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Abstract

The American Community Survey (ACS) is an ongoing program conducted by the US Census
Bureau that publishes estimates of important demographic statistics over pre-specified administra-
tive areas periodically. ACS provides spatially referenced count-valued outcomes that are often
recorded/paired with the finite population. For example, the number of people below the poverty
line and the total population for each county is estimated by ACS. One common assumption is
that the distribution of the spatially referenced count-valued outcome given the finite population
is binomial distributed. This conditionally specified model (i.e., the conditional distribution of the
count-valued outcome given the finite population is specified as a binomial distribution) does not
explicitly define the joint relationship between the count-valued outcome and the finite population.
Thus, we consider a joint model for the count-valued outcome and the finite population. When
the cross-dependence in our joint model can be leveraged to “improve spatial prediction” (i.e., ob-
tain smaller mean squared prediction error), we say that the finite population is “informative.” We
model the count given the finite population as binomial distributed, the finite population as neg-
ative binomial distributed, and use the multivariate logit-beta (MLB) for prior distributions. This
specification leads to closed form expressions of the full-conditional distributions that are straight-
forward to simulate from within a Gibbs sampler and do not require subjective tuning steps. We
illustrate the proposed model through simulations and our motivating application of ACS poverty
estimates at the county level. These empirical analyses show the benefits of using our proposed
model over the more traditional conditionally specified binomial model.
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1 Introduction

The American Community Survey (ACS) is an ongoing program conducted by the US Census
Bureau that collect demographic statistics from prespecified areas. The ACS often contains tabula-
tions across categories by region (e.g., the number of males and females in a county). Data such as
these, can be modeled with a binomial distribution provided that the finite population is observed at
each region. It is fairly common to use a conditionally specified model and ignore the distribution
of the finite population to perform inference on count-valued outcome. It often happens that the
finite population is not a fixed deterministic quantity, but rather a realization of a random variable
that may have a complicated joint relationship with the paired count-valued outcome. In this arti-
cle, we model outcomes given the finite population as binomial with probability 7 and the finite
population as negative binomial with probability p. Several studies indicate that the population of
a region is directly related to the number of individuals below the poverty line (Rodgers (1984),
Ahlburg (1996), McNicoll (1997), Scherr (2000), Sinding (2009), among others). It is unclear
whether or not this direct relationship is simply due to the fact that a larger population naturally
implies a larger mean number of count-valued observation, or if more intricate cross-dependence
exists between the count-valued observation and the finite population. By “intricate” dependencies
(and joint relationships) we mean that 7 and p may be correlated. If these correlations are present
then one can leverage this dependence to improve spatial prediction. When cross-dependence be-
tween 7 and p can be leveraged to “improve spatial prediction” (i.e., obtain smaller mean squared
prediction error), we say that the finite population is “informative.”

As an example, consider Figure 1, where we plot five-year period estimates of the number of
families below the poverty threshold along with the number of households (population). Here,
we see that large and small values of poverty and population appear together. An immediate
explanation is that the increase of poverty is due solely to a larger trial number (i.e., the ACS five

year period estimate of the population). However, we consider two reasons for this pattern: (1) the



increase of poverty is due solely to a larger population; and (2) the increase of poverty is because
both the population has increased and 7w and p are positively correlated. This perspective allows
for two types of cross-variable dependence, where Item 1 refers to dependence in the data models,
and Item 2 refers to dependence between 7 and p. Thus, in what follows, we develop a Bayesian
statistical model that can be used to leverage both sources of dependence to improve the accuracy
of predictions.
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Figure 1: ACS poverty count data: the observed families counts in poverty (left) and the
total families number (right).

