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Abstract The goal of this article is to improve the predictive performance of a
Bayesian hierarchical statistical model by incorporating a criterion typically used
for model selection. In this article, we view the problem of prediction of a latent
real-valued mean as a model selection problem, where the candidate models are from
an uncountable infinite set (i.e., the parameter space of the mean represents the can-
didate set of models). Specifically, we select a subset of our Bayesian hierarchical
statistical model’s parameter space with high predictive performance (as measured
by a criterion). Explicitly, we truncate the joint support of the data and the param-
eter space of a given Bayesian hierarchical model to only include small values of
the covariance penalized error (CPE) criterion. The CPE is a general expression that
contains several information criteria as special cases. Simulation results show that
as long as the truncated set does not have near-zero probability, we tend to obtain a
lower squared error than Bayesian model averaging. Additional theoretical results are
provided as the foundation for these observations. We apply our approach to a dataset
consisting of American Community Survey (ACS) period estimates to illustrate that
this perspective can lead to improvements in a single model.
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1 Introduction

Statistical model selection using a criterion often involves selecting a single model
(see, for example, Akaike 1973). In this article, we make use of selection criteria to
improve the predictive performance of a given statistical model instead of using it to
select a model from B candidates. In particular, the selection criterion is used to select
a subset of the parameter space. The selected set is chosen so that the values in the
set have high predictive performance as measured by a criterion.

Fig. 1: M1, M2, and, M3 are abstract representations of the parameter space of three
candidate statistical models. Their union is the “expanded parameter space,” the black
shaded triangle region represents values associated with high predictive performance,
and the purple shaded rectangle provides an abstract representation of the posterior
distribution based on the sparsity sparsity-inducing priors. The right panel is the set-
ting, where we select a subset of the parameter space with high predictive perfor-
mance (according to a criterion) of a single model.

This perspective to truncate the support to values with high predictive perfor-
mance (according to a criterion) is similar to the use of sparsity-inducing priors. The
difference with our approach is that we are selecting a region we believe to have high
predictive performance through the use of selection criteria, where sparsity-inducing
priors use Bernoulli (e.g., see Ishwaran and Rao, 2005, for the spike and slab prior) or
“near Bernoulli” priors (e.g., see Carvalho et al., 2009, for the horseshoe prior) to ef-
fectively select a subset of an expanded parameter space. We provide Figure 1 to show
how the procedure for prediction is motivated by methods for model selection. In the
left panel of Figure 1, we give a representation of traditional model selection (green
circle), sparsity-inducing priors (purple rectangle), and our approach (black triangle).
In the right panel of Figure 1, we give the setting we are primarily interested in, which
is taking a given statistical model, say M1, and improving the predictive performance
by constraining the parameter space to a high predictive performance region.

In this article, our goal is to improve the predictive performance of a Bayesian
hierarchical model using selection criteria (i.e., the strategy described in Figure 1).
Specifically, we propose defining the joint distribution of the data and parameters to
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be proportional to,

Likelihood×prior× I(criterion < κ), (1)

where I(·) is the indicator function and κ > 0 is prespecified. This incorporates a
criterion directly into the support of the model, and we will show (theoretically and
empirically) that one can obtain gains in predictive performance using specifications
of (1). This is a novel strategy to incorporate a selection criterion into a Bayesian
hierarchical model.

The use of selection criteria in Bayesian hierarchical models has a rich history.
There are methods that average models based on selection criteria (e.g., Burnham
and Anderson, 2003; Chen and Huang, 2012, among others). Similarly, Wasserman
(2000) estimates a quantity under each candidate model and then averages the esti-
mates with respect to how probable each model is, which bears some similarity to
the Bayesian model averaging (BMA, Hoeting et al., 1999) that defines weights ac-
cording to the posterior probability of each candidate model. One criticism of model
averaging approaches is that they include poor-performing models in their averages,
where sparsity-inducing prior similar to ours can remove these models.

An important issue that is avoided by (1) is that the use of selection criteria has
sampling variability that is not incorporated directly into the selected model. For
example, consider the Akaike information criterion (AIC) and the Bayesian infor-
mation criterion (BIC). The AIC selects the model that minimizes an approximated
Kullback-Leibler divergence to the true data generating process (see discussion in
Acquah 2010). The BIC is designed to approximate a Bayes factor (see discussion in
Acquah 2010) and therefore is often used when there are random effects. The values
of these criteria are functions of the dataset itself, and hence, have sampling vari-
ability. Thus, as new data are generated, the “best” model may change. This is true
for a majority of the selection criteria used in the literature. For example, Vaida and
Blanchard (2005)’s conditional AIC penalizes the in-sample error (a function of data)
using the effective degrees of freedom (Hodges and Sargent, 2001) and has sampling
variability. Similarly, Huang and Chen (2007) select spatial models where the penalty
is based on the generalized degrees of freedom (Ye, 1998), which again has sampling
variability.

The approach in (1) accounts for the sampling variability through the support of
the model, which is a general strategy developed by Yekutieli (2012). Yekutieli (2012)
addresses sampling variability for Bayesian models by truncating the support of the
data to always produce the same selected covariates in a model selection problem.
Truncating the support of the data in this manner removes the sampling variability
of the selected parameters, by removing this variability in the data generating mech-
anism. Our approach to truncation uses perspective to remove the variability of the
criterion. Criteria such as AIC, Stein’s unbiased risk estimate (SURE), and Mallows’
Cp can be interpreted as a type of covariance penalized error (CPE) (Efron, 2004;
Efron and Hastie, 2016; Tibshirani and Rosset, 2018; Holbrook et al., 2020). As such,
we use this general expression when adopting Yekutieli (2012)’s truncation approach
to incorporate a criterion into the Bayesian hierarchical model to improve prediction.
Thus, the CPE is not treated as a plug-in estimator and instead is used to constrain
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the support of a Bayesian hierarchical model. Our method truncates the data and pa-
rameter space based on a selection criterion, which incorporates the criterion directly
into the model in a principled way (i.e., through the support of the statistical model).
Consequently, we refer to our model as the truncated CPE model. In this article, we
choose the CPE, however, our constrained Bayesian perspective is flexible enough to
incorporate several other criteria.

The truncated CPE model can be considered as a type of Calibrated Bayes (CB)
(Box, 1980; Rubin, 1984; Little, 2006, 2011). CB uses Bayesian methods for in-
ference and uses frequentist methods for model development and assessment (Lit-
tle, 2006, 2011). That is, the Bayesian model is “calibrated” to have a frequentist
property. Typically, in CB, one selects models that produce posterior credibility in-
tervals with (approximately) their nominal frequentist coverage under repeated sam-
pling (Little, 2012). Our method, however, calibrates a Bayesian hierarchical model
to have small values of CPE, which is another frequentist property.

We provide a result that shows every proper Bayesian model can be expressed as
a type of truncated CPE model. In particular, one can augment a Bayesian model with
a uniformly distributed random variable (in a manner similar to Damien et al., 1999)
so that the posterior distribution can be expressed as a truncated CPE model. In our
method, we explicitly make the truncation tighter, which can lead to better predictive
performance. That is, we analytically show that the truncated CPE model leads to bet-
ter predictions in terms of squared error than the corresponding untruncated Bayesian
hierarchical model taken to be a BMA model for normal data. Recently Torkashvand
et al. (2016) has shown similar positive results empirically for a different constrained
Bayesian model in a specific functional/process modeling setting. That is, we can im-
prove upon the predictive performance (as measured by a criterion) of a single model
as long as the truncating event is admissible. The size of the truncating event also has
important practical implications. In particular, we can compare models through ac-
ceptance rates when implementing a Gibbs sampler, where we reject when the CPE
is “too large”. That is, one model may reject more parameter values than another
because its parameter space implies large values of CPE.

The remainder of this paper is organized as follows. In Section 2, we review sev-
eral approaches for model selection that motivate our proposed model whose goal is
prediction. In Section 3, we introduce the truncated CPE model and provide theoret-
ical support. In particular, we show that every proper Bayesian model can be inter-
preted as a truncated CPE model and show that our specifications can lead to higher
predictive performance than a given Bayesian hierarchical model for normal data in
terms of squared error under reasonable conditions. We illustrate this through a sim-
ulation study in Section 4. In Section 5, we analyze American Commutation Survey
(ACS) period estimates over census tracts in central Missouri. We apply our approach
to space-time change of support (Bradley et al., 2015). This example demonstrates a
case where only a single candidate Bayesian model is available, and that one can ob-
tain better out-of-sample performances using the proposed truncated CPE model. We
end with a discussion in Section 6. For ease of exposition, proofs are provided in the
Appendix.
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2 Motivation: Review of Model Selection Approaches

As discussed in the Introduction, our inferential goal is prediction and not model se-
lection. However, we are highly motivated by existing approaches used in model se-
lection. Thus, in Section 2, we provide reviews of several model selection procedures
that are relevant to our proposed model. In Section 3, we introduce our truncated CPE
model.

