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Diffusion control in biochemical specificity
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ABSTRACT Biochemical specificity is critical in enzyme function, evolution, and engineering. Here we employ an established
kinetic model to dissect the effects of reactant geometry and diffusion on product formation speed and accuracy in the presence
of cognate (correct) and near-cognate (incorrect) substrates. Using this steady-state model for spherical geometries, we find
that, for distinct kinetic regimes, the speed and accuracy of the reactions are optimized on different regions of the geometric
landscape. From this model we deduce that accuracy can be strongly dependent on reactant geometric properties even for
chemically limited reactions. Notably, substrates with a specific geometry and reactivity can be discriminated by the enzyme
with higher efficacy than others through purely diffusive effects. For similar cognate and near-cognate substrate geometries
(as is the case for polymerases or the ribosome), we observe that speed and accuracy are maximized in opposing regions of
the geometric landscape. We also show that, in relevant environments, diffusive effects on accuracy can be substantial even
far from extreme kinetic conditions. Finally, we find how reactant chemical discrimination and diffusion can be related to simul-
taneously optimize steady-state flux and accuracy. These results highlight how diffusion and geometry can be employed to
enhance reaction speed and discrimination, and similarly how they impose fundamental restraints on these quantities.

INTRODUCTION

It has long been understood that reaction kinetics can be
affected by the geometry and diffusion of the participating
reactants (1–4). Diffusion is an essential attribute of much
of chemistry and biology, imposing fundamental limits on
the transport processes of molecular reactants. An aspect
of this spatial diffusion that has not been as researched is
its effect on enzyme-substrate specificity. Enzymes can
engage correct or incorrect substrates and consequently
catalyze the formation of distinct products (5,6). High levels
of specificity are therefore common in biochemical reac-
tions, and essential in central dogma polymerization pro-
cesses (7–9).

The accuracy of these enzyme reactions can be quantified
by comparing the formation rates of the correct and incor-
rect products and can be understood in terms of the underly-
ing chemical kinetics (10–14). The basic mechanisms of this
substrate discrimination are centered on binding, recogni-
tion, and catalysis (15,16), although numerous more com-
plex discrimination mechanisms exist beyond these basic
categories, such as catalytic site gating (17–19), kinetic
proofreading (20,21), and subsequent quality control
(22,23). In an idealized reaction, reactant diffusion entails
an additional discrimination mechanism that is implicit in
the binding kinetics and independent of the recognition
and catalysis stages. These spatial diffusion kinetics are
determined by factors such as reactant geometry and reac-
tive sites (24,25), solvent properties (26), molecular crowd-
ing (4,27,28), and intermolecular forces (2,29). Successful
reactions rates will therefore be limited by the time it takes
to achieve the proximity and orientations required for
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binding and subsequent catalysis. Under these assumptions,
the impact of spatial diffusion on speed and accuracy will
depend on how its rates relate to the chemical kinetics that
follow.

In this study, we investigate geometric and diffusive ef-
fects on the speed and accuracy of promiscuous chemical re-
actions. Initially, we establish the classical quantitative
expressions for rate and accuracy in steady state (10,30).
As a general reactant geometric model, we employ the pre-
viously characterized framework of asymmetrically reactive
spheres (24,31) with varying sizes, reactive sites, and chem-
ical reaction rates. We find that, in specific kinetic regimes,
speed and accuracy are optimized in different regions of the
geometric landscape (reactant and reactive site sizes). For
reactions where the cognate and near-cognate sizes are
different, we find the enzyme can discriminate optimally
substrates with a specific geometry and reactivity. Alterna-
tively, when the substrates have identical geometries, speed
and accuracy are optimized in opposing regions of the geo-
metric landscape. We also apply recently developed expres-
sions (32) to relate chemical and diffusive discrimination
and optimize steady-state total flux and accuracy. Finally,
we establish that, in biochemically relevant environments,
diffusive effects on accuracy (specifically for protein syn-
thesis) can be considerable even far from kinetic extremes.
The results derived are an initial approximation to the explo-
ration of wide-ranging relations between chemistry, geome-
try, diffusion, and accuracy.

METHODS

General expressions

We initially consider the general diffusion effects on reaction accuracy,
based on the scheme in Fig. 1.

Here, diffusion leads to an ‘‘encounter complex’’ (33,34) E$S, formed at a
net rate kD and dissociated at a net rate k-D. This is followed by an approx-
imately irreversible reactive step determined by the rate kvr . All rates, sub-
strates, and products are established for different substrates, v, which can
correspond to correct (or cognate, [c]) or incorrect (or near-cognate, [nc])
substrates (7,35). Under steady-state conditions, in which the significant
timescales are long enough to allow equilibration of intermediate reaction
states (and with constant reactant concentrations throughout in a continuum
limit), the result for product catalysis rate (or flux) is:

Jv ¼ d½P#v

dt
¼ kvDk

v
r ½E#½S#

v

kv$D þ kvr
(1)

Here, ½E# and ½S#v are the (constant) concentrations of free enzyme and sub-
strate, respectively (30,36). Minimally, chemical discrimination of one sub-
strate over others requires that kcr>k

nc
r . From Eq. 1, the two kinetic extremes

regarding diffusion can be established. The reaction will be chemically
limited when kv$D[kvr , leading to an overall rate of JvCL ¼
ðkvDkvr =kv$DÞ½E#½S#

v. On the other hand, the reaction will be diffusion limited
when kv$D ( kvr , leading to a rate of J

v
DL ¼ kvD½E#½S#

v. For set geometric and
medium conditions, it follows that JvDL>J

v
CL. A simple way of quantifying

the specificity of a reaction is the ratio of the cognate product rate of forma-
tion to those of near-cognate products, termed the accuracy (7,35,37,38).
From this definition we can see that the reaction accuracy in the presence
of various near-cognate substrates is:
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The reactive discrimination for a specific substrate is implicit in the factor
k$D=kr . Consideration of other intermediate, reversible chemical steps leads
to additional factors that can be absorbed into the single reactive discrimina-
tion factor, provided there are no restart pathways from intermediate steps (37)
(see section ‘‘Intermediate stages’’ in the Supporting material). Restart path-
ways (such as those observed in kinetic proofreading) lead to factors multi-
plying the entire flux (see section ‘‘Protein synthesis’’ in the Supporting
material). Generally, the factors kD and k$D=kr and how they compare be-
tween substrates will determine the impact of spatial diffusion on accuracy.
A global review of enzyme efficiencies (39) has shown that, on average,
cognate reactions in vitro are chemically limited (kc$D[kcr ). However, in
the crowded cellular environment, viscosities for average-sized proteins can
be thousands of times larger than those in aqueous conditions (40), reducing
kc$D drastically. This suggests that the average enzyme in vivo can operate
in a mixed kinetic regime, where diffusion and reactive rates are comparable.

Spherical geometry

The simplest geometry to describe diffusive association is that of spherical
reactants. To the initial model, we integrated the quasi-chemical approxima-

tion of !Solc and Stockmayer (23). This scheme is an approximation that ac-
counts for the considerable rotational effects (2) in enzymes and substrates
with reactive regions of the surface that are chemically able to interact
with each other. In this scheme, enzyme and substrates are modeled as
spheres (radii RE, Rv

S) with 4E and 4v
S as the reactive surface fractions of

the enzyme and substrates, respectively, determined by the polar angles qE
and qvS (Fig 2A). The effect of this geometry on the net diffusion rates is deter-
mined by the relations kvD ¼ 4v

S4Ek
v
S=U

v and kv$D ¼ kv$S=U
v. Here,Uvð%1Þ

are non-trivial factors that measure the likelihood of reactants in contact re-
orienting into a productive configuration (Eq. S10, section ‘‘Omega’’ in the
Supporting material). The factors are therefore maximal (Uv ¼ 1) for uni-
formly reactive reactants (qE ¼ qvS ¼ 180)). The factors account for the reac-
tive asymmetry and are functions of the ratios between radii (f v ¼ Rv

S=RE)
and of the corresponding angles (see section ‘‘Spherical geometry’’ in the
Supporting material). The rates kvS ¼ 4pðDv

S þDEÞðRv
S þREÞ and

kv$S ¼ 3ðDv
S þDEÞ=ðRv

S þ REÞ2; are the diffusive association and dissocia-
tion rates for uniformly reactive spheres (41).

