling of proteins in each tissue were added to the biodistribu-
tion model establishing a time resolved predictive model
of tissue-specific protein labeling given a variety of input
dosing paradigms.

Experimental LC-MS/MS and Western Blotting Data
Enable Parameter Fitting

Model parameters were initialized and bound within rea-
sonable ranges, informed from literature and experimental
measurements as described in the methods (Additional File
1: $3-85),7%8 then underwent least squares regression to
match experimentally measured data of Aha concentration
and labeling. To inform fitting, fAha concentration pro-
files in plasma, obtained from blood collected by cardiac
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puncture, and liver, kidney, brain and hindlimb skeletal
muscle tissues were determined by injecting Aha subcuta-
neously into mice at 0.1 mg g~! total body weight and sac-
rificing 0.5-24 h post injection (hpi). Accurate identification
of fAha in each tissue was performed using LC-MS/MS
multiple reaction monitoring (Figs. 2a, 2b). Additionally,
the kinetics of Aha incorporation into tissue proteins were
described by examining the degree of protein labeling within
each tissue over the duration of the study. To this end, tis-
sue homogenates were reacted with biotin-alkyne via cop-
per-catalyzed click reaction, analyzed by semi-quantitative
western blotting using a fluorescent streptavidin conjugate
and the change in fluorescence intensity relative to the non-
injected controls was measured as an analog for pAha labe-
ling (Figs. 2c, 2d). Equivalent loading for each western blot
was confirmed with Ponceau S staining. While not as precise
as MS quantification, western blot studies allowed direct
comparison of labeling across the measured time interval
without performing Aha-labeled protein enrichment experi-
ments that are required prior to MS analysis.?’ This allows
for relative turnover rates of newly synthesized proteins to
be fit (Fig. 2).

The degree of fluorescent signal normalized relative to
the background (rF) measured in relative fluorescence units
(RFU) by semi-quantitative western blotting was assumed to
be linearly proportional to the concentration of pAha using a
fluorescent labeling factor, k. For each tissue (denoted “x”)

signal — background
rF, =

= k.[pAh
background ylpAhayl, )

< d(rF)

dr > = kyky [fAha,], = kg, (rF) ®)

Aha Labeling Captures Relative Protein Synthesis
and Turnover Dynamics in Murine Tissues

The highest plasma concentration of fAha was recorded
at 0.5 hpi (Fig. 2a), indicating a rapid absorption and bio-
availability from the injection site. Also notable, volume
of distribution (V) was calculated to be 1.6 mL g~! body
weight, a value greater than total body volume, indicating
rapid sequestration of fAha into body tissues. Tissue profiles
of fAha also peaked early, between 0.5 and 1 hpi, with the
liver having the earliest peak compared to the other tissues
(Figs. 3a—-3d). This early peak can be attributed to the high
blood perfusion of the liver,?® which likely results in faster
distribution equilibrium of Aha into the liver compared to
other tissues. Clearance of fAha was also observed to be
rapid, with a plasma half-life (t,,) of only 1.9 h and a plasma
clearance (CL) of 12.1 mL h™".
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Figure 2 Free Aha concentration and protein incorporation and
turnover kinetics in murine tissues were determined experimentally
to inform the kinetics model. (a) The concentration profile of fAha
in the plasma and best-fit single-phase decay curve with associated
kinetic parameters including plasma half-life (t;/,), volume of distri-
bution (Vp) and plasma clearance (CL). The amount of fAha (pg)
measured by LC-MS/MS was normalized by the total plasma volume
(n=3, biological replicates). (b) Average fAha concentration of indi-

In all tissues, maximum protein labeling was observed
around 6 hpi (Figs. 3e-3h), delayed from that observed for
[fAha]. Importantly, across tissues, [fAha] is directly pro-
portional to the first derivative of [pAha] in the early time
domain, implying that protein synthesis dominates the mass
balance at low [pAha], a finding supportive of our model’s
first-order kinetics. However, the degree of labeling, rep-
resented by the maximum fold increase in fluorescence
intensity compared to an internal control, and the kinetics
of protein incorporation and turnover varied considerably
between tissues.

The observed differences in fluorescence intensities are in
agreement with previous stable isotope labeling studies that
showed faster protein turnover rates in liver and kidney com-
pared to brain and skeletal muscle.>'~** Our model estimated
a protein lifetime in the brain that is 2.7 times higher than
the liver (Table 1), a ratio in close agreement with previous
findings (Price et al. observed a median peptide half-life

vidual tissues at each time point normalized by tissue mass (n=3).
(c) Fluorescent western blots of the tissue homogenates of control
non-injected samples (C) and samples collected 0.5-24 h post Aha
injection (hpi). (d) Average fluorescence intensity of western blot
lanes normalized to respective controls at each time point (n=3). For
all plots, error bars indicate one standard deviation. Values for muscle
tissues at t=0-2 hpi were undistinguishable from the background.

of 9 and 3 days for brain and liver, respectively’?). These
discrepancies between the magnitude of previously reported
values and the half-lives estimated here may be attributed
to the shorter timescale of our experiment as compared to
stable isotope labeling techniques and the use of semi-quan-
titative western blotting measurements rather than MS. A
more robust quantitation of pAha concentrations using MS
will be required for a more precise determination of absolute
protein kinetics in different murine tissues.

