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Precise estimation of daily fine particulate matter with a diameter < 2.5
microns (PM2.5) and mortality in the U.S. is an important research challenge
in public health because high levels of PM2.5 have been linked to several
serious health problems, including lung disease, cardiovascular disease, and
stroke. This motivates us to develop a joint Bayesian hierarchical model for
bivariate spatial data to obtain precise spatial predictions of two types of re-
sponses, continuous skewed PM2.5 levels, and discrete mortality counts over
U.S. counties. Our novel modeling framework address several challenges in
the area of spatial prediction of mortality counts and PM2.5 levels. Specifi-
cally, our model allows for spatial variability and dependence of two types of
responses, accommodate an unknown nonlinear spatial relationship between
mortality and PM2.5 through basis function expansions, improve the preci-
sion of predictions at counties with undisclosed/missing observations, and al-
low for different missing data patterns for mortality and PM2.5. Furthermore,
we introduce a new local measure of association for the cross-dependence
between mortality and PM2.5 level. To address the burden of Bayesian com-
putation for large databases, we use the dimension reduction tool and the
shared conjugate structure between the Weibull distribution, Poisson distri-
bution, and the multivariate log-gamma distribution. We provide a simulation
study to illustrate the performance of our method. Our joint spatial model
of “multitype responses” (discrete and continuous responses) and associated
Bayesian method are used to analyze bivariate spatial data of daily averaged
PM2.5 levels in air and mortality counts (due to diseases related to lung, car-
diovascular, respiratory, and stroke) from the Centers for Disease Control and
Prevention (CDC) database.

1. Introduction. The National Academy of Sciences has consistently labeled daily fine
particulate matter with a diameter of < 2.5 microns (PM2.5) as an important quantity
to monitor in air for the assessment of U.S. public health (Burnetta et al. (2018)). This
is partially due to the fact that PM2.5 level in air has been shown to be highly associ-
ated with incidence/mortality of several diseases (Laden et al. (2000), Schwartz and Neas
(2000), Valavanidis, Fiotakis and Vlachogianni (2008)), including lung cancer among “never-
smokers” (Turner et al. (2011)), stroke (Anderson, Thundiyil and Stolbach (2012)), cardio-
vascular disease (Brook et al. (2010)), and overall mortality (Zigler, Dominici and Wang
(2012)). This literature on mortality and PM2.5 provides an important “call to action” to have
a precise prediction and understanding of the spatially-varying association between PM2.5
and mortality so that public policy makers can find geographic regions that need the most at-
tention (Hoek et al. (2013)). The current surge in interests on the relationship between PM2.5
and mortality has lead to a spike in the amount of data that federal agencies provide on PM2.5,
including the centers for Disease Control and Prevention (CDC). Each year the CDC provides
hundreds of summary statistics regarding cancer incidence and mortality across U.S. coun-
ties (https://www.cdc.gov/). Consequently, there is a clear need to develop spatial statistical
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methodology to handle such large databases on PM2.5 and mortality. Specifically, we aim at
spatial statistical methods for large databases to answer the important questions: what are the
areas with high PM2.5 levels and mortality counts, how are these two variables associated
spatially, and how to predict one of these variables if it is not available?

There are essentially two categories of existing statistical methods to analyze such spa-
tial data. The first set of existing approaches treat one of mortality count and PM2.5 level
as a fixed covariate while effectively ignoring the spatial variability of this fixed covariate,
and implement either a generalized linear model (GLM) or a generalized linear mixed model
(GLMM) for the other response variable. For example, Dockery et al. (1993) and Miller et
al. (2007) included air pollution level as a fixed covariate within a Cox’s proportional hazard
model for mortality. Spatiotemporal random effects have been included in a nonparametric
GLMM (Xu et al. (2014)) and Poisson GLMMSs (Xu et al. (2016), Zhang et al. (2016)) to
analyze ischemic heart disease mortality and respiratory disease while treating air pollution
level as a fixed covariate. The second category of existing approaches, based on expressing
the joint model as a product of marginal and conditional distribution, enforce a restrictive
either log-linear or linear relationship between mortality and PM2.5 in the conditional dis-
tribution without allowing for more complex nonlinear relationships. For example, Fuentes
et al. (2006) and Choi, Fuentes and Reich (2009) assume a generalized Poisson GLMM for
the mortality response, given PM2.5 level, and then also a spatial statistical model for the
(marginal) distribution of PM2.5 level. Both of these approaches require PM2.5 and mortal-
ity to be paired. That is, if a PM2.5 level is observed at a region, then the mortality count also
needs to be available at this region and vice versa.

We acknowledge that the complex relationship between PM2.5 level and mortality may not
be modeled via a direct parametric regression effect of PM2.5 level on mortality count or vice
versa. The association between PM2.5 level and mortality may have an underlying “errors in
covariate” (e.g., see Carroll, Gail and Lubin (1993), Carroll et al. (2006)) because the PM2.5
level in air may not be measured accurately and may be different from actual exposure to
PM2.5. It is possible to also have a latent spatially varying variable affecting both responses.
To address this complex and unknown nonlinear relationship between these two responses,
we use a more flexible framework than existing approaches to model the spatially varying
relationship between these two responses via a shared latent process expressed with the basis
function expansion approach commonly used in functional analysis (e.g., see Carroll et al.
(2006), Chakraborty and Panaretos (2017), Wikle (2010), among others). The use of a shared
(across response type) basis function expansion also allow prediction of mortality and PM2.5
when either of them is missing in any geographical location. Motivated by PM2.5 level and
mortality count data, the goal of this article is to develop a sophisticated statistical model
and associated analysis to simultaneously incorporate spatial variability of PM2.5 level and
mortality count, allow for different missing data patterns among PM2.5 levels and mortality,
utilize the possibly nonlinear relationship between these two different response types, and
allow for possibly high-dimensional data.

A well-known approach for joint modeling of multiple types of non-Gaussian responses
is through a shared latent Gaussian process (LGP); see Gelfand and Schliep (2016) for stan-
dard references and recent review of LGP. For example, Christensen and Amemiya (2002)
considered a general nonparametric model applicable only for multiple continuous responses
measured on a spatial grid. Schliep and Hoeting (2013) proposed a general modeling frame-
work that allows for both continuous and discrete responses using a GLMM model with
shared LGP. Similarly, Clarke et al. (2017) allow for several types of responses, including
continuous, right censored, zero-inflated, and binary responses. However, one major diffi-
culty with Bayesian GLMM methods (with and without LGP) for multitype data is that the
corresponding Markov chain Monte Carlo (MCMC) algorithm involves Metropolis—Hastings
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(MH) steps with hard to specify proposal densities. This problem becomes exacerbated when
the size of the dataset is large (as for our CDC study). However, our method for PM2.5 levels
and mortality counts uses a novel extension of the existing multivariate log-gamma (MLG)
distribution (Bradley, Holan and Wikle (2018)) that ensures easy-to-sample conjugate up-
dates within a collapsed Gibbs sampler. Directly sampling from a conjugate full-conditional
distribution is particularly important because this allows us to avoid selecting proposal distri-
butions for MH steps within MCMC iterations. The MLG distribution has been used to model
continuous skewed (Hu and Bradley (2018)) data and count data (Bradley, Holan and Wikle
(2018), Bradley, Holan and Wikle (2020)), separately, but has not been used in a joint model
of spatially varying counts and continuous responses. While the use of the MLG distribution
leads to a Gibbs sampler that mixes well, we also allow for a reduced rank expression of
spatially covarying terms to obtain additional computational speed-ups. Reduced rank spatial
models have been shown to have high predictive accuracy and computational efficiency (e.g.,
see Bradley, Cressie and Shi (2015), Bradley, Cressie and Shi (2016), Heaton et al. (2018),
for reviews and comparisons); for example, see the fixed rank kriging methodology (Cressie
and Johannesson (2006), Cressie and Johannesson (2008), Shi and Cressie (2007)) and mod-
ified predictive processes (Finley et al. (2009)) for choices of reduced rank models for spatial
only data. Reduced rank dynamic spatiotemporal models have also been shown to perform
well in environmental (Katzfuss and Cressie (2011), Wikle and Cressie (1999)) and social
science settings (Bradley, Holan and Wikle (2015)). While we use the dimension reduction
tool in this paper, there are several recent methods that are full-rank spatial statistics methods
that are computationally feasible that make use of sparse parameterizations (Bradley, Wikle
and Holan (2020), Gao, Datta and Banerjee (2022), Peruzzi, Banerjee and Finley (2022)),
approximate likelihood techniques (Katzfuss and Guinness (2021), Katzfuss et al. (2020),
Zhang, Tang and Banerjee (2021)), and the use of subsampling techniques (Bradley (2021)).