The net rates can be interpreted as a decreased association constant
(4v

S4Ek
v
S=U

v) and an increased dissociation constant (kv$S=U
v) stemming

from the reduced effective reactive cross section. For uniform reactants,
these relations also apply when intermolecular forces are included, only

R ¼ Rv
S þ RE is replaced by 1=

RN

R

r$2eUðrÞ=kBTdr, where UðrÞ is the intermo-

lecular potential between enzyme and substrate at a distance r from each

FIGURE 1 Basic scheme of enzyme-substrate diffusion and reactivity.
All rates, substrates, and products are established for different substrates,
v, which can correspond to correct (or cognate, [c]) or incorrect (or near-
cognate, [nc]) substrates.
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other (1). In the following calculations, we will assume the interactive and
hydrodynamic radii involved in the reaction are similar. This type of consid-
eration points to a few subtleties that are important to consider with respect
to the relative scale of different physical forces. For example, it is important
to note that the effective radius where Coulomb forces dominate over diffu-
sional forces will increase according to rfR; where r is the distance be-
tween the enzyme and substrate. Thus, the effective radius of the
substrate or enzyme used in experiments or detailed calculations is likely
the measured radius multiplied by a constant factor.

RESULTS AND DISCUSSION

Product flux

Using the relationships for spherical geometries, the result-
ing expression for the steady-state product formation rate is
(see section ‘‘Spherical geometry’’ in the Supporting
material):

Jv ¼
4v
S4E

h
2kBT

#
Rv
S þ RE

$2.
3hRv

SRE

i
½E#½S#v

Uv þ kBT

2phðRvSþREÞRv
S
REkvr

(3)

In this relation, h is the solvent viscosity. Employing this
equation, product rates and accuracies can be calculated for
different geometric configurations. Fig. 2 B shows
heatmaps of the normalized cognate product flux, Jc=
ð2kBT½E#½S#c =3hÞ, as a function of the substrate (Rc

S) and
enzyme (RE) radii, for fixed reactive areas (qE ¼ 10);
qcS ¼ 90)) and various reactive discrimination factors
Fc
r ¼ k0=kcr , where k0 is an arbitrary rate. The radii are ex-

pressed in units ‘ ¼ ½kBT=2phk0#1=3.
For smaller Fc

r, the reaction is diffusion limited, a condi-
tion dictated by the relation kcr[kc$S=U

c, equivalent to
UcRc

SREðRc
S þREÞ[kBT=2phkcr . The left panel in Fig. 2 B

is in this kinetic regime, where the rate is approximated

by JcDL ¼ 2kBTðRc
S þ REÞ24c

S4E½E#½S#
c=3hUcRc

SRE. This
rate is fully dictated by diffusive and geometric elements

and favors differences in reactant size and larger reactive
surface fractions (in this case favoring larger Rc

S due to its
larger reactive surface; see Fig. 2 B left panel). This effect
is intuitive since it presents an ideal situation for the reac-
tants to diffuse toward each other, namely one small reactant
rapidly diffusing toward a larger, slower target. Alte-
rnatively, when UcRc

SREðRc
S þREÞ ( kBT=2phkcr , the reac-

tion is chemically limited, corresponding to the
right panel of Fig. 2 B. The flux in this case approaches

JcCL ¼ 4p4c
S4EðRc

S þ REÞ3kcr ½E#½S#
c=3, which is maximal

for larger surface fractions and equal radii (Fig. 2 B right
panel, upper right corner). These conditions minimize the
probability of the reactants dissipating before the chemical
reaction can take place, as similarly sized particles will drift
apart more slowly than those with large radii differences.
Notably, for a specific geometric landscape (with fixed me-
dium conditions h and kBT), JcDL>J

c
CL, as can be observed in

Fig. 2 B.

Accuracy for different substrate geometries

If we assume that there is a single near-cognate substrate
competing with the cognate one, we can compute the accu-
racy as A ¼ Jc=Jnc from Eq. 3:

A ¼

2

6664

Unc þ kBT

2phRnc
S
REðRncS þREÞkncr

Uc þ kBT
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S
REðRcSþREÞkcr
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(4)

Fig. 3 shows heatmaps of the normalized reaction accuracy
A=ð½S#c=½S#nc) as a function of the cognate (Rc

S) and enzyme
(RE) or near-cognate (Rnc

S ) radii and for different values of
the discrimination factors Fv

r and enzyme radius RE. For these
maps, we again use the length unit ‘ ¼ ½kBT=2phk0#1=3 (for

FIGURE 2 Basic geometric model and rate
dependence on reactant geometry. (A) The model
considers the enzyme and cognate/near-cognate
substrates as spheres with uneven reactivity, with
radii RE and Rv

S. The reactive areas (red) are spher-
ical caps determined by the polar angles qE and qvS.
(B) Heatmaps of the normalized cognate product
formation rate Jcnorm ¼ Jc=ð2kBT½E#½S#c =3hÞ as a
function of the cognate substrate (Rc

S) and enzyme
(RE) radii. The radii are expressed in length
‘ ¼ ½kBT=2phk0#1=3 for an arbitrary rate k0. Param-
eters were set to qE ¼ 10); qcS ¼ 90). The maps are
presented for various reactive discrimination fac-
tors Fc

r ¼ k0=kcr , shifting from diffusion-limited re-
actions (left) to chemically limited reactions
(right).
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arbitrary k0) and set parameters to qE ¼ 10) and qvS ¼ 90).
In Fig. 3 A accuracy is mapped as a function of Rc

S and RE and
the values Fv

r ¼ k0=kvr are increased while maintaining Rnc
S ¼

35‘ and Fnc
r =F

c
r ¼ kcr=k

nc
r ¼ 10. The values of Fnc

r = F
c
r in bio-

logical enzymes are substantially varied, ranging from *10
to 106 (42). Here (and throughout the study) we have selected
factors within this range that are adequate for illustrative pur-
poses in the geometric landscape observed. From these maps
we can make several observations regarding accuracy.