2.1 A Review of Covariance Penalized Errors

Denote the observed data with Y1,Y2, · · · ,Yn and the n-dimensional observed data
vector with y ≡ (Y1,Y2, ...,Yn)

′. We assume the following additive model

Yi = µi + εi; i = 1,2, . . . ,n, (2)

where µi ∈ IR is unknown; the εi’s are mean zero, variance σ2
i > 0, and are indepen-

dent of ε j and µk for j ̸= i, and k = 1, ...,n. We refer to (2) as the “additive model”.
For simplicity, we will use a shorthand for set, such as {σ2

i } represents {σ2
1 , . . . ,σ

2
n }.

Now, suppose there are B candidate models to predict µµµ . These models all result in
different predictors for µµµ , which we denote with µ̂µµb : IRn → IRn; b = 1,2, ...,B. For
example, µ̂µµb ≡ (µ̂1,b, ..., µ̂n,b)

′ may be the posterior mean of µµµ using model b.
Let (µi − µ̂i,b)

2 be the true prediction error measured by squared error discrep-
ancy for component i. The true prediction error is not observed because {µi} is not
observed. In practice, one can more easily compute the in-sample error for compo-
nent i, (Yi − µ̂i,b)

2. Efron (1983, 1986, 2004) derives an important expression of the
prediction error,

E[(µi− µ̂i,b)
2]+σ

2
i = E[(Yi− µ̂i,b)

2+2cov(µ̂i,b,Yi)]; i = 1, . . . ,n, b = 1, . . . ,B, (3)

where the expectation is taken with respect to y|µµµ,{σ2
i }. Equation (3) leads to the

following criterion referred to as the CPE,

CPE(y, µ̂µµb) =
n

∑
i=1

(Yi − µ̂i,b)
2 +2

n

∑
i=1

cov(µ̂i,b,Yi); b = 1, . . . ,B, (4)

which is unbiased for
n

∑
i=1

E(µi − µ̂i,b)
2 +

n

∑
i=1

σ
2
i .

These fundamental results show that, on average, the apparent in-sample error needs
to be corrected by a penalty (i.e., a covariance, hence the name CPE) to be an unbi-
ased estimation for the overall prediction error (Efron and Hastie, 2016). This CPE
criterion is well-known to be a general expression of several criteria introduced in the
literature. For example, AIC, Mallow’s Cp (Mallows, 1973), and Stein’s unbiased risk
estimator (Stein, 1981) are all special cases of the CPE (see Efron, 2004; Efron and
Hastie, 2016; Tibshirani and Rosset, 2018; Holbrook et al., 2020 for discussions).

This criterion, while very useful, has a limitation that we focus on in this arti-
cle. Namely, the CPE is a statistic (more formally a method of moments estimate
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of ∑
n
i=1 E(µi − µ̂i,b)

2 +∑
n
i=1 σ2

i ), and hence has sampling variability. This sampling
variability can have an effect on the chosen models. Consider the following simulated
example to illustrate the issue of sampling variability in selection criteria:

– Simulate 1000 replicates with n = 200.
– Consider a multiple regression model with x1,x2,x3, each a 200-dimensional vec-

tor, where the elements are chosen independently from a standard normal distri-
bution.

– Let the 200× 4 matrix Xb = [1200,x1δ1,x2δ2,x3δ3] = (x′1b, . . . ,x
′
200b)

′, where δi
is either zero or one, 1200 is a 200-dimensional vector of ones, define µµµ = Xbβββ ,
where the value of βββ = (β0,β1,β2,β3)

′ is arbitrarily chosen to be (2,1,1,0)′.
– For a given 200-dimensional data vector y with σ2

i = σ2, we consider implement-
ing the following models for µµµ:

I(b = 1) = I(δ1 = δ2 = δ3 = 0)
I(b = 2) = I(δ1 = 1,δ2 = δ3 = 0)
I(b = 3) = I(δ1 = δ3 = 0,δ2 = 1)
I(b = 4) = I(δ1 = δ2 = 0,δ3 = 1)
I(b = 5) = I(δ1 = δ2 = 1,δ3 = 0) (5)
I(b = 6) = I(δ1 = δ3 = 1,δ2 = 0)
I(b = 7) = I(δ2 = δ3 = 1,δ1 = 0)
I(b = 8) = I(δ1 = δ2 = δ3 = 1),

where I(·) is an indicator function. Then let µ̂µµb be the ordinary least squares estimator
with eight different choices of covariates based on (5). The Mallow’s Cp is given by

Cp(y, µ̂µµb) =
200

∑
i=1

(Yi − µ̂i,b)
2 +2σ

2 p(b); b = 1, . . . ,8,

where p(b) is the number of non-zero regression coefficients identified in the model
b. Note that for

µ̂µµb = Xb(X′
bXb)

−1X′
by,

we have the covariance in Equation (4) is given by

200

∑
i=1

cov(x′ib(X
′
bXb)

−1X′
by,Yi) = trace(Xb(X′

bXb)
−1X′

b)σ
2 = p(b)σ2,

which shows that Mallow’s Cp is a special case of the CPE when selecting covari-
ates using the ordinary least squares (e.g., see Efron, 2004; Efron and Hastie, 2016;
Tibshirani and Rosset, 2018; Holbrook et al., 2020, among others). Then denote the
selected model with

b̂ = arg min
b=1,...,8

Cp(b).

From Table 1, we present the proportion of times b̂ = b by σ over 1000 independent
replicates of the vector y. For each σ , 83% of the time we roughly select the correct
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Table 1: The proportion of times b̂ = b by σ over 1000 independent replicates of the
vector y.

b
1 2 3 4 5 6 7 8

σ = 0.5 0 0 0 0 83.5% 0 0 16.5%
σ = 1 0 0 0 0 85.2% 0 0 14.8%
σ = 2 0 0 0 0 83.0% 0 0 17.0%
σ = 3.5 0 0.4% 0.4% 0 82.3% 0 0 16.9%

value of b = 5, but we consistently (over σ ) select the incorrect full model around
17% of time. This is consistent with the literature, where several (but not all) selec-
tion criteria tend to select more complicated models (Rao and Wu, 1989; Maraun and
Widmann, 2018). This also demonstrates the weakness of the selection criteria dis-
cussed in the Introduction. That is, high sampling variability in Cp can lead to choose
incorrect models.

2.2 A Review of Bayesian Model Averaging (BMA)

Bayesian model averaging addresses model uncertainty (as demonstrated in Table 1)
by directly modeling b with a prior distribution. Let π(b) be the prior mass for model
b such that ∑

B
j=1 π(b = j) = 1. Under BMA, inference on the quantity of interest

(here is µµµ), can be obtained through the probability density function (pdf) of µµµ | y.
This can be computed with

π(µµµ | y) =
B

∑
j=1

π(µµµ|y,b = j)π(b = j|y), (6)

which is a weighted average of the distribution of µµµ given each model and data, and
the weights are posterior probabilities of the model. The choice of prior specifications
for the candidate models have an important impact in practice. Let’s revisit the small
simulation example in Section 2.1, where notice b= 1,2,3,4,6,7 in Table 1 are nearly
never selected using Mallow’s Cp. This leads us to consider the case where π(b =
j) = 1/8 (for all j) and the case

π(b = j) =

{
1/2 j = 5,8
0 otherwise.

(7)

Consider the case σ = 3.5. Figure 2 contains the histogram of ∑
n
i=1(µi − µ̂i,v)

2 −
∑

n
i=1(µi − µ̂i,w)

2, where µ̂i,v is the posterior mean using π(b = j) = 1/8, and µ̂i,w
is the posterior mean using Equation (7). The majority of values in Figure 2 are
consistently positive, which suggests better predictions when using π(b = j) in (7).
Here, we can see that the choice of model priors has a clear impact by informally
using Table 1 (or the CPE) to reduce the parameter space (of b). The improvements,
by using (7), are not surprising. Poor-performing values in the parameter space are
averaged in BMA when π(b = j) = 1/8, but are not averaged when using π(b = j) in
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(7). The prior distribution π(b) in (7) informally incorporates CPE, which is formed
via Table 1, but does not account for the sampling variability of CPE. Thus, our goal
is to formally incorporate CPE, by accounting for the variability of CPE.