There already exist separate univariate analyses of PM2.5 levels (Datta et al. (2016)) and of
mortality counts (Quick, Waller and Casper (2018)) in the high-dimensional spatiotemporal
context. However, there is no joint spatial analysis method for PM2.5 levels and discrete mor-
tality counts to deal particularly with high-dimensional data from large national/international
databases. We refer to our model as the joint Weibull and Poisson (WAP) model. For needed
continued development of joint models for multitype responses, especially in the multivari-
ate spatial statistics settings, we develop a new summary statistic suitable for such responses.
The statistic is motivated by techniques to bound the correlation function of non-Gaussian re-
sponses in De Oliveira (2013), De Oliveira (2003), and Bradley, Holan and Wikle (2018), and
it also bares similarity to the local indicator of spatial association (LISA; Anselin (1995)).

The squared error (empirical) of our WAP model based estimates increases at a slow rate,
as the proportion of zeros in the dataset increases from 0% to 20%. It is well known that the
failure to address the inflation of zero responses/counts may lead to biased estimation, and
consequently, a rich literature is available for various zero-inflated models (e.g., Sellers and
Raim (2016), for a discussion). Through sensitivity studies we show that our model performs
well, even when there are around 20% of zero-inflated values in mortality counts from dif-
ferent areas. This property is particularly important because our motivating CDC database
contains a moderate amount of observed zero mortality counts. Another motivation for the
proposed model is that it is applicable to many other related studies in several disciplines
where we come across association between high-dimensional skewed continuous response
and count responses (e.g., association between daily sunlight (hours) and melanoma inci-
dences, Leiter and Garbe (2008)). To aid readers in using WAP, we provide code on Github
through the R package CM at: https://github.com/JonathanBradley28/CM.

In Section 2 we review the multivariate log-gamma distribution and introduce the WAP
model to jointly model high-dimensional multitype survival responses. In Section 3 we con-
duct a simulation study to compare the performance of WAP against competing models that
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ignore the dependence between Weibull and Poisson data. In Section 4 we use the WAP
model to analyze the aforementioned motivating CDC dataset. We provide a conclusion in
Section 5. All proofs, technical details and additional simulation/sensitivity studies are given
in Supplementary Material (Xu, Bradley and Sinha (2023)) for ease of exposition.

2. Methodology.

2.1. Univariate spatial models for Poisson and Weibull responses. Let Z(A;) denote
the mortality count at region A; for i = 1,...,n within the spatial domain of interest
D (e.g., U.S. counties). The areal units A; within the domain D are disjoint, that is,

" A C D, and A; N Aj is empty for i # j. We observe Z(A;) at ng < n regions and
model the n,-dimensional vector Z = {Z(A}), Z(A3), ..., Z(A,,)} of mortality counts as

Z(A) nd Poisson[exp{Ys(A;)}] fori =1, ..., ng with probability mass function

1
(D AZADYa(AD} = Z@A)! exp[Z(A)Ya(A;) —exp{Ya(AD}],
i
where “!” is the factorial symbol. We model both covariate and spatial effects on mean

na(A) =exp(Y4(A)) of the Poisson distribution of Z(A) in (1) as

Ya(A) = x4(A)' By + ¥ q(A)ng +va(A); Ae€D,

where x4(A) = (X41(A), ..., X4p(A))" is a pg-dimensional vector of known covariates ob-
served at region A, B, is a pg-dimensional parameter vector of the covariate effects, and
the subscript “d” is used to indicate that Y;(A) in (1) is a parameter of a discrete response.
The r-dimensional random vector 5, with corresponding prespecified r-dimensional spatial
basis functions ¥ ;(A) model the small-scale spatial variability of mortality counts Z(A;).
The term ¥ ;(A) ', is a spatial basis function expansion which has become a standard tool
in modern spatial analysis (Wikle and Hooten (2010)) to model nonstationary and nonlinear
processes. The form of ¥ ;(A) depends on the class of areal basis function (e.g., aggrega-
tions of thin plate spline basis function and bisquare basis function, see Bradley, Wikle and
Holan (2017)) chosen to model the moderate spatial variability of moratlity counts. We give
examples of choices of ¥;(-) in Sections 3 and 4. The random error y;(A) is assumed to
capture unknown spatial error not accommodated by x4(A)' 8, + ¥ ;(A)'n,. Conjugate prior
distributions can be specified for the remaining unknown parameters in (1) (Bradley, Holan
and Wikle (2020), Diaconis and Ylvisaker (1979)). In particular, 8, and 5, follow MLG dis-
tributions (see Section 2.5) or conditional MLG distributions (see Supplementary Material
Appendix A). Classic version of LGP assumes that 8, and 5, to have multivariate Gaussian
priors. The MLG distribution has some advantages over the Gaussian distribution. Specifi-
cally, the MLG distribution leads to conjugate full conditional distributions (see Supplemen-
tary Material Appendix B) and can be specified as an arbitrarily close approximation of any
Gaussian distribution (Bradley, Holan and Wikle (2020)).

A univariate model for PM2.5 can be defined in a similar manner. Suppose the observed
vector of PM2.5 levels in air t = {T (A1), T (A2), ..., T(A,,)} follow Weibull distributions

T(A)) nd Weibull(p(A;), b;) for i =1,...,n, where n. < n, the scale parameter b; is pa-
rameterized as b; = exp(—Y.(A;)) and p(A;) > 0 is the shape parameter of the Weibull
distribution. The probability density function of the Weibull distribution is

T (ADIp(A), Ye(A))}

2
@ = p(ADT (AP A exp[Ye(Ar) — T(A)” A exp{Yc(AD]}],
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where the subscript “c” is used to indicate this as a model for continuous response. Further,
the parameter Y.(A) is modeled as

YC(A):xc(A)/ﬂc+'/’C(A)/’7C+VC(A); AeD,

where x.(A) is a p.-dimensional vector of known covariates and B, is a p.-dimensional pa-
rameter vector of the covariate effects. It is assumed that if 7'(A) is observed at region A, then
the vector x.(A) is also observed. Similar to model (1) of mortality counts, the small scale
spatial variability in PM2.5 levels are accommodated by the r-dimensional vector 3. and the
corresponding prespecified ¥ .(A) which can be any class of areal basis function (e.g., aggre-
gations of thin plate spline basis function and bisquare basis function, see Bradley, Wikle and
Holan (2017)). In general, we can allow ¥ to be different from ¢ ;. In Supplementary Ma-
terial Appendix C we give a complete expression of a model for Weibull responses. Similar
to model for mortality counts, we choose conjugate prior and hyper prior specifications.