Descriptive Statistics Support Model
of Biodistribution and Labeling

Model validity was examined using the following metrics
to investigate parameter stability and goodness of fit. First,
a prediction interval of residuals was generated for each tis-
sue studied, for both the biodistribution and protein labeling
models. A 95% prediction interval (PL,_, o5) of residuals was
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Figure 3 Aha kinetics and protein labeling following subcutane-
ous injection of Aha. (a)-(d) The concentration profiles of free Aha
(fAha) in the plasma and different tissues. The amount of Aha (ug)
measured by LC-MS/MS analysis was normalized by the total tis-
sue mass and plotted over time. (e)—(h) Relative fluorescence (rF), as
measured by western blotting, of proteins isolated from each tissue as
a function of time. Filled points represent mean experimental meas-

Table 1 Protein incorporation and degradation rates estimated from
Aha dynamics.

Parameter, Units Muscle Liver  Brain  Kidney

223E-2 497E-2 2.12E-2 5.06E-2
31.05 13.94 326 13.69
5.36E-4 228E-2 6.06E-3 5.43E-2

Protein turnover rate, h™!
Protein half-life, h

Aha Incorporation?,
RFU(ug h)™!

Best fit parameter values for Aha incorporation, and protein turnover
and half-lives in studied tissues

#Relative incorporation rate:kfks(mt)_l, units include RFU per unit
mass of pAha

calculated using all experimental replicates (Fig. 3). A second,
tighter prediction interval was calculated using the mean for
each time point (Fig. 3). For each tissue, the width of PI _ o5
from the average line of best fit () can be approximated using
a naively informed forecast interval that assumes a normal

distribution of residual error.**
A2 )
Pl ,_,05() = 5(0) £ 1.96 = Z(yl—y’) " 1+1+(t——t)_2
" noYae-n
)
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urement at each time point, error bars indicate experimental standard
deviation (n=3 biological replicates). Colored traces indicate best
fit of model to each dataset, with darker and lighter shaded regions
showing 95% prediction intervals for residual error calculated from
mean experimental values and all experimental replicates, respec-
tively.

where n is the total number of observations, (¢, y;) are the
coordinates for each observation, ¢ is the time point of the
predicted residual, 7 is the average time of all experimen-
tal observations. These prediction intervals demonstrate a
narrow range of residual error and capture all experimental
means and >95% of experimental values, indicating an accu-
rate predictive model.

Second, the covariance matrix of least squares regression
was used to inform a standard error of fitting (SE;) for all
fitted parameters in the biodistribution model (Additional
File 1: S3-S5). SE; describes variability of each parameter,
but also reflects upon the definition of the model. Parameters
with best fit values near to the constraints are less predict-
able; wide error would be indicative of a poorly constrained
system. Error also increases with the number of fitted param-
eters, is inversely related to the quantity of data points avail-
able for fitting, and is weighted by the metric used for opti-
mization. Among all fit parameters, we found relatively few
SE; values greater than best fit values by more than an order
of magnitude (Fig. 3, Additional File 1: S3—S5). The widest
error ranges were associated with parameters rates describ-
ing tissue import and export of fAha, which are the least
well characterized in the literature and therefore the most
naively bounded in our model. Low SE; values, particularly
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among parameters fit within reported literature values, sup-
port a well characterized model, although this metric is not
fully sufficient to describe a complex non-linear regression.

A more thorough analysis was achieved using Monte-
Carlo Latin hypercube sampling (LHS) to perform efficient
sampling of the input parameter space and correlation with
partial rank correlation coefficients (PRCCs). This global
sensitivity analysis was performed against several metrics
to probe the influence of variation in parameter values on
(1) model fitness and (2) predicted Aha labeling levels in
each tissue (rF). To address model fitness, PRCC values,
which vary between 1 (perfect positive correlation) and — 1
(perfect negative correlation), were calculated comparing
variation in the input parameter values against the sum of
square errors for each fitting model. This analysis generates
a PRCC value for each parameter that characterizes its rela-
tive effect on the fitting metric (PRCCy), and therefore the
fitting process. PRCC; values higher in absolute magnitude
indicate parameters that, when varied independently, have
the greatest influence on the fitting metric with values > 0.8
considered as indications of regions of instability in the
model.*>*® All model parameters fell safely below a PRCC
¢ value of 0.3. Parameters found to have the highest PRCC;
values (>0.2) were those that influence the system removal
of fAha (e.g. elimination and import rates into metabolic
tissues), likely due to the rapid metabolic profile exhibited
following subcutaneous injection (Fig. 3).

Taken together, PRCC; and SE; values demonstrate that
influential parameters are not those with the widest error
ranges (Fig. 4, Supplements S5-S7). Furthermore, when
comparing these values across the parameter space, there is
no one tissue that exhibits over-sensitive behavior by either
metric (apart from perhaps systemic elimination). These
findings provide support for the model definition, boundary
constraints, and biological relevance of best fit parameters.