0

100

200

300

0 10 20 30 40

∑
i=1

n

(µi − µ̂i, v)
2

− ∑
i=1

n

(µi − µ̂i, w)2

c
o

u
n

t

The histogram of ∑
i=1

n

(µi − µ̂i, v)
2

− ∑
i=1

n

(µi − µ̂i, w)2

Fig. 2: The histogram of ∑
n
i=1(µi − µ̂i,v)

2 −∑
n
i=1(µi − µ̂i,w)

2 (i.e. the difference in
squared error) by σ = 3.5 over 1000 independent replicates of the vector y.

3 Methodology: Improving the Predictive Performance of a Given Bayesian
Model Using CPE

In Section 3, we describe how we use the existing perspectives to improve the pre-
dictions of a given Bayesian hierarchical model using selection criteria (i.e., CPE).
In Section 3.1, we state our model. Then in Section 3.2, we show that every proper
Bayesian hierarchical model can be written as the same form as our proposed trun-
cated CPE model. Then in Section 3.3, we show that we can improve upon a given
Bayesian hierarchical model under reasonable conditions for Gaussian data. Finally,
in Section 3.4, we give an interpretation of the constrained posterior distribution as-
suming the unconstrained Bayesian hierarchical model.

3.1 The Proposed Model: The Truncated CPE Model

The statistical model we use for inference is defined as the product of the following
conditional and marginal probability density functions:

π(y,µµµ,θθθ b,b|κ) ∝ f (y|µµµ,{σ
2
i })π(µµµ|θθθ b,b)π(θθθ b|b)π(b)I{CPE < κ}; b = 1, . . . ,B,

(8)
where I(·) is the indicator function, f (y|µµµ,{σ2

i }) is the data model (if is referred to as
the likelihood when written as a function of µµµ and {σ2

i }), where the i-th component
of y = (Y1, . . . ,Yn)

′ have known variance σ2
i , θθθ b is the generic real-valued parameter

vector, π(µµµ|θθθ b,b) is the process model, π(θθθ b|b) is the prior for θθθ b, π(b) is the prior
probability of the model b, the value of κ > 0 is a pre-specified real value and is
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crucial for our model (see Section 3 and 4 for more discussion). In general π(µµµ|θθθ b,b)
is not restricted to be a Gaussian linear model as is used for illustration in Section
2.1. The model in Equation (8) allows for many special cases. For example, in our
application B = 1, and we show that (8) can lead to improvements in a single model.

We introduce µ̂µµ into our notation for CPE(y, µ̂µµ(θθθ b,b)) when using CPE to es-
timate the overall prediction error, where µ̂µµ(θθθ b,b) is a generic predictor of µµµ (we
give our specification of µ̂µµ in (11)). We also introduce the possible functional de-
pendence on θθθ b and b into our notation for µ̂µµ(θθθ b,b). This strategy is inspired by
Yekutieli (2012)’s method incorporating an estimator into the support of the model.
His selection-adjusted Bayes inference method involves truncating the support of the
data. Our method differs because it involves truncating the support based on CPE. The
CPE(y, µ̂µµ(θθθ b,b)) is directly incorporated into the model through I{CPE(y, µ̂µµ(θθθ b,b))<
κ}, and hence, does not have unaccounted for variability in Equation (8). Specifically,
we mean that the joint posterior distribution of our model is given by

f (µµµ,θθθ b,b|y,κ) (9)

=
f (y|µµµ,{σ2

i })π(µµµ|θθθb,b)π(θθθb|b)π(b)I{CPE(y, µ̂µµ(θθθb,b))< κ}
B
∑

q=1

∫ ∫
CPE(y,µ̂µµ(θθθq,q))<κ

f (y|µµµ,{σ2
i })π(µµµ|θθθq,q)π(θθθq|q)π(q)I{CPE(y, µ̂µµ(θθθq,q))< κ}dµµµdθθθq

,

for b = 1, . . . ,B, which does not treat CPE(y, µ̂µµ(θθθ b,b)) as a plug-in estimator (caus-
ing unaccounted for variability) but rather uses CPE to constrain the support of a
Bayesian hierarchical model. Equation (9) is well defined provided that κ is not

specified so small that the integral is equal to zero. More empirically motivated dis-
cussions on the choice of κ are given by Section 4 and 5.

To our knowledge, Yekutieli (2012) is the first to avoid the issue of unchecked
sampling variability by incorporating an estimator into the support of the model in
a Bayesian context (effectively changes the data generating mechanism). Yekutieli
(2012) uses this approach to adjust the posterior distribution for selecting a model,
which is different from our goal of using CPE to improve prediction in a Bayesian
hierarchical model. This general approach is not unique to our setting and has been
done in several different areas, including approximate methods for the likelihood
conditional on selection (Panigrahi et al., 2016), false discovery rates/multiple testing,
false coverage rates, and empirical Bayesian analysis (Benjamini, 2010; Benjamini
et al., 2009; Catelan et al., 2010; Zhao and Hwang, 2012; Bradley and Zong, 2021,
among others).

The joint posterior distribution in Equation (9) explicitly shows how we com-
bine BMA and classical model selection criteria to improve prediction of the BMA.
Specifically, a prior is placed on the model b, and the parameter space of this model is
constrained to a “good predictive set” by using I{CPE(y, µ̂µµ(θθθ b,b))< κ}. That is, for
example, I{CPE(y, µ̂µµ(θθθ b,b)) < κ} subsets the three models represented by circles
to the black region in Figure 1.
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3.2 Comparison to Untruncated Bayesian Hierarchical Models

A key point that motivates the truncated CPE model in (8) is that every proper
Bayesian hierarchical model can be interpreted as a type of truncated CPE model.
Specifically, one can augment any proper Bayesian hierarchical model, using the
technique introduced in Damien et al. (1999), so that the CPE is bounded above.
We formally state this result below in Theorem 1.

Theorem 1 Suppose π(y|µµµ,θθθ b,θθθ D,b)= f (y|µµµ,θθθ D)h(y,θθθ b,b), π(b)> 0, ∑b π(b)=
1, π(µµµ|θθθ b,b), π(θθθ D), and π(θθθ b|b) are proper densities, h(y,θθθ b,b) is a non-negative
real-valued function such that 0 <

∫
f (y|µµµ,θθθ D)h(y,θθθ b,b)dy < ∞, f (y|µµµ,θθθ D) is a

proper model with mean µµµ , and θθθ D is a generic finite dimensional real-valued pa-
rameter vector. Then, for u uniformly distributed on (0,1) and r = CPE(y,µ̂µµ)

2log( f (y|µµµ,θθθ D))
+1,

we have that the posterior distribution

π(µµµ,θθθ D,θθθ b,b|y) =
1

π(y)

∫ 1

0
π(µµµ,θθθ D,θθθ b,b,y|u)π(u)du,

where π(y) is the density for the marginal distribution of the data,

π(y,θθθ D,µµµ,θθθ b,b|u) (10)
= f (y|µµµ,θθθ D)

r
π(θθθ D)π(µµµ|θθθ b,b)π(θθθ b|b)π(b)I{CPE(y, µ̂µµ)< κ

∗}h(y,θθθ b,b),

and κ∗ =−2log(u).

Proo f : See Appendix B.
When h(y,θθθ b,b)≡ 1 then Equation (10) in Theorem 1 shows that any generic Bayesian
hierarchical model is a truncated CPE model, where the CPE is truncated above by
κ∗ in (10). That is, Equation (10) with h(y,θθθ b,b) ≡ 1 is directly analogous to the
truncated CPE model in (8).

Setting h(y,θθθ b,b) = I{CPE(y, µ̂µµ(θθθ b,b))< κ} in Theorem 1 implies that the pro-
posed truncated CPE model in (8) truncates the CPE above by min(κ∗,κ), since the
product

I{CPE(y, µ̂µµ(θθθb,b))< κ
∗}I{CPE(y, µ̂µµ(θθθb,b))< κ}= I{CPE(y, µ̂µµ(θθθb,b))< min(κ∗,κ)}.

