
Vol.:(0123456789)1 3

Cellular and Molecular Bioengineering (2023) 16:99–115 
https://doi.org/10.1007/s12195-023-00760-4

ORIGINAL ARTICLE

An Integrative Biology Approach to Quantify the Biodistribution 
of Azidohomoalanine In Vivo

Aya M. Saleh1 · Tyler G. VanDyk1 · Kathryn R. Jacobson2 · Shaheryar A. Khan1 · Sarah Calve1,2,3 · 
Tamara L. Kinzer‑Ursem1,2 

Received: 1 November 2022 / Accepted: 22 February 2023 / Published online: 23 March 2023 
© The Author(s) under exclusive licence to Biomedical Engineering Society 2023

Abstract
Background  Identification and quantitation of newly synthesized proteins (NSPs) are critical to understanding protein dynam-
ics in development and disease. Probing the nascent proteome can be achieved using non-canonical amino acids (ncAAs) to 
selectively label the NSPs utilizing endogenous translation machinery, which can then be quantitated with mass spectrometry. 
We have previously demonstrated that labeling the in vivo murine proteome is feasible via injection of azidohomoalanine 
(Aha), an ncAA and methionine (Met) analog, without the need for Met depletion. Aha labeling can address biological 
questions wherein temporal protein dynamics are significant. However, accessing this temporal resolution requires a more 
complete understanding of Aha distribution kinetics in tissues.
Results  To address these gaps, we created a deterministic, compartmental model of the kinetic transport and incorporation 
of Aha in mice. Model results demonstrate the ability to predict Aha distribution and protein labeling in a variety of tis-
sues and dosing paradigms. To establish the suitability of the method for in vivo studies, we investigated the impact of Aha 
administration on normal physiology by analyzing plasma and liver metabolomes following various Aha dosing regimens. 
We show that Aha administration induces minimal metabolic alterations in mice.
Conclusions  Our results demonstrate that we can reproducibly predict protein labeling and that the administration of this 
analog does not significantly alter in vivo physiology over the course of our experimental study. We expect this model to be 
a useful tool to guide future experiments utilizing this technique to study proteomic responses to stimuli.

Keywords  Non-canonical amino acids · Protein labeling · Kinetics · Compartment modeling · Metabolomics

Abbreviations
Aha	� Azidohomoalanine
FDR	� False discovery rate
HCA	� Hierarchical clustering analysis
hpi	� Hours post injection

LC–MS/MS	� Liquid chromatography tandem-mass 
spectrometry

LHS	� Latin hypercube sampling
Met	� Methionine
MAD	� Methionine adequate diet
MRM	� Multiple reaction monitoring
ncAA	� Non-canonical amino acid
NSP	� Newly synthesized protein
ODE	� Ordinary differential equation
PCA	� Principal component analysis
PRCC​	� Partial rank correlation coefficient
rF	� Relative fluorescence
SEf	� Standard error of fitting
fAha	� Free Aha
pAha	� Proteinous Aha
Sysrv	� Systemic venous reservoir
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Introduction

The use of non-canonical amino acid (ncAA) labeling 
for selective identification of newly synthesized proteins 
(NSPs) in mammalian cells was first introduced by Diet-
erich et al.1 and has since been applied to study several 
biological systems (see reviews2,3). In this technique, an 
ncAA, typically a methionine (Met) analog, is introduced 
to the biological system of interest and incorporated into 
newly synthesized polypeptide chains using endogenous 
or engineered cellular translational machinery. Distinc-
tion of nascent proteins from the constituent proteome 
is enabled by reactive chemical groups, such as azides 
and alkynes, which can be covalently modified via azide-
alkyne cycloaddition (a click chemistry reaction).2 As 
such, ncAA-labeled NSPs can be selectively conjugated 
to affinity or fluorescent tags for identification or visualiza-
tion, respectively.1,4

This technique has been successfully employed to probe 
protein dynamics in a variety of bacterial5–7 and mamma-
lian cells in vitro,8–10 as well as model organisms in vivo, 
including zebrafish11 and Xenopus.12 More recently, ncAA 
labeling has also been shown to be effective in identifying 
NSPs in rodents.13–15 Unlike similar techniques such as 
stable isotope labeling, wherein proteins in low abundance 
are often undetected due to the absence of an enrichment 
method for selective isolation of newly synthesized labeled 
proteins from the pool of more abundant unlabeled pro-
teins, ncAAs offer chemical handles that can be used for 
enriching NSPs.5 The expanding applications of ncAA 
labeling will therefore enable previously inaccessible 
biological questions, wherein understanding the temporal 
dynamics of protein synthesis and turnover is critical, to 
be addressed.

Dietary administration of ncAA, typically enhanced 
with a Met-free diet, has been shown to achieve adequate 
labeling efficiency in rodents.13,16 However, as an essential 
amino acid, Met deprivation may affect normal physiol-
ogy, particularly over longer labeling periods. Notably, 
the presence of Met in mammalian diet is critical for nor-
mal embryonic development, 17–19 which constrains this 
method to studies of adult animals. Our group has previ-
ously demonstrated that labeling the adult and embryonic 
murine proteomes can instead be achieved via systemic 
injection of ncAAs without the need for Met deple-
tion.14,20 Compared to feeding with an ncAA-enriched diet, 
the injection method achieves global proteome labeling in 
a shorter period of time, which enables the detection of 
proteins synthesized shortly after injection and proteins 
with high turnover rates.20 Although direct comparisons 
of Aha administration techniques have not been previously 
studied, parenteral administration also reduces inherent 

variability, bypassing hepatic metabolism and eliminating 
confounding fluctuations in feeding patterns and intesti-
nal absorption.21 Nevertheless, the injection technique 
requires technical expertise and may cause distress to 
animals.

Despite the application of ncAA labeling in a number 
of studies to decipher complex cellular processes in animal 
models,13,15,16,22 understanding of the kinetics of ncAA 
distribution in tissues, especially as it pertains to rates of 
protein incorporation and loss by degradation, is lacking. 
Determination of the timescale of ncAA uptake by tissues 
following administration and the lag time before maximum 
protein labeling are critical information for the design of 
robust temporal experiments to study the nascent proteome. 
Predicting ncAA kinetics in murine models will also enable 
optimizing the dosing regimen to attain the ideal concen-
trations to achieve sufficient protein labeling in the desired 
tissue over the course of the study.

The aim of this study was to characterize the distribu-
tion kinetics of azidohomoalanine (Aha), a widely used Met 
analog, in mice following subcutaneous injection, and to 
investigate the impact on normal physiology. To study the 
biodistribution of Aha, we measured the concentration in 
the plasma, liver, kidney, brain and hindlimb skeletal mus-
cle using liquid chromatography-tandem mass spectrometry 
(LC–MS/MS) over a period of 24 h. This dataset was used 
to develop a deterministic compartment model of small mol-
ecule kinetics that characterizes the movement of freely dif-
fusive Aha (fAha) throughout the mouse circulatory system 
and into tissues. In addition, we used fluorescent western 
blotting to measure protein labeling in these tissues during 
the same period. This second dataset was used to inform a 
model of relative protein labeling (pAha) as a function of 
fAha availability to characterize both the predicted labeling 
profile for a given experimental treatment of Aha and the 
relative synthesis and degradation rates of Aha-labeled pro-
teins. We demonstrate that this model can be used to charac-
terize nascent protein synthesis and turnover within distinct 
tissues. Furthermore, we validated the capability of this 
model to predict NSP labeling under more complex, multiple 
injection dosing paradigms, which can be a tool to guide the 
design of future experiments utilizing Aha labeling.