2.2. Joint bivariate spatial model for Weibull and Poisson (WAP) responses. In practice,
two different types of responses from a dataset may consist of ¥, = {T(B;) : B € D,i =
1,...,n.} of continuous responses and Z; = {Z(A;) : A; € D,i = 1,...,n4} of count-
valued observations, where the sets {B;} and {A ;} may not be exactly the same as PM2.5 and
mortality have different missing/undisclosed regions. The areas {B;} and {A;} are aligned
(i.e., {B;} and {A} both consist of U.S. counties). In our application, {B;} is a different col-
lection of U.S. counties than {A;}. For the misaligned setting, one might utilize strategies
for spatial change of support (e.g., see Bradley, Wikle and Holan (2016), Gotway and Young
(2002), Mugglin, Carlin and Gelfand (2000), among others). As in Section 2.1, we assume
continuous-valued and count-valued responses (conditioned on latent processes) are modeled
as follows:

T(B;) ™ Weibull[p(B:), exp{—Ye(B))]; i, ....ne

Z(Aj) iEElPoisson[exp{Yd(Aj)}]; j=1,...,nq4.
Our WAP model makes the following assumption:
(3) Ye(A) =x(A) B+ ¥y (A +¥.(A)n. +v:(A); AeD,

where Y. (A) is the natural parameter for in Weibull response model and  is an r-dimensional
random vector. The r-dimensional term ¥ ., (A) is prespecified and can be any class of areal
basis function (e.g., aggregations of thin plate spline basis function and bisquare basis func-
tion, see Bradley, Wikle and Holan (2017)). In general, for e = ¢, d, l/fen can be different
from ¥, but it is not required to be different. We make similar assumptions to (3) to incor-
porate covariate and spatial effects for the Poisson response. That is, the WAP model makes
the following assumption:

“ Ya(A) =xa(A) By + ¥4, (A0 +¥,4(A) 1y +va(A); AeD.

As mentioned in the Introduction, the random vector # is the same across all regions (or
is “shared” across all regions) which is crucial for incorporating the dependence between
Y.(A;) and Y4(A;). This is clearly explained by noting that

cov{Yc(A), Ya(AD} =¥, (A) covim ¥ 4, (A)

is nonzero for several i. This random vector 3 is not spatially referenced; however, the basis
function expansions (lﬁd,,(A)/ n, lﬁc,’(A)/ N, ¥,(A)'n,) themselves are spatially referenced.
Consequently, when performing inference on 5, we discuss elements of a random vector
common to all regions as opposed to random variables for a specific region. This use of
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FIG. 1. A directed graph of the WAP model with ey = Ve for e = c,d. The left box represents Weibull re-
sponses, and the right box represents the Poisson response and its priors. We jointly model these two responses
with 3 in the middle of the diagram.

a multivariate random vector within a spatial basis function expansion is currently popular
(e.g., see Wikle (2010), for a review). A complete statement of the WAP model is given in
Supplementary Material Appendix D. We also provide a directed graph of WAP in Figure 1.
The directed graphs for the univariate response models in Sections 2.1 and 2.2 are the same
as Figure 1 with » removed.

Our method leverages the bivariate spatial dependence between PM2.5 and mortality
through the shared random effect  to improve the precision of our predictions of both miss-
ing/undisclosed PM2.5 and mortality counts in CDC database. Fuentes et al. (2006) and Choi,
Fuentes and Reich (2009) also capitalize on the joint dependence between PM2.5 and mor-
tality by setting 7 (A) to be a covariate in a generalized Poisson GLMM and modeling the
marginal distribution of 7 (-) with a spatial statistical model. However, there are several addi-
tional benefits to our specifications in (3)—(4). First, our model does not make the restrictive
assumption of a log-linear relationship between mortality and PM2.5., since the spatial basis
function expansion ¥ e,,(A)’ n (for e = ¢, d) allow the shared functional variability between
PM2.5 and mortality to be unknown. Furthermore, unlike previous joint models of mortal-
ity and PM2.5, when computing our likelihood contribution of an observed mortality count
Z(A) for an area A, we do not need to observe or impute 7 (A). This is because 7T (A) is not
present on the right-hand side of (4), which we avoid doing by instead using a spatial basis
function expansion to enforce bivariate spatial dependence between PM2.5 and mortality. Fi-
nally, the dimension of 5, 5., and 5, can be specified to be low dimensional (i.e., dimension
reduction tool) to aid with efficient computation of WAP; see Section 2.5 for more discussion
on computational considerations.

Many of the full-conditional distributions associated with the WAP are conditional MLG
distributions, which are very difficult to simulate from, and they either require iterative
algorithms (e.g., slice sampling, Neal (2003)) or algorithms with extensive tuning (e.g.,
Metropolis—Hastings, Chib and Greenberg (1995)). However, we addresses this issue using a
data-augmentation strategy similar to Bradley, Holan and Wikle (2018), instead of simulating
from an intractable distribution (for details, see Appendices B and D).

2.3. Properties of the correlation between spatially referenced Poisson and Weibull re-
sponses. A crucial quantity to assess, for any model of multivariate spatial statistical re-
sponses, is the spatially varying correlation function. In this section we discuss the properties
of the WAP through this correlation function. To do this, we begin with general properties
of the correlation corr{Z(A), T(A)|0} = cov{Z(A), T (A)|0}/[var{Z(A)|0} var{T (A)|0}]'/%
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between Weibull response 7 (A) and Poisson response Z(A) when they do not necessarily
follow the WAP. Here, 0 is a generic vector of unknown parameters. In this section we show
that this corr{Z(A), T (A)|@} is related to the efficiency ratios defined as

ar A)|0 ar A)|0
) ER(ALg) = EECCANO) e 4 gy = Yarlia ()16}

var{T (A)|0} var{Z(A)|0}
Using conditional expectations, we have var{Z(A)|0} = var{uy(A)|0} + E[nqs(A)|0] >
var{iuq(A)|0} and, similarly, var{T (A)|0} > var{u.(A)|0} so that the efficiency ratios in (5)
are strictly between zero and one. Proposition 1 below shows that the efficiency ratios have
an important relationship with the correlation between Weibull and Poisson data.

PROPOSITION 1.  Suppose that for two given areal units A and B, T (B) follows a Weibull
distribution and Z (A) follows a Poisson distribution, then

(©) corr{Z(A). T(B)|8) = H(A. B.0) corr{ua(A), uc(A)6).

where H(A, B,0) = ERy(A, 0)/2ER.(B, 0)'/? and 0 is a vector of unknown parameters
associated with the joint distribution of 11g(A) and puc(A).

PROOF. See Supplementary Material Appendix E. [

This result is similar to results connecting the relative dispersion parameter and the corre-
lation for only Poisson counts from two areas (e.g., see Bradley, Holan and Wikle (2018), De
Oliveira (2003), De Oliveira (2013)). Equation (6) shows that corr{Z(A), T (A)|@} is bounded
between max(—H (A, A,0), —1) and min(H (A, A, #), 1). Moreover, as the efficiency ratios
decrease, H(A, A, 0) becomes closer to zero. Thus, low efficiency places a very strong re-
striction on the range of possible values for corr{Z(A), T (A)|@}. This is true for any model
that defines the cross-correlation between g(A) and . (A); that is we are not assuming that
the WAP necessarily holds to derive Proposition 1. Since the correlation function is defined
by the second moment, which exists for both the Gaussian distribution and MLG distribution,
Proposition 1 holds for both the WAP and a more traditional LGP.