There are several methods available to model correlated count data. For example, a bivariate
Poisson model has been used to define a joint model and account for the dependence between
outcomes and finite populations (see Fisher et al., 1943; Terza et al., 1990; Comulada and Weiss,
2007, among others). However, the Poisson distribution is not robust to highly heterogeneous
populations (see Fisher et al. (1943), De Oliveira (2013) for further comments), especially when
there is significant overdispersion in the outcome. The inflated bivariate Poisson model (Karlis
et al., 2005) can accommodate moderate overdispersion by mixing an inflation component to define

the joint probability density function. However, maximum likelihood estimation (MLE) through



the expectation maximization (EM) algorithm can be computationally burdensome. To alleviate
the overdispersion issue, the negative binomial distribution is more appropriate because it has
one more parameter to mitigate issues with heterogeneity among populations (e.g., see Lawless,
1987; Gardner et al., 1995; Hilbe, 2011, among others). Furthermore, quite often inference on
7 is of primary interest, and bivariate Poisson models are not explicitly parameterized to model
7. However, bivariate Poisson models are the predominant choice used to model two dependent
count-valued spatial variables. Thus, our proposed model offers an exciting new tool for this
literature.

We use a model similar to latent Gaussian process (LGP) model, which has been widely used
to model non-Gaussian data and can be used to do statistical inference and account for uncer-
tainty (see Gelfand and Schliep (2016), Gelman et al. (2013), Cressie and Wikle (2011), among
others). Specifically, the count-valued outcomes given the finite populations are modeled with a
binomial distribution and finite populations are modeled with a negative binomial distribution at
each region. One could assume latent random effects are Gaussian, however, the LGP is not al-
ways realistic (De Oliveira, 2013). Furthermore, many non-Gaussian data lead to full-conditional
distributions that do not have a closed-form analytical solution. Therefore, the LGP can lead
to computational inefficiencies when it requires subjective tuning of Markov chain Monte Carlo
(MCMC) algorithms, and can subsequently have convergence challenges especially in high di-
mensional correlated settings (Garthwaite et al., 2010). One option available to avoid these issues
is Polya-Gamma augmentation, which has been used for multinomial data. This model has a
conjugate full-conditional distribution where the logit of the proportions can be expressed as a
multivariate normal distribution after marginalizing across variances that follow a Polya-Gamma
distribution (Polson and Scott (2011)). This method can also suffer from some computation diffi-
culties because an iterative accept/reject sampling algorithm is needed to generate Polya-gamma
random variables within the MCMC algorithm.

Another alternative available in the literature is to drop the Gaussian assumption and replace
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it with a multivariate logit-beta distribution (MLB) (Gao and Bradley, 2019; Bradley et al., 2019,
2020). The MLB distribution is derived through the linear transformation of univariate independent
logit-beta random variables. This MLB distribution is a reasonable alternative because it can be
specified arbitrarily close to the default choice of a Gaussian distribution. The full-conditional
distribution associated with this distribution are conditional multivariate logit-beta distributions
and there are straightforward MCMC sampling schemes that do not require subjective Metroplis-
Hastings tuning steps. These tuning steps can be avoided by other algorithms such as Hamiltonian
Markov chain Monte Carlo (HMC; Neal, 2011) and integrated nested Laplace approximations
(INLA; Rue et al., 2009). However, these models are limited to small parameter space settings,
which is not the case for our motivating ACS dataset. The MLB has been used to define a prior
on the adjacency matrix in a conditional autoregressive model (Gao and Bradley, 2019), to model
spatial-temporal multivariate data (Bradley et al., 2019), and to model multivariate binomial and
negative binomial data (Bradley et al., 2020). However, a latent MLB model that jointly models a
binomial spatial dataset and a negative binomial spatial dataset does not exist.

We propose a Bayesian hierarchical joint model for spatially referenced binomial counts with
informative finite populations. We incorporate dependence directly into the data hierarchically by
assuming the finite population in the binomial outcome is distributed as negative binomial. We
also incorporate cross-dependence between the (logit) of the probability of outcome and the (logit)
of the probability of a trial through a shared spatial basis function expansion (e.g., see Cressie and
Wikle, 2015, for a standard reference). We also model within data type (i.e., binomial and negative
binomial data) spatial dependence with another spatial basis function expansion. All random and
fixed effects are assumed to follow a MLB distribution.