In addition to the kinetic analysis, we compared the 
effect of the various Aha dosing regimens on the metabo-
lome of Aha-injected mice with that of non-injected con-
trols. LC–MS analyses of plasma and liver metabolomes 
indicated few statistically significant metabolic changes 
occur in response to Aha labeling. Taken together, these 
results provide a fundamental understanding of the inter-
relation between the distribution kinetics of the ncAA into 
murine tissues and the associated degree of protein labeling, 
as well as the potential impact of ncAA injection on normal 
physiology.
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Results

Kinetic Model of Aha Biodistribution Describes 
Transport and Exchange

To capture the dynamics of free Aha (fAha) distribu-
tion in vivo, an in silico model system of ordinary dif-
ferential equations (ODEs) was generated describing the 
physiological processes of small molecule transport. All 
model and code files are accessible at the Kinzer-Ursem 
lab GitHub repository (Additional File 1: S1). Descrip-
tions of the model, equations, and parameter values are 
also provided in Additional File 1 (S2–S5). To mimic the 
injection site of our subcutaneous dosing paradigm, fAha 
was introduced into the model at a non-localized reservoir. 
From this reservoir, fAha enters the murine circulatory 
system at a rate that is a function of reservoir concentra-
tion and transport kinetics and is distributed to distinct 
tissue compartments (Fig. 1).

Within each compartment, the time-dependent rate of 
change of the fAha plasma concentration ([fAhap]) avail-
able for exchange with each tissue can be described as 
a mass balance with two stages: transport and exchange. 
The transport stage is governed by circulatory blood flow.

where Qx is the blood flow rate between tissue ‘x’ and a sys-
temic venous reservoir (sysrv), and Vx is the corresponding 
volume of plasma relevant to each tissue (Q/V represented as 
a lumped constant qb, Additional File 1: S2, S3). All kinetic 
parameters for circulatory transport were normalized by tis-
sue mass to compare relative perfusion rates between tissue 
compartments of differing size. Once localized to a tissue, 
fAha in the plasma can also be exchanged across the cell 
membrane with the intracellular Aha concentration ([fAhat]) 
and is described as follows:

where ki,x and ke,x are the tissue specific import and export 
rates (min−1⋅mg−1) for fAha across the cell membrane. 
The liver tissue, kidney plasma, and gut lumen compart-
ments were assigned additional system removal terms (kr,x, 
Additional File 1: S2, S3) accounting for excretion and 
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Figure  1   Biodistribution of free Aha (fAha) via transport and 
exchange. Introduced at a distinct injection site, fAha is allowed to 
enter the circulation at a systemic venous reservoir. Driven by circu-
lation, fAha is passed through the arterial system (red) into distinct 
tissue compartments where exchange occurs at tissue specific rates. 
Arrows indicate directional movement of fAha. Each tissue compart-
ment consists of two sub-compartments: plasma available for surface 

exchange (red to blue gradient) and an intracellular volume (illus-
trated here as the bottom compartments: from left to right muscle, 
liver, brain, and kidney). fAha is incorporated into protein (pAha) in 
the intracellular volume. A mechanism for oral dosing (via plasma 
exchange with the gastrointestinal lumen) is illustrated and was 
included in the model, but not utilized in this study.
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metabolization of fAha. The transport and exchange equa-
tions describing fAha distribution were combined into a sin-
gle system of ODEs parameterized and bound within reason-
able ranges for a model of small molecule pharmacokinetics 
(Additional File 1: S2–S5).23–28

Kinetic Model of Protein Labeling Captures Aha 
Incorporation

Within each tissue compartment, fAhat is incorporated into 
proteins (pAha) via protein synthesis. As a Met analog, Aha 
is able to bind to methionyl-tRNA synthase, albeit at a much 
slower rate (kcat Km

−1 Aha: 1.42E-3, Met: 5.47E-1 μM−1 
s−1).29 Therefore, at concentrations comparable to normal 
physiological [Met] for mice fed a methionine adequate 
diet (MAD) ([free Met] ≈ 4.4 ug g−114), Aha binding to the 
methionyl-tRNA synthase is much slower than Met, yield-
ing Aha incorporation into NSPs of less than 10% by pre-
vious estimates.14 We therefore made a modeling assump-
tion that [fAhat] is negligibly depleted by incorporation into 
protein (further justification, Additional File 1: S2) and that 
recycling of Aha (as a non-canonical analog of an essen-
tial amino acid) is also negligible at the scale of plasma 
clearance.

where ks,x and kd,x are the tissue-specific (denoted for tissue 
‘x’ as above) rate constants of incorporation of Aha into 
proteins due to synthesis and loss of Aha-labeled proteins 
due to degradation. These equations describing Aha labe-
ling of proteins in each tissue were added to the biodistribu-
tion model establishing a time resolved predictive model 
of tissue-specific protein labeling given a variety of input 
dosing paradigms.

Experimental LC–MS/MS and Western Blotting Data 
Enable Parameter Fitting

Model parameters were initialized and bound within rea-
sonable ranges, informed from literature and experimental 
measurements as described in the methods (Additional File 
1: S3–S5),23–28 then underwent least squares regression to 
match experimentally measured data of Aha concentration 
and labeling. To inform fitting, fAha concentration pro-
files in plasma, obtained from blood collected by cardiac 
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puncture, and liver, kidney, brain and hindlimb skeletal 
muscle tissues were determined by injecting Aha subcuta-
neously into mice at 0.1 mg g−1 total body weight and sac-
rificing 0.5–24 h post injection (hpi). Accurate identification 
of fAha in each tissue was performed using LC–MS/MS 
multiple reaction monitoring (Figs. 2a, 2b). Additionally, 
the kinetics of Aha incorporation into tissue proteins were 
described by examining the degree of protein labeling within 
each tissue over the duration of the study. To this end, tis-
sue homogenates were reacted with biotin-alkyne via cop-
per-catalyzed click reaction, analyzed by semi-quantitative 
western blotting using a fluorescent streptavidin conjugate 
and the change in fluorescence intensity relative to the non-
injected controls was measured as an analog for pAha labe-
ling (Figs. 2c, 2d). Equivalent loading for each western blot 
was confirmed with Ponceau S staining. While not as precise 
as MS quantification, western blot studies allowed direct 
comparison of labeling across the measured time interval 
without performing Aha-labeled protein enrichment experi-
ments that are required prior to MS analysis.20 This allows 
for relative turnover rates of newly synthesized proteins to 
be fit (Fig. 2).