Further application of PRCC analysis allowed exami-
nation of the influence of parameter values upon the pre-
dicted degree of Aha labeling in each tissue over time. All
model parameters were varied within their estimated fitting
range (Additional File 1: S5-S7) and sampled via LHS
(n=10,000). An rF value in each tissue was predicted for
each timepoint from O to 24 hpi and the resulting output
was correlated to the input parameter variation using PRCC
analysis. Resulting traces elucidate kinetic parameters and
physiological mechanisms that most influence rF during dif-
ferent time domains (Fig. 5). For example, immediately after
injection (0—4 hpi), the rate of absorption of Aha from initial
injection site (kaSubcu) is a critical mechanism driving rapid
labeling efficiency in all four studied tissues. However, the
importance of this parameter declines over time, just as the
influence of other parameters increases, particularly those
representing Aha degradation and elimination. The influence
of liver transport is prominent in all four tissues indicating

0.3
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O ° ° ° .
E 0.2 Brain
g ] L Kidney
[Ty (3]
c ° ° e System
E 0.1- 3 ° ° o Y
g 1 q_E )
Variability — ® .
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0.01 0.1 1 10 100

Parameter |nSE4|

Figure 4 Sensitivity analysis for model parameter fitting. Each point
represents a distinct parameter from the model (colored by associated
tissues) and coordinates indicate absolute values of normalized stand-
ard error of fitting (nSE;=SE/best fit value) on the x-axis and PRCC;
on the y-axis. Light gray shaded regions indicate parameters that have
either a relatively high model influence (PRCC;>0.2) or variability
(nSE;>10). The dark grey shaded region indicates a domain where
parameters would be considered unstable or poorly constrained with
both a high variability and influence on the model.

the liver plays a major role in Aha kinetics. This suggests
Aha may be primarily metabolized and eliminated by the
liver, rather than by eliminated via excretion. This possibility
is consistent with the known liver functions of toxin removal
and amino acid metabolism.*’

Predictive Simulations Accurately Capture Alternate
Dosing Paradigms

Attaining sufficient protein labeling is critical for accurate
identification and quantitation of Aha-labeled proteins using
LC-MS/MS. For instance, note the near negligible labeling
of skeletal muscle in Fig. 3. If muscle labeling is desired, a
much higher Aha dose may be required to attain sufficient
labeling. This underlines the importance of tailoring the
dosing regimen of Aha (i.e. amount per dose and dosing
frequency) to the tissue of interest and the biological ques-
tion under investigation. Using the model described above,
fAha biodistribution and tissue protein labeling can be pre-
dicted for alternative dosing regimens to aid future experi-
mental design and predict labeling efficiency depending on
the conditions of a study. However, the model was based on
the concentration of Aha in plasma and tissues over 24 h
after a single subcutaneous injection. While this data was
sufficiently robust to develop a well-informed model of Aha
patterning after one subcutaneous dose, the use of this model
to predict Aha content for longer time scales or multiple
dose paradigms would generate naive forecasts. To address
this gap, we validated the predictions of our model experi-
mentally against a data set that spans a longer time period
and multiple injected doses. The model was used to predict
the rF labeling of brain and liver tissues for two alternative
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Figure 5 Sensitivity analysis of input parameter variation and Aha
labeling in tissues over 24 hpi. Each plot shows the time resolved
PRCC values for a selection of parameters using predicted rF in
each tissue as a correlation metric. Parameters shown are either (1)
descriptive of dynamics within the relevant tissue or (2) related to a
different tissue, but with a significant influence on the tissue of inter-

dosing paradigms with either 12 h repeated doses (hrd) or
24 hrd over a 32 h period (Fig. S7). As an internal control
for western blotting variation, these new experimental values
were normalized by a shared time point with the previous
study (6 h post initial injection) for each tissue (Fig. 6).

To determine the ability of the original model to predict
Aha incorporation into proteins in various tissues, the data
from each repeated dose study was used to refit the rela-
tive pAha synthesis and degradation rates for each tissue
under each repeated dose paradigm. Relative to the param-
eter fit with the original experimental data, there was only a
slight reduction in the standard error of regression (SE,,), a
goodness-of-fit metric, between the original and refit param-
eters in each tissue (Table 2). Additionally, among all refit
parameters, a single parameter was adjusted beyond a single
standard error of fit (SE;) from the original best fit value (12
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hrd liver A(k. k) ~ +1.97SE), and only the degradation rate
in the brain changed by >20% (Table 2).

Aha Administration Induces Metabolic Adaptation
in Mice

In addition to the characterization of Aha distribution kinet-
ics in mice, it is important to understand the impact of Aha
administration on normal physiology. Since metabolites are
the end products of cellular biological processes, we sought
to evaluate the physiological impact of Aha incorporation
into NSPs using untargeted metabolomic analysis. To this
end, plasma and liver metabolomes were analyzed following
different time points (6, 18, and 32 hpi) of two alternative
Aha dosing regimens (12 hrd and 24 hrd) to examine the
effect of Aha administration on the metabolome.
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Figure 6 The model accurately predicts relative labeling in the
brain and liver with multiple injection doses. rF experimental data
(dots) and model predictions (lines) for a 12 hrd and b 24 hrd. For
each tissue, experimental replicates from the repeated dose study are
displayed at 6, 18, and 32 hpi as individual points. The solid line is
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the predicted trace using the best fit model from the original robust
dataset. The dashed line is the model with parameter values refit to
the data from the repeated dose experiments. The vertical dotted line
indicates dose injection timepoints.