We now outline the remainder of the paper. In Section 2, we introduce our proposed model.
A simulation study is given in Section 3, and an analysis of ACS county-level poverty estimates
in the Southeast US is given in Section 4. In each of our empirical analyses, we compare to a

conditionally specified model, which is the primary competitor for modeling spatially referenced



binomial data. We end this paper with a discussion in Section 5. All technical details and reviews

are provided in the appendices.

2 Methodology

! and

We assume spatial binomial data are observed at n regions. Lety, = (yz;:i=1,...,n)
Y, = (ypi:i=1,...n) be n - dimensional vectors consisting of spatial binomial and negative
binomial random counts respectively. These vectors are paired, that is, the i-th binomial count
yr,i 1s paired with the i-th total y,;. For example, y;; might consist of the number of families
below the poverty threshold out of a total of y, ; families in county i. The probabilities associated
with the binomial and negative binomial distributions are denoted with m; € (0,1) and p; € (0,1),
respectively. Recall, that one of the developments in this article is that we allow 7; and p; to be
correlated. The primary goal is to accurately predict the proportions associated with the binomial
distributed observations (i.e., ;).

We use the MLB distribution for our prior distribution specification. A review of the MLB

distribution can be found in Appendix A in the Supplemental Materials. Additional details on the

Gibbs sampler are provided in Appendices B and C in the Supplemental Materials.

2.1 Binomial and Negative Binomial Data Models

Count-valued observations yz ;, and y, ; are assumed to be binomial and negative binomial distri-

bution as follows:

Vil T, Yp,i ~ BN (T, yp.i)
Yp,ilpisdi ~ N B (pi,d;) i=1,..,n,

6]

where “ZB.A" and “ A % are shorthands for a binomial and negative binomial distribution



and d; is the dispersion parameter. Here, logit(m;) = {log(m;/(1 — m;)} = vz, and logit(p;) =
{log(pi/(1 — pi)} = vp,; are considered unknown “processes” to estimate. Equation (1) can be
rewritten as (Bradley et al., 2019):

SOmilVaisyp.i) = (yp ’i) exp[yr,iVai— yp.ilog{1 +exp(vz,)}]

i

Vpitditl 2)

SOpilVpirds) = ( ' ) explyp iV — (v + di)log {1 + exp(vpa)}
pi

i=1,..,n,

where f denotes a probability density function/ mass function (pdf/pmf). It will be useful to

define the n-dimensional vectors y; = (ya,1,--Yzn)s ¥p = Up,15 - Ypn)'s Va = Va1, Vaa)'s

Vy,=(Vpi,..sVpa), and d = (dy,...,d,)". The presence of y,; in yz |7, yp,; induces cross-data-
type dependence, which again, is an important component of our model, but this particular im-
plementation has been used by several others (e.g., see for example, Dodd and Dorazio (2004),
Kéry et al. (2005), Wu et al. (2015), and Meehan et al. (2017)). When v and v, are assumed
independent then the cross-dependence between y, and y,, is determined by the conditional distri-
bution f(yz,i|Vx,i,yp,). Hence, when vz and v, are assumed independent we call this model the

aforementioned conditionally specified model. In what follows, we consider the case where v

and v, are dependent.

2.2 Process Models

The unobserved processes V5 and Vv, are jointly modeled as

Vn:Xnﬁn‘f'anlnn‘f‘\Pﬂzn‘f‘gn 3)
vV, =XpB,+¥un,+¥,n+§,



where X is a known n xm matrix of covariates, and B i€ Z"™ is the associated unknown m-
dimensional parameter vector with j=7, p. The m-dimensional within data type fixed effect B j»
the r-dimensional within data type random effects 7 ;, the n-dimensional within data type random
effects & j» and the r-dimensional between data type random effect of 1 are modeled using MLB
distribution. We provide a review of the MLB distribution in Appendix A in the Supplemental
Materials. Recall from the Introduction that we use the MLB as a prior because it leads to a Gibbs
sampler with full-conditional distributions that one can directly sample from (i.e., no subjective
Metroplis-Hastings tuning steps are required). As such, MCMC is considerably easier to imple-
ment with the MLB prior than with a more traditional Gaussian prior. Additionally, the MLB
prior has the more traditional Gaussian prior as a special limiting case (Bradley et al., 2019), and
consequently, can more flexibly model the tails of the distribution.