The degree of fluorescent signal normalized relative to 
the background (rF) measured in relative fluorescence units 
(RFU) by semi-quantitative western blotting was assumed to 
be linearly proportional to the concentration of pAha using a 
fluorescent labeling factor, kf. For each tissue (denoted ‘x’)

Aha Labeling Captures Relative Protein Synthesis 
and Turnover Dynamics in Murine Tissues

The highest plasma concentration of fAha was recorded 
at 0.5 hpi (Fig. 2a), indicating a rapid absorption and bio-
availability from the injection site. Also notable, volume 
of distribution (VD) was calculated to be 1.6 mL g−1 body 
weight, a value greater than total body volume, indicating 
rapid sequestration of fAha into body tissues. Tissue profiles 
of fAha also peaked early, between 0.5 and 1 hpi, with the 
liver having the earliest peak compared to the other tissues 
(Figs. 3a–3d). This early peak can be attributed to the high 
blood perfusion of the liver,30 which likely results in faster 
distribution equilibrium of Aha into the liver compared to 
other tissues. Clearance of fAha was also observed to be 
rapid, with a plasma half-life (t1/2) of only 1.9 h and a plasma 
clearance (CL) of 12.1 mL h−1.

(7)rFx =
signal − background

background
= kf [pAhat]x
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= kf ks,x[fAhat]x − kd,x(rFx)
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In all tissues, maximum protein labeling was observed 
around 6 hpi (Figs. 3e–3h), delayed from that observed for 
[fAha]. Importantly, across tissues, [fAha] is directly pro-
portional to the first derivative of [pAha] in the early time 
domain, implying that protein synthesis dominates the mass 
balance at low [pAha], a finding supportive of our model’s 
first-order kinetics. However, the degree of labeling, rep-
resented by the maximum fold increase in fluorescence 
intensity compared to an internal control, and the kinetics 
of protein incorporation and turnover varied considerably 
between tissues.

The observed differences in fluorescence intensities are in 
agreement with previous stable isotope labeling studies that 
showed faster protein turnover rates in liver and kidney com-
pared to brain and skeletal muscle.31–33 Our model estimated 
a protein lifetime in the brain that is 2.7 times higher than 
the liver (Table 1), a ratio in close agreement with previous 
findings (Price et al. observed a median peptide half-life 

of 9 and 3 days for brain and liver, respectively32). These 
discrepancies between the magnitude of previously reported 
values and the half-lives estimated here may be attributed 
to the shorter timescale of our experiment as compared to 
stable isotope labeling techniques and the use of semi-quan-
titative western blotting measurements rather than MS. A 
more robust quantitation of pAha concentrations using MS 
will be required for a more precise determination of absolute 
protein kinetics in different murine tissues.

Descriptive Statistics Support Model 
of Biodistribution and Labeling

Model validity was examined using the following metrics 
to investigate parameter stability and goodness of fit. First, 
a prediction interval of residuals was generated for each tis-
sue studied, for both the biodistribution and protein labeling 
models. A 95% prediction interval (PIα=0.05) of residuals was 

Figure  2   Free Aha concentration and protein incorporation and 
turnover kinetics in murine tissues were determined experimentally 
to inform the kinetics model. (a) The concentration profile of fAha 
in the plasma and best-fit single-phase decay curve with associated 
kinetic parameters including plasma half-life (t1/2), volume of distri-
bution (VD) and plasma clearance (CL). The amount of fAha (μg) 
measured by LC–MS/MS was normalized by the total plasma volume 
(n = 3, biological replicates). (b) Average fAha concentration of indi-

vidual tissues at each time point normalized by tissue mass (n = 3). 
(c) Fluorescent western blots of the tissue homogenates of control 
non-injected samples (C) and samples collected 0.5–24  h post Aha 
injection (hpi). (d) Average fluorescence intensity of western blot 
lanes normalized to respective controls at each time point (n = 3). For 
all plots, error bars indicate one standard deviation. Values for muscle 
tissues at t = 0–2 hpi were undistinguishable from the background.
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calculated using all experimental replicates (Fig. 3). A second, 
tighter prediction interval was calculated using the mean for 
each time point (Fig. 3). For each tissue, the width of PIα=0.05 
from the average line of best fit ( ̂y ) can be approximated using 
a naively informed forecast interval that assumes a normal 
distribution of residual error.34

(7)

PI�=0.05(t) = ŷ(t) ± 1.96 ∗

∑
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2
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∗

�

�

�

�1 +
1
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2

where n is the total number of observations, (ti, yi) are the 
coordinates for each observation, t is the time point of the 
predicted residual, t is the average time of all experimen-
tal observations. These prediction intervals demonstrate a 
narrow range of residual error and capture all experimental 
means and > 95% of experimental values, indicating an accu-
rate predictive model.

Second, the covariance matrix of least squares regression 
was used to inform a standard error of fitting (SEf) for all 
fitted parameters in the biodistribution model (Additional 
File 1: S3–S5). SEf describes variability of each parameter, 
but also reflects upon the definition of the model. Parameters 
with best fit values near to the constraints are less predict-
able; wide error would be indicative of a poorly constrained 
system. Error also increases with the number of fitted param-
eters, is inversely related to the quantity of data points avail-
able for fitting, and is weighted by the metric used for opti-
mization. Among all fit parameters, we found relatively few 
SEf values greater than best fit values by more than an order 
of magnitude (Fig. 3, Additional File 1: S3–S5). The widest 
error ranges were associated with parameters rates describ-
ing tissue import and export of fAha, which are the least 
well characterized in the literature and therefore the most 
naively bounded in our model. Low SEf values, particularly 

Figure  3   Aha kinetics and protein labeling following subcutane-
ous injection of Aha. (a)–(d) The concentration profiles of free Aha 
(fAha) in the plasma and different tissues. The amount of Aha (µg) 
measured by LC–MS/MS analysis was normalized by the total tis-
sue mass and plotted over time. (e)–(h) Relative fluorescence (rF), as 
measured by western blotting, of proteins isolated from each tissue as 
a function of time. Filled points represent mean experimental meas-

urement at each time point, error bars indicate experimental standard 
deviation (n = 3 biological replicates). Colored traces indicate best 
fit of model to each dataset, with darker and lighter shaded regions 
showing 95% prediction intervals for residual error calculated from 
mean experimental values and all experimental replicates, respec-
tively.

Table 1   Protein incorporation and degradation rates estimated from 
Aha dynamics.

Best fit parameter values for Aha incorporation, and protein turnover 
and half-lives in studied tissues
a Relative incorporation rate = kf ks(mt)

−1 , units include RFU per unit 
mass of pAha

Parameter, Units Muscle Liver Brain Kidney

Protein turnover rate, h−1 2.23E-2 4.97E-2 2.12E-2 5.06E-2
Protein half-life, h 31.05 13.94 32.6 13.69
Aha Incorporationa, 
RFU(μg h)−1

5.36E-4 2.28E-2 6.06E-3 5.43E-2
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among parameters fit within reported literature values, sup-
port a well characterized model, although this metric is not 
fully sufficient to describe a complex non-linear regression.