Table 2 Parameter and
goodness-of-fit statistics related

Tissue

Parameter, units

Pred. value (SEy) Refit value %A

to the alternative dosing models Liver, 12 hrd kok,, RFU(pg fAhapg pAha h)™! 3.16E-4 (2.49E-5) 3.65E-4 +15.5%
in Fig. 6 ey ! 829E-4 (1.80E-4)  8.67E-4 +4.6%
SE, . RFU 1.975 1.684 - 147%
Brain, 12 hrd kek,, RFU(ng fAhapg pAha h)~! 4.30E-4 (2.83E-5) 4.84E-5 +12.5%
kg h! 3.54E-4 (1.11E-3) 1.37E-4 - 61.3%
SE, . RFU 1.147 1.082 -57%
Liver, 24 hrd kek,, RFU(pg fAhapg pAha h)™! 3.16E-4 (2.49E-5) 3.02E-4 - 4.4%
kg ! 8.29E-4 (1.80E-4) 6.72E-4 —18.9%
SE, . RFU 1.558 1.524 -22%
Brain, 24 hrd ksk,, RFU(ng fAhapg pAha h)™' 4.30E-4 (2.83E-5) 4.28E-5 - 0.5%
kg b 3.54E-4 (1.11E-3) 1.37E-9 —~99.9%
SE,,.,RFU 0.953 0.916 -3.9%

reg>

LC-MS analysis of plasma and liver metabolomes (Addi-
tional Files 2 and 3, respectively) identified a total of 1339
and 1041 mass features (i.e. metabolites), respectively across
all sample groups. The peak area of each mass feature is
proportional to the amount of the corresponding ion in the
sample and was used as a measurement for its relative abun-
dance across samples. Principal component analysis (PCA)
was used to examine the variation in metabolite abundance
between the different treatment groups. Plasma PCA analysis
revealed no distinct segregation between the non-injected
control mice and the Aha 6 hpi mice, indicating that there
were no global differences in the metabolome between
the two groups (Fig. 7a). Greater separation was observed
between the control and the other Aha treatment groups;
however there was less variation among each of these Aha
groups and one another.

In addition to PCA, unsupervised hierarchical clustering
analysis (HCA) was conducted and a heatmap was gener-
ated to examine variations in metabolic patterns between
the Aha and control groups. HCA and heatmap visualiza-
tion of the identified plasma mass features showed that the
biological replicates of each group did not cluster with each
other and that there were no distinct differential abundance
patterns among the different groups (Fig. 7b). These results
suggest that minor metabolic alterations occur after 6 h of
Aha injection and become more prominent following longer
post injection periods and multiple Aha doses. Addition-
ally, while Aha does induce metabolic adaptation in injected
mice, no substantial metabolic changes exist between the
various groups.

Similar trends were observed for the liver metabolome.
PCA analysis indicated less variation between the control
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Figure 7 Aha labeling induces metabolic adaptations in injected
mice. Principal component analyses (PCA) of plasma (a) and liver
(c) mass features show no clear separation between control and Aha
6 hpi groups in the first two components, whereas more variation
is illustrated between the control and other Aha treatment groups.

and the Aha 6 hpi groups as well as between all other Aha
treatment groups, whereas greater separation was shown
between these treatment groups and the control (Fig. 7c).
Additionally, a heatmap with HCA of liver mass features
illustrated a lack of group clustering based on metabolite
abundance (Fig. 7d). As such, the LC-MS analysis of the
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relative feature abundance; blue: lowest, red: highest.

liver metabolome further establishes that the control and
the Aha 6 hpi mice have similar metabolite profile and that
there are no significant differences between 12 and 24 hrd
over a 32 h period.

Following global analysis using PCA and HCA, Student’s
t-tests were employed to compare between the control and
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each of the Aha treatment groups. Using a raw p-value of
0.05 and a fold change of >I2| as cut-offs, the percentage
of differentially abundant mass features ranged between
3.66% and 10.90% for plasma, and 1.06% and 18.73% for
liver (Table 3). These values dropped to 0% and 4.48% for
plasma and 0% and 11.82% for liver using a FDR-adjusted
p-value, which has been suggested for untargeted metabo-
lomics data to control for false positives *. Notably, these
minor metabolic alterations are in agreement with a recent
study that investigated the metabolic effect of growing E.coli
in media supplemented with ncAAs *°.

Collectively, the LC-MS analyses of plasma and liver
metabolomes demonstrate that Aha administration causes
metabolic adaptation in mice. While 6 h following a single
Aha injection is a relatively short time to detect a difference,
more distinct metabolic changes occur after prolonged post
injection periods and repeated Aha injections. PCA, HCA
and t-test results refer to a limited metabolic perturbation
occurring in response to Aha administration. Notably, our
labeling technique does not involve Met restriction or deple-
tion as the case with other labeling strategies that use an
Aha-supplemented Met-free diet. Met dietary restriction has
been shown to alter the metabolism in mouse models and in
humans.***? Yet, subsequent MS/MS identification stud-
ies of the differentially abundant metabolites are needed to
understand the implication of these small changes and the
potentially impacted metabolic pathways.

Discussion and Conclusions

To optimize the applications of ncAAs, effective protein
labeling is critical to enrich labeled protein with the high
signal-to-noise ratio required for accurate quantitative MS
measurements and identification of newly synthesized pro-
teins. Here, we reported for the first time the biodistribu-
tion of the widely used Met analog, Aha, in murine tissues,
as well as the associated relative rates of incorporation of
Aha into protein via protein synthesis and protein turnover.