Here the term ¥y n ; represents “small-scale” variability and & j represents “fine-scale” vari-
ability from a white Gaussian noise process with k = 1,72, pl, p2 and j = 7, p. The term ¥;n
includes cross-data-type dependence between the logit of probabilities, since the covariance be-

tween Vr and v, equals Wrocov(n)¥,,, which is not necessarily equal to a zero matrix. Recall

/!
p2
that allowing for such cross-covariances is a key motivating feature of our model, and when non-
Zero ‘I‘nzcov(n)‘l‘;2 improves prediction we say that the finite population is informative.

For areal data the Moran’s I basis function is a useful specification of ¥} (see more discussion

in Griffith, 2000, 2002, 2004; Tiefelsdorf and Griffith, 2007; Hughes and Haran, 2013; Porter et al.,
2014; Bradley et al., 2016). The Moran’s I operator is defined as

MI(X;,A) = (I, — X;(XX;) " X))A (L - X;(X(X;) X)), S

where I, is an n X n identity matrix, and A is the n X n adjacency matrix associated with the edges
formed by all the areal units in the study. Let ¥3;Aj¥),be the spectral decomposition of the n x n

matrix MI(X;,A). The n x r matrix ¥, contains the first » columns of ¥j,. Moran’s I basis func-



tions represent a basis for a spatially weighted orthogonal column space of X; and consequently
this specification of basis functions makes the fixed and random effects not confounded. Addition-
ally, Moran’s I basis functions can facilitate low-rank modeling (i.e. choosing r < n) for high
dimensional spatial data (Hughes and Haran (2013), Porter et al. (2014)).

If the regions are equally spaced and “small” then one could treat areal data as point-referenced,
and use for example, a radial basis function (Wikle (2002)). In Section 3, we use a thin-plate spline

(Wahba (1990)) as below:

2
Vip = ||si —ep||"log([lsi —cp ), )
where s; is the i-th data points and ¢;, is a pre-defined knot points. Then ¥; = (y; 1, ..., l//iJ)' and
the n x r matrix ¥ = (y4,..., I[I,)/ are the associated basis vector and basis matrix respectively.

The ability to specify any class of basis functions makes our proposed model adaptable to sev-
eral given correlation specifications. Specifically, suppose you are interested in a covariance matrix
of a given form £ = VV’, where V is a n x n Cholesky decomposition of . Then, for example,
@ =VV, 1] produces cov(¥i1 ;) = VV, fjcov(n IVa 71].’V’ = X, where Vy, ; is the Cholesky de-
composition of cov( ;). Thus, one can develop versions of our model that imply a desired given

correlation structure.

3 A Simulation Study

In this simulation, we generate binomial and negative binomial data, where the true proportions are
specified to be a known function. We fit our model (which is different from the model generating
the data) and we verify that our proposed model can recover the true unknown proportion. The

following model is used to generate pairs of binomial and negative binomial counts over a fine-one



dimensional grid from zero to 27 (i.e., the spatial domain D={0, %,..., 27}):

Vil i ypi ~ BN (T, Ypi)
Ypilpi,di ~ N B (pi,d;)
d; ~ % (1700,0.125)