A more thorough analysis was achieved using Monte-
Carlo Latin hypercube sampling (LHS) to perform efficient 
sampling of the input parameter space and correlation with 
partial rank correlation coefficients (PRCCs). This global 
sensitivity analysis was performed against several metrics 
to probe the influence of variation in parameter values on 
(1) model fitness and (2) predicted Aha labeling levels in 
each tissue (rF). To address model fitness, PRCC values, 
which vary between 1 (perfect positive correlation) and − 1 
(perfect negative correlation), were calculated comparing 
variation in the input parameter values against the sum of 
square errors for each fitting model. This analysis generates 
a PRCC value for each parameter that characterizes its rela-
tive effect on the fitting metric (PRCC​f), and therefore the 
fitting process. PRCC​f values higher in absolute magnitude 
indicate parameters that, when varied independently, have 
the greatest influence on the fitting metric with values > 0.8 
considered as indications of regions of instability in the 
model.35,36 All model parameters fell safely below a PRCC​
f value of 0.3. Parameters found to have the highest PRCC​f 
values (> 0.2) were those that influence the system removal 
of fAha (e.g. elimination and import rates into metabolic 
tissues), likely due to the rapid metabolic profile exhibited 
following subcutaneous injection (Fig. 3).

Taken together, PRCC​f and SEf values demonstrate that 
influential parameters are not those with the widest error 
ranges (Fig. 4, Supplements S5–S7). Furthermore, when 
comparing these values across the parameter space, there is 
no one tissue that exhibits over-sensitive behavior by either 
metric (apart from perhaps systemic elimination). These 
findings provide support for the model definition, boundary 
constraints, and biological relevance of best fit parameters.

Further application of PRCC analysis allowed exami-
nation of the influence of parameter values upon the pre-
dicted degree of Aha labeling in each tissue over time. All 
model parameters were varied within their estimated fitting 
range (Additional File 1: S5–S7) and sampled via LHS 
(n = 10,000). An rF value in each tissue was predicted for 
each timepoint from 0 to 24 hpi and the resulting output 
was correlated to the input parameter variation using PRCC 
analysis. Resulting traces elucidate kinetic parameters and 
physiological mechanisms that most influence rF during dif-
ferent time domains (Fig. 5). For example, immediately after 
injection (0–4 hpi), the rate of absorption of Aha from initial 
injection site (kaSubcu) is a critical mechanism driving rapid 
labeling efficiency in all four studied tissues. However, the 
importance of this parameter declines over time, just as the 
influence of other parameters increases, particularly those 
representing Aha degradation and elimination. The influence 
of liver transport is prominent in all four tissues indicating 

the liver plays a major role in Aha kinetics. This suggests 
Aha may be primarily metabolized and eliminated by the 
liver, rather than by eliminated via excretion. This possibility 
is consistent with the known liver functions of toxin removal 
and amino acid metabolism.37

Predictive Simulations Accurately Capture Alternate 
Dosing Paradigms

Attaining sufficient protein labeling is critical for accurate 
identification and quantitation of Aha-labeled proteins using 
LC–MS/MS. For instance, note the near negligible labeling 
of skeletal muscle in Fig. 3. If muscle labeling is desired, a 
much higher Aha dose may be required to attain sufficient 
labeling. This underlines the importance of tailoring the 
dosing regimen of Aha (i.e. amount per dose and dosing 
frequency) to the tissue of interest and the biological ques-
tion under investigation. Using the model described above, 
fAha biodistribution and tissue protein labeling can be pre-
dicted for alternative dosing regimens to aid future experi-
mental design and predict labeling efficiency depending on 
the conditions of a study. However, the model was based on 
the concentration of Aha in plasma and tissues over 24 h 
after a single subcutaneous injection. While this data was 
sufficiently robust to develop a well-informed model of Aha 
patterning after one subcutaneous dose, the use of this model 
to predict Aha content for longer time scales or multiple 
dose paradigms would generate naïve forecasts. To address 
this gap, we validated the predictions of our model experi-
mentally against a data set that spans a longer time period 
and multiple injected doses. The model was used to predict 
the rF labeling of brain and liver tissues for two alternative 

Figure 4   Sensitivity analysis for model parameter fitting. Each point 
represents a distinct parameter from the model (colored by associated 
tissues) and coordinates indicate absolute values of normalized stand-
ard error of fitting (nSEf = SEf/best fit value) on the x-axis and PRCC​f 
on the y-axis. Light gray shaded regions indicate parameters that have 
either a relatively high model influence (PRCC​f > 0.2) or variability 
(nSEf > 10). The dark grey shaded region indicates a domain where 
parameters would be considered unstable or poorly constrained with 
both a high variability and influence on the model.
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dosing paradigms with either 12 h repeated doses (hrd) or 
24 hrd over a 32 h period (Fig. S7). As an internal control 
for western blotting variation, these new experimental values 
were normalized by a shared time point with the previous 
study (6 h post initial injection) for each tissue (Fig. 6).

To determine the ability of the original model to predict 
Aha incorporation into proteins in various tissues, the data 
from each repeated dose study was used to refit the rela-
tive pAha synthesis and degradation rates for each tissue 
under each repeated dose paradigm. Relative to the param-
eter fit with the original experimental data, there was only a 
slight reduction in the standard error of regression (SEreg), a 
goodness-of-fit metric, between the original and refit param-
eters in each tissue (Table 2). Additionally, among all refit 
parameters, a single parameter was adjusted beyond a single 
standard error of fit (SEf) from the original best fit value (12 

hrd liver Δ(kf ks) ≈ +1.97SE), and only the degradation rate 
in the brain changed by > 20% (Table 2).

Aha Administration Induces Metabolic Adaptation 
in Mice

In addition to the characterization of Aha distribution kinet-
ics in mice, it is important to understand the impact of Aha 
administration on normal physiology. Since metabolites are 
the end products of cellular biological processes, we sought 
to evaluate the physiological impact of Aha incorporation 
into NSPs using untargeted metabolomic analysis. To this 
end, plasma and liver metabolomes were analyzed following 
different time points (6, 18, and 32 hpi) of two alternative 
Aha dosing regimens (12 hrd and 24 hrd) to examine the 
effect of Aha administration on the metabolome.

Figure  5   Sensitivity analysis of input parameter variation and Aha 
labeling in tissues over 24 hpi. Each plot shows the time resolved 
PRCC values for a selection of parameters using predicted rF in 
each tissue as a correlation metric. Parameters shown are either (1) 
descriptive of dynamics within the relevant tissue or (2) related to a 
different tissue, but with a significant influence on the tissue of inter-

est based upon PRCC values >|0.2|. Trace colors indicate associ-
ated tissues (black = systemic parameter, blue = liver, orange = mus-
cle, beige = brain, magenta = kidney), trace patterns indicate 
parameter type (solid = fAha transport, dotted = fAha elimination, 
dashed = pAha synthesis/degradation, dot-dashed = tissue mass).
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LC–MS analysis of plasma and liver metabolomes (Addi-
tional Files 2 and 3, respectively) identified a total of 1339 
and 1041 mass features (i.e. metabolites), respectively across 
all sample groups. The peak area of each mass feature is 
proportional to the amount of the corresponding ion in the 
sample and was used as a measurement for its relative abun-
dance across samples. Principal component analysis (PCA) 
was used to examine the variation in metabolite abundance 
between the different treatment groups. Plasma PCA analysis 
revealed no distinct segregation between the non-injected 
control mice and the Aha 6 hpi mice, indicating that there 
were no global differences in the metabolome between 
the two groups (Fig. 7a). Greater separation was observed 
between the control and the other Aha treatment groups; 
however there was less variation among each of these Aha 
groups and one another.