In our application we provide plots (over A) of

1

7 -
@ IV (A)]

> E{H(A,B.0)|%4. 2.},
BeN(A)

where A/ (A) denotes a set of regions determined to be “close” (e.g., nearest neighbor) to re-
gion A and [N (A)| is the number of regions in the set N'(A). By letting N (A) include neigh-
bors, we allow for the possibility that individuals may regularly commute between counties
at some point in their lives (e.g., someone works in one county but lives in another). In which
case the possibility that the PM2.5 in, say, the county they work in, may aggravate a medical
condition eventually leading to mortality. However, one can certainly allow for N(A) = A.
This quantity is used as a local indicator (at location A) of the amount of model-based
restrictions on the spatial/response-type associations. That is, if (7) is small, this indi-
cates that the cross-correlation between variable types and neighbors (defined by AV (A)) is
severely restricted. By “restricted” we mean corr{Z(A), T (B)|0} is restricted to be between
max(—H (A, A,0),—1) and min(H (A, A, 6), 1) so that the LICA represents a type of aver-
age range statistic. This use of the effective ratio is similar to the well-known local indicator
of spatial association (LISA) (Anselin (1995)). As such, we refer to (7) as a local indicator
of restrictions on cross-response-type association (LICA). In practice, LICA can be used as
an exploratory analysis tool to assess regions that have negligible cross-multivariate spatial
correlations. For example, if LICA is close to zero at A, then the cross-correlations between
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mortality at region A and PM2.5 at regions in A/ (A) tend to be small. This is particularly use-
ful for the mortality and PM2.5 dataset, since we are interested in determining whether or not
bivariate correlations between PM2.5 level and mortality counts are present for two neigh-
boring areas. Consequently, the LICA may provide important localized information that can
be used to guide public health officials. For example, small values of LICA at a region A
may suggest that fewer public health interventions for PM2.5 related mortality are needed
at region A and vice versa. Since Proposition 1 does not require the WAP to hold, one can
compute the LICA statistic for both the WAP and a more traditional LGP.

The LICA can be useful for understanding the second-order (e.g., correlations) relation-
ship between PM2.5 and mortality. However, one should also consider plotting the poste-
rior mean of the shared random effect terms (e.g., ¥ d,](A)/ n) to investigate the first-order
(i.e., means) behavior. The LICA not only gives a sense of where small correlations are
present but also a measure of uncertainty, since the correlation is bounded between the range
max(—H (A, A,0),—1) and min(H (A, A, 0), 1). In general, however, one should be aware
that there are several other LISAs that one might consider to assess second order information.

2.4. Distributional assumptions: The Weibull distribution and the multivariate log-gamma
distribution. As stated in Section 2.2, we assume PM2.5 is Weibull distributed. The Weibull
distribution is a very flexible class of distributions and is a reasonable choice in terms of pick-
ing a distribution with positive support. Of course, one could also consider the log-normal
distribution which is a common choice in the PM2.5 literature made for computational con-
venience. It is well known that both the log-normal and Weibull distributions are flexible
model choices in a wide range of settings, and there are several comparisons between the two
distributions that suggest both choices are reasonable (e.g., see Kim and Yum (2008), among
several others).

We assume that random effects in our model are distributed according to the MLG distri-
bution. Thus, in this section we give a short review on the relevant details on the multivariate
log-Gamma distribution. Let w = (wy, wa, ..., wy,)" be an m-dimensional random vector of
m mutually independent log-gamma random variables w; = log(y;), where y; is a gamma
random variable with shape «; > 0 and rate x; > 0. Then, the multivariate log-gamma ran-
dom variable ¢ ~ MLG(c, V, «, k) is defined as

®) g=c+Vuw,

where ¢ is a m-dimensional vector, V is a lower-triangular m x m invertible matrix,
a=(ay,...,on), and k = (k1, ..., ky) . The probability density function (pdf) of the m-
dimensional random vector ¢ is

fgle, Ve, ) = det(V‘l)(H F'((a ,)) exp{a’ V(g —¢) — k' exp[V ™' (g — 0)]}.
i=1 !

We use the MLG distribution to be priors of the fixed and random effects in equations (3) and
(4). We use a gamma prior for each p(A;) > 0 which is updated within a Gibbs sampler using
a Metropolis—Hasting algorithm. The main advantage of the MLG distribution is that the
likelihood contributions from both ¢ and Z have double exponential forms, similar to that of
the MLG distribution. This can be exploited to implement a collapsed Gibbs sampler. Further
details on the properties of the MLG distribution are in Supplementary Material Appendix B.

2.5. Computational considerations. There are two important features of the WAP
that lead to efficient computations. First, the use of the MLG distribution may avoid
tuning/Metropolis—Hastings steps within a collapsed Gibbs sampler. Consequently, the mix-
ing of the sampler may improve, since we avoid tuning proposal distributions, and the corre-
sponding effective sample will be larger. However, we note that tuning proposal distributions
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in the Metropolis algorithm does not necessarily lead to bad mixing, but rather, this is our
experience in high-dimensional parameter space settings. In this article we investigate mixing
using trace plots and the Gelman—Rubin diagnostic (Gelman and Rubin (1992)).

Second, reduced-rank modeling replaces the distribution of a correlated high-dimensional
random vector with a distribution for a low-dimensional random vector. Since the » x r matrix
V (this matrix valued-parameter is analogous to the Cholesky decomposition of a covariance
matrix) is low rank, there is no difficulty involved with inverting a large matrix. There are
several models that address the computational problem of inverting covariance matrices for
Gaussian processes; for example, see the conditional autoregressive model (Besag (1974),
Besag (1986), Besag, York and Mollié (1991)) which parameterize the precision directly.
As r increases, the storage of the r x r matrix V becomes a computational issue. Reduced-
rank methodologies have faced some criticisms recently (Bradley, Wikle and Holan (2020),
Stein (2014)). However, these studies focus on the case where there are few to no covariates
included in the model. In general, covariates may be able to capture the (spatial) functional
complexity of the unknown process which would imply that large values of r are not needed.
This point often leads to standard methods to test for the need to model spatial dependence at
all (e.g., see Moran (1950), for an early reference). We consider the setting where there are a
moderate number of covariates. Hence, it may be reasonable to specify r << min(n., ng).

There are, of course, several other computational algorithms available besides Gibbs sam-
pling. For example, Hamiltonian Markov chains (HMC) allows one to directly simulate
from the joint distribution avoiding the need for block updating in a Gibbs sampler (Neal
(2011)). However, this approach is not feasible for high-dimensional datasets. Integrated
nested Laplace approximations (INLA) (provide approximate) samples from the marginal
posterior distributions (Rue, Martino and Chopin (2009)). Since we are specifically inter-
ested in joint inference (e.g., see the LICA statistic), INLA does not serve our purposes.
Additionally, INLA is really only feasible when there are a few number of parameters (e.g.,
see a recent review Martino and Riebler (2019), which suggests no more than 15 parameters)
which makes it difficult to use for WAP. A method referred to as TMB can handle much larger
parameter spaces but, similar to INLA, is restricted to marginal inference (Kristensen et al.
(2016)). Of course, one could develop a different model with a different parameterization that
could be implemented with INLA, and further computational gains could be made.

3. Simulation study. The primary aim of this paper is to jointly analyze PM2.5 (con-
tinuous) and mortality (count) to improve the precision of spatial predictions. Thus, in Sec-
tion 3.1, we illustrate the high predictive performance of WAP compared to independent
(unitype) analyses of Weibull and Poisson responses. Additionally, we show the benefits of
using the MLG distribution in place of a Gaussian distribution within the GLMM framework
in Section 3.2.