—4.6442.32v,, si € [0,7) (6)
Vil Vpi =

—7.54+s; §; € [77:, 271']
v, =0.01+4.00sin(s;) i=1,...,100,s; € D,

where “¢(a, k)" stands for “Gamma” distribution with shape & > 0, and scale k¥ > 0. We interpret
D={0, 1%6,..., 27} as a fine-one dimensional grid over O to 27 (i.e., in steps of 1/100), however
ultimately, the length of the grid is an arbitrary choice that serves as illustration. The values of
the slope and intercept in vz ;, and the values 0.01 and 4.00 in v, ; are chosen to define the range
of values of vz; and v,,;. The logit(p) = {log(p/(1 —p)} = v, is a continuous, symmetric
and smooth function with the approximate range of [-4.00, 4.00]. The logit(m) = {log(x/(1 —
T)} = vy is a non-continuous, asymmetrical function of v,,; with the approximate range of [-4.75,
4.25]. However, there are several values that would give the same responses, and thus, our choices
are somewhat subjective. To add complexity to the true function, we include a change-point to
Vz.i|Vp,i at , where we switch from a linear function of v, ; to a linear function of s;. Also, the
presence of v, ; in the definition of vz ; suggests a functional relationship between v ; and v, ;.
See simulated dataset and the true proportions in Figure 2. To see if our method was robust to the
relative magnitude of the negative binomial counts, we specified the prior on d; to produce negative
binomial counts that could covered a wide range of magnitudes. The simulated negative binomial

count quantiles (25%, 50% and 75%) based on our choice of prior on d; are: 15, 215, 3600. We

interpret the quantiles 5, 215, 3600 as small to large count-values.
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Simulated Binomial and Negative Binomial Counts Simulated Binomial and Negative Binomial Proportions
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Figure 2: Simulated binomial and negative binomial counts and true proportions.

We use our proposed model to predict the unknown function in the right panel of Figure 2
(using the data displayed in the left panel). To use our model, one has to specify the basis matrices,
covariates and several hyperparameters. We assume an intercept only model for v;; and v, ;
respectively. We consider two choices for basis matrices Wr; and ¥, ;: j=1,2. The first is setting
the elements equal to evaluations of thin-plate splines with r=25 knots. This use of thin-plate
splines results in a 100x25 matrix that we denote with ¥*. The second choice is to set ¥y equal
to a 100x25 matrix of zeros; k=7, p, j=1,2.

We consider six special cases of the model in (3):

e Joint model with between-type and within-type (JBW) random effects:

Vn:Xﬂﬁn"}'lP*nn‘FlP*n +€7r (7)
V,= X,,ﬁp+‘l'*np+‘l'*n +§p,

Here we set Wy1= W) 1= Wro= ¥ 0=¥".
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Joint model with between-type (JB) random effects:

Vn:Xnﬁn+\I’*n+€7r ®)
v, =X,B,+¥n+§,,
Here we set Wr= W,1=010025 and W= ¥ o= W*, where 095 is a 100x25 matrix of

ZEe10S8.

Joint model with between-type random effects and within-type random effects for v, (JB-

WNEG):

Vn:Xnﬂn‘i'lP*n‘i'én )
v, :Xpﬁp+‘P*np+‘P*n+§p,

Here we set Wz1=010025 and = ¥, =¥ o= ¥ o= ¥".

Joint model with between-type random effects and within-type random effects for v; (JBW-

BIN):
Ve=XB,+¥ N, +¥'n+&, (10,
v, =X,B,+¥'n+¢&,,
Here we set lI’p]=0100725 and = ¥ =¥ = ‘Pp2= L
Conditionally Specified (CS) with only within-type random effects:
Vﬂ:Xﬂﬁﬂ+\P*nn+€n (a1

VP:Xpo+‘I‘*np+§p7

Here we set ¥,1=¥ 2=010025 and ¥ 1= W= W* .Here, there is no cross-dependence as-
sumed between V; and V), and hence, the cross-dependence between {y;;} and {y,;} is

completely determined by the conditional distribution of yy ;|7;, Vp,i-

These six models are evaluated through the credible interval coverage of {m;}, and the mean
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squared predicted errors (MSPE). Let