For given enzyme and substrate sizes, the accuracy will
decrease with increasing enzyme reactive area (Fig. S3 A,
increasing qE). This is straightforward since the enzyme
reactive area increases for both correct and incorrect
substrates, and hence binding and catalysis become less
selective. When the reactions are diffusion limited
(UvRv

SREðRv
S þREÞ[kBT=2phkvr ), the accuracy behaves as

ADL ¼ ½S#cRnc
S ðRc

S þ REÞ24c
SU

nc=½S#ncRc
SðRnc

S þ REÞ24nc
S U

c,
a result solely dependent on reactant geometry. The Fig. 3
A left panel is inside this diffusion-limited regime, where
maximum accuracy is achieved for large reactant size differ-
ences (upper left and lower right corners; see section ‘‘Accu-
racy for different geometries’’ in the Supporting material for
specific values). In the case of chemically limited
reactions (UvRv

SREðRv
S þREÞ ( kBT=2phkvr ; Fig. 3 A right

panel), the accuracy approaches the value ACL ¼
½S#ckcr4c

SðRE þ Rc
SÞ

3=½S#nckncr 4nc
S ðRE þ Rnc

S Þ
3. In this regime,

large reactant size differences still increase accuracy, but
with larger cognate substrate sizes relative to the enzyme
yielding the maximum (Fig. 3 A right panel, upper left corner;
see section ‘‘Accuracy for different geometries’’ in the Sup-
porting material for specific values). This shift stems from
the increasing contribution to the accuracy of cognate size
as reactions become chemically limited. For a specific region
of the geometric landscape discussed (with fixed h and kBT),
the relation ADL<ACL holds if kncr =knc$D<k

c
r=k

c
$D, implying

substrate selectivity after binding. These patterns for accu-
racy are preserved for different near-cognate substrate sizes
(Fig. S4). From these results, it is notable that accuracy can
display strong dependence on geometric properties even for
chemically limited reactions.

In Fig. 3 B, accuracy is mapped as a function of Rc
S and R

nc
S ,

while RE is varied, maintaining Fc
r ¼ 10 and Fnc

r ¼ 100, and
showing how accuracy is affected by near-cognate geometry.
Importantly, for a given enzyme and cognate substrate size,
the accuracy is maximal for a specific near-cognate substrate
geometry (Rnc

S , q
nc
S ) dependent on enzyme geometry (RE, qE)

and substrate reactivity kncr , as determined by Eq. 4. In the
simplest case, for uniformly reactive spheres (qncS ¼ qE ¼
180); Unc ¼ 1Þ, the enzyme best discriminates substrates
of radii Rnc; opt

S ¼ Rnc+
S ¼ ½R2

E $ ð3kBT=2phREkncr Þ#1=2, or
Rnc; opt
S ¼ 0 (when Rnc+

S is not real), as these values produce
a minimal Jnc. In the more realistic case where the reactants
are not uniformly reactive, the substrate geometry-reactivity
combinations that will be best discriminated will be non-triv-

ial (see section ‘‘Optimal substrate discrimination’’ in the
Supporting material). This behavior can be observed as either
accuracy decreasing with increasing Rnc

S (Rnc;opt
S ¼ 0; Fig. 3 B

left panel) or as a quick rise and slow decrease in accuracy
with increasing Rnc

S (Rnc;opt
S >0; Fig. 3 B center and right

panels).

Accuracy for similar substrate geometries

A particularly significant case of this model is that of
cognate and near-cognate substrates of similar geometries
(Rc

S ¼ Rnc
S ¼ RS, q

c
S ¼ qncS ¼ qS), as in polymerases or

the ribosome. In this case, the accuracy (for a single near-
cognate species) is simplified to:

A ¼

2

664

U2phRSREðRSþREÞ
kBT

þ 1
kncr

U2phRSREðRSþREÞ
kBT

þ 1
kcr

3

775
½S#c

½S#nc (5)

Fig. 4 shows heatmaps of the normalized accuracy
A=ð½S#c=½S#nc) as a function of the substrate (RS) and enzyme
(RE) radii. Throughout the calculations, parameters were set
to qS ¼ 90); qE ¼ 10). For given reactant geometries, the
accuracy will decrease with the increasing reactive area
(increasing either qE or qS; see Fig. S3 B). This is again
because this total reactive cross section increases equally
for both correct and incorrect substrates, decreasing net
selectivity. When the reactions are diffusion limited,
URSREðRS þREÞ[kBT=2phkvr , the accuracy will be
reduced to ½S#c=½S#nc, approached in Fig. 4, upper right cor-
ners of panels. Chemically limited reactions imply that
URSREðRS þREÞ ( kBT=2phkvr , corresponding to Fig. 4,
bottom and left edges of panels. At these extrema, the
accuracy approaches the value Az ¼ ½S#ckcr=½S#

nckncr . This
value will of course be the maximum accuracy if there is
any chemical discrimination. Notably, at the geometric
landscape origin ðRS; REÞ ¼ ð0; 0Þ, accuracy is maximal
(A ¼ Az) while cognate flux is zero (Eq. 3). In this system,
as reactants diffuse apart faster (the larger k$D is), the disso-
lution of the encounter complex overcomes the reactive rate,
making the reactions more selective and maximizing the
accuracy.

Effects of viscosity

From Eq. 3, the product formation rate decreases with
increasing viscosity h. In the case of accuracy for different
cognate and near-cognate substrate geometries (Eq. 4),
higher viscosity will be detrimental to the accuracy if the
condition kncr =knc$D<k

c
r=k

c
$D is met (see section ‘‘Effects of

viscosity’’ in the Supporting material). This states that, for
reactions with substrate selectivity following binding,
increasing viscosity will decrease accuracy. As previously
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observed, this condition also implies that (for fixed viscosity
and temperature) the diffusion-limited accuracy will be
lower than the chemically limited accuracy (ADL< ACL).
Therefore, for substrates with similar geometry (Eq. 5),
higher viscosity will decrease accuracy if there is any chem-
ical discrimination (kcr>k

nc
r ).

Protein synthesis

Bacterial protein synthesis can be employed as an example
for the effects of diffusion on biochemical accuracy, dictated
by the developed model for substrates with similar geome-
try. In this approximation, the enzyme is the ribosome,
and the substrates are the ternary complexes, composed of
elongation factor Tu (EF-Tu), cognate (or near-cognate)
aminoacylated tRNA (aatRNA), and GTP. To obtain the sys-
tem kinetics, we use in vitro Escherichia coli translation
rates at 37)C that have been compiled from various mea-
surements by Rudorf et al. (43) (Table S1). Using these
rates, the accuracy with aqueous viscosity (as in the buffers
in which the experiments were performed) is Aaq ¼ 7275

236. Setting the approximate geometric parameters (44)
RS ¼ 1:5 nm, RE ¼ 11 nm, qS ¼ 30); qE ¼ 20) and viscos-
ities for the reactants in the bacterial cytoplasm (40) (section
‘‘Protein synthesis’’ in the Supporting material), the calcu-
lated accuracy in the cell is Acell ¼ 3095100. The calcu-
lated cell result is comparable with accuracies from
near-cognate common misincorporation rates in vivo (45)
corresponding to A0cell ¼ 3615109. Interestingly, the ribo-
some is not an extreme kinetic case regarding diffusion. The
net diffusion rate (k$D) in the cell is 30 times larger than the
near-cognate reaction rate, but only half of the cognate sub-
strate reaction rate (Table S1). This suggests that, even for
reactions that are not diffusion controlled, diffusive effects
can alter accuracy considerably.

Optimization of flux and accuracy

An interesting application of this model is to find combina-
tions of chemical reactivity and geometric arrangement that
optimize both flux and specificity. This would increase our
understanding of optimal decoding (fast and selective

FIGURE 3 Accuracy for substrates with
different geometry. Heatmaps of the normalized ac-
curacy Anorm ¼ ðJc =JncÞ=ð½S#c =½S#ncÞ for sub-
strates with different geometries are shown as a
function of the enzyme (REÞ or near-cognate sub-
strate (Rnc

S ) and the cognate substrate (Rc
S) radii in

units ‘ ¼ ½kBT=2phk0#1=3 for an arbitrary rate k0:
Parameters were set to qE ¼ 10); qvS ¼ 90). (A)
Maps are shown for different discrimination factors
Fv
r ¼ k0=kvr , shifting from diffusion-limited reac-

tions (left) to chemically limited reactions (right),
with constant Rnc

S ¼ 35‘. (B) Maps are shown for
different enzyme sizes RE, with constant factors
Fc
r ¼ 10 and Fnc

r ¼ 100.