In addition to PCA, unsupervised hierarchical clustering 
analysis (HCA) was conducted and a heatmap was gener-
ated to examine variations in metabolic patterns between 
the Aha and control groups. HCA and heatmap visualiza-
tion of the identified plasma mass features showed that the 
biological replicates of each group did not cluster with each 
other and that there were no distinct differential abundance 
patterns among the different groups (Fig. 7b). These results 
suggest that minor metabolic alterations occur after 6 h of 
Aha injection and become more prominent following longer 
post injection periods and multiple Aha doses. Addition-
ally, while Aha does induce metabolic adaptation in injected 
mice, no substantial metabolic changes exist between the 
various groups.

Similar trends were observed for the liver metabolome. 
PCA analysis indicated less variation between the control 

Figure  6   The model accurately predicts relative labeling in the 
brain and liver with multiple injection doses. rF experimental data 
(dots) and model predictions (lines) for a 12 hrd and b 24 hrd. For 
each tissue, experimental replicates from the repeated dose study are 
displayed at 6, 18, and 32 hpi as individual points. The solid line is 

the predicted trace using the best fit model from the original robust 
dataset. The dashed line is the model with parameter values refit to 
the data from the repeated dose experiments. The vertical dotted line 
indicates dose injection timepoints.

Table 2   Parameter and 
goodness-of-fit statistics related 
to the alternative dosing models 
in Fig. 6.

Tissue Parameter, units Pred. value (SEf) Refit value %Δ

Liver, 12 hrd kf ks,RFU(μg fAhaμg pAha h)−1 3.16E-4 (2.49E-5) 3.65E-4  + 15.5%

kd , h
−1 8.29E-4 (1.80E-4) 8.67E-4  + 4.6%

SEreg,RFU 1.975 1.684 − 14.7%
Brain, 12 hrd kf ks,RFU(μg fAhaμg pAha h)−1 4.30E-4 (2.83E-5) 4.84E-5  + 12.5%

kd , h
−1 3.54E-4 (1.11E-3) 1.37E-4 − 61.3%

SEreg,RFU 1.147 1.082 − 5.7%
Liver, 24 hrd kf ks,RFU(μg fAhaμg pAha h)−1 3.16E-4 (2.49E-5) 3.02E-4 − 4.4%

kd , h
−1 8.29E-4 (1.80E-4) 6.72E-4 − 18.9%

SEreg,RFU 1.558 1.524 − 2.2%
Brain, 24 hrd kf ks,RFU(μg fAhaμg pAha h)−1 4.30E-4 (2.83E-5) 4.28E-5 − 0.5%

kd , h
−1 3.54E-4 (1.11E-3) 1.37E-9 − 99.9%

SEreg,RFU 0.953 0.916 − 3.9%
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and the Aha 6 hpi groups as well as between all other Aha 
treatment groups, whereas greater separation was shown 
between these treatment groups and the control (Fig. 7c). 
Additionally, a heatmap with HCA of liver mass features 
illustrated a lack of group clustering based on metabolite 
abundance (Fig. 7d). As such, the LC–MS analysis of the 

liver metabolome further establishes that the control and 
the Aha 6 hpi mice have similar metabolite profile and that 
there are no significant differences between 12 and 24 hrd 
over a 32 h period.

Following global analysis using PCA and HCA, Student’s 
t-tests were employed to compare between the control and 

Figure  7   Aha labeling induces metabolic adaptations in injected 
mice. Principal component analyses (PCA) of plasma (a) and liver 
(c) mass features show no clear separation between control and Aha 
6 hpi groups in the first two components, whereas more variation 
is illustrated between the control and other Aha treatment groups. 

Shaded areas represent the 95% confidence intervals of the differ-
ent groups. Heat map of unsupervised hierarchal clustering analyses 
(HCA) of all detected features of plasma (b and d) liver show lack 
of clustering between replicates of each group. Color scale indicates 
relative feature abundance; blue: lowest, red: highest.
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each of the Aha treatment groups. Using a raw p-value of 
0.05 and a fold change of ≥|2| as cut-offs, the percentage 
of differentially abundant mass features ranged between 
3.66% and 10.90% for plasma, and 1.06% and 18.73% for 
liver (Table 3). These values dropped to 0% and 4.48% for 
plasma and 0% and 11.82% for liver using a FDR-adjusted 
p-value, which has been suggested for untargeted metabo-
lomics data to control for false positives 38. Notably, these 
minor metabolic alterations are in agreement with a recent 
study that investigated the metabolic effect of growing E.coli 
in media supplemented with ncAAs 39.

Collectively, the LC–MS analyses of plasma and liver 
metabolomes demonstrate that Aha administration causes 
metabolic adaptation in mice. While 6 h following a single 
Aha injection is a relatively short time to detect a difference, 
more distinct metabolic changes occur after prolonged post 
injection periods and repeated Aha injections. PCA, HCA 
and t-test results refer to a limited metabolic perturbation 
occurring in response to Aha administration. Notably, our 
labeling technique does not involve Met restriction or deple-
tion as the case with other labeling strategies that use an 
Aha-supplemented Met-free diet. Met dietary restriction has 
been shown to alter the metabolism in mouse models and in 
humans.40–42 Yet, subsequent MS/MS identification stud-
ies of the differentially abundant metabolites are needed to 
understand the implication of these small changes and the 
potentially impacted metabolic pathways.

Discussion and Conclusions

To optimize the applications of ncAAs, effective protein 
labeling is critical to enrich labeled protein with the high 
signal-to-noise ratio required for accurate quantitative MS 
measurements and identification of newly synthesized pro-
teins. Here, we reported for the first time the biodistribu-
tion of the widely used Met analog, Aha, in murine tissues, 
as well as the associated relative rates of incorporation of 
Aha into protein via protein synthesis and protein turnover. 