Thus, one can interpret our truncated CPE model in (8) as a minor modification to
any proper Bayesian hierarchical model, where one replaces the implicit bound on
the CPE (i.e., κ∗) with min(κ∗,κ). Changing κ∗ to min(κ∗,κ) has two important
consequences. First, changing κ∗ (or h(y,θθθ b,b)≡ 1) to min(κ∗,κ) (or h(y,θθθ b,b) =
I(CPE(y, µ̂µµ(θθθ b,b)) < κ)) changes the data model from a normal distribution, for
example, to a type of truncated normal distribution. However, as shown in Theorem
1 the implied posterior for either choice of data model (truncated or untruncated)
stays the same (i.e., Equation (10) and (8) are analogous). Furthermore, changing the
distribution of the data is reasonable in our criterion-based setting, as we are allowing
for the possibility of model misspecification. Second, changing κ∗ to min(κ∗,κ) can
lead to smaller squared prediction error, which we discuss in detail in the subsequent
Section 3.3.
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3.3 Squared Prediction Error Properties

Constraining a Bayesian hierarchical model based on the CPE implicitly constrains
the unobserved ∑

n
i=1(µi− µ̂i)

2. To investigate this, consider the setting where the pre-
dictor µ̂µµ is specified to be the Best Linear Unbiased Prediction (BLUP) (Ravishanker
and Dey, 2020),

µ̂µµ(θθθ b,b) = m(θθθ b,b)+ΣΣΣ(θθθ b,b)ΣΣΣ−1
Y (θθθ b,b){y−m(θθθ b,b)} (11)

where m(θθθ b,b) is the mean of the process model π(µµµ|θθθ b,b), ΣΣΣ(θθθ b,b) is the pro-
cess model’s covariance, and ΣΣΣY (θθθ b,b) is the covariance of y from f (y|{σ2

i }), which
equals to

∫
f (y|µµµ,{σ2

i })π(µµµ|θθθ b,b)dµµµ . Notice π(µµµ|θθθ b,b) is not necessarily restricted
to be a linear model as is used for illustration in Section 2.1. The i-th component of
µ̂µµ(θθθ b,b) is denoted with µ̂µµ i(θθθ b,b). The CPE for this specification of µ̂µµ is computed
using µ̂µµ(θθθ b,b) as follows (Efron, 2004):

CPE(y, µ̂µµ(θθθ b,b)) = {y− µ̂µµ(θθθ b,b)}′{y− µ̂µµ(θθθ b,b)}+2trace{ΣΣΣΣΣΣ
−1
Y },

where the penalty term is referred to as the effective degrees of freedom (Hodges,
2013). Then the following result shows that κ can be chosen in a manner that leads
to smaller squared prediction error.

Theorem 2 Assume y|µµµ(t),{σ2
i }∼N(µµµ(t),D), where D= diag(σ2

1 , . . . ,σ
2
n ), the true

unobserved mean µµµ(t) = (µ
(t)
1 , . . . ,µ

(t)
n )′. Let µ̂µµ tc(κ) = (µ̂1,tc(κ), ..., µ̂n,tc(κ))

′ be the
element-wise posterior median of µ̂µµ using the model in (9). That is, let µ̂i,tc(κ) be the
value such that

0.5 =
∫

µ̂i,tc

−∞

π(µ̂i|yyy,κ)dµ̂i, (12)

where π(µ̂i|yyy,κ) = ∑
B
b=1

∫
R π(θθθ b,b|y,κ)dθθθ b,π(θθθ b,b|yyy,κ) =

∫
f (µµµ,θθθ b,b|y,κ)dµµµ ,

and R = {(θθθ b,b) : µ̂i = µ̂i(θθθ b,b)}. Then,

E
{ n

∑
i=1

[µ
(t)
i − µ̂i,tc(κ)]

2
}
< E

{ n

∑
i=1

(µ
(t)
i − µ̂i,m)

2
}
, (13)

where µ̂i,m is a generic real-valued predictor of µ
(t)
i , the expectation is taken with

respect to y|µµµ(t),{σ2
i }, and κ = E{∑

n
i=1(µ

(t)
i − µ̂i,m)

2}+∑
n
i=1 σ2

i . We assume this
choice of κ produces a model in (9) that is proper.

Proo f : See Appendix B.
Theorem 2 shows that µ̂µµ tc(κ) improves the unobserved squared prediction er-

ror of any predictor {µ̂i,m} given the conditions in Theorem 2. For example, µ̂µµ can
arise from a standard Bayesian mixed effects model, and {µ̂i,m} may be the predic-
tor from a Bayesian hierarchical model (possibly with smaller squared error than µ̂µµ).
Hence, our final predictor µ̂µµ tc(κ) modifies the posterior distribution for an arguably
simple predictor µ̂µµ (through truncation) to have smaller squared error than a possibly
more complicated {µ̂i,m}. Theorem 2 is extremely general because no assumptions
are placed on the true unobserved µµµ(t) to obtain improvements in squared error (i.e.,
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(13)). That is, a semi-parametric assumption (i.e., y|µµµ(t),{σ2
i } ∼ N(µµµ(t),D)), is all

that is needed for (13) to hold. We say the assumption y|µµµ(t),{σ2
i } ∼ N(µµµ(t),D),

is semi-parametric because no parametric assumptions are placed on µµµ(t) in Theo-
rem 2. This perspective follows the same strategy/philosophy of the semi-parametric
conditional AIC literature (e.g., Vaida and Blanchard, 2005, for an early reference).
The conditional Gaussian assumption is both standard and reasonable in Bayesian
statistics and will likely continue to be a reasonable assumption since data are often
recorded as averages and the central limit theorem can be applied. The current land-
scape of complex Bayesian hierarchical models including multivariate spatial data,
multiscale spatial data (e.g., see our Section 5 for example), gradients, Dirichlet pro-
cess mixture model, data fusion/assimilation, the analysis of high dimensional data,
and other areas have been developed under a similar Gaussian assumption (e.g., see
Gelfand and Schliep, 2016, for a thorough review). Finally, unlike other Bayesian
strategies using CPE (i.e., see the plug-in strategies in Section 2.1), our approach is
unaffected by sampling variability of CPE. That is, (13) holds even through CPE has
sampling variability.

Also, Theorem 2 shows that, on average, our model is restricted to a good predic-
tive performing set, where “good predictive performance” is defined as CPE(y, µ̂µµ)<
E{∑

n
i=1(µ

(t)
i − µ̂i,m)

2}+∑
n
i=1 σ2

i . This result cannot be directly used in practice since
for the term, E{∑

n
i=1(µ

(t)
i − µ̂i,m)

2}+∑
n
i=1 σ2

i , the expectation is taken with respect
to f (y|µµµ(t),{σ2

i }) and the true model for µµµ(t) is assumed unknown. By choosing
κ , we implicitly choose {µ̂i,m} in our framework. However, Theorem 2 does sug-
gest a choice of κ exists that can lead to good predictive results. As a result, in
practice several values of κ are considered, where small values would imply a bet-
ter prediction error. However, one should keep in mind the admissibility of the set
{CPE[y, µ̂µµ(θθθ b,b)]< κ} when choosing small values of κ (e.g., κ = 0 would be inad-
missible). Of course, the value of κ can not be chosen to be so small that one concen-
trates on a set with zero posterior mass. More explicitly, κ > inf(y,θb,b)∈δ{CPE(y,θb,b)},
where δ is the joint support of the data and all parameters of the unconstrained
model. As a simple degenerate example, consider Y | p ∼ Bernoulli(p), p̂ = (0.5+
Y )/(0.5+2),π(p = 0.6) = 0.5, and π(p = 0.2) = 1/2. Then CPE(Y = 1, p̂) = 1.88,
and CPE(Y = 0, p̂) = 3.79. If κ < 1.88, our approach will fail in this degenerate
example. One should also be concerned when κ is too large. In the BMA setting,
the median model is known to be optimal from a predictive standpoint (Barbieri and
Berger, 2004; Farcomeni, 2010), and hence, if κ is large enough that the CPE of the
median model is contained in the support then there would be no need to enforce a
constraint.