FIGURE 4 Accuracy for substrates with the
same geometry. Heatmaps of the normalized accu-
racy Anorm ¼ ðJc =JncÞ=ð½S#c =½S#ncÞ for substrates
with equal geometries are shown as a function of
the enzyme (RE) and substrate (RS) radii in units
‘ ¼ ½kBT=2phk0#1=3. For these maps, the parame-
ters were set to qE ¼ 10); qS ¼ 90). The maps
are presented for various reactive discrimination
factor ratios Fnc

r =Fc
r ¼ kcr=k

nc
r .

Diffusion control in specificity
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catalysis of the correct substrate) by engineering or evolu-
tion of the chemical/diffusive properties of the reactants
involved. In the case where there is a single near-cognate
substrate, the quantities that must be maximized are the
cognate product formation rate Jc (Eq. 3) and the accuracy
A (Eq. 5). Previous work focused on the ribosome has been
carried out to find the optimal energy landscape for steady-
state rate and accuracy (32), according to the general
scheme in Fig. 5.

In this scheme, once more v can correspond to cognate or
near-cognate substrates and the three stages modeled corre-
spond to binding, recognition, and catalysis. For this general
system, the steady-state cognate flux and specificity are
negatively correlated (35,46). This property permits the
derivation of parameters that optimize the steady-state rate
and accuracy simultaneously (i.e., optimal decoding or mo-
lecular recognition). The results that we have applied from
the study (32) are based on the maximization of the fitness
function F ¼ Jc $ dJnc, where d represents the sensitivity
of the system to errors. This function was chosen for its
simplicity, although the results hold for any biologically
reasonable function (see section ‘‘Optimization of flux and
accuracy’’ in the Supporting material). As any alteration
of the kinetic rates that increases either the rate or the accu-
racy will decrease the other, the optimum point will be
determined by a relationship between the kinetic rates. In
this sense, the specific values of the kinetic rates are not
important, but rather the relationship between them for the
cognate and near-cognate substrates. The key result relates
the optimal reactive discrimination factors F+

r2
, namely

Fnc+
r2

¼ ðk$2=k3Þ+nc ¼ ðk3=k$2Þ+cð1 =p2Þ ¼ 1=p2Fc+
r2
,

where p ¼ k$1

k$1þk2
is the probability of substrate rejection

following binding (32). This optimal point can account
for diffusive effects through the relation (47) p ¼h
1þ k2

k$b

%
1þ kb

k$D

& i$1
, where kb and k$b are the binding

and unbinding rates following reactant contact. The influ-
ence of spatial diffusion on the optimum is then described
quantitatively by:

Fnc+
r2

¼ Fc+
r2

$1
h
1þ F$1

r1

#
1þ Fs

$1
$i2

(6)

In this expression, the additional discrimination factors
equal for all substrates are Fr1 ¼ k$b=k2 (another reactive
factor) and Fs ¼ k$D=kb (the spatial factor). The rate k$D

is (as previously defined) the net rate of the encounter com-
plex diffusing back into the reactants. Eq. 6 therefore deter-
mines the ideal relationship between chemical (Fr1 ; Fc

r2
;

Fnc
r2
) and diffusive-geometric (Fs) discrimination for

optimal substrate catalysis flux and accuracy. However, a re-
action does not need to have these specific parameters to
have optimal flux and accuracy. Less stringently, if
ðFnc

r2
Þ$1%p%ðFc

r2
Þ$1, the enzyme flux and accuracy will

be close to optimal (32), as is the case for the ribosome
(see section ‘‘Optimization of flux and accuracy’’ in the Sup-
porting material).

CONCLUSION

Enzyme promiscuity is widespread and has considerable
mechanistic, evolutionary, and engineering implications
(48–50). Geometric and diffusional limits on transport
have direct consequences on the specificity of promiscuous
enzymes as the ‘‘correct’’ substrate is selected from the
diffusing pool of competing molecules around them. Here
we have applied established kinetic expressions (30,36) to
explore the diffusive-geometric effects on reaction accuracy
in steady-state conditions. These results can be applied to
any bimolecular reaction involving discrimination between
different reactants. The basic consequence of diffusive ef-
fects on accuracy is the inclusion of geometric and solvent
properties into the discrimination factors through diffusion
rates (Eq. 2). To understand the role of these properties,
we applied previously studied non-uniform spherical reac-
tant geometry (24,31) as a first approximation.

Our study shows that, within different kinetic regimes,
large variations arise among speed and accuracy optimiza-
tion on a given geometric landscape. Importantly, even if re-
actions are chemically limited, accuracy can be strongly
dependent on diffusive and geometric factors (see Fig. 3
A, right panel). Under diffusion control for a set Rnc

S different
from Rc

S, both the speed and accuracy will increase for large
Rc
S and RE differences (Fig. 2 B and Fig. 3 A left panels). In

contrast, under chemical control, the speed will be opti-
mized for large Rc

S and RE, while the accuracy will favor
larger Rc

S over RE (Fig. 2 B and Fig. 3 A right panels). Inter-
estingly, for a given enzyme geometry and substrate reac-
tivity (kncr ), the enzyme will best discriminate a specific
substrate geometry (Rnc

S , q
nc
S ), as determined by Eq. 4 (see

section "Accuracy for different substrate geometries").
For similar substrate geometries, the speed and accuracy

are simply optimized in opposite regions of the geometric
parameter (RE, RS) landscape (Fig. 2 B and Fig. 4). This
speed-accuracy tradeoff falls in line with previous studies
based on enzyme kinetic frameworks (5,21,51–54). Envi-
ronmental parameters do not necessarily display these trade-
offs, as growing viscosity will diminish both speed and
accuracy in reactions with selectivity following binding
(see section ‘‘Effects of viscosity’’ in the Supporting mate-
rial). We have also demonstrated that, in biochemically

FIGURE 5 Scheme for optimization of rate and accuracy. Rates, sub-
strates, and products are established for different substrates, v, which can
correspond to correct (or cognate, [c]) or incorrect (or near-cognate, [nc])
substrates.
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relevant environments (such as the crowded bacterial cyto-
plasm), diffusive effects on accuracy can be considerable
even for systems far from kinetic extremes (see section
‘‘Protein synthesis’’ in the Supporting material). Finally,
starting from previous studies (32), we derived relations be-
tween chemical and diffusive rates that optimize the flux and
accuracy (see section ‘‘Optimization of flux and accuracy’’
in the Supporting material).

These results explore the chemical, geometric, and diffu-
sive landscape for a promiscuous bimolecular reaction and
establish optima for its speed and accuracy. What freedom
does a biological or engineered reaction possess to move
around this landscape? Biochemical reactions can generally
alter chemical rates of binding, recognition, and catalysis
through active site mutations (16). The geometric configura-
tion of these reactions is also malleable through the alter-
ation of reactant surfaces (47,55), although reactant size is
contingent on factors outside of speed or accuracy (56).
Our results suggest that these modifications must take geo-
metric-diffusive effects into account to control speed, spec-
ificity, or the balance between them. Inside the possibilities
of evolution and engineering, the presented landscape can
be navigated to achieve various decoding objectives.