These results showed that liver and kidney have faster pro-
tein synthesis and turnover rates compared to brain and skel-
etal muscle, which is consistent with previous studies that 
utilized stable isotope labeling.32

In previous work, we found that protein labeling with 
Aha was dose dependent and the optimal dose via intraperi-
toneal injection (IP) of Aha was 0.1 mg g−1 mouse.14 In this 
current study, we utilized the same dose with SC injection 
at various timepoints. This indicates that protein labeling 
with Aha is robust to this dosing level, dosing schedule, 
and to injection route. Further, we demonstrated that under 
a subcutaneous injection dosing paradigm protein labeling 
reaches a local maximum within a relatively short window in 
all studied tissues (~ 6 h). We expect this time resolution to 
enable study of proteins with shorter half-lives. In contrast, 
alternative dosing of ncAA (e.g. oral feeding over a period 
of days to achieve desired Aha labeling13) or isotope-labeled 
amino acids32,33 are typically administered over longer time 
period. Other ncAAs such as homopropargylglycine (Hpg) 
and azidonorleucine can be used for in vivo labeling.2 The 
advantage of using Aha and Hpg is that they can be incor-
porated into proteins in native systems using endogenous 
translation machinery. Our group and others have previously 
shown that Aha incorporates into proteins more efficiently 
than Hpg.14,29 In order to label proteins with azidonorleucine 
and many other ncAAs, a mutant tRNA synthetase recogniz-
ing the ncAA is required.14,15

While Aha (and other ncAA) labeling shows great prom-
ise for future study of the nascent proteome, the biodistribu-
tion of Aha makes it clear that depending on the tissue type 
and biological processes to be studied, multiple injections 
of Aha may be required. Therefore, optimizing the dose and 
frequency of Aha injections is critical for the appropriate 
design of labeling studies. In this regard, we also presented 
an experimentally informed deterministic model. Our model 
was developed to describe: (1) the transport of fAha within 
the plasma, (2) the circulatory exchange of fAha into tissues 
of adult mice and (3) the degree of Aha incorporation into 
proteins in specific tissues. We utilized a multi-compart-
ment system characteristic of pharmacokinetic models of 
small-molecule and AA pharmacokinetics.23,27,28 Such mod-
els have been extensively used to study protein turnover, 
typically in the context of stable isotope labeling, and have 
been used to estimate kinetic parameters such as total protein 
degradation in isolated tissues (e.g. Guan et al., employed 
isotope labeling and a compartment model of similar struc-
ture to estimate kdLiver ≈ 0.03 d−1,28 in close agreement 
with our kdLiver ≈ 0.02 d−1). Our model was empirically 
parameterized with time resolved measurements of Aha 
concentrations and fluorescent labeling and used to extract 
the distribution kinetics of Aha in murine tissues and their 
relation to the degree of protein labeling as well as to com-
pute the relative rates of protein synthesis and turnover. We 

Table 3   The number of differentially abundant plasma and liver mass 
features for each Aha treatment group compared to control using 
either a raw p-value (0.05) or FDR-adjusted p-value (0.05) and a fold 
change of ≥|2|.

Group Plasma Liver

Raw p-value FDR Raw p-value FDR

6 hpi 49 2 11 0
12 hrd_18 hpi 88 0 97 22
12 hrd_32 hpi 157 60 159 68
24 hrd_18 hpi 145 43 154 60
24 hrd_32 hpi 146 17 195 123
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further validated this framework for predictive modeling of 
Aha labeling against an experimental dataset including two 
different repeated injection dosing paradigms to demonstrate 
its efficacy as a tool for future experimental design. Of note, 
semi-quantitative fluorescent gel imaging was used to inform 
the relative change in the amount of NSPs in each tissue 
compartment, as has been previously demonstrated.43 For 
absolute measurement of individual protein synthesis rates, 
future studies will need to employ quantitative proteomic 
analysis.

With respect to the domain of validity for our model, 
we note that our study only probed subcutaneous dosing 
at a single dose concentration optimized in previous work 
(0.1 mg g−114) and that Aha concentrations are recorded on a 
limited timescale (up to 32 hpi). To extrapolate beyond these 
limitations, we can consider Aha from a pharmacokinetic 
perspective. At low [fAha], adequate homeostatic regulation 
should compensate for an increased rate of administration 
with a proportional increase in the rate of elimination. How-
ever, as concentrations and dosing rates continue to rise a 
further domain might exist where the [fAha] exceeds regula-
tion capacity and begins to demonstrate saturation of elimi-
nation mechanisms.44 If fAha dosing enters this saturation 
domain, we expect a deviation from the first-order dynamics 
towards a zero-order system. However, at our highest dosing 
frequency (12 hrd), we observed no evidence of a deviation 
from the first-order kinetics. The model predicts both fAha 
and protein labeling without variation in the rates of absorp-
tion or elimination. Therefore, we expect this model to be 
valid at dosing rates up to the maximal observed clearance 
of fAha, ~ 30 μg h−1 per g body mass. At our dose concentra-
tion, this would correspond to injections administered at ~ 3 
hrd intervals, a rate that approaches the limit of feasibility 
when weighed against the stress burden of multiple injec-
tions in a rodent model. Furthermore, to adapt the model 
to capture an oral dosing study, we suggest refitting the 
distribution model with plasma [fAha] from at least 2 time 
points using feed/water supplemented with Aha. Refitting 
can reasonably be confined to relevant parameters (such as 
gastrointestinal absorption (kiGasin), excretion (keGasin), 
blood flow (qbSmint) and all systemic elimination param-
eters) and should employ a realistic forcing function for oral 
dosing. Lastly, for studies on a longer timescale than 48 h, 
we suggest refitting the protein labeling model for desired 
compartments with at least 2 time points on the desired time 
scale using the best fit values for each parameter as initial 
estimates.

Our model demonstrated that Aha exhibits high rates 
of plasma clearance relative to a high volume of distribu-
tion (Fig. 2a). This supports the hypothesis that elimina-
tion of Aha predominantly occurs within metabolically 
active tissues, such as the liver. This is also supported by 
the prominence of liver parameters in the model analysis 

(Fig. 5). Further, the liver showed the highest degree of 
labeling (Fig. 3f) as well as the highest relative rates of 
Aha incorporation and protein turnover (Table 1), whereas 
skeletal muscle had the lowest degree of labeling (Fig. 3e) 
and the slowest relative rates of incorporation and turno-
ver (Table 1). Interestingly, the amount of fAha (μg) per 
unit mass tissue (g) was higher in skeletal muscle than in 
liver (Figs. 3a, 3b), indicating that the low degree of labe-
ling observed in skeletal muscle is predominantly due to a 
slow rate of muscle Aha incorporation, perhaps implying 
a lower rate of overall protein synthesis on this timescale. 
Finally, we investigated the impact of Aha administration 
on plasma and liver metabolomes. Despite the growing 
use of ncAAs, and Aha in particular, evaluation of the 
physiological impact of Aha administration, has previ-
ously been limited to examining changes in animal gross 
behavior, physical appearance and body weight.13–15 A 
more robust analysis of the effect of Aha administration 
on mice fed a MAD and the corresponding implications 
for cellular function, is still required to confirm the suit-
ability of the method for longer-term in vivo studies. Here 
we have demonstrated that Aha incorporation into cellu-
lar proteins induces minimal metabolic perturbations in 
injected mice. This observation further confirms previous 
results from our group that demonstrated that ncAAs do 
not affect the gross behavior nor the physical appearance 
of treated mice.14 Taken together, we expect the biodis-
tribution model to be a useful tool to guide future experi-
ments for maximizing Aha labeling of newly synthesized 
proteins. This also provides a platform for investigation 
of other biodynamics of other ncAAs and other delivery 
methods (oral or biodegradable depots).