Equation (13) in Theorem 2 allows one the flexibility to consider several assump-
tions on π(µµµ|θθθ b,b). For example, one can consider a random process/function repre-
sentation. A random process/function is different from a random vector, albeit clearly
related. A random process/function is different from a random vector, albeit clearly
related. A random process µ(s) defines a random vector (µ(s1), . . . ,µ(sn))

′ for any
given collection of locations s j ∈ IRd , j = 1, . . . ,n. To state that our approach can
be interpreted from a random process/function perspective one needs to define how
the locations arise (i.e., the spatial domain and intensity function). This is a standard
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consideration in Kriging and optimal prediction, for example, see Huang and Chen
(2007, cf. Theorem 4), where they assume locations are observed at random in an
open subset of the real numbers when using a CPE for model selection in spatial
statistics. See Appendix C for more details.

3.4 An Interpretation of the Constrained Posterior Distribution Assuming the
Unconstrained Bayesian Hierarchical Model

The constrained Bayesian hierarchical model is non-traditional, and thus, it would
be useful to give an interpretation assuming the traditional (unconstrained) Bayesian
model is true. That is, suppose the data generating mechanism is the following,

y | µµµ,{σ
2
i } ∼ N(µµµ,D), (14)

and suppose we assume the following prior distribution

π(µµµ,θθθ b,b) = π(µµµ | θθθ b,b)π(θθθ b | b)π(b), (15)

similar to Equation (8), where we now remove the truncation. Suppose we “choose
to observe” the event I{CPE(y, µ̂µµ(θθθ b,b)) < κ} = 1 in addition to y. The event is
an unconventional observation since it can not be observed in practice. That is, we
can not simultaneously observe y,θθθ b and b to ensure I{CPE(y, µ̂µµ(θθθ b,b))< κ}= 1.
However, the event I{CPE(y, µ̂µµ(θθθ b,b)) < κ} = 1 can be treated as an observation
in a Bayesian analysis in practice. That is, in a Bayesian analysis one can use Bayes
rule to derive the distribution of parameters given the data. In the same manner, the
unconstrained model in (14) and(15) can be used to derive the conditional distribu-
tion f (µµµ,θθθ b,b | y, I{CPE(y, µ̂µµ(θθθ b,b))< κ}= 1), which treats both y and the event
I{CPE(y, µ̂µµ(θθθ b,b)) < κ} = 1 as observed since both are given. That is, when as-
suming the unconstrained Bayesian hierarchical model in (14) and (15), we obtain
the following expression

f (µµµ,θθθ b,b | y, I{CPE(y, µ̂µµ(θθθ b,b))< κ}= 1)

=
f (y|µµµ,{σ2

i })π(µµµ|θθθb,b)π(θθθb|b)π(b)I{CPE(y, µ̂µµ(θθθb,b))< κ}
B
∑

q=1

∫ ∫
f (y|µµµ,{σ2

i })π(µµµ|θθθq,q)π(θθθq|q)π(q)I{CPE(y, µ̂µµ(θθθq,q))< κ}dµµµdθθθq

.

(16)

Since f (µµµ,θθθ b,b | y, I{CPE(y, µ̂µµ(θθθ b,b))< κ}= 1)= f (µµµ,θθθ b,b,y, I{CPE(y, µ̂µµ(θθθ b,b))<
κ}= 1)/ f (y, I{CPE(y, µ̂µµ(θθθ b,b))< κ}= 1), f (µµµ,θθθ b,b,y, I{CPE(y, µ̂µµ(θθθ b,b))< κ}=
1) = f (I{CPE(y, µ̂µµ(θθθ b,b))< κ}= 1 | y,µµµ,θθθ b,b) f (y | µµµ,{σ2

i })π(µµµ,θθθ b,b), and the
data model f (I{CPE(y, µ̂µµ(θθθ b,b))< κ}= 1 | y,µµµ,θθθ b,b) = I{CPE(y, µ̂µµ(θθθ b,b))< κ}
assuming the traditional unconstrained Bayesian model in (14) and (15).

Notice the right-hand-side of (16) is the same as (9). Theorem 2 shows that if
we “choose to observe” this additional unconventional datum I{CPE(y, µ̂µµ(θθθ b,b))<
κ} = 1 (i.e., use the unconstrained model in (14) and (15) to produce (16)) we can
improve predictions. Since Theorem 2 is specific to prediction, the scientific utility
of using f (µµµ,θθθ b,b | y, I{CPE(y, µ̂µµ(θθθ b,b)) < κ} = 1) instead of f (µµµ,θθθ b,b | y) is
restricted to prediction.
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4 Simulation Study: Improving the Predictive Performance of a BMA

In this section, we perform an “empirical simulation study.” By this, we mean the
data generating mechanism is calibrated towards the dataset. This strategy is done in
an effort to produce a realistic simulated dataset that differs from the model we fit.
This aids in producing realistic simulated data and assessing departures from model
assumptions. Thus, we generate data from the following statistical model:

y ∼ N(L,σ2In), (17)

where In is an n×n identify matrix and n = 112.
Let L = (L1,L2, ...,Ln)

′ be an n-dimensional dataset (www.biostat.umn.edu/
~brad/data2.html, ) consisting of the log thickness of radioactive materials at each
of n = 112 sites contained within the Radioactive Waste Management Complex re-
gion associated with the Idaho National Engineering and Environmental Laboratory.
We use covariates A-B Elevation, and Surf Elevation. The value of σ2 is chosen in
a way that controls the signal to noise ratio (SNR). Specifically, we choose SNR and

solve for σ2 in SNR = 1
111

112
∑

i=1
(Li− L̄)2/σ2, where L̄ = 1

112

112
∑

i=1
Li. We give our choices

for SNR when describing our analysis of variance (ANOVA) later in this section.
The model we fit to the simulated data is product of the following distributions:

Data Model: y|µµµ,θθθ b,b ∼ N(µµµ,σ2In)I{CPE[y, µ̂µµ(θθθ b,b)]< κ}
Process Model: µµµ|θθθ b,b,∼ N(Xβββ ,C(φ(b),τ2))

Parameter Model 1: βββ ∼ N(0p,10Ip) (18)

Parameter Model 2: τ
2 ∼ IG(1,0.01)

Parameter Model 3: π(b) =
1
6

; b = 1, . . . ,6

where φ(1) = 10,φ(2) = 15, . . . ,φ(6) = 35, IG(·) is the inverse gamma distribution,
X is a n× p matrix, p= 3 since we take the intercept and the aforementioned 2 covari-
ates into consideration, and βββ are the associated coefficients. The (i, j)-th element of
n×n matrix C(φ(b),τ2) is specified as τ2exp(−φ(b)||si−s j||), σ2 > 0 is assumed as
a known value, ||si − s j|| is the Euclidean distance between the i-th and j-th location,
0n is a n-dimensional zero vector, and θθθ b ≡ (βββ ′,τ2)′. In Appendix D, we derive the
full-conditional distributions associated with this model. In terms of implementation,
each iteration of this Gibbs sampler is not any more complex than standard Gibbs
sampling. However, what changes is that the number of iterations increases as our
truncation on CPE leads one to an additional rejection step.

We consider two crucial factors that influence µ̂µµ of them and specify their levels
for an analysis of variance (ANOVA) as follows: SNR with 3 levels, SNR = 3,5,10;
the values for κ are set equal to the d-th quantile of the set {CPE[y, µ̂µµ(θθθ [1]

b ,b[1])], . . .

,CPE[y, µ̂µµ(θθθ [G]
b ,b[G])]} for levels d = 0.1,0.5,0.9, where θθθ

[i]
b , b[i] are the i-th Markov

Chain Monte Carlo (MCMC) replicate for θθθ b and b respectively, and the CPE from
the untruncated model is CPE[y, µ̂µµ(θθθ b,b)]; G is the length of the MCMC. We sim-
ulate 100 independent replicates of the data vector y and implement our model as

www.biostat.umn.edu/~brad/data2.html
www.biostat.umn.edu/~brad/data2.html
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Table 2: Two-way ANOVA table. The degrees of freedom (DF), sum of squares error
(Sum Sq), mean squared error (Mean Sq), F statistics, and P-value are listed. We
include two main effects, SNR and d, and the interaction between SNR and d.