MSPE = Z {m —E(mlymyp)}z/n-

The mean squared prediction error is the average squared difference between the predicted value
and unobserved truth used to generate the data. By credible interval coverage we are specifically
computing the proportion of times (over simulated replicates of the data) the credible intervals for
{m;} correctly contain the true proportion. The CS model produces the aforementioned condition-
ally specified model for {yz;}, and the five remaining models are all considered different “joint
models.” Thus, since the conditionally specified model is our primary competitor, we are particu-
larly interested in observing whether or not any of the five joint models outperform the CS model
in terms of coverage and/or MSPE.

The Gibbs sampler was implemented with 2,000 iterations, and has a burn-in of 1,000 itera-
tions. The MCMC chain convergence is checked based on trace plot, and no convergence issues
were found. Directly sampling from full-conditional distributions allows partially allowed for a
shorter MCMC chain than more traditional approaches, which is one of the advantages of our al-
gorithm. The hyperparameters of the MLB distribution, in practice, are chosen by minimizing a
criterion. In this illustration we set them as £€=0.05 and p=0.965 for binomial model; £€=0.1 and
p=0.99 for negative binomial model; and 6=0.000001 for both binomial and negative binomial
model (see these hyperparameters definition detailed in Appendix B in the Supplemental Materi-
als). The comparison of these 6 models are repeated with 30 replicate of datasets {y,y),}-

Table 1, Table 2 and the left panel of Figure 3 show that all six special cases yield reasonable
predictions (i.e., close to the true and small MSPE) and credible interval coverage for v . In this
simulation, JB performs very poorly and JBWNEG tends to perform the best in terms of MSPE.
In terms of coverage (i.e., the proportion out of 30 replicates that the truth is contained within the

95% credible interval), all methods appear to have similar (high) coverage for binomial data, with
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Table 1: Mean squared predicted errors by rank and type for simulated data, average
over 100 locations and 30 replicates. The rank is the basis matrix column number.
Minimum MSPE by rank and type are bolded. The 95% confidence intervals for
the MSPE over the 30 replicate (i.e., mean MSPE plus or minus 1.96 times the
standard deviation) are in parentheses.

Rank JB JBWNEG JBWBIN JBW CS

5 1.4213 1.0129 0.9277 0.9674 0.9711
(1.3542, 1.4883) (0.9119, 1.1139) (0.8037, 1.0518) (0.8356, 1.0993) (0.8463, 1.0959)

10 1.4011 0.9432 1.0140 1.1004 1.0445
(1.3026,1.4997) (0.8452, 1.0412) (0.8874, 1.1405) (0.9599, 1.2409) (0.9234, 1.1656)

15 1.4237 1.0541 1.2337 1.3777 1.2868
(1.3669, 1.4804) (0.9155, 1.1928) (1.0442, 1.4232) (1.1660, 1.5894) (1.0934, 1.4802)

25 1.3555 1.0404 1.3012 1.4077 1.3159
(1.2691, 1.4420) (0.8991, 1.1817) (1.1196, 1.4829) (1.2113, 1.6041) (1.1343, 1.4975)

50 1.4028 1.1856 1.4196 1.5164 1.4260

(1.2925, 1.5131) (0.9859, 1.3853) (1.1741, 1.6651) (1.2607, 1.7721) (1.1780, 1.6740)

Table 2: Estimated credible interval coverage by rank for the simulated data. Max-
imum coverage by rank and type are bolded. The coverage of m; over all i and
averaged over the 30 replicates. The 95% confidence intervals for the proportion
of credible interval completely covering the true proportion over the 30 replicate
are in parentheses.