Table 3 The number of differentially abundant plasma and liver mass
features for each Aha treatment group compared to control using
either a raw p-value (0.05) or FDR-adjusted p-value (0.05) and a fold
change of >I2I.

Group Plasma Liver

Raw p-value FDR Raw p-value FDR
6 hpi 49 2 11 0
12 hrd_18 hpi 88 0 97 22
12 hrd_32 hpi 157 60 159 68
24 hrd_18 hpi 145 43 154 60
24 hrd_32 hpi 146 17 195 123

These results showed that liver and kidney have faster pro-
tein synthesis and turnover rates compared to brain and skel-
etal muscle, which is consistent with previous studies that
utilized stable isotope labeling.*

In previous work, we found that protein labeling with
Aha was dose dependent and the optimal dose via intraperi-
toneal injection (IP) of Aha was 0.1 mg g~! mouse.'* In this
current study, we utilized the same dose with SC injection
at various timepoints. This indicates that protein labeling
with Aha is robust to this dosing level, dosing schedule,
and to injection route. Further, we demonstrated that under
a subcutaneous injection dosing paradigm protein labeling
reaches a local maximum within a relatively short window in
all studied tissues (~ 6 h). We expect this time resolution to
enable study of proteins with shorter half-lives. In contrast,
alternative dosing of ncAA (e.g. oral feeding over a period
of days to achieve desired Aha labeling'?) or isotope-labeled
amino acids*>>? are typically administered over longer time
period. Other ncAAs such as homopropargylglycine (Hpg)
and azidonorleucine can be used for in vivo labeling.? The
advantage of using Aha and Hpg is that they can be incor-
porated into proteins in native systems using endogenous
translation machinery. Our group and others have previously
shown that Aha incorporates into proteins more efficiently
than Hpg.'** In order to label proteins with azidonorleucine
and many other ncAAs, a mutant tRNA synthetase recogniz-
ing the ncAA is required.'*!

While Aha (and other ncAA) labeling shows great prom-
ise for future study of the nascent proteome, the biodistribu-
tion of Aha makes it clear that depending on the tissue type
and biological processes to be studied, multiple injections
of Aha may be required. Therefore, optimizing the dose and
frequency of Aha injections is critical for the appropriate
design of labeling studies. In this regard, we also presented
an experimentally informed deterministic model. Our model
was developed to describe: (1) the transport of fAha within
the plasma, (2) the circulatory exchange of fAha into tissues
of adult mice and (3) the degree of Aha incorporation into
proteins in specific tissues. We utilized a multi-compart-
ment system characteristic of pharmacokinetic models of
small-molecule and AA pharmacokinetics.>>*"-*® Such mod-
els have been extensively used to study protein turnover,
typically in the context of stable isotope labeling, and have
been used to estimate kinetic parameters such as total protein
degradation in isolated tissues (e.g. Guan et al., employed
isotope labeling and a compartment model of similar struc-
ture to estimate kdLiver ~ 0.03 d=!,*® in close agreement
with our kdLiver =~ 0.02 d™!). Our model was empirically
parameterized with time resolved measurements of Aha
concentrations and fluorescent labeling and used to extract
the distribution kinetics of Aha in murine tissues and their
relation to the degree of protein labeling as well as to com-
pute the relative rates of protein synthesis and turnover. We
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further validated this framework for predictive modeling of
Aha labeling against an experimental dataset including two
different repeated injection dosing paradigms to demonstrate
its efficacy as a tool for future experimental design. Of note,
semi-quantitative fluorescent gel imaging was used to inform
the relative change in the amount of NSPs in each tissue
compartment, as has been previously demonstrated.** For
absolute measurement of individual protein synthesis rates,
future studies will need to employ quantitative proteomic
analysis.

With respect to the domain of validity for our model,
we note that our study only probed subcutaneous dosing
at a single dose concentration optimized in previous work
(0.1 mg g~''*) and that Aha concentrations are recorded on a
limited timescale (up to 32 hpi). To extrapolate beyond these
limitations, we can consider Aha from a pharmacokinetic
perspective. At low [fAha], adequate homeostatic regulation
should compensate for an increased rate of administration
with a proportional increase in the rate of elimination. How-
ever, as concentrations and dosing rates continue to rise a
further domain might exist where the [fAha] exceeds regula-
tion capacity and begins to demonstrate saturation of elimi-
nation mechanisms.* If fAha dosing enters this saturation
domain, we expect a deviation from the first-order dynamics
towards a zero-order system. However, at our highest dosing
frequency (12 hrd), we observed no evidence of a deviation
from the first-order kinetics. The model predicts both fAha
and protein labeling without variation in the rates of absorp-
tion or elimination. Therefore, we expect this model to be
valid at dosing rates up to the maximal observed clearance
of fAha, ~30 pg h™! per g body mass. At our dose concentra-
tion, this would correspond to injections administered at ~3
hrd intervals, a rate that approaches the limit of feasibility
when weighed against the stress burden of multiple injec-
tions in a rodent model. Furthermore, to adapt the model
to capture an oral dosing study, we suggest refitting the
distribution model with plasma [fAha] from at least 2 time
points using feed/water supplemented with Aha. Refitting
can reasonably be confined to relevant parameters (such as
gastrointestinal absorption (kiGasin), excretion (keGasin),
blood flow (gbSmint) and all systemic elimination param-
eters) and should employ a realistic forcing function for oral
dosing. Lastly, for studies on a longer timescale than 48 h,
we suggest refitting the protein labeling model for desired
compartments with at least 2 time points on the desired time
scale using the best fit values for each parameter as initial
estimates.