DF Sum Sq Mean Sq F value Pr(>F)
SNR 2 1.4417 0.72085 44.1791 < 2.2×10−16

d 2 1.8038 0.90192 55.2765 < 2.2×10−16

SNR:d 4 0.3221 0.08052 4.9348 0.0006138
Residuals 891 14.5380 0.01632

well as BMA, both of which are computed using a Gibbs sampler (see Appendix D).
We evaluate the models using the sum of squared residuals, and we define as “Re-
sponse” in our ANOVA, whose form is ∑

n
i=1(µi − µ̂i,tc)

2 −∑
n
i=1(µi − µ̂i,m)

2. Notice
that this Response can be estimated using the CPE. That is, CPE[y, µ̂µµ tc(θθθ b,b)]−
CPE[y, µ̂µµ(θθθ b,b)] is unbiased for our “Response.” We use an MCMC with the length
of 12,000 and a burn-in of 2,000 and use trace plots to assess convergence visually
for a single replicate of the simulated y.

We analyze the effect of the aforementioned factors SNR and Quantile d on the
Response by using an ANOVA with 100 independent replicates of the vector y per
factor level combination. From Table 2, we can see that the main effects and the
interaction between them are highly significant. To visualize the main effects and the
interaction, we use boxplots and an interaction plot. In Figure 3, we see that as SNR
increases, the boxplot for the Response shows less variability, but is centered below
zero. Negative values suggest that the truncated model surpasses BMA in terms of
squared errors. As Quantile d increases, the boxplot for the Response is less negative
for d = 0.1 and 0.9 than it is when d = 0.5. From Figure 4, it can be seen that the
interaction is due to the fact that the slope of the line for d = 0.5 is much steeper than
the lines for d = 0.1 and 0.9. Also, the behavior when d = 0.9 is very similar to that
of d = 0.1. When SNR = 3, BMA does not outperform our method when d = 0.1 and
0.9 and does considerably worse when d = 0.5 in practice. These results conform to
intuition. When d approaches 1, there should be no difference between the truncated
model and BMA. Following our discussion after Theorem 2, small values of κ may
imply inadmissibility, which violates the condition of our theorem.

Based on above results, the values of Response (i.e., ∑
n
i=1(µi− µ̂i,tc)

2<∑
n
i=1(µi−

µ̂i,m)
2 ) for d = 0.5 are uniformly less than zero. Thus, we suggest using d = 0.5 in

practice. When d is 0.1 or 0.9, the values of Response are less than zero, but still less
preferable when it comes to sums of squared error as when d = 0.5. In practice, one
might use an information criterion to choose κ . Therefore, our method does as appear
to improve the prediction accuracy with respect to the sum of squared residuals.
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Fig. 3: Main effect plots of SNR (left panel) and d-th Quantile (right panel). The
horizontal red solid line in each panel stands for Response equal to zero. Response
that are negative indicates the truncated model outperforms BMA when it comes to
squared errors.

Fig. 4: Plot of average of the Response by SNR and d. Response that are negative
implies the truncated model outperforms BMA regarding squared errors. The blue
solid line indicates d = 0.9, the green solid line indicates d = 0.5, and the orange
solid line indicates d = 0.1.

5 Real Data Analysis

The American Community Survey (ACS) is an ongoing survey conducted by the U.S.
Census Bureau annually and published on the website (https://www.census.gov/
programs-surveys/acs). The purpose of ACS is to provide up-to-date estimates
that are related to society and economy for a variety of geographies to the U.S. pub-
lic. The U.S. Census Bureau launched the ACS in 2005. Since then, the public-use
ACS estimates are released yearly on the basis of 1-year, 3-year, or 5-year periods.

https://www.census.gov/programs-surveys/acs
https://www.census.gov/programs-surveys/acs
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However, 3-year estimates, which were available for areas of greater than 20,000
population, were terminated in 2013. The 1-year estimates are accessible for areas of
at least 65,000 people, while no population restriction is put for the 5-year estimates.

Motivated by an application of the ACS data, Bradley et al. (2015) proposed the
Spatio-Temporal Change of Support (STCOS) methodology. This novel methodol-
ogy was developed based on the fact that one may be interested in getting estimates
on spatial and/or temporal domains, which differ from the observed domains. The
model results in a mixed effects model, where the coefficients of the random ef-
fects are structured to account for the multiple space/time scales. This is an example
where the Gaussian mixed effects model is used to analyze the data but there is no
completing method in the literature (i.e. B = 1). Thus, this application provides a
good example of how our methodology can be used to obtain gains in prediction
even though B = 1. To illustrate our approach, we adopt the STCOS analysis of in-
come data from Raim et al. (2021). This dataset consists of all released 1-year, 3-year,
and 5-year period ACS estimates of median household income over various geogra-
phies, such as counties and census block groups, within Missouri. The ACS estimates
consist of point estimates, margins of errors (MOE), and variance estimates. For this
application, we adapt our methodology to the STCOS model applied to ACS me-
dian household income data recorded over the 2017 5-year period at the block-group
level to predict median household income in four neighborhoods of Boone County,
Missouri.

The truncated STCOS as a Bayesian hierarchical model can be written as

Data Model: Yi | µi,θθθ ,σ
2 ∼ N

(
µi,σ

2) I{∑
i

CPEi[Yi, µ̂i(θθθ)]< κ}

Process Models: µi | βββ ,ηηη ,σ2
ξ
∼ N

(
XXX ′

iβββ +ψψψ
′
iηηη ,σ2

ξ

)
, ηηη | σ

2
K ∼ N

(
0,σ2

KK
)

Parameter Model 1: βββ | σ
2
µ ∼ N

(
000,σ2

µ III
)

Parameter Model 2: σ
2
µ ∼ IG

(
aµ = 1,bµ = 2

)
Parameter Model 3: σ

2
K ∼ IG(aK = 1,bK = 2)

Parameter Model 4: σ
2
ξ
∼ IG

(
aξ = 1,bξ = 2

)
, (19)

where XXX i =
(
|Ai
⋂

B1|
|Ai| , . . . ,

|Ai
⋂

BnB |
|Ai|

)′
, ψψψ i =(ψ1(Ai, ℓi, ti), . . . ,ψr(Ai, ℓi, ti))

′, B1, . . . ,BnB

are fine-scale grid points over the spatial domain, θθθ = (βββ ,σ2
ξ
,σ2

K)
′, | A | is denoted

as the total surface area for areal unit A, Ai is the areal unit associate with the i-th ob-
servation, ℓi is the period associated the i-th observation, ti is the time point associate
with the i-th observation, I(·) is the indicator function, the matrix K is a structure co-
variance matrix based on a random walk (details about this structure can be found in
the paper of Raim et al. 2021 for this example with 421 observations and 5 bisquare
basis functions) and is multiplied with a free parameter σ2

K to fully define the covari-
ance of the random coefficient ηηη , aµ = aK = aξ = 1, and bµ = bK = bξ = 2. We have
dropped b in our notion for µ̂i(θθθ b,b) because B = 1, where B is the number of can-
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didate models. Set ψψψ j(A, ℓ, t) =
1

ℓ|A|

t

∑
j=t−ℓ+1

∫
A

g j(sss, j)dsss, where g j(sss, j) represents a

collection of spatio-temporal bisquare basis functions.

The STCOS model is a highly structured Bayesian mixed effect model for Gaus-
sian data, where the random effect coefficients are different spatio-temporal scales,
and the covariates are the percentage of overlapping regions between the data’s spa-
tial support and a fine-scale grid. The purpose of this application is to show that
our methodology can benefit prediction accuracy for a given Bayesian hierarchical
model.
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Fig. 5: WAIC from the truncated model with κ set equal to the d-th quantile of CPE
from the untruncated model. Smaller value of WAIC suggest better out-of-sample
predictive accuracy.

To assess out-of-sample performance, we use the Watanabe–Akaike information
criterion (WAIC). In Figure 5, WAIC of the truncated model versus κ set equal to
different d-th quantile of CPE from the model in (19) without any truncation. The
sequence of d is chosen between 0.1 and 1 by 0.01. WAIC decreases as d increases,
then increases as d increases, and is fairly constant between 0.5 to 1. When κ is
chosen to be the 0.17 quantile, WAIC reaches the smallest value. Therefore, we set
κ to be the 0.17 quantile of CPE from (19) without any truncation for inference.
When comparing Table 3 with Table 4, we see that predictions are fairly similar, but
the measures of variability, in general, are larger for the untruncated model. Thus,
this comparison, along with the WAIC values in Figure 5, suggests that we may be
outperforming the “untruncated CPE model.”
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Table 3: Untruncated model-based estimates of 2017 median household income in
four neighbors of Boone County: Central, East, North, and Paris

Region Posterior Mean Posterior Standard Deviation
Central 27047.33 1895.125
East 43765.68 2453.249
North 43483.82 2854.626
Paris63Corridor 19563.84 3910.908

6 Discussion

We propose a new approach that improves the prediction of a Bayesian hierarchical
model using a criterion for model selection. Our new approach uses covariance penal-
ized error (CPE) (Efron, 2004; Efron and Hastie, 2016; Tibshirani and Rosset, 2018;
Holbrook et al., 2020) as a model selection criterion, and selects a subset of param-
eter space based on the values of CPE. Explicitly, the subset is formed by truncating
the joint support of the data and the parameter space to only include small values of
CPE. We show in Theorem 2 that our choice of truncation can lead to improvements
in squared error. We provide additional motivation for this truncated CPE model by
showing that every Bayesian model for normal data can be interpreted as a type of
truncated CPE model in Theorem 1. We provide additional developments in terms of
the implication of the data generating mechanism.