3.1. Illustration of the WAP’s performance. To illustrate the robustness of our model,
we choose a simulation model that differs from the model we fit the data. That is, we spec-
ify the latent processes to have a specific form that is different from the prior specifica-
tions of WAP. Specifically, suppose T (A;) ~ Weibull(p(A;), exp(—Y.(A;)) and Z(A;) ~
Poisson(exp(Y4(A;))), where

. iid
o Yo(A) = by +crsin(A) +€1(A;),  €1(A;) ~ Normal(0, o2,
Ya(A) =by+caYe(A) + €2(A).  €(A) Normal(0,02), i=1,....n.

Here, we let A; =i and D = UA; where i = 1,...,n. We provide multiple simulations of
multitype spatial fields. The values of b, are used to control for the number of zero counts,
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and o, = 0.2 and o4 = 2.4 are chosen to control the efficiency ratios ER. and ERy, given in
(5); see Supplementary Material Appendix F for how we specify by, o., and .

To measure the performance of the predictions, we define the sum of squared error (SSE)
as

SSE,j = (Yoj — Yoj) (Yoj — Yej), e=c,d, j=1,2,

where Yo (A) = x(A) B + ¥, (A)#) + Pc(A) and Y4 has a similar formula. When j = 1
(j = 2), the posterior means #, Bc, Nes Ve ﬁd, 4, and p, are computed using the WAP
(univariate models). For this simulation study we find better performance by prespecifying
the elements of ¥ . to be identically zero for all A, V =1, and shape parameters of the fixed
and random effects set equal to one. Both Y, and the data are observed at the same regions A;
when computing SSE,. Hence, SSE, measures spatial smoothing. In Section 3.2 we assess
the performance of predicting Y, at a missing region relative to competing approaches.

We generate 100 Poisson and 100 Weibull responses so that n = 200 observations. We
define X to be a n x p covariate matrix with p = 2, and each element in X is generated
from a Bernoulli distribution with success probability equals to 0.5. We do this to mimic
the application which consists of categorical covariates. We choose thin plate spline basis
functions (i.e., Wahba (1990), ¢ (r) = r2ln(r)) to calculate elements in Veps Yays and ¥y
and set r = 5. The true value of the shape parameter p(-), when generating Weibull data, is
from a gamma(10, 0.1), and all regions share the same value of the Weibull shape parameter.

For illustration, we simulate data according to (9) with n =200, b1 = —3,b, =8,c1 = 1.2,
cr=1.5, p(A) = p, p ~Gamma(10, 0.1), and define o, and o, so that the ER. and ER,; are
moderately small (i.e., ER is roughly one-fifth). Additionally, b, = 8 leads to roughly (4.45%,
12.5%) zero-valued counts.

Figure 2(a), (b) provides scatterplots of the true values of Y, vs. their respective posterior
means; e = ¢, d. In Figure 2(a) the points fall roughly on the 45° line which suggests we
obtain reasonable predictions of the latent process for Weibull data (i.e., Y,). The points in
Figure 2(b) are less variable than that in Figure 2(a) about the line y = x which suggests
more precise predictions of the Poisson latent process. However, the predicted value of Yy
are smoother than the actual values of Y, in that small (large) values of the true value of Yy
are slightly overestimated (underestimated).

(a) (b) (c)
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FIG. 2. Panel (a) shows a scatterplot of the posterior mean of Y.(-) vs. the true value of Y.(-). Panel (b)
shows a scatterplot of the posterior mean of Yg(-) vs. the true value of Y4(-). Panel (c) displays violin plots
of SSE > —SSE, by data type over 100 independent replicates.
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Figure 2(c) provides a violin plot of the difference SSE.; — SSE,; over 100 independent
replicates of the data {Z(A;)}. Positive values indicate preferable performance of WAP over
the unitype model. In Figure 2(c) we see that the WAP consistently outperforms the uni-
type predictions since the violin plots are entirely above zero. Additionally, we see larger
improvements for the Weibull predictions. This suggests the cross data-type dependence is
successfully leveraged to produce more precise predictions.

The results in Figure 2 are based on simulations with ER. = ER; = 1/5, a moderate num-
ber of zeros in the dataset, and five basis functions. However, it is well known that the number
of basis functions can greatly effect the performance of spatial mixed effects models (Stein
(2014)). Furthermore, the efficiency ratio can be thought of a type of signal to noise ratio
which is a well-known factor for assessing the predictive performance of functional data
(Wahba (1990)). Finally, it is known that an overwhelming number of zeros can lead to dif-
ficulties in prediction for spatial statistical models (De Oliveira (2013)). As such, in Supple-
mentary Material Appendix F we provide several sensitivity studies to observe the predictive
performance of WAP (relative to unitype analyses) across different choices of the number
of basis functions, ER, and the number of zeros in the observed dataset {Z(A;)}. We now
briefly summarize the findings in Supplementary Material Appendix F. The WAP model is
preferable in terms of SSE to the univariate response model for all number of basis functions
considered (r = 2, 5, and 10), ER, and proportion of zeros. In general, the gain in predictive
performance (i.e., SSE) was preferable for Y.. Additionally, prediction of Y, appears invariant
to the proportion of zeros in the count-valued dataset.

3.2. A comparison of WAP and a latent Gaussian process model. LGP models have been
widely used in spatial statistics (e.g., see Gelfand and Schliep (2016), for a recent discussion).
In this section we compare WAP to a comparable LGP in terms of both the predictive perfor-
mance and computational performance. The data models in the LGP remain the same (e.g.,
the data are assumed to be Weibull and Poisson). We replace the MLG distribution with a
Gaussian distribution to define the process and parameter models, assign inverse gamma pri-
ors on variance parameters, and set the associated mean parameters equal to zero. We generate
data according to (9) and choose the number of basis function to be 10. When implement-
ing the LGP, we fix the value of the shape parameter of the Weibull distribution to its true
value, as the performance of the LGP is highly sensitive to this parameter; see Supplementary
Material Appendix G for the details of the priors for the LGP model.

The LGP model is implemented using the publicly available software “Just Another Gibbs
Sampler” (JAGS; see Depaoli, Clifton and Cobb (2016), for a recent review). The MCMC
ran for 10,000 iterations with a burn-in of 5000 iterations which are the same specifications
for the WAP model. JAGS software indicates convergence of the LGP model. Convergence
was also investigated using the Gelman—Rubin diagnostic (Gelman and Rubin (1992)) which
also suggests that the MCMC chains converge in both models. JAGS is an all-purpose cod-
ing platform that has become fairly standard for implementing LGPs. However, JAGS is not
promoted to be computationally fast, and one should be aware that our conclusions regard-
ing the computational performance of the LGP may differ if other computing resources are
considered.

In Table 1, summaries of the Gelman—Rubin (GR) diagnostic and the effective sample size
(ESS) (ESS; Gelman et al. (2013), for a standard reference) over 500 simulation replicates
are provided for assessing convergence and the efficiency of the two WAP models (i.e., our
proposed WAP/MLG and the alternate WAP/LGP specification). Due to the large amount
of parameters, we summarize the coefficient parameters that are particularly important in
analyses, and we provide the results of coefficient parameters here as example. Results of
other parameters are similar to this. The mean ESS in the WAP/MLG model is more than
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TABLE 1
Summaries of the Gelman—Rubin (GR) diagnostic and effective sample size (ESS) over 500 independent
replicates. Here, Pr(GR diagnostic < 1.1) represents the proportion of simulation replicates where GR is
between 1 and 1.1

Parameters Bel Be2 Bdi Ba2
WAP/MLG

Mean ESS 1476.2 1480.6 1513.0 1505.0

Pr(GR diagnostic < 1.1) 100% 100% 100% 100%
WAP/LGP

Mean ESS 564.5 554.7 751.0 851.0

Pr(GR diagnostic < 1.1) 75.2% 72.8% 88.0% 85.4%

two times that of the WAP/LGP model. This provides motivation for the use of the MLG
distributional assumption and provides evidence that the WAP/MLG model is considerably
more computationally efficient than a traditional WAP/LGP model. Additionally, the GR
diagnostic from WAP/MLG is consistently between 1 and 1.1 which indicates convergence
of parameters in WAP/MLG model. In general, 1 to 1.1 is the desired range of GR (Gelman
and Rubin (1992)). However, even in this small data setting, several simulation replicates had
GR values for the WAP/LGP model outside of the desired range. This shows the use of MLG
improves mixing of the Gibbs sampler.