Our model demonstrated that Aha exhibits high rates
of plasma clearance relative to a high volume of distribu-
tion (Fig. 2a). This supports the hypothesis that elimina-
tion of Aha predominantly occurs within metabolically
active tissues, such as the liver. This is also supported by
the prominence of liver parameters in the model analysis
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(Fig. 5). Further, the liver showed the highest degree of
labeling (Fig. 3f) as well as the highest relative rates of
Aha incorporation and protein turnover (Table 1), whereas
skeletal muscle had the lowest degree of labeling (Fig. 3e)
and the slowest relative rates of incorporation and turno-
ver (Table 1). Interestingly, the amount of fAha (pg) per
unit mass tissue (g) was higher in skeletal muscle than in
liver (Figs. 3a, 3b), indicating that the low degree of labe-
ling observed in skeletal muscle is predominantly due to a
slow rate of muscle Aha incorporation, perhaps implying
a lower rate of overall protein synthesis on this timescale.
Finally, we investigated the impact of Aha administration
on plasma and liver metabolomes. Despite the growing
use of ncAAs, and Aha in particular, evaluation of the
physiological impact of Aha administration, has previ-
ously been limited to examining changes in animal gross
behavior, physical appearance and body weight.!*™!5 A
more robust analysis of the effect of Aha administration
on mice fed a MAD and the corresponding implications
for cellular function, is still required to confirm the suit-
ability of the method for longer-term in vivo studies. Here
we have demonstrated that Aha incorporation into cellu-
lar proteins induces minimal metabolic perturbations in
injected mice. This observation further confirms previous
results from our group that demonstrated that ncAAs do
not affect the gross behavior nor the physical appearance
of treated mice.'* Taken together, we expect the biodis-
tribution model to be a useful tool to guide future experi-
ments for maximizing Aha labeling of newly synthesized
proteins. This also provides a platform for investigation
of other biodynamics of other ncAAs and other delivery
methods (oral or biodegradable depots).

Methods
Animal Model

Animals used in these studies were derived from female
age-matched (9-11 weeks) wild-type adult C57BL/6 mice
(Mus musculus) purchased from The Jackson Laboratory.
All experimental protocols were performed in compliance
with established guidelines and all methods were approved
by Purdue Animal Care and Use Committee (PACUC, pro-
tocols# 1209000723 and 1801001682). PACUC requires
that all animal programs, procedures, and facilities at Pur-
due University abide by the policies, recommendations,
guidelines, and regulations of the United States Depart-
ment of Agriculture (USDA) and the United States Public
Health Service (USPHS) in accordance with the Animal
Welfare Act and Purdue’s Animal Welfare Assurance.
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Aha Injection, and Plasma and Tissue Collection

L-azidohomoalanine (Aha; Click Chemistry Tools) was
resuspended in 1 X phosphate buffered saline (PBS) to
10 mg mL~!, adjusted to pH 7.4, sterile filtered and stored
at—20 °C. All Aha injections were administered subcu-
taneously at 0.1 mg g~! total mouse weight. Mice (n=3,
biological replicates) were euthanized 0.5, 1, 2, 4, 6, 12
and 24 h post injection (hpi). Blood was harvested by car-
diac puncture, collected in EDTA-treated tubes and cen-
trifuged at 1500xg for 10 min at 4 °C. The supernatant
(plasma) was transferred into a new tube, snap frozen in
liquid nitrogen and stored at — 80 °C. Liver, brain, kid-
ney and hindlimb skeletal muscle tissues were dissected at
each time point, snap frozen in liquid nitrogen and stored
at — 80 °C. Control plasma and tissues were collected as
described above from non-injected mice (n=3 biological
replicates). For the validation of model predictive ability,
two Aha dosing regimens were used: (1) 12 h repeated
doses (hrd) and (2) 24 hrd. Liver and brain tissues (n=3
biological replicates) were dissected as described above
at 6, 18, and 32 hpi, snap frozen in liquid nitrogen and
stored at — 80 °C.

Sample Preparation for Aha Analysis

For plasma sample preparation, 50 uL. of plasma were mixed
with 10 uL of 1 xPBS, pH 7.4, and 5 uL of 100 ng uL™!
L-a-aminobutyric acid (a-ABA; Sigma Aldrich) that was
used as an internal standard. 12.5 uL of trichloroacetic acid
(TCA; Sigma Aldrich) were added to the mixture to precipi-
tate proteins. The mixture was incubated for 10 min at 4 °C
and centrifuged at 16,000xg for 10 min at RT. The super-
natant was then mixed with 100% acetonitrile (ACN; Fisher
Scientific) at a 1:1 ratio (v/v). The mixture was transferred
to an HPLC autosampler vial for LC-MS/MS analysis. For
calibration curve generation, Aha standards were prepared
by mixing 50 uL of non-injected plasma with 10 uL of a
known concentration of Aha and 5 uL. of a-ABA. Proteins
were then precipitated with TCA and prepared for LC-MS/
MS analysis as described above.

