

RETURN TO ISSUE | < PREV TECHNICAL NOTE NEXT >

New *Aequorea* Fluorescent Proteins for Cell-Free Bioengineering

Christopher Deich, Nathaniel J. Gaut, Wakana Sato, Aaron E. Engelhart, and Katarzyna P. Adamala*

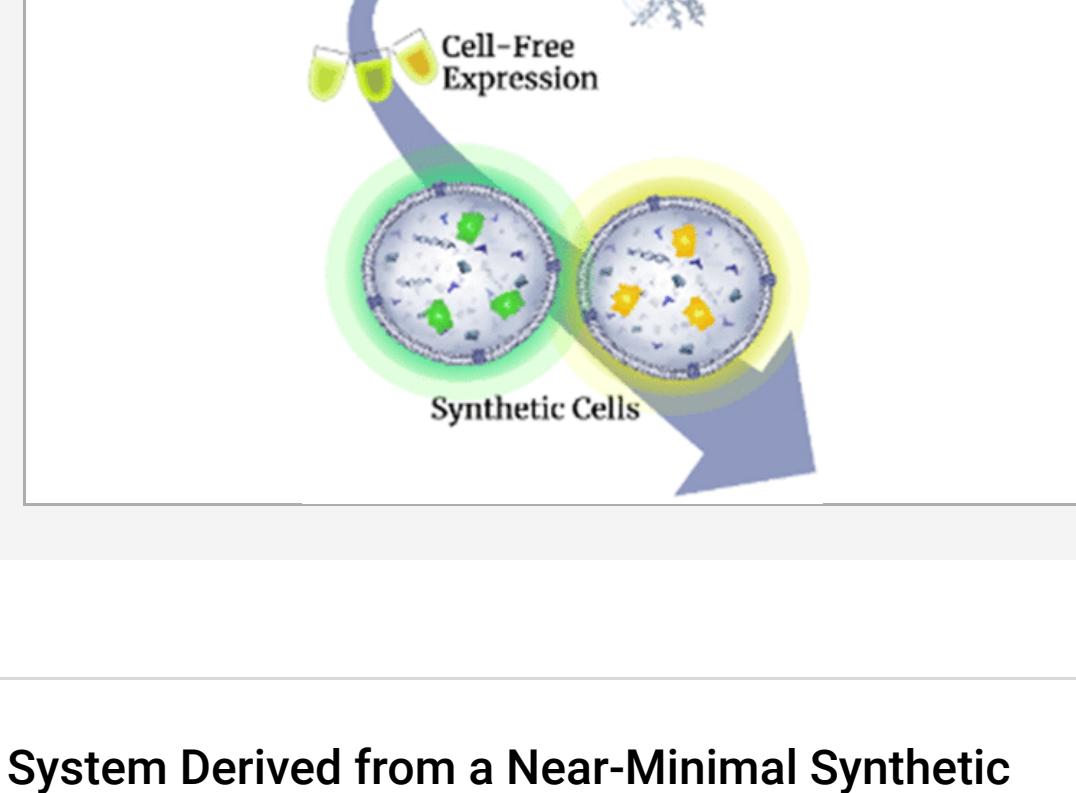
Cite this: ACS Synth. Biol. 2023, 12, 4, 1371–1376
Publication Date: April 5, 2023
<https://doi.org/10.1021/acssynbio.3c00057>

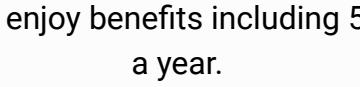
Copyright © 2023 American Chemical Society

[Request reuse permissions](#)

Article Views 586 Altmetric 11 Citations -
[LEARN ABOUT THESE METRICS](#)

Share Add to Export




ACS Synthetic Biology

[PDF \(3 MB\)](#)[Access Through Your Institution](#)[More Access Options](#)[SI Supporting Info \(1\) »](#)**SUBJECTS:** Fluorescence, Genetics, Monomers, Peptides and proteins, Protein dynamics

Abstract

Recently, a new subset of fluorescent proteins has been identified from the *Aequorea* species of jellyfish. These fluorescent proteins were characterized *in vivo*; however, there has not been validation of these proteins within cell-free systems. Cell-free systems and technology development is a rapidly expanding field, encompassing foundational research, synthetic cells, bioengineering, biomanufacturing, and drug development. Cell-free systems rely heavily on fluorescent proteins as reporters. Here we characterize and validate this new set of *Aequorea* proteins for use in a variety of cell-free and synthetic cell expression platforms.

KEYWORDS: synthetic cells, cell-free translation, *Aequorea* fluorescent proteins**To access the full text, please choose an option below.****Get Access To This Article**

 Access Through Your Institution
 Log In with ACS ID
 Purchase Access

[Purchase this article for 48 hours](#)Already purchased with Guest checkout?
[Restore Access](#)ACS members enjoy benefits including 50 free articles
a year.
[Learn More](#)[Forgot ACS ID or Password?](#)**Cell-Free Expression System Derived from a Near-Minimal Synthetic Bacterium**Andrei Sakai, Aafke J. Jonker, Frank H. T. Nijssen, Evan M. Kalb, Bob van Sluijs, Hans A. Heus, Katarzyna P. Adamala, John I. Glass, and Wilhelm T. S. Huck*
Publication Date (Web): June 2023**Clonal Amplification-Enhanced Gene Expression in Synthetic Vesicles**Zhanar Abil, Ana Maria Restrepo Sierra, and Christophe Danielon*
Publication Date (Web): April 2023**Synthetic NAD(P)H Cycle for ATP Regeneration**Emma Willett and Scott Banta*
Publication Date (Web): June 2023**Imaging Flow Cytometry for High-Throughput Phenotyping of Synthetic Cells**Elisa Godino, Ana Maria Restrepo Sierra, and Christophe Danielon*
Publication Date (Web): May 2023**Cell-Free Gene Expression Dynamics in Synthetic Cell Populations**David T. Gonzales, Naresh Yandrapalli, Tom Robinson, Christoph Zechner*, and T-Y. Dora Tang*
Publication Date (Web): January 2022

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acssynbio.3c00057>.

- Western blot analysis of protein expression, comparison of expression of the new fluorescent proteins in original plasmids, liposome purification traces, data for expression in different translation systems, stability of liposome membrane, and expression in anaerobic environment; protein sequences ([PDF](#))

New *Aequorea* Fluorescent Proteins for Cell-Free Bioengineering

12 views 0 shares 0 downloads

Supplementary Information
for**New *Aequorea* fluorescent proteins for cell-free bioengineering**Christopher Deich¹, Nathaniel J. Gaut¹, Wakana Sato¹, Aaron E. Engelhart¹, Katarzyna P. Adamala^{1,*}¹ Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US.*Correspondence to kadamala@umn.edu[Share](#) [Download](#)

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at <http://pubs.acs.org/page/copyright/permissions.html>.

Cited By

This article has not yet been cited by other publications.

[Download PDF](#)

Partners

Atypen

CHORUS

C O P E

COUNTER

Crossref

Crossref
Similarity CheckORCID
Connecting Research
and Researchers

PORTICO