The average (over locations) LICA for WAP is 1.077, while the average LICA value for
the LGP model is small at 0.005. This illustrates that the WAP model has less restrictions on
the correlation between different response types, while the LGP model implies weak cross-
response-type correlations. To assess the relative performance of competing methods when
predicting at missing region, we compute the testing squared error (TSE), defined as

(100  TSE= Y [log{F.(A)} —log{Yc(A)}]* + [log{¥a(A)} — log{Ya(A)}]*,
A€Diest

where the regions Dy represent 10% randomly selected regions for each variable not in-
cluded to produce the predictors Y, and ¥;. We compare on the log-scale for visualization
purposes. In Figure 3 we display density plots of TSE and SSE values (for both WAP model
and the LGP model) and central processing units (CPU) in seconds (Panel 3b) over 500 inde-
pendent replicates of the data generating according to (9). The SSE values associated with the
WAP model are centered, roughly, around 300, while the SSE values of the LGP model are
centered at, roughly, 320. Similarly, the WAP outperforms the LGP in terms of TSE. More-
over, the WAP model appears less variable over the replicates of the data, as the standard
deviation of both the TSE and SSE values are much smaller for the WAP model than for the
LGP model. In Panel (3b) we see that the CPU time of the LGP model is centered at, roughly,
406 seconds, and the running time for the WAP model is centered at, roughly, 47 seconds.
The range of running times of the WAP model is much smaller than the range of the running
times of the LGP model.

Another possible comparison with WAP would be a linear model for coregionalization
(LMC; Banerjee, Carlin and Gelfand (2015), for a standard reference) implemented via an
integrated nested Laplace approximation (INLA). Although the LMC is a model for point ref-
erenced spatial data (and we are interested in areal data), it is arguably a reasonable choice for
areal data observed on regularly spaced areal units. We are grateful to a referee who provided
code which required modification to allow for Poisson/Weibull responses; specifically, see
the code from Section 3 in Krainski et al. (2018). A plot of SSE and computation times over
the 500 simulation replicates are provided in Figure 3. The LMC/LGP model provides worse
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FIG. 3.  The density plots of the total SSE (i.e., SSE.1 + SSE 1) of LGP and WAP models (panel (a)), Violin plot
of the CPU times (seconds) of WAP and LGP models (panel (b)), and the density plots of the total TSE of LGP
and WAP models (panel (c)).

results, as it consistently has larger TSE and total SSE, as compared to WAP as seen in Figure
(3). The CPU time of the LMC/LGP model is much less than the WAP/MLG model due to
the use of INLA as seen in Panel (3b). However, both methods can be computed quickly for
these data. A table summary of Figure 3 is in Supplementary Material Appendix H.

4. Analysis of mortality and PM2.5 data from the CDC. In this section we analyze
one of big multitype spatial datasets consisting of air pollution measures and mortality counts
of diseases related to air quality provided by the Centers for Disease Control and Prevention
(CDC). This particular CDC dataset has mortality counts for 12,760 counties/regions and
PM2.5 values for 3111 regions. In line with a large literature developing the relationship be-
tween PM2.5 and various diseases (e.g. Dominici et al. (2006), Franklin, Zeka and Schwartz
(2007), Kampa and Castanas (2008), Turner et al. (2011)), our goal is to jointly model and
analyze averaged PM2.5 in pug/m> and mortality counts of diseases related to lung, cardio-
vascular, respiratory, and stroke in 2011 to understand the spatial variation in the association
between these two responses as well as to predict these responses for all U.S. counties (in-
cluding the counties where at least one of such responses are missing). WAP explicitly allows
researchers to incorporate these types of multitype dependencies, since we incorporate spatial
variability of both response types.

For mortality count response we use p; = 13 to incorporate the following available co-
variates: indicators of gender (male and female), three race groups (Asian or Pacific Islander,
Black or African American and White), and eight age groups (eight classes from 15 to 854).
For PM2.5 response there was no immediate covariate information available, and hence, we
use p. = 1 with only the intercept. It is well known that gender, race, and age are impor-
tant predictors for mortality due to lung, cardiovascular, and respitory diseases (e.g., see
Anderson, Thundiyil and Stolbach (2012), Brook et al. (2010), Zigler, Dominici and Wang
(2012), among several others). We use the Watanabe—Akaike information criterion (WAIC;
Watanabe (2010)) to choose the number of basis functions. We consider the number of basis
functions to be 20, 30, 40, 50, 100, and, 200, and the value with smallest WAIC is r = 40.
We assume p(A) to be constant across each state, and the remaining prior settings are kept
the same as they were in our simulation study. We also use the bisquare basis function from
from Cressie and Johannesson (2008). The bisquare basis function is defined as

llu; — vl

232
(11) wj(A,-)E{l—( )} for |u; —vjll <ryi=1,...,N,j=1,...,r,

where u; is the centroid of county A;, v; is ith knot location, and r; is 1.5 times the median
of distance between knots in the set {u; :i = 1,...,r}. We define v; to be a centroid as

Fl
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well, and hence, r; is also computed based on distances between centroids. We find that
using the median between knot distances to define r; can produce a smaller WAIC for this
dataset than the minimum between knot distances, as used in Cressie and Johannesson (2008);
however, this may not be true for every dataset. We also consider several choices of classes
of radial basis functions and found that the bisquare basis functions gave reasonable results.
However, in general there are several other reasonable choices including wavelets, Fourier
basis functions, splines, and other radial basis functions. We run the MCMC algorithm for
30,000 iterations and burn-in the first 20,000 iterations. The convergence is verified by trace
plots (examples in Supplementary Material Appendix I) and the Gelman—Rubin diagnostic.

4.1. Prediction, estimation, and goodness-of-fit. In our data analysis we calculate the
quantiles of elements in p to investigate the need for multitype dependence. We find that
14 (35%) elements have pointwise credible intervals that are greater than zero, and seven
(17.5%) elements have pointwise credible intervals that are completely less than zero. We
also found that the posterior probability of the elements being smaller than zero is, roughly,
18%, and the posterior probability of the elements being larger than zero is, roughly, 33%.
This provides evidence for incorporating cross-response type dependence. When considering
different types of basis functions, the credible intervals consistently support multitype de-
pendence. The mean squared errors (MSE) between the posterior expected value and the log
observations are 0.493 and 0.182, respectively. Figure 4 shows both scatterplots of the esti-
mated values (posterior means) vs. the observations (Poisson on log scale) and density plots
of the residuals by responses type. Aldaz (2009) includes a bias correction term when inter-
preting the expected value of the data on the log-scale, which we include in the Panels (b) in
Figure 4. The scatterplots for both response types suggest that the WAP model performs well,
and the residual plots look symmetric and unimodal. The Poisson residuals have a slight right
skewness. This suggests that we have smoothed our Poisson estimates which motivates us to
consider the posterior predictive p-value to determine if we have over-smoothed our Poisson
estimates.