Methods

Animal Model

Animals used in these studies were derived from female 
age-matched (9–11 weeks) wild-type adult C57BL/6 mice 
(Mus musculus) purchased from The Jackson Laboratory. 
All experimental protocols were performed in compliance 
with established guidelines and all methods were approved 
by Purdue Animal Care and Use Committee (PACUC, pro-
tocols# 1209000723 and 1801001682). PACUC requires 
that all animal programs, procedures, and facilities at Pur-
due University abide by the policies, recommendations, 
guidelines, and regulations of the United States Depart-
ment of Agriculture (USDA) and the United States Public 
Health Service (USPHS) in accordance with the Animal 
Welfare Act and Purdue’s Animal Welfare Assurance.
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Aha Injection, and Plasma and Tissue Collection

l-azidohomoalanine (Aha; Click Chemistry Tools) was 
resuspended in 1 × phosphate buffered saline (PBS) to 
10 mg mL−1, adjusted to pH 7.4, sterile filtered and stored 
at − 20 °C. All Aha injections were administered subcu-
taneously at 0.1 mg g−1 total mouse weight. Mice (n = 3, 
biological replicates) were euthanized 0.5, 1, 2, 4, 6, 12 
and 24 h post injection (hpi). Blood was harvested by car-
diac puncture, collected in EDTA-treated tubes and cen-
trifuged at 1500×g for 10 min at 4 °C. The supernatant 
(plasma) was transferred into a new tube, snap frozen in 
liquid nitrogen and stored at − 80 °C. Liver, brain, kid-
ney and hindlimb skeletal muscle tissues were dissected at 
each time point, snap frozen in liquid nitrogen and stored 
at − 80 °C. Control plasma and tissues were collected as 
described above from non-injected mice (n = 3 biological 
replicates). For the validation of model predictive ability, 
two Aha dosing regimens were used: (1) 12 h repeated 
doses (hrd) and (2) 24 hrd. Liver and brain tissues (n = 3 
biological replicates) were dissected as described above 
at 6, 18, and 32 hpi, snap frozen in liquid nitrogen and 
stored at − 80 °C.

Sample Preparation for Aha Analysis

For plasma sample preparation, 50 µL of plasma were mixed 
with 10 µL of 1 × PBS, pH 7.4, and 5 µL of 100 ng µL−1 
l-α-aminobutyric acid (α-ABA; Sigma Aldrich) that was 
used as an internal standard. 12.5 µL of trichloroacetic acid 
(TCA; Sigma Aldrich) were added to the mixture to precipi-
tate proteins. The mixture was incubated for 10 min at 4 °C 
and centrifuged at 16,000×g for 10 min at RT. The super-
natant was then mixed with 100% acetonitrile (ACN; Fisher 
Scientific) at a 1:1 ratio (v/v). The mixture was transferred 
to an HPLC autosampler vial for LC–MS/MS analysis. For 
calibration curve generation, Aha standards were prepared 
by mixing 50 µL of non-injected plasma with 10 µL of a 
known concentration of Aha and 5 µL of α-ABA. Proteins 
were then precipitated with TCA and prepared for LC–MS/
MS analysis as described above.

For tissue sample preparation, tissues were rinsed with 
ice-cold 1 × PBS, pH 7.4 to remove residual blood and 
homogenized in ice-cold 1 × PBS, pH 7.4 using a TissueRup-
tor (Qiagen). The final homogenate weight was measured 
and converted to volume by using a homogenate density 
of 1 g mL−1. Samples were then prepared for LC–MS/MS 
analysis as described for plasma by using 50 µL of the tis-
sue homogenate. The remaining plasma samples and tissue 
homogenates were snap frozen and stored at − 80 °C until 
use for western blot and untargeted metabolomic analyses 
as described below.

LC–MS/MS Targeted Analysis of Aha

An Agilent 1260 Rapid Resolution liquid chromatography 
(LC) system coupled to an Agilent 6470 series QQQ mass 
spectrometer was used for Aha analysis (Agilent Technolo-
gies). An Intrada Amino Acid 2.0 mm × 150 mm, 3.0 µm 
column (Imtakt Corporation) was used for LC separation. 
The buffers were [A] ACN, 0.3% formic acid (FA; Sigma 
Aldrich) and [B] ACN/100 mM ammonium formate (20/80 
v/v). The linear LC gradient was as follows: time 0 min, 
20% B; time 5 min, 20% B; time 11 min, 35% B; time 
20 min, 100% B; time 22 min, 100% B; time 22.5 min, 
20% B; time 30 min, 20% B. The flow rate was 0.3 mL 
min−1. Multiple reaction monitoring (MRM) was used for 
MS analysis. Data were acquired in a positive electrospray 
ionization (ESI) model based upon parameters in Table 4. 
The jet stream ESI interface had a gas temperature of 
325 °C, gas flow rate of 9 L min−1, nebulizer pressure of 
35 psi, sheath gas temperature of 250 °C, sheath gas flow 
rate of 7 L min−1, capillary voltage of 3500 V in a positive 
mode, and nozzle voltage of 1000 V. The delta electron 
multiplier voltage was 300 V. Agilent MassHunter Quanti-
tative Analysis software was used for data analysis (v.8.0).

TABLE 4   Multiple reaction monitoring (MRM) table for amino acid 
LC–MS/MS data acquisition.

Compound name Precursor ion 
(m z−1)

Product ion (m 
z−1)

Collision 
energy 
(eV)

Aha 145.1 101.3 5
Aha 145.1 71.3 10
Aha 145.1 58.3 40
Ala 90 44 15
Arg 175 116 18
Asn 133 87 12
Asp 134 88 14
Cys 122 76 15
Cys-Cys 241.1 152 15
Gln 147 84 22
Glu 148 130 12
Gly 76 30 15
His 156 110 19
Ile 132 86 15
Leu 132 86 15
Lys 147 84 20
Met 150 104 15
Phe 166 120 15
Pro 116 70 15
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Western Blot Analysis of Aha‑Labeled Tissues