For tissue sample preparation, tissues were rinsed with
ice-cold 1 xPBS, pH 7.4 to remove residual blood and
homogenized in ice-cold 1 X PBS, pH 7.4 using a TissueRup-
tor (Qiagen). The final homogenate weight was measured
and converted to volume by using a homogenate density
of 1 g mL~'. Samples were then prepared for LC-MS/MS
analysis as described for plasma by using 50 uL of the tis-
sue homogenate. The remaining plasma samples and tissue
homogenates were snap frozen and stored at — 80 °C until
use for western blot and untargeted metabolomic analyses
as described below.

LC-MS/MS Targeted Analysis of Aha

An Agilent 1260 Rapid Resolution liquid chromatography
(LC) system coupled to an Agilent 6470 series QQQ mass
spectrometer was used for Aha analysis (Agilent Technolo-
gies). An Intrada Amino Acid 2.0 mm X 150 mm, 3.0 ym
column (Imtakt Corporation) was used for LC separation.
The buffers were [A] ACN, 0.3% formic acid (FA; Sigma
Aldrich) and [B] ACN/100 mM ammonium formate (20/80
v/v). The linear LC gradient was as follows: time 0 min,
20% B; time 5 min, 20% B; time 11 min, 35% B; time
20 min, 100% B; time 22 min, 100% B; time 22.5 min,
20% B; time 30 min, 20% B. The flow rate was 0.3 mL
min~!. Multiple reaction monitoring (MRM) was used for
MS analysis. Data were acquired in a positive electrospray
ionization (ESI) model based upon parameters in Table 4.
The jet stream ESI interface had a gas temperature of
325 °C, gas flow rate of 9 L min~!, nebulizer pressure of
35 psi, sheath gas temperature of 250 °C, sheath gas flow
rate of 7 L min~!, capillary voltage of 3500 V in a positive
mode, and nozzle voltage of 1000 V. The delta electron
multiplier voltage was 300 V. Agilent MassHunter Quanti-
tative Analysis software was used for data analysis (v.8.0).

TABLE 4 Multiple reaction monitoring (MRM) table for amino acid
LC-MS/MS data acquisition.

Compound name Precursorion  Production (m Collision

(mz7h zh energy
(eV)

Aha 145.1 101.3 5

Aha 145.1 71.3 10
Aha 145.1 58.3 40
Ala 90 44 15
Arg 175 116 18
Asn 133 87 12
Asp 134 88 14
Cys 122 76 15
Cys-Cys 241.1 152 15
Gln 147 84 22
Glu 148 130 12
Gly 76 30 15
His 156 110 19
Ile 132 86 15
Leu 132 86 15
Lys 147 84 20
Met 150 104 15
Phe 166 120 15
Pro 116 70 15
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Western Blot Analysis of Aha-Labeled Tissues

Tissue homogenates were thawed and protein concentra-
tion was measured using the Pierce 660 nm Protein Assay
(ThermoFisher Scientific). 200 ug of tissue homogenate was
alkylated with 40 mM iodoacetamide for 30 min at RT in the
dark with end-over-end rotation. Samples were then reacted
for 2 h at RT with the following click reagents: 50 pM biotin-
alkyne (ThermoFisher Scientific), 5 mM tris(3-hydroxypro-
pyltriazolylmethyl)amine (THPTA; Click Chemistry Tools),
2 mM copper sulfate, 20 mM aminoguanidine and 10 mM
sodium ascorbate. Following the click reaction, proteins
were precipitated by adding ice-cold 100% acetone to the
samples at a 4:1 ratio (v/v). Samples were incubated over-
night at — 20 °C, centrifuged at 21,100xg for 20 min at 4 °C,
supernatants were discarded, and protein pellets were vac-
uum-dried for 15 min at RT using a CentriVap (Labconco).
Dried pellets were resuspended in 8 M urea in 1 X PBS and
centrifuged at 16,000xg for 15 min at RT to remove insolu-
ble particles. The supernatants were transferred into new
tubes and protein concentration was measured using the
Pierce 660 nm Protein Assay (ThermoFisher Scientific).
Proteins were resolved on 4-20% SDS-PAGE gels (BioRad),
transferred to a PVDF membrane (ThermoFisher Scien-
tific) using the Trans-Blot Turbo Transfer System (BioRad)
and probed overnight at 4 °C with IRDye 680 Streptavidin
(LICOR) diluted 1:3000 in 1:1 TBST:Blocking Buffer (Bio-
Rad). Membranes were imaged using an Azure Biosystems
¢600. Western blot images were analyzed using Imagel
(National Institutes of Health) to calculate the mean fluo-
rescence intensities of each time point. The intensity of the
control sample was used to normalize the intensity of each
time point (n=3 biological replicates per blot). Membranes
were stained with Ponceau S (Sigma-Aldrich) to confirm
equal protein loading.

Kinetic Modeling of Aha Distribution

The model of Aha distribution is shown schematically in
Fig. 1. Both injection and oral administration of Aha are
included in the model system to enable future studies of
ncAA labeling with alternative/combined dosing paradigms.
Simulations were performed using custom modeling scripts
written in Python 3.6 (code location in Additional File 1:
S1). Systems of ordinary differential equations (Additional
File 1: S2) were solved using a flexible high order solver
from the SciPy python package (v1.4.1%%). Simulations were
run on a Lenovo Yoga PC with an Intel Core i7-8550U CPU
@ 1.8 GHz and 8 GB RAM.