In addition, these results may improve our understanding
of enzyme evolution in diverse cellular and biophysical con-
texts. For example, recent work has shown that the density
of cells systematically changes with cell size in bacteria,
going from very dense cells at the small end to relatively
less dense cells at the large end of bacteria (57). Since vis-
cosity is changing with cell size, the relative size of the two
terms being added in A (Eq. 4) also systematically shifts and
adjusts the importance of the chemical terms of accuracy.
Our prediction is that there should be a much stronger sensi-
tivity to the chemical binding and catalytic rates in large
cells compared with small cells, and this should be observ-
able for enzymes that have evolved only in large or small
cell species. This type of prediction opens new bio-
informatic analyses to characterize the constraints facing
the diversity of enzymes across the tree of life.
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Intermediate stages 

If additional reversible stages leading to enzyme catalysis are present, as shown in this 

scheme: 

 

 
 

The resulting expression for the steady-state flux increases the reactive discrimination 

factor according to the expression (1): 

 

𝐽𝑣 =
𝑘𝐷

𝑣[𝐸][𝑆]𝑣

1 + 𝑘−𝐷
𝑣

𝑘𝑏
𝑣 (1 + 𝑘−𝑏

𝑣

𝑘1
𝑣 (1 + 𝑘−1

𝑣

𝑘2
𝑣 (1 + ⋯+

𝑘−(𝑛−1)
𝑣

𝑘𝑛
𝑣 (1 + 𝑘−𝑛

𝑣

𝑘𝑐𝑎𝑡
𝑣 ))))

 

(S1) 

 

Spherical geometry 

The ‘quasi-chemical’ approximation (2) model consists of spherical reactants with reactive 

spherical caps (Fig. S1). This model involves various states (E±•S±) connected by rotational 

motions, including a productive (E+•S+) state in which the reactive patches come into 

contact, allowing catalysis to proceed. 

 



 
Figure S1. The quasi-chemical model for spherical reactant geometry. Reactant geometries are described 

by their radii and reactive surface fractions (𝜑), determined by the polar angles θ. The different states E±•S± 
can be formed with modified association constants and interconvert through rotational motions. When the 

reactive areas contact each other the state E+•S+ is formed and the reaction can proceed.       

 

In the model the quantities 𝜑 are the reactive surface fractions in the interacting particles, 

determined by the polar angles 𝜃. Under steady-state assumptions, the main result for 

the product flux is (Šolc & Stockmayer (2) Equation 1): 

  

𝐽 =
𝑑[𝑃]
𝑑𝑡 = 𝑘𝑒𝑓𝑓[𝐸][𝑆] =

𝜑𝐸𝜑𝑆𝑘𝑆[𝐴][𝐵]

𝛬𝐸𝛬𝑆 + 𝜓 + 𝑘−𝑆
𝑘𝑟

 

(S2) 

 

𝜓 = [(1 − 𝛬𝐸)−1(1 − 𝛬𝑆)−1 + (1 − 𝛬𝑆)−1(𝛬𝐸 − 𝜑𝐸)−1

+ (1 − 𝛬𝐸)−1(𝛬𝑆 − 𝜑𝑆)−1]−1 



(S3) 

 

𝛬𝐸,𝑆 =
𝜑𝐸,𝑆 + 𝑘−𝑆𝜏𝐸,𝑆

1 + 𝑘−𝑆𝜏𝐸,𝑆
 

(S4) 
 

In their formalism, Šolc and Stockmayer established a net ‘chemical’ reaction rate 𝑘𝑟, 𝑘±𝑆 

are the corresponding rates for spherical reactants and the ‘reorientation parameters’ 𝛬𝐸,𝑆 

depend on ‘rotational times’ (𝜏𝐸, 𝜏𝑆) that are specific to each molecule. An approximation 

of these parameters has been obtained by comparing keff in the limit where one of the 

reactants is uniformly reactive, that is   𝜑𝑆 = 1. In this limit,  𝛬𝑆 = 1 and   𝜓 = 0 , leading 

to: 

 

𝐽∗ = 𝑘𝑒𝑓𝑓
∗ [𝐸][𝑆] =

𝜑𝑘𝑆[𝐸][𝑆]

𝛬 + 𝑘−𝑆
𝑘𝑟

 

(S5) 

 

In Berg 1985 (3), this scenario was resolved exactly for spherical molecules. In this model, 

the reactive fraction of the surface is given by the polar angle 𝜃, namely by the relation   

𝜑 = (1 − 𝑐𝑜𝑠𝜃)/2. This gives the result (Berg 1985, Equation 17) for the effective 

association rate constant, ka: 

 

𝑘𝑆

𝑘𝑎
= 1 + (

1
𝜑) (

𝐷
𝜅𝑅) −

1
4𝜑2 ∑

[𝑃𝑗−1(𝑐𝑜𝑠𝜃) − 𝑃𝑗+1(𝑐𝑜𝑠𝜃)]2

(2𝑗 + 1)[𝑗 − 𝜉𝑗𝐾𝑗+3/2(𝜉𝑗)/𝐾𝑗+1/2(𝜉𝑗)]

∞

𝑗=1

 

(S6) 

 



In this expression, 𝑃𝑗(𝑥) is the Legendre polynomial of order j and 𝐾𝑗(𝑥) is the modified 

Bessel function of the second kind of order j. Additionally,  𝜉 = √𝑗(𝑗 + 1)𝑅2𝐷𝑅/𝐷, where 

𝐷𝑅 is the rotational diffusion coefficient of particle E, 𝑅 = 𝑅𝐸 + 𝑅𝑆 is the sum of the 

hydrodynamic radii, 𝐷 = 𝐷𝐸 + 𝐷𝑆 is the sum of the translation diffusion coefficients and κ 

is the local reactivity per unit area for nonspecific association to the surface of E. By 

equating k*eff   and ka, the following relations are obtained: 

 

𝑘−𝑆

𝑘𝑟
=

𝐷
𝜅𝑅 

         (S7) 

 

𝛬 = 𝜑 −
1
4𝜑 ∑

[𝑃𝑗−1(𝑐𝑜𝑠𝜃) − 𝑃𝑗+1(𝑐𝑜𝑠𝜃)]2

(2𝑗 + 1)[𝑗 − 𝜉𝑗𝐾𝑗+3/2(𝜉𝑗)/𝐾𝑗+1/2(𝜉𝑗)]

∞

𝑗=1

 

(S8) 

 

Much simpler approximations of 𝛬𝐶 exist for diffusion-limited conditions, but this 

expression is general and (fairly) simple to compute numerically. This expression was used 

to calculate the reorientation parameters for the enzyme and substrate. This method has 

been performed in other studies, albeit for the diffusion-limited case (4, 5). 

 

Applying the mentioned results to our situation, we obtain: 

 

𝐽𝑣 =
𝑑[𝑃]𝑣

𝑑𝑡 =
𝜑𝑆

𝑣𝜑𝐸𝑘𝑆
𝑣[𝐸][𝑆]𝑣

𝛬𝐸
𝑣𝛬𝑆

𝑣 + 𝜓𝑣 + 𝑘−𝑆
𝑣

𝑘𝑟
𝑣

=
𝜑𝑆

𝑣𝜑𝐸𝑘𝑆
𝑣[𝐸][𝑆]𝑣

𝛺𝑣 + 𝑘−𝑆
𝑣

𝑘𝑟
𝑣

 

(S9) 

 



𝛺𝑣 = 𝛬𝐸
𝑣𝛬𝑆

𝑣 + 𝜓𝑣 
(S10) 

 

As mentioned, an exact solution of the reorientation parameters is given by the expression 

(3): 

 

𝛬𝐶 = 𝜑𝐶 −
1

4𝜑𝐶
∑

[𝑃𝑗−1(𝑐𝑜𝑠𝜃𝐶) − 𝑃𝑗+1(𝑐𝑜𝑠𝜃𝐶)]2

(2𝑗 + 1)[𝑗 − 𝜉𝐶,𝑗𝐾𝑗+3/2(𝜉𝐶,𝑗)/𝐾𝑗+1/2(𝜉𝐶,𝑗)]

∞

𝑗=1

 

(S11) 

 

In which C is E or S. Using this model, we can broadly explore the effects of diffusion on 

enzyme accuracy. The basic geometric factors that can affect rate and accuracy are 

thereby radii (RE, RS) and the reactive fractions (φE, φS) of the molecules. To quantify these 

effects, the diffusion factors corresponding to spherical reactants are assigned: 

 

𝑘𝑆 = 4𝜋𝐷𝑅, 𝑘−𝑆 = 3𝐷/𝑅2,       𝐷𝐶 = 𝑘𝐵𝑇/6𝜋𝜂𝑅𝐶,     𝐷𝐶,𝑅 = 𝑘𝐵𝑇/8𝜋𝜂𝑅𝐶
3  

(S12) 

 

In these relations, D is the sum of the substrate and enzyme translational diffusion 

coefficients, which are given by DC and R is the sum of the enzyme and substrate radii. 