Tissue homogenates were thawed and protein concentra-
tion was measured using the Pierce 660 nm Protein Assay 
(ThermoFisher Scientific). 200 µg of tissue homogenate was 
alkylated with 40 mM iodoacetamide for 30 min at RT in the 
dark with end-over-end rotation. Samples were then reacted 
for 2 h at RT with the following click reagents: 50 μM biotin-
alkyne (ThermoFisher Scientific), 5 mM tris(3-hydroxypro-
pyltriazolylmethyl)amine (THPTA; Click Chemistry Tools), 
2 mM copper sulfate, 20 mM aminoguanidine and 10 mM 
sodium ascorbate. Following the click reaction, proteins 
were precipitated by adding ice-cold 100% acetone to the 
samples at a 4:1 ratio (v/v). Samples were incubated over-
night at – 20 °C, centrifuged at 21,100×g for 20 min at 4 °C, 
supernatants were discarded, and protein pellets were vac-
uum-dried for 15 min at RT using a CentriVap (Labconco). 
Dried pellets were resuspended in 8 M urea in 1 × PBS and 
centrifuged at 16,000×g for 15 min at RT to remove insolu-
ble particles. The supernatants were transferred into new 
tubes and protein concentration was measured using the 
Pierce 660 nm Protein Assay (ThermoFisher Scientific). 
Proteins were resolved on 4–20% SDS-PAGE gels (BioRad), 
transferred to a PVDF membrane (ThermoFisher Scien-
tific) using the Trans-Blot Turbo Transfer System (BioRad) 
and probed overnight at 4 °C with IRDye 680 Streptavidin 
(LICOR) diluted 1:3000 in 1:1 TBST:Blocking Buffer (Bio-
Rad). Membranes were imaged using an Azure Biosystems 
c600. Western blot images were analyzed using ImageJ 
(National Institutes of Health) to calculate the mean fluo-
rescence intensities of each time point. The intensity of the 
control sample was used to normalize the intensity of each 
time point (n = 3 biological replicates per blot). Membranes 
were stained with Ponceau S (Sigma-Aldrich) to confirm 
equal protein loading.

Kinetic Modeling of Aha Distribution

The model of Aha distribution is shown schematically in 
Fig. 1. Both injection and oral administration of Aha are 
included in the model system to enable future studies of 
ncAA labeling with alternative/combined dosing paradigms. 
Simulations were performed using custom modeling scripts 
written in Python 3.6 (code location in Additional File 1: 
S1). Systems of ordinary differential equations (Additional 
File 1: S2) were solved using a flexible high order solver 
from the SciPy python package (v1.4.145). Simulations were 
run on a Lenovo Yoga PC with an Intel Core i7-8550U CPU 
@ 1.8 GHz and 8 GB RAM.

Most parameter values and ranges for fitting were 
informed from reported literature values or experimental 
measurements from this study. For parameters related to 
an experimental output ([fAha] or rF) without a reported 

literature value, an initial best estimate was selected to pro-
duce a single time-step change one order of magnitude lower 
than the maximum recorded experimental value. These 
parameters were then allowed to fit within a range of 1.5 
orders of magnitude from the initial estimate. Parameters 
were fit with a least squares minimization algorithm from 
‘Lmfit’, a prebuilt python library (v1.1.046). All best fit val-
ues and boundary conditions can be found in the parameter 
tables (Additional File 1: S3-5). Other package dependen-
cies to generate data and figures in this manuscript include 
NumPy (v1.16.1,47), and matplotlib (v3.3,48).

Parameter Sensitivity Analysis and Model Validation

To effectively sample the input parameter space, Latin 
hypercube sampling (LHS) was utilized to generate unique 
parameter sets (n = 10,000), sweeping each parameter value 
through a range defined by the boundary constraints from 
literature (Additional File 1:Tables S3-S5) as previously 
detailed.35,36 Global sensitivity analysis was performed on 
the LHS generated parameter sets using partial rank corre-
lation coefficient (PRCC) analysis. This analysis quantifies 
the sensitivity of an output variable on the variation in input 
parameter values.35,36 Here, PRCCs were determined for 
each of the 19 fitted parameters (Additional File 1: Table S3) 
and 12 static parameters (Additional File 1: Table S4) in the 
biodistribution model, as well as for all 8 parameters in the 
protein incorporation model (Additional File 1: Table S5). 
PRCCs were used to characterize the influence of each 
parameter on the sum of square errors (SSE), the optimiza-
tion metric for non-linear regression. Simulations used to 
inform PRCCs were performed on the Brown Supercomput-
ing Community Cluster at Purdue University,49 with each 
simulation run on a single node with dual 12-core Intel Xeon 
Gold "Sky Lake" CPUs @ 2.60 GHz and 96 GB of memory.

The standard error of fitting was determined for the 19 fit-
ted parameters (Additional File 1: Table S3) in the biodistri-
bution model and for all 8 fitted parameters (Additional File 
1: Table S5) in the protein incorporation model. Standard 
error values were determined from the covariance matrix 
during non-linear regression using the built-in functionali-
ties of the ‘Lmfit’ python library.46

Plasma and Liver Sample Preparation 
for Untargeted Metabolomic Analysis

Plasma and liver metabolomes of non-injected control sam-
ples (n = 3 biological replicates) and samples collected at 
different time points post Aha injection (n = 3 biological 
replicates per time point) were extracted by adding metha-
nol: chloroform: water (1:1:1 v/v) to 80 μL of each plasma 
sample. Samples were vortexed briefly and centrifuged at 
8000×g for 5 min at RT. The upper layer was transferred into 
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a new tube and vacuum-dried overnight. The dried fraction 
was reconstituted in 75 μL 5% ACN and 0.1% FA. Recon-
stituted samples were sonicated for 5 min, centrifuged at 
16,000×g for 8 min at RT, and the supernatants were trans-
ferred to HPLC autosampler vials.

Untargeted LC–MS Metabolomic Analysis

Separations were performed on an Agilent 1290 UPLC 
system (Agilent Technologies). Metabolites were ana-
lyzed using a Waters Acquity HSS T3 column (1.8 µm, 
2.1 × 100 mm), with a mobile phase flow rate of 0.45 mL 
min−1, where the mobile phase A and B were 0.1% FA in 
double distilled water and ACN at a 1:1 ratio, respectively. 
Initial conditions were 100:0 A:B, held for 1 min, fol-
lowed by a linear gradient to 20:80 at 16 min, then 5:95 at 
22.5 min. Column re-equilibration was performed by return-
ing to 100:0 A:B at 23.5 min and holding until 28.5 min.

Mass analysis was obtained using an Agilent 6545 Quad-
rupole Time of Flight (Q-TOF) MS with ESI capillary volt-
age + 3.2 kV, nitrogen gas temperature 325 °C, drying gas 
flow rate 8.0 L min−1, nebulizer gas pressure 30 psig, frag-
mentor voltage 130 V, skimmer 45 V, and OCT RF 750 V. 
MS data scans (m/z 70–1000) were collected using Agilent 
MassHunter Acquisition software (v.B.06). Mass accuracy 
was improved by infusing Agilent Reference Mass Correc-
tion Solution (G1969-85001). MS/MS was performed in a 
data-dependent acquisition mode on composite samples. 
Raw data for plasma and liver metabolomics is found in 
supplemental Additional Files 2 and 3, respectively.

Metabolomic Data Statistical Analysis

Peak deconvolution and integration were performed using 
Agilent ProFinder (v.10.0). Bioinformatic analyses were per-
formed using Agilent Mass Profiler Professional (v.13.1). 
Chromatographic peaks were aligned across all samples. 
Missing values (3 in plasma and 2 in liver) were replaced 
by the lower limit of detection (1/5 of the minimum posi-
tive value of each variable). Data were normalized by log-
transformation and auto-scaling. Mass features with P < 0.05 
and fold change ≥ 2 were considered significant. Principal 
component analysis (PCA) and hierarchal clustering analysis 
(HCA) were performed using MetaboAnalyst v.5.0.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12195-​023-​00760-4.
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