Most parameter values and ranges for fitting were
informed from reported literature values or experimental
measurements from this study. For parameters related to
an experimental output ([fAha] or rF) without a reported
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literature value, an initial best estimate was selected to pro-
duce a single time-step change one order of magnitude lower
than the maximum recorded experimental value. These
parameters were then allowed to fit within a range of 1.5
orders of magnitude from the initial estimate. Parameters
were fit with a least squares minimization algorithm from
‘Lmfit’, a prebuilt python library (v1.1.0%). All best fit val-
ues and boundary conditions can be found in the parameter
tables (Additional File 1: S3-5). Other package dependen-
cies to generate data and figures in this manuscript include
NumPy (v1.16.1,*"), and matplotlib (v3.3,*).

Parameter Sensitivity Analysis and Model Validation

To effectively sample the input parameter space, Latin
hypercube sampling (LHS) was utilized to generate unique
parameter sets (n=10,000), sweeping each parameter value
through a range defined by the boundary constraints from
literature (Additional File 1:Tables S3-S5) as previously
detailed.*>® Global sensitivity analysis was performed on
the LHS generated parameter sets using partial rank corre-
lation coefficient (PRCC) analysis. This analysis quantifies
the sensitivity of an output variable on the variation in input
parameter values.>>3¢ Here, PRCCs were determined for
each of the 19 fitted parameters (Additional File 1: Table S3)
and 12 static parameters (Additional File 1: Table S4) in the
biodistribution model, as well as for all 8 parameters in the
protein incorporation model (Additional File 1: Table S5).
PRCCs were used to characterize the influence of each
parameter on the sum of square errors (SSE), the optimiza-
tion metric for non-linear regression. Simulations used to
inform PRCCs were performed on the Brown Supercomput-
ing Community Cluster at Purdue University,* with each
simulation run on a single node with dual 12-core Intel Xeon
Gold "Sky Lake" CPUs @ 2.60 GHz and 96 GB of memory.

The standard error of fitting was determined for the 19 fit-
ted parameters (Additional File 1: Table S3) in the biodistri-
bution model and for all 8 fitted parameters (Additional File
1: Table S5) in the protein incorporation model. Standard
error values were determined from the covariance matrix
during non-linear regression using the built-in functionali-
ties of the ‘Lmfit’ python library.*®

Plasma and Liver Sample Preparation
for Untargeted Metabolomic Analysis

Plasma and liver metabolomes of non-injected control sam-
ples (n=3 biological replicates) and samples collected at
different time points post Aha injection (n=3 biological
replicates per time point) were extracted by adding metha-
nol: chloroform: water (1:1:1 v/v) to 80 puL of each plasma
sample. Samples were vortexed briefly and centrifuged at
8000xg for 5 min at RT. The upper layer was transferred into
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a new tube and vacuum-dried overnight. The dried fraction
was reconstituted in 75 pL 5% ACN and 0.1% FA. Recon-
stituted samples were sonicated for 5 min, centrifuged at
16,000xg for 8 min at RT, and the supernatants were trans-
ferred to HPLC autosampler vials.

Untargeted LC-MS Metabolomic Analysis

Separations were performed on an Agilent 1290 UPLC
system (Agilent Technologies). Metabolites were ana-
lyzed using a Waters Acquity HSS T3 column (1.8 um,
2.1 x 100 mm), with a mobile phase flow rate of 0.45 mL
min~!, where the mobile phase A and B were 0.1% FA in
double distilled water and ACN at a 1:1 ratio, respectively.
Initial conditions were 100:0 A:B, held for 1 min, fol-
lowed by a linear gradient to 20:80 at 16 min, then 5:95 at
22.5 min. Column re-equilibration was performed by return-
ing to 100:0 A:B at 23.5 min and holding until 28.5 min.
Mass analysis was obtained using an Agilent 6545 Quad-
rupole Time of Flight (Q-TOF) MS with ESI capillary volt-
age+ 3.2 kV, nitrogen gas temperature 325 °C, drying gas
flow rate 8.0 L min~', nebulizer gas pressure 30 psig, frag-
mentor voltage 130 V, skimmer 45 V, and OCT RF 750 V.
MS data scans (m/z 70-1000) were collected using Agilent
MassHunter Acquisition software (v.B.06). Mass accuracy
was improved by infusing Agilent Reference Mass Correc-
tion Solution (G1969-85001). MS/MS was performed in a
data-dependent acquisition mode on composite samples.
Raw data for plasma and liver metabolomics is found in
supplemental Additional Files 2 and 3, respectively.

Metabolomic Data Statistical Analysis

Peak deconvolution and integration were performed using
Agilent ProFinder (v.10.0). Bioinformatic analyses were per-
formed using Agilent Mass Profiler Professional (v.13.1).
Chromatographic peaks were aligned across all samples.
Missing values (3 in plasma and 2 in liver) were replaced
by the lower limit of detection (1/5 of the minimum posi-
tive value of each variable). Data were normalized by log-
transformation and auto-scaling. Mass features with P <0.05
and fold change >?2 were considered significant. Principal
component analysis (PCA) and hierarchal clustering analysis
(HCA) were performed using MetaboAnalyst v.5.0.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s12195-023-00760-4.
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