These relations imply that   𝜉𝑆,𝑗
𝐸 = √𝑗(𝑗 + 1)𝑅2𝐷𝑅/𝐷 = √𝑗(𝑗 + 1)3𝑓±1(1 + 𝑓±1)/4, where 

𝑓 = 𝑅𝑆/𝑅𝐸 . Under these conditions, the flux is given by (following Eq. S9): 

 

𝐽𝑣 =
𝜑𝑆

𝑣𝜑𝐸 [2𝑘𝐵𝑇(𝑅𝑆
𝑣 + 𝑅𝐸)2/3𝜂𝑅𝑆

𝑣𝑅𝐸][𝐸][𝑆]𝑣

𝛺𝑣 + 𝑘𝐵𝑇
2𝜋𝜂(𝑅𝑆

𝑣 + 𝑅𝐸)𝑅𝑆
𝑣𝑅𝐸𝑘𝑟

𝑣

 

(S13) 



Omega 

As described by Eqs. S10, S11 and S3, the reorientation factor omega depends on the 

fraction 𝑅𝑆/𝑅𝐸 and the angles 𝜃𝐸, 𝜃𝑆. Figure S2 shows heat maps of 𝛺 as a function of 𝑅𝐸 

and 𝑅𝑆, for various reactant angles. In the case of similar angles, similar radii optimize the 

likelihood of achieving reactive site contact (Fig. S2 left panel). In contrast, for a reactant 

with a larger reactive surface fraction, larger radii of this reactant and smaller radii of the 

other reactant are favored (Fig. S2 middle and right panels). This difference in reactant 

sizes maximizes the probability of the reactive regions of the surfaces coming into contact.   

 

 
Figure S2. Dependence of the orientation factor omega (𝛺) on spherical reactant geometry. Heat maps of 

the factor omega are shown as a function of the enzyme (𝑅𝐸) and cognate substrate (𝑅𝑆) radii in arbitrary 

length units. Maps are shown for various parameters 𝜃𝐸 and 𝜃𝑆. 

 

Accuracy for different geometries 

As stated in the main text, when reactions are diffusion limited (𝛺𝑣𝑅𝑆
𝑣𝑅𝐸(𝑅𝑆

𝑣 + 𝑅𝐸) ≫

𝑘𝐵𝑇/2𝜋𝜂𝑘𝑟
𝑣), the accuracy behaves as 𝐴𝐷𝐿 = [𝑆]𝑐𝑅𝑆

𝑛𝑐(𝑅𝑆
𝑐 + 𝑅𝐸)2𝜑𝑆

𝑐𝛺𝑛𝑐/[𝑆]𝑛𝑐𝑅𝑆
𝑐(𝑅𝑆

𝑛𝑐 +

𝑅𝐸)2𝜑𝑆
𝑛𝑐𝛺𝑐. For enzyme sizes much larger than the substrates, the accuracy will reach the 

value 𝐴1
𝐷𝐿 = [𝑆]𝑐𝑅𝑆

𝑛𝑐𝜑𝑆
𝑐𝛺0

𝑛𝑐/[𝑆]𝑛𝑐𝑅𝑆
𝑐𝜑𝑆

𝑛𝑐𝛺0
𝑐, where the factors 𝛺0

𝑣 = 𝛺𝑣(𝑓𝑣 = 𝑅𝑆
𝑣/𝑅𝐸 = 0) are 

independent of radii. This value is approached in the Fig. 3a left panel, lower right corner. 

On the other hand, substrates much larger than the enzyme lead to the value 𝐴2
𝐷𝐿 =



[𝑆]𝑐𝑅𝑆
𝑐𝜑𝑆

𝑐𝛺∞
𝑛𝑐/[𝑆]𝑛𝑐𝑅𝑆

𝑛𝑐𝜑𝑆
𝑛𝑐𝛺∞

𝑐 , where 𝛺∞
𝑣 = 𝛺𝑣(𝑓𝑣 = 𝑅𝑆

𝑣/𝑅𝐸 = ∞) are independent of radii. 

This maximum can be seen in the Fig. 3a left panel, upper left corner. In the case of 

chemically-limited reactions (𝛺𝑣𝑅𝑆
𝑣𝑅𝐸(𝑅𝑆

𝑣 + 𝑅𝐸) ≪ 𝑘𝐵𝑇/2𝜋𝜂𝑘𝑟
𝑣, Fig. 3a right panel), the 

accuracy behaves as 𝐴𝐶𝐿 = [𝑆]𝑐𝑘𝑟
𝑐𝜑𝑆

𝑐(𝑅𝐸 + 𝑅𝑆
𝑐)3/[𝑆]𝑛𝑐𝑘𝑟

𝑛𝑐𝜑𝑆
𝑛𝑐(𝑅𝐸 + 𝑅𝑆

𝑛𝑐)3. For enzyme sizes 

much larger than the substrates, the accuracy will reach the value 𝐴1
𝐶𝐿 = [𝑆]𝑐𝑘𝑟

𝑐𝜑𝑆
𝑐/

[𝑆]𝑛𝑐𝑘𝑟
𝑛𝑐𝜑𝑆

𝑛𝑐. This value is approached in the Fig. 3a right panel, lower right corner. 

Alternatively, substrates much larger than the enzyme lead to the value 𝐴2
𝐶𝐿 =

[𝑆]𝑐𝑘𝑟
𝑐𝜑𝑆

𝑐(𝑅𝑆
𝑐)3/[𝑆]𝑛𝑐𝑘𝑟

𝑛𝑐𝜑𝑆
𝑛𝑐(𝑅𝑆

𝑛𝑐)3, as can be seen in Fig. 3a right panel, upper left corner. 

Finally, similar large values of the cognate substrate and the enzyme produce another 

local maximum, 𝐴3
𝐶𝐿 = 8[𝑆]𝑐𝑘𝑟

𝑐𝜑𝑆
𝑐/[𝑆]𝑛𝑐𝑘𝑟

𝑛𝑐𝜑𝑆
𝑛𝑐, approached in the Fig. 3a right panel, 

upper right corner.  