Rank JB JBWNEG JBWBIN JBW CS

5 0.9933 0.9913 0.9993 0.9993 0.9987
(0.9899, 0.9968) (0.9869, 0.9957) (0.9984, 1.0000) (0.9984, 1.0000) (0.9966, 1.0000)

10 0.9940 0.9953 0.9987 0.9977 0.9990
(0.9912, 0.9968) (0.9931, 0.9976) (0.9974, 0.9999) (0.9959, 0.9995) (0.9979, 1.0000)

15 0.9957 0.9966 0.9973 0.9973 0.9963
(0.9932, 0.9981) (0.9942, 0.9990) (0.9957, 0.9989) (0.9955, 0.9992) (0.9937, 0.9989)

25 0.9960 0.9956 0.9970 0.9973 0.9977
(0.9936, 0.9984) (0.9934, 0.9979) (0.9951, 0.9989) (0.9955, 0.9992) (0.9959, 0.9995)

50 0.9957 0.9973 0.9967 0.9973 0.9973

(0.9932, 0.9981) (0.9957, 0.9989) (0.9949, 0.9984) (0.9957, 0.9989) (0.9957,0.9989)

JBWBIN, JBW and Uni tending to perform (marginally) the best.
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Estimated Proportions for Binomial Model
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Figure 3: The first panel presents the true values and estimated values of {7;} by method
with i on the x-axis. Similarly, the right panel presents the credible bands for {7;} by
method.

4 Application: Analysis of ACS Period Estimates of Poverty
Rates in Southeast United States

The number of families that fall below the poverty threshold can be modeled using a conditionally
specified binomial distribution, however the population in a county may express spatial depen-
dence and is observed with uncertainty. This suggests an opportunity to leverage possible cross-

dependence between the probability of being below the poverty line and the mean of the population
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to produce more accurate predictions of poverty rates.

The primary goal of this analysis is to predict the family poverty rate for the Southeast region of
US at county level using the proposed Bayesian hierarchical model. The five-year period estimates
(US Census Bureau, 2013-2017 American Community Survey 5-Year Cumulative Estimates) of
incidence of poverty and the population are available at 948 counties in the Southeast US region,
which we focus our analysis on. The left and right panels in Figure 1 show the incidence of
poverty and the population by county in the Southeast US. We subjectively chose roughly 95%
of the observations to be training. That is, we randomly select 898 out of 948 counties to be the
training data set and the 50 counties are treated as a holdout to the model fit.

The Moran’s I (MI) basis functions are used, and a second order of adjacency matrix is cho-
sen using cross validation. The MSPE (between the sample proportion and the model estimated
proportion) using the first and second order adjacency matrix are 0.01351 and 0.01308, respec-
tively. Consequently, we use the second order adjacency matrix. For covariates, we use the logit
transformation of the sample proportion of each race, age, education and single households at the
county level, which are all five-year ACS period estimates that are common factors in socioe-
conomic research (see Scherr (2000), Sinding (2009), among others). These same covariates are
used in the model for v; and v,. The majority of predictors are significant (i.e., zero is not in
the credible interval) across both binomial and negative binomial models. The model is evaluated
based on the coverage of the credible intervals (i.e., whether or not the credible interval for y,, ; and
yz,i contains the hold-out observations) and mean squared predicted errors (MSPE) of the holdout
data. The hyper-parameters are chosen to minimize (training) MSPE, and are £€=1.5 and p=0.995
for the binomial model; and €=0.1 and p=0.99 for the negative binomial model (See Table 3 and
Figure 4 for MSPE versus prior specification). In general, the estimate of these hyperparameters
change for each dataset. The Gibbs sampler is implemented with runs of 5,000 iterations, and
has a burn-in of 3,000 iterations. No convergence issues were found. Specifically, trace plots (see

Figure 6) were informally checked and the associated Gelman-Rubin’s diagnostics (Gelman and
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Table 3: MSPE by different priors specifications for ACS binomial data mixed effects model.