To assess the goodness-of-fit of WAP model, we use the posterior predictive p-value
(Gelman, Meng and Stern (1996), Meng (1994)) with the chi-squared criterion. Here, the
Monte Carlo approximation of the posterior predictive p-value is % Z,lj:l I(x ,f > X 02), where
B =10,000, I (-) is the indicator function, x 13 is the Chi-statistic between the posterior mean
of the responses and the bth replicate of the posterior predictive distribution, and x? is the
Chi-square statistic between the posterior mean of the responses and the observations. It is
desirable for a model to have posterior predictive p-values around 0.5. The posterior predic-
tive p-value of the Weibull responses in WAP model and Univariate Weibull model are 0.670
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FIG. 4. Scatterplot of observed vs. predicted PM2.5 (panel (a)), scatterplot of observed vs. predicted log-mor-
tality (panel (b)), and density plots of the residuals of PM2.5 (panel (c)) and the residuals of mortality counts
(panel (d)) obtained from the WAP model based analysis with 40 basis functions.
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FIG. 5. Maps of observed PM2.5 (panel (a1)) and posterior means of PM2.5 (panel (by)) over different counties
in California from WAP model and posterior means of PM2.5 (panel (cy)) over different counties in California
from LMC model. Maps of observed log risks (Panel (ay)), predicted log risks of mortality (Panel (by)) from WAP
model, and predicted log risks of mortality (Panel (cy)) from LMC model. These predictions are over counties in
California for white women over 85 suffering from lung cancer. Grey marks the regions with no data available.

and 0.989, respectively. The posterior predictive p-value of the Poisson responses in WAP
model and Univariate Poisson models are 0.510 and 0.568, respectively. These values sug-
gest that the WAP model fits the data well, and the unitype Weibull model and the unitype
Poisson model overfit the data.

In Figure 5 we present the predictions (i.e., posterior means) for the state of California.
We obtain predictions over all U.S. counties, but for the sake of ease of visual illustration we
present results over counties in California only. Figure 5(a;), (b;) shows maps of observed
data and predictions from WAP for PM2.5 over counties in California. We see that both maps
show an increasing trend of PM2.5 from west to east. Some counties have slightly higher
predicted values than the raw data value.

We present our results for mortality risk, defined by the proportion of deaths out of the
known population size, of white females over 85 years suffering from lung cancer (particular
group with the largest number of observations). Figure 5(ay), (by) presents the county-level
maps of log-observed and log-predicted values (i.e., posterior means) of the mortality risks.
We again see an increasing trend with smaller risk of deaths on the western coastal areas than
on the eastern areas.

By comparing the predicted maps of PM2.5 and the predicted mortality risk of white fe-
males over 85 years old, we see that the mortality risk is increasing from the west to east,
in general, which is similar to the trend of PM2.5. This adds additional evidence to the lung
disease literature that PM2.5 is related to lung diseases.

4.2. Comparisons. As discussed in the Introduction, it is common to directly define a
conditional model and to treat PM2.5 as a covariate and mortality as the response. Thus,
we compare WAP to the conditionally specified model (the Poisson/MLG model) that uses
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mortality as the response and PM2.5 as a covariate. The data model for Z(A) is Poisson with
mean A(A), where

(12) log{A(A)} = BrT (A) +xa(A) By + ¥ 4(A)ng +va(A); AeD,

where fr, B,, 1y, and y4(A) are given MLG priors. The variance, shape, rate, and matrix-
valued parameters are the same as in the model for WAP. We choose the number of basis
functions to be r = 40 which is the same as the WAP model. The Poisson/MLG model is
implemented using the R package CM.

We also compare to a LMC model via R-INLA which is the same approach we used
in Section 3.2. However, the Weibull distribution is replaced by a log-normal distribution
in this example. This is because, when using the Weibull distribution, R-INLA produces
a calculation error (i.e., an eigenvalue problem in the Hessian matrix). However, this issue
does not arise when we using the log-normal distribution. Posterior summaries from the LMC
model are provided in Figure 5(c), (c2). Here, we see similar predictions between the two
models with the LMC model producing smoother predictions (i.e., closer to a global mean).

In Table 2, we provide the WAIC and the continuous rank probability score (CRPS
Gneiting and Raftery (2007)), and we use a loss function formulation of the CRPS where
small values are preferable. Calculation is done using the R package scoringRules
(Jordan, Kriiger and Lerch (2017)). The CRPS is a commonly used criterion that assesses the
performance of the cumulative distribution function (we choose three quantiles of the data
to evaluate the cumulative distribution function in Table 2). In general, these criteria suggest
that the WAP model is preferable, followed by the LMC model, and then the Poisson/MLG.
This corresponds to intuition considering that both the WAP model and LMC model incorpo-
rate bivariate-spatial covariances. The WAIC asseses out-of-sample predictive performance,
as it asymptotically approaches a leave-one-out cross-validation (see Watanabe (2010), for
more details). We also include the TSE metric (replacing Y, with the testing data) of (10) for
comparing out-of-sample performance of the joint models for Poisson and Weibull data in
Table 2, where 10% of the data for each response are treated as testing. The TSE and WAIC
suggest that the WAP model outperforms LMC in terms of predictive performance. Addition-
ally, the CRPS provides evidence that, for this dataset, the cumulative distribution function
implied by the WAP model is preferable to that of the LMC.

All three models can be computed in a reasonable amount of time. The CPU time of
the WAP model with 30,000 iterations is, roughly, 2.3 hours which is longer than the one
hour CPU time for the conditionally specified model and longer than the seven minutes to
implement the LMC model. To assess convergence of the MCMC for the WAP model, we use
trace plots and Gelman—Rubin diagnostic. Due to large number of the parameters, we show
example trace plots and summaries of the Gelman—Rubin diagnostic. Example trace plots and
summaries of diagnostics for the WAP model are given in Supplementary Material Appendix

TABLE 2
WAIC, CRPS, and CPU time (minutes) by model. The CRPS is computed at 2.5%, 50%, and 97.5% quantiles of
each variable. WAP is only implement with MLG specifications since the MCMC for the LGP model did not
converge

Model WAIC TSE CRPS PM2.5 CRPS Mortality CPU
2.5% 50% 97.5% 2.5% 50% 97.5%

WAP 221,782 1239  0.046  0.1208 0.6521 0.4867 2.4983  70.7535 138
LMC 293,511 1,244,276 0.0561 1.5443 4.8435 1.0457 10.8531 109.6263 7
Poisson MLG 1,770,657 - - - - 90.8147 17.8127 129.7433 57
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I and suggest convergence. We do not provide any inferential comparisons to the alternate
WAP/LGP specification, since computationally, it appears that the WAP/LGP specification
does not converge (GR diagnostics larger than 1.1). This again provides motivation for the
WAP/MLG specification which is computationally feasible for this analysis.

4.3. Inference on nonlinear relationships, covariate effects, and the dependence between
mortality and PM2.5 data from the CDC. In Sections 4.1 and 4.2, we provided evidence that
the LMC and the more standard linear model assumuption in (12) perform worse in terms of
WAIC and CRPS than the WAP; the WAP provided predictions for this dataset in a com-
putationally efficient manner, obtained reasonable goodness-of-fit diagnostics, has small in-
sample and out-of-sample error, and cross-dependence appears present between mortality and
PM2.5. However, we have yet to describe the patterns of the nonlinearity/cross-dependence
between mortality and PM2.5 and investigate covariate effects to obtain a deeper understand-
ing on the relationship between PM2.5 and mortality. We now provide these results for coun-
ties in California.