 

Effects of viscosity 

The accuracy for different substrate geometries (Eq. 4) will decrease with viscosity if 𝜕𝐴
𝜕𝜂

<

0. For an accuracy of the form 𝐴 α 𝑎𝜂+𝑏
𝑐𝜂+𝑑

, with positive coefficients 𝑎, 𝑏, 𝑐, 𝑑, the condition 

𝜕𝐴
𝜕𝜂

< 0 requires that 𝑑𝑎 < 𝑏𝑐. The last inequality is equivalent to 𝑘𝑟
𝑛𝑐/𝑘−𝐷

𝑛𝑐 < 𝑘𝑟
𝑐/𝑘−𝐷

𝑐  

(explicitly, 𝛺𝑛𝑐𝑅𝑆
𝑛𝑐𝑅𝐸(𝑅𝑆

𝑛𝑐 + 𝑅𝐸)/𝛺𝑐𝑅𝑆
𝑐𝑅𝐸(𝑅𝑆

𝑐 + 𝑅𝐸) < 𝑘𝑟
𝑐/𝑘𝑟

𝑛𝑐). This states that for reactions 

with substrate selectivity following binding, higher viscosity will decrease accuracy. This 

directly implies that for substrates with similar geometry (Eq. 5), higher viscosity will 

decrease accuracy if there is any chemical discrimination (𝑘𝑟
𝑐 > 𝑘𝑟

𝑛𝑐).  

 

Optimal substrate discrimination 

To deduce the (near-cognate) substrate geometry that is best discriminated by an 

enzyme, the general expression for accuracy (Eq. 4) can be maximized for varying 𝑅𝑆
𝑛𝑐. For 

local maxima inside the working range of the variable (𝑅𝑆
𝑛𝑐 > 0), this is directly equivalent 

to maximizing 1/𝐽𝑛𝑐 with respect to 𝑅𝑆
𝑛𝑐, with the result: 



 

(𝑅𝑆
𝑛𝑐 + 𝑅𝐸) [(2𝑅𝑆

𝑛𝑐𝑅𝐸 + 𝑅𝐸
2)𝛺𝑛𝑐 +

𝜕𝛺𝑛𝑐

𝜕𝑅𝑆
𝑛𝑐 𝑅𝑆

𝑛𝑐𝑅𝐸(𝑅𝑆
𝑛𝑐 + 𝑅𝐸)]

= 3 [𝑅𝑆
𝑛𝑐𝑅𝐸(𝑅𝑆

𝑛𝑐 + 𝑅𝐸)𝛺𝑛𝑐 +
𝑘𝐵𝑇

2𝜋𝜂𝑘𝑟
𝑛𝑐] 

(S14) 

 

In the simplest case, for uniformly reactive spheres (𝜃𝑆
𝑛𝑐 = 𝜃𝐸 = 180⁰, 𝛺𝑛𝑐 = 1), the 

positive solution is given by: 

 

𝑅𝑆
𝑛𝑐∗ = (𝑅𝐸

2 −
3𝑘𝐵𝑇

2𝜋𝜂𝑅𝐸𝑘𝑟
𝑛𝑐)

1/2

 

(S15) 

 

Protein synthesis 

The ribosome carries out protein synthesis accurately through mRNA decoding by 

aminoacyl-tRNA (aatRNA). This is accomplished through codon-anticodon recognition, 

engagement of the codon-anticodon complex by the ribosome and a proofreading step. 

The ‘ternary complex’, composed of elongation factor Tu (EF-Tu), aatRNA (either cognate 

or near-cognate) and GTP (EF-Tu(GTP)-aatRNA) engages the ribosome. Complexes 

carrying the codon-programmed cognate aatRNA are likely activated for GTP hydrolysis 

on EF-Tu, while near-cognate complexes are more likely to leave the ribosome before this 

occurs. Additionally, after GTP hydrolysis the near-cognate complexes are similarly more 

likely to be released prior to peptide bond formation. In the following scheme, E 

represents the ribosome and Sv represents the cognate (or near-cognate) ternary 

complex: 

 



 
 

Here, the net rates of diffusive association and binding or diffusive dissociation and 

unbinding of the two reactants into the encounter (E•Sv) complex are compiled into the 

rates 𝑘1 = 𝑘𝐷/(1 + 𝑘−𝐷/𝑘𝑏) or 𝑘−1 = 𝑘−𝑏/(1 + 𝑘𝑏/𝑘−𝐷), respectively (5). Importantly, 

these rates do not encompass codon recognition, solely the initial binding/unbinding 

steps of the ternary complex to the ribosome. The rates k2 and k-2v determine the codon 

recognition step and lead to formation of the intermediate denoted as ESv. From this state, 

factor GTP hydrolysis occurs with a rate of k3v, leading to the formation of intermediate 

ES*v, corresponding to the ribosome engaged to EF-Tu(GDP)-aatRNA. From this 

intermediate, S*v can be released at a rate of k4v. Once the S*v complex is rejected, 

reintegration is assumed to be negligible. Finally, the rate k5v is the net forward rate of 

peptidyl transfer leading to the cognate (or near-cognate) product, the peptide chain with 

the correct (or incorrect) encoded amino acid incorporated (EPv). In this model, employing 

the results from the spherical quasi-chemical model, the steady-state product formation 

rate or product flux is given by:  

 

𝐽𝑣 =
𝑘𝑆𝜑𝑆𝜑𝐸[𝐸][𝑆]𝑣

[𝛺 + 𝑘−𝑆
𝑘𝑏

(1 + 𝑘−𝑏
𝑘2

(1 + 𝑘−2
𝑣

𝑘3
𝑣 ))] (1 + 𝑘4

𝑣

𝑘5
𝑣)

 

(S16) 

 



Where 𝑘𝑆, 𝑘−𝑆, 𝜑𝑆, 𝜑𝐸 and 𝛺 are as defined in the section ‘Spherical geometry’. The 

accuracy is then given by (for a single near-cognate species): 

 

𝐴 = [

𝛺𝑘𝑏
𝑘−𝐷

+ 1 + 𝑘−𝑏
𝑘2

(1 + 𝑘−2
𝑛𝑐

𝑘3
𝑛𝑐)

𝛺𝑘𝑏
𝑘−𝐷

+ 1 + 𝑘−𝑏
𝑘2

(1 + 𝑘−2
𝑐

𝑘3
𝑐 )

] ∗

[
 
 
 1 + 𝑘4

𝑛𝑐

𝑘5
𝑛𝑐

1 + 𝑘4
𝑐

𝑘5
𝑐 ]
 
 
 [𝑆]𝑐

[𝑆]𝑛𝑐 = 𝐼 ∗ 𝑃
[𝑆]𝑐

[𝑆]𝑛𝑐 

   (S17) 

 

This expression for total accuracy is divided into accuracy achieved through the initial (I) 

and proofreading (P) selections. We can employ this expression to estimate translation 

accuracy in cells, and the effects of diffusion on this accuracy. The rates from Rudorf et al. 

(6) in Table S1 correspond to in vitro protein synthesis E. Coli kinetic rates at 37°C. The 

net binding and unbinding rates κon (𝑘1) and ωoff (𝑘−1) encompass the diffusive and 

chemical binding steps of these reactions and are given by a specific combination of the 

diffusive and chemical binding rates. For the buffer conditions that these rates correspond 

to, we employ the environmental parameter approximation (7) 𝑘𝐵𝑇/𝜂 ≅

1.875x109M−1s−1. In the case of the E. Coli cell cytoplasm, viscosity for a particle with 

radius 𝑟𝑝 (𝜂𝑝) in this complex medium is approximated by the phenomenological 

expression (8): 

 

ln (
𝜂𝑝

𝜂0
) = (

𝜀2

𝑅ℎ
2 +

𝜀2

𝑟𝑝2
)

−𝑎/2

 

(S18) 

 

In this relation, 𝑅ℎ = (42 ± 9)nm, 𝜀 = (0.51 ± 0.09)nm and 𝑎 = 0.53 ± 0.04. Using this 

expression, the diffusion rate 𝑘−𝐷 in the cell is approximated, and Eq. S17 is used to 



calculate accuracy in the cell. The values and errors of the binding and unbinding rates 

were calculated using the expressions (5) 𝑘𝑏 = 𝑘−𝑆/[(𝑘𝑆𝜑𝑆𝜑𝐸/𝑘1) − 𝛺] and 𝑘−𝑏 = 𝑘−1[1 +

(𝑘𝑏𝛺/𝑘−𝑆)], yielding 𝑘𝑏 = (2.81 ± 0.11)x1010s−1 and 𝑘𝑏 = (1119 ± 105)s−1. With these 

values and those in Table S1, we obtained the values and errors of accuracies based on 

Equation S17 using a custom MATLAB script.    