Prior, Eneg Pheg Epin Pgin MSPE
1 0.2500 1.00 3.25 2250 1.2118
2 0.2150 1.00 2.75 1.750 0.5221
3 0.1950 1.00 2.50 1.500 0.2645
4 0.1750 1.00 2.25 1.250 0.0891
5 0.1500 1.00 2.00 1.000 0.0134
6 0.1000 099 150 0995 0.0129
7 0.0750 085 1.00 0.875 0.0359
8 0.0500 0.65 0.80 0.600 0.3444
9 0.0250 0.45 0.60 0.400 1.0445
10 0.0125 0.25 0.40 0.200 3.0420
11 0.0100 0.05 0.20 0.050 9.9736

Rubin, 1992) were found to be between 1.0 and 1.1, respectively.

In Figure 5 and Table 4, we see that all versions of our model (we dropped JB due to its poor
performance in the simulation) produce very small out-of-sample (i.e., on the order of 0.13 to
0.16) prediction errors. For ranks above 750, we roughly reach the nominal 95% coverage. The
marginally best performing model is JBW at rank 948. The CS model is fairly competitive in terms
of MSPE. However, in terms of coverage each joint model is preferable than the CS model, with
JBWBIN and JBW performing comparably. Hence in terms of coverage and (marginally) MSPE

it appears that the finite population is informative.

5 Discussion

In this article, we develop a Bayesian approach to jointly model a spatially referenced count-
valued outcome and an associated finite population. We are motivated by estimates made available
by ACS. We use the MLB latent process (Bradley et al. (2020), Gao and Bradley (2019)), which
allows us to draw directly from the full-conditional distributions and makes Gibbs sampling more
computationally efficient than other choices. The primary motivation for the proposed method-

ology is that complex spatial dependencies can exist within and between the two probabilities
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Table 4: Posterior summary by model and rank for ACS binomial testing data (50).

(Estimated credible interval coverage)
Rank JBWNEG JBWBIN JBW CS

948 0.9600 0.9800 0.9800 0.8400
750 0.8600 0.9400 0.9200 0.7000
500 0.8400 0.8200  0.8200 0.6400
250 0.7000 0.7800 0.7600 0.5000
100 0.5000 0.6200  0.6200 0.4600
50 0.4200 0.5000  0.5600 0.3400

(Mean squared predicted errors)
Rank JBWNEG JBWBIN JBW CS

948 0.1338 0.1343  0.1329 0.1347
750 0.1402 0.1488  0.1395 0.1384
500 0.1496 0.1590 0.1536 0.1405
250 0.1615 0.1676  0.1655 0.1364
100 0.1475 0.1497  0.1477 0.1362
50 0.1363 0.1387  0.1395 0.1362

associated with binomial and negative binomial data. In our proposed joint model, these complex
spatial dependencies are explicitly defined with basis functions. Furthermore, the specification of
low-rank basis functions provides the flexibility of incorporating dimension reduction.

We tested versions of proposed model via simulations. The simulated studies show that the
joint model based on the MLB latent processes achieves reasonable credible interval coverage and
accurate predicted proportions. The motivating analysis of ACS poverty data in the Southeast
US illustrates that the proposed Bayesian hierarchical joint model yields precise and accurate pre-
dictions of the probability that a family falls below the poverty threshold. Furthermore, there is
evidence that the finite population is informative for predicting US poverty rates.

There are exciting avenues to extend the proposed joint model. First, it is natural to extend this
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Figure 4: MSPE versus prior specification for ACS binomial data mixed effects model.

model to the spatio-temporal case, where the time indexed random effects are used to incorporate
temporal dependencies. Additionally, the multiscale nature of time in ACS may be modeled using
the techniques in the spatio-temporal change of support literature (e.g., see Bradley et al., 2015).
There are limitations to our method that could also lead to future developments. In particular,
the specification of MLB hyperparameters require small sensitivity studies. One could instead
develop a hyperprior distribution for these quantities. Similarly, the choice of the rank r requires
a sensitivity student, where one could instead place a prior distribution for certain classes of basis

functions.
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portions; and the third row displays the 95% lower and upper credible limits for estimated
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