The simulation study shows that when we truncate half the MCMC replicates,
after a burin-in, we consistently obtain smaller squared prediction error than the orig-
inal Bayesian model over three different signal-to-noise specifications. The results
also show that if you truncate too much or too little, we see little to no improvement
on the basis of the squared errors. Hence, the selection of κ appears to be an impor-
tant choice, and in our real data example, we suggest using WAIC. One limitation of
our method is that it is not clear how much of a decrease is expected in the predic-
tion error that can be achieved when using our method. But, empirically speaking,
there are clear improvements (roughly 23 percents decrease) to the out-of-sample er-
ror according to the WAIC in the real data study, where there are noticeable changes
to the estimate of the variability of the predictions. The real data study of ACS pe-
riod estimates demonstrates that prediction accuracy improvements can be achieved
when applying our methodology to a single model. Moreover, the added computa-
tional effort to implement our method is minimal, since one merely needs to add an
accept-reject step to a standard MCMC.

Section 5 demonstrates the wide-applicability of our method, where we are able to
improve predictions of a modern multi-scale spatio-temporal model, namely, STCOS
from (Bradley et al., 2015). However, our improved predictions come at a cost to
computation, which limits the type of models that one might choose to constrain. We
require one to compute the BLUP predictor in (11) for every iteration of the Gibbs
sampler for the unconstrained STCOS, and samples are then rejected according to our
constraint on the CPE. Consequently, the BLUP predictor needs to be computation-
ally feasible for our constrained modeling approach to be computationally feasible,
which is not always true for every multi-level spatio-temporal model. However, this
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is true for STCOS, where r (< n) is chosen to be small, which makes the BLUP
is computationally feasible. Thus, there is a natural computational limitation on our
method in big data settings, where our constrained model requires the BLUP to be
computationally feasible.

Table 4: Truncated model-based estimates of 2017 median household income in four
neighbors of Boone County: Central, East, North, and Paris

Region Posterior Mean Posterior Standard Deviation
Central 27005.93 1719.283
East 43688.09 2442.975
North 43243.18 2753.046
Paris63Corridor 19686.20 3941.126

The term κ is an unknown parameter, and its specification can lead to either im-
provements or no changes. There are other approaches to estimate κ . For example,
best subset selection is a traditional method that sets κ̂ equal to the arg-min of an
information criterion for parameters that take discrete values (Lee et al., 2018). On
the other hand, a natural extension of our method is to place a prior distribution on κ ,
as our use of the WAIC to estimate κ has unchecked variability not accounted for in
the model. The theoretical results in this article may provide some guidance. For ex-
ample, κ∗ in Theorem 1 follows a chi-square distribution, and the original Bayesian
model is a re-scaled (to the power r) truncated CPE model with a chi-square prior
placed on the upper bound. Thus, priors on κ that imply a stochastic ordering relative
to a chi-square distribution is an interesting topic of future research.

A non-Bayesian version of our method can be applied by optimizing a constrained
loss function. For example, one can maximize the likelihood subject to the constraint
that the CPE is smaller than κ . Similar constrained optimization has been done in
the past, however not in the context of out-out-sample criteria (e.g.,support vector
regression, Smola and Schölkopf 2004, constrains on the in-sample absolute error).
Our truncated CPE model can be generalized beyond normal data and squared error,
using the CPE based on the q-class of error measures as described in Efron (1986,
2004). In fact, our Theorem 1 applies to this situation. We provided empirical results
in Appendix E that suggest improved predictions using the truncated CPE model for
dichotomous data. However, our motivating Theorem 2 does not apply to the non-
squared error q-class. In non-Gaussian setting, the CPE requires a bootstrap/plug-in
estimate that bias the CPE, and Theorem 2 requires the CPE to be unbiased for the
true squared error as is the case for our conditional Guardian setting. We treat this as
a topic of future research work.
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chosen to be the 20-th quantile of the CPE for the BMA model.

Frequency
TCPE < OW < BMA 414
TCPE < BMA < OW 116
BMA< TCPE < OW 32
BMA< OW < TCPE 51
OW< BMA < TCPE 175
OW< TCPE < BMA 212
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Appendix A A Review of Occam’s Window

The intuition on modifying the support of a BMA is similar to that of Occam’s Win-
dow (Madigan and Raftery, 1994; Onorante and Raftery, 2016). Occam’s Window
proceeds as a typical forward or backward stepwise algorithm with the added rules
that a model is eliminated if its performance is greatly less than the best model among
candidate models, and if a model is rejected then so are all of its sub-models. Con-
sequently, at each step of the procedure, added constraints are imposed to narrow
the search through competing models. In Table 5, we see the Occam’s Window pro-
cedure tends to outperform traditional BMA in terms of sums of squared prediction
error. This conforms to intuition as Occam’s window has a more informative step-
wise search through the space of potential covariates. In Section 3, we use this gen-
eral strategy that Occam’s Window uses in each step of a stepwise algorithm (i.e.,
constraining the space based on criteria), and apply it specifically to the problem of
improving the prediction of a given Bayesian hierarchical model.

Appendix B Technical Results

Proof of Thoerem 1

By definition π(µµµ,θθθ D,θθθ b,b|y)= 1
π(y) f (y | µµµ,θθθ D)π(θθθ D)π(µµµ|θθθ b,b)π(θθθ b|b)π(b)h(y,θθθ b,b),

and when writing f (y | µµµ,θθθ D)= f (y | µµµ,θθθ D)
r f (y | µµµ,θθθ D)

1−r, we have π(µµµ,θθθ D,θθθ b,b|y)=
1

π(y) f (y | µµµ,θθθ D)
r f (y | µµµ,θθθ D)

1−rπ(θθθ D)π(µµµ|θθθ b,b)π(θθθ b|b)π(b)h(y,θθθ b,b). Introduc-
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ing u in a similar manner to Damien et al. (1999) we have,

π(µµµ,θθθ D,θθθ b,b|y)

=
1

π(y)

∫ 1

0
f (y | µµµ,θθθ D)

r
π(θθθ D)π(µµµ|θθθ b,b)π(θθθ b|b)π(b)I{u < f (y | µµµ,θθθ D)

1−r}h(y,θθθ b,b)du.

Within the expression of the indicator take the log and multiply by -2 to obtain.

π(µµµ,θθθ D,θθθ b,b|y)

=
1

π(y)

∫
f (y | µµµ,θθθ D)

r
π(θθθ D)π(µµµ|θθθ b,b)π(θθθ b|b)π(b)I{−2(1− r)log f (y | µµµ,θθθ D)

<−2log(u)}h(y,θθθ b,b)du.

Then, upon substituting the expression r = CPE(y,µ̂µµ)
2log f (y|µµµ,θθθ D)

+1, we obtain the result.

Proof of Thoerem 2

By construction CPE(y, µ̂µµ tc(κ))< κ , we have CPE(y, µ̂µµ tc(κ))<E{∑
n
i=1(µ

(t)
i − µ̂i,m)

2}+
∑

n
i=1 σ2

i for κ = E{∑
n
i=1(µ

(t)
i − µ̂i,m)

2}+∑
n
i=1 σ2

i . By Stein’s lemma (Stein, 1981),
upon taking the expected value, we obtain the result.

Appendix C Corollary 1

Theorem 2 can be extended from a multivariate-vector to a random process. To do
this, we introduce notation that treats Y , µ and ε as processes: Y (s) = µ(s)+ ε(s),
where Y (s) is the observation at location s ∈ D ⊂ IRd, ε(s) is normally distributed
with mean zero, constant variance σ2 > 0, and ε(si) is independent of ε(s j) for i ̸= j
and si,s j ∈ D. Let y = (Y (s1), ...,Y (sn))

′, µµµ = (µ(s1), ...,µ(sn))
′, where s1, ...,sn are

known locations associated with the observed data. Then, the model in (8) stays the
same. For s0 ∈ D, define the Kriging Predictor (Cressie, 1993) as µ̂(s0) = µ(s0)+
cov
(
µ(s0),y

)
ΣΣΣ

−1
Y {y−µµµ}.

Corollary 1 Let D be a spatial domain and f (·) : D → IR be an intensity function.
Suppose we observe normal data Y (si) with true real-valued mean µ(t)(si) and vari-
ance σ2 > 0 for i = 1, . . . ,n. The notation µ̂tc(s) represents the posterior median of
the Kriging predictor µ̂(s) and µ̂m(s) be a generic real-value predictor of µ(t)(s).
Let s1, . . . ,sn be independent and identically distributed according to f (s). Then, as
n → ∞, ∫

D

E{µ
(t)(s)− µ̂tc(s,κ)}2 f (s)ds <

∫
D

E{µ
(t)(s)− µ̂m(s)}2 f (s)ds, (20)

where κ = ∑
n
i=1 E{µ(t)(si)− µ̂m(si)}2 +nσ2. We are assuming that this choice of κ

leads to a proper model in (9).

Proo f : 1
n ∑

n
i=1 E{µ(t)(si)− µ̂tc(si,κ)}2 < 1

n ∑
n
i=1 E{µ(t)(si)− µ̂m(si)}2 , which fol-

lows from Theorem 2 that. Then apply the law large numbers (Billingsley, 2013) as
n approaches infinity to obtain the result.
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Appendix D Derivation of full-conditional distributions for Gibbs Sampling

Let C(φ(b),τ2)= τ2H(φ(b)), and let µµµ =Xβββ +w, where w|τ2,φ(b)∼N(000,C(φ(b),τ2)).
In our Gibbs sampler, we update βββ , and w, which implicitly updates µµµ . We provide
the derivations of the full-conditional distributions associated with the model in (18)
with a list as follows.

– Full-conditional distribution for w:

f (w|·)

∝exp
{
− (y−Xβββ −w)′(y−Xβββ −w)

2σ2 − w′H(φ(b))−1w
2τ2

}
I{CPE[y, µ̂µµ(θθθ b,b)]< κ}

∝exp
{
−w′w
2σ2 +

2w′(y−Xβββ )

2σ2 − w′H(φ(b))−1w
2τ2

}
I{CPE[y, µ̂µµ(θθθ b,b)]< κ}

∝exp

−w′
{

1
σ2 In +

1
τ2 H(φ(b))−1

}
w

2
+

2w′(y−Xβββ )

2σ2

 I{CPE[y, µ̂µµ(θθθ b,b)]< κ}

∝exp

{
−w′ΣΣΣ−1

w w
2

+
2w′ΣΣΣ−1

w ΣΣΣ w(y−Xβββ )

2σ2

}
I{CPE[y, µ̂µµ(θθθ b,b)]< κ}

∝exp

(
−w′ΣΣΣ−1

w w
2

+
2w′ΣΣΣ−1

w µµµw
2

)
I{CPE[y, µ̂µµ(θθθ b,b)]< κ}

∝N(µµµw,ΣΣΣ w)I{CPE[y, µ̂µµ(θθθ b,b)]< κ},

where µµµw = ΣΣΣw(y−Xβββ )
σ2 ,ΣΣΣ−1

w = 1
σ2 In +

1
τ2 H(φ(b))−1.

– Full-conditional distribution for βββ :

f (βββ |·) ∝ exp
{
−(y−Xβββ −w)′(y−Xβββ −w)

2σ2 − βββ
′
βββ

20

}
I{CPE[y, µ̂µµ(θθθ b,b)]< κ}

∝ exp

{
−βββ

′
ΣΣΣ

−1
β

βββ

2
+

2βββ
′
ΣΣΣ

−1
β

ΣΣΣ β X′(y−w)

2σ2

}
I{CPE[y, µ̂µµ(θθθ b,b)]< κ}

∝ N(µµµβ ,ΣΣΣ β )I{CPE[y, µ̂µµ(θθθ b,b)]< κ},

where µµµβ =
ΣΣΣβ X′(y−w)

σ2 ,ΣΣΣ−1
β

= X′X
σ2 + 1

10 Ip.
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– Full-conditional distribution for τ2:

f (τ2|·) ∝
I{CPE[y, µ̂µµ(θθθ b,b)]< κ}

|τ2H(φ(b))|1/2 exp

−w′
{

1
τ2 H(φ(b))−1

}
w

2
− 0.01

τ2

( 1
τ2

)1/2

∝ exp

[
− 1

2 w′H(φ(b))−1w−0.01
τ2

](
1
τ2

)n/2+2

I{CPE[y, µ̂µµ(θθθ b,b)]< κ}

∝ IG(0.5n+1,0.01+0.5w′H(φ(b))−1w)I{CPE[y, µ̂µµ(θθθ b,b)]< κ},

where |H(φ(b))| is the determinant of H(φ(b)).

– Full-conditional distribution for b:

f (b|·) =
exp
[
−w′H(φ(b))−1w

2τ2

]
|H(φ(b))|−1/2

∑
6
q=1 exp

[
−w′H(φ(q))−1w

2τ2

]
|H(φ(q))|−1/2

; b = 1, . . . ,6.

Appendix E A Small Preliminary Simulation Study for Bernoulli Observations

We conduct a simulation study for Bernoulli observations and illustrate that the trun-
cated CPE model can be applied to non-Gaussian settings. We generate n independent
observations Yi from Bernoulli(µi ≡ 0.25) and use the following Bayesian hierarchi-
cal model to fit the simulated binary data vector y = (Y1, . . . ,Yn)

′:

Data Model: y|µµµ,a ∼ Ber(µµµ)I{CPE[y, µ̂µµ(a)]< κ}
Parameter Model: µµµ ∼ Beta(a,1) (21)
Hyper Parameter Model: a ∼ Gamma(shape = 2, rate = 0.1),

where µµµ =(µ1, . . . ,µn)
′; Ber(·), Beta(·, ·), and Gamma(·, ·) are shorthand for Bernoulli,

beta, and gamma distribution, respectively. From Efron (2004), the formula for CPE
in this setting is

CPE[y, µ̂µµ] =
n

∑
i=1

{−2Yilog(µ̂i)−2(1−Yi)log(1− µ̂i)+2cov{log[µ̂i/(1− µ̂i)],Yi}.

We let µ̂i(a) =
a+∑

n
i=1 Yi

a+1+n , which is the posterior predictive mean for a given value of
a.

We consider three settings, where κ are set to be d-th Quantile (d = 0.1, 0.5,
and 0.9) of the set {CPE[y, µ̂µµ(a[1])], . . . , µ̂µµ(a[2,000])]}. The i-th Markov Chain Monte
Carlo (MCMC) replicate for a is a[i] and CPE[y, µ̂µµ(a)] is the CPE calculated from the
untruncated model. We apply our model and the untruncated model by using a Gibbs
sampler with length of 2,000 and burin-in of 1,000. The true prediction error in this
setting is,

n

∑
i=1

[
−2log(1− µ̂i)−2µilog(

µ̂i

1− µ̂i
)
]
,
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which can be estimated by CPE[y, µ̂µµ] as described by Efron (2004).
To analyze the effect of Quantile d, we simulate 100 independent replicates of the

data vector y. We plot

n

∑
i=1

[−2log(1− µ̂i,tc)−2µilog(
µ̂i,tc

1− µ̂i,tc
)]−

n

∑
i=1

[−2log(1− µ̂i)−2µilog(
µ̂i

1− µ̂i
)].

Here negative values suggest that the truncated CPE model has better predictive per-
formance than the untruncated model. In Figure 6, as Quantile d decreases, the box-
plot for the variable BerResponse shows more variability but is more centered neg-
ative. In this simulation, we show that when we use binomial deviance as the error
measure for Bernoulli data and select κ appropriately, our method can improve the
prediction in a simple setting.
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Fig. 6: The boxplot of BerResponse for d-th Quantile. The horizontal red solid line
stands for BerResponse equal to zero. BerResponse that are negative indicates the
truncated model outperforms the untruncated model in terms of