 

Rudorf et al. 

source rate(s) 37°C 

Corresponding  

rate(s) 

Units Value 

κon
 𝑘1 1/µM s 175 ± 25 

ωoff
 𝑘−1 1/s 700 ± 270 

ωrec 𝑘2
 1/s 1500 ± 450 

ω76 𝑘−2
𝑛𝑐  1/s 1100 ± 330 

ω78 𝑘3
𝑛𝑐  1/s 7 ± 2 

ω21 𝑘−2
𝑐  1/s 2 ± 0.6 

ω23 𝑘3
𝑐 1/s 1500 ± 450 

ω90 𝑘4
𝑛𝑐 1/s 4 ± 0.7 

ω40 𝑘4
𝑐 1/s 1 

ω910 𝑘5
𝑛𝑐  1/s 0.26 ± 0.04 

ω45 𝑘5
𝑐 1/s 200 ± 40 

 

Table S1. The rates from Rudorf et al. and the corresponding rates in the model developed in this study. 

The rate ω40 was estimated assuming it is not rate-limiting (6). 

 

Optimization of flux and accuracy 

In the study (11), a fitness function is optimized, maximizing both cognate rate and 

accuracy. The results are based on the maximization of the fitness function 𝐹 = 𝐽𝑐 − 𝑑𝐽𝑛𝑐, 

where d represents the sensitivity of the system to errors. Any number of ‘biologically 

reasonable’ functions (for which 𝜕𝐹/𝜕𝐽𝑐 > 0 and 𝜕𝐹/𝜕𝐽𝑛𝑐 < 0) are plausible. Importantly, 



the parameter point obtained (Equation 6) will be optimal independently of the specific 

form of 𝐹 if the condition (𝐹𝑟2
𝑐 /𝐹𝑟2

𝑛𝑐) ≲ |𝜕𝐹/𝜕𝐽𝑛𝑐|/|𝜕𝐹/𝜕𝐽𝑐| ≲ (𝐹𝑟2
𝑛𝑐/𝐹𝑟2

𝑐 )  is met (see (11) for 

demonstration). This condition implies that so long as 𝐽𝑛𝑐 and 𝐽𝑐 are relevant to the fitness 

𝐹 (that is, |𝜕𝐹/𝜕𝐽𝑛𝑐| and |𝜕𝐹/𝜕𝐽𝑐| are not different by too many orders of magnitude), the 

parameter combination in Equation 6 will be within the optimal range for all 𝐹 chosen. 

Though the focus of this optimization was on steady-state quantities, first-passage time 

and associated errors (splitting probabilities) can yield additional kinetic properties (12, 

13). For the ribosome cognate and near-cognate in vivo discrimination factors (𝐹𝑟2
𝑛𝑐 ≅ 160,

𝐹𝑟2
𝑐 ≅ 1/750, 𝑝 = 0.12, see Table S1), are far from the Eq. 6 optimum (𝐹𝑟2

𝑛𝑐∗ = 1/𝑝2𝐹𝑟2
𝑐 ≅

52080). Nonetheless, as previously calculated for in vitro conditions (11), the ribosome 

rate and accuracy is nearly optimal. To understand why this is the case, we consider that 

to optimize decoding the following normalized function must be maximized to 1: 

 

𝑀(𝛥𝑛𝑐, 𝛥𝑐) =
1 + 𝑒(𝛥𝑛𝑐−𝛥𝑐)/2

𝑒|𝛥𝑐−𝛥∗| + 𝑒(𝛥𝑛𝑐−𝛥𝑐)/2
 

 (S19) 

 

Where 𝛥𝑣 = ln𝐹𝑟2
𝑣  and 𝛥∗ = −ln𝑝 − (𝛥𝑛𝑐 − 𝛥𝑐)/2 is the optimal near-cognate discrimination 

factor. This function has been calculated at 98% for in vitro conditions (11). For in vivo 

conditions, 𝛥𝑐 = −6.62, 𝛥𝑛𝑐 = 5.06 (derived from Table S1, see Protein Synthesis). With 

these values, Eq. S19 yields an optimization of ~95%. Hence, for the ribosome the flux 

and accuracy are optimal across a broad range of parameters. This happens because the 

function M is maximal for a ‘band’ of values of width 𝛥𝑛𝑐 − 𝛥𝑐 around the optimum 𝛥𝑐 =

𝛥∗ (11), a parameter region equivalent to (𝐹𝑟2
𝑛𝑐)−1 ≤ 𝑝 ≤ (𝐹𝑟2

𝑐 )−1. This is intuitive since the 

larger this interval is, the more accurate the reaction is, and p can potentially grow larger, 

slowing down the reaction. In this way, larger accuracy permits smaller rates, keeping the 



rate and accuracy optimized. While the ribosome parameters are nowhere near the 

optimum, they fall inside this interval, rendering the reaction’s rate and accuracy highly 

optimized. 

 

 
Figure S3. Dependence of accuracy on reactive surface fraction. Radii are displayed in length units ℓ =

[𝑘𝐵𝑇/2𝜋𝜂𝑘0]1/3 for an arbitrary rate 𝑘0 and 𝐹𝑟
𝑛𝑐/𝐹𝑟

𝑐 = 5000. (a) Heat map of the normalized accuracy 𝐴 =

(𝐽𝑐/𝐽𝑛𝑐)/([𝑆]𝑐/[𝑆]𝑛𝑐) for substrates with different geometries for various 𝜃𝐸 . The accuracy is shown as a 

function of the enzyme (𝑅𝐸) and cognate substrate (𝑅𝑆
𝑐) radii. Parameters were set to  𝜃𝑆

𝑣 = 10⁰ and 𝑅𝑆
𝑛𝑐 =

3ℓ. (b) Heat maps of the normalized accuracy for substrates with equal geometries and different 𝜃𝐸 and 𝜃𝑆. 

The accuracy is shown as a function of the enzyme (𝑅𝐸) and substrate (𝑅𝑆) radii.   

 

 



 
Figure S4. Dependence of accuracy on near-cognate substrate sizes. Heat maps of the normalized accuracy 

𝐴 = (𝐽𝑐/𝐽𝑛𝑐)/([𝑆]𝑐/[𝑆]𝑛𝑐) are shown for substrates with different geometries as a function of the enzyme 

(𝑅𝐸) and cognate substrate (𝑅𝑆
𝑐) radii in length units ℓ = [𝑘𝐵𝑇/2𝜋𝜂𝑘0]1/3 for an arbitrary rate 𝑘0. Parameters 

were set to 𝜃𝐸 = 10⁰, 𝜃𝑆
𝑣 = 90⁰. Maps are shown for different discrimination factors 𝐹𝑟

𝑣 = 𝑘0/𝑘𝑟
𝑣, shifting from 

diffusion limited reactions (left panels) to chemically limited reactions (right panels). The maps correspond 

to near-cognate substrate sizes 𝑅𝑆
𝑛𝑐 = 15ℓ (a) and 𝑅𝑆

𝑛𝑐 = 60ℓ (b). 
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