In Figure 6 we plot the posterior means of 1//d,7(A)’ n (Panel a), ¥ ,(A)'n; (Panel b),
¥, (A)'n (Panel ¢), ¥ .(A)'n,. (Panel d) over counties in California. In general, the shared
random effects term for both Poisson and Weibull data show large-scale spatial patterns.
In particular, the shared random effect term for Poisson data (i.e., wd,’(A)/ 1) identifies a
large value in Trinity county (in the northwest) and somewhat constant values elsewhere.
The shared random effect term for Weibull data (i.e., ¥, (A)'n) shows a smooth decreas-
ing pattern in the southeast direction. Both of the respective individual random effects terms
(i.e., ¥ (A)'n and ¥ .(A)'n) show the inverse patterns. Notice that the posterior means of the
shared random effects terms ¥ 4, (A)'n and ¥ n (A)'n do not appear to have a linear relation-
ship.

Also, in Table 3 we provide the posterior mean and credible intervals for the covariate ef-
fects. With 15-25-year-olds being the baseline group, there is a clear effect of age, as the risk
of mortality appears to be first decreasing and then increasing with age (with credible inter-
vals for all age-group except 35—-44 years being away from zero). The county level mortality
for black/African Americans does not appear to be noticeably different from the county level
mortality for whites (their posterior means are similar in value), but, there are strong poste-
rior evidence that both of these groups have higher mortality than Asian and Pacific Islanders
(baseline group). The effect of gender suggests that females appear to have lower mortality,
but the credible intervals suggest that the gender difference does not have strong posterior
support (i.e., zero is in the credible interval). These results are similar to existing studies that

Random effects

Shared random effects Random effects
0

() (d)

FIG. 6. This figure shows the posterior means of ¥ 4,(A)'n (Panel a), ¥ 4(A) 14 (Panel b), ¥ ., (A)'n (Panel
), ¥.(A)'n, (Panel d) over counties in California.
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TABLE 3
Posterior Mean and 95% credible intervals for the covariate effects of mortality

Posterior Mean 2.5% 97.5%
Intercept —4.9196 —8.1683 1.9281
Female —0.0011 —0.0122 0.0097
Black/African American 0.1336 0.0565 0.2381
White 0.2617 0.1870 0.3655
25-34 years —0.2516 —0.4171 —0.0505
35-44 years —0.0683 —0.1761 0.0875
45-54 years 0.1728 0.0761 0.3247
55-64 years 0.3897 0.2936 0.5407
65-74 years 0.5021 0.4069 0.6546
75-84 years 0.5540 0.4588 0.7063
85+ years 0.5380 0.4425 0.6909

focus on measures of air quality vs. mortality after adjusting for different populations (e.g.,
see Knuiman et al. (1999), Meng and Lu (2007), among others).

In Figure 7 we plot LICA values for the WAP model to better understand the second-order
relationships between PM2.5 and mortality. Most of the counties have LICA values near
one, suggesting that there are not strong restrictions on the cross-response-type restrictions.
However, there are several counties (e.g., north/northeast California) where the LICA values
are small. This suggests that the cross-correlations between mortality and PM2.5 in regions in
north/northeast California is small. Notice that the posterior mean of ¢ ., (A)'n was the largest
in the north, where LICA also suggests more restrictions on the cross-response dependence.

5. Discussion. In this article we are motivated by data made available by the CDC. In
particular, monitoring PM2.5 is important because it helps to assess public health and pro-
vides an avenue to do the clinical inference related to mortality. These variables are known
to be dependent (Laden et al. (2000), Schwartz and Neas (2000), Valavanidis, Fiotakis and
Vlachogianni (2008)). However, several existing methods to model such data assume a linear-
type relationship (e.g., log-linear), do not model the variability of both variables, and do not
allow for different missing data patterns among the variables. As a result, we developed the
WAP to leverage multitype dependence to improve estimation of PM2.5. We introduce the
joint Weibull and Poisson (WAP) model which is a framework that can be used to model high-

F1G. 7. The LICA map over counties in California from the WAP model.
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dimensional continuous and count-valued (or multitype) responses. Most of the work model-
ing multitype responses are in machine learning and nonparametric settings, and hence, our
WAP adds to an important growing literature within the Bayesian analysis literature. Another
important contribution is that we use the multivariate log-gamma distribution as a conjugate
prior. This allows the WAP to be easily implemented, using a collapsed Gibbs sampler, which
avoids complicated tuning and other approaches used in other standard Bayesian algorithms.
Using a reduced rank set of basis functions, our WAP can be applied to high-dimensional
datasets with less cost than full-rank methods.

The WAP addresses four limitations of existing analyses of mortality incidence and PM2.5:
(1) much of the current methodology applies a type of regression model and treats one of the
variables as a fixed covariate. However, variability is present in both variables and should be
included in the model; (2) we allow for possibly nonlinear relationships between mortality
and PM2.5; (3) we are able to leverage dependence in both mortality and PM2.5, and allow
both variables to have different missing data patterns, and (4) the pressing need to develop
precise predictions of both PM2.5 and mortality suggests that developments are needed to
handle large datasets. This motivates the use of the MLG (to improve mixing and have a
larger effective sample size) and dimension reduction.

In addition to these important developments in using WAP to analyze PM2.5 and mor-
tality incidences, there are several worthwhile methodological contributions. In particular,
we have provided the following five general methodological contributions: (1) A statistical
model that allows for and leverages cross-dependence between Weibull data and Poisson
data, in addition to spatial dependence, (2) a statistical model that simultaneously incorpo-
rates the variability associated with Poisson and Weibull data, (3) extension of the use of the
multivariate log-gamma (MLG) distribution to jointly model Weibull responses—a model
that simultaneously allow for the variability of PM2.5, mortality, cross-dependence, and the
high-dimensional nature of the datasets, (4) an efficiency ratio result for joint Weibull and
Poisson spatial data, and (5) the introduction of an exploratory analysis tool to assess the
amount of cross-response type spatial dependence that is present at each location (i.e., the
LICA statistic). These results show that the cross-correlation between Weibull and Poisson
data are more flexibly modeled using the multivariate log-gamma distribution, instead of the
multivariate normal distribution.

A key feature of our model is the use of spatial basis function expansions. One important
consideration when using spatial basis function expansions is the presence of possible spatial
confounding. In general, one can check to see if the covariate matrix and basis function ma-
trix are perfectly collinear by finding the reduced row echelon form of the covariate matrix
concatenated with the basis matrix (e.g., see Sengupta and Cressie (2013)). In our analysis
the basis matrix is not perfectly collinear with the covariate matrix, and consequently, con-
founding is mitigated. There are basis function matrices that more directly avoid spatial con-
founding (e.g., see Bradley, Holan and Wikle (2015), Griffith and Tiefelsdorf (2007), Hughes
and Haran (2013), among others). We considered a version of these basis set in our analysis
of PM2.5 and mortality and found smaller values of information criteria using bisquare basis
functions.

In the simulations study we illustrate the high-predictive performance of WAP relative to
univariate models and a joint bivariate LGP model. In the Supplementary Material we also
provide several sensitivities of WAP to several different factors, including the choice of the
number of basis functions, the efficiency ratio, and the proportion of zero Poisson counts.
We generate data that is different from our model, and the WAP was able to accurately esti-
mate this signal, even though the data were not generated from WAP. The sensitivity study
suggested that the performance of WAP will not be impacted largely by the proportion of
zeros, similar to that of our dataset, but the results show a potential risk of decrease in per-
formance when faced with a dataset with a larger proportion of zeros. This result is expected
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since there is a rather large literature on zero-inflated Poisson models which are motivated by
similar empirical results. Consequently a zero-inflated WAP is an important topic of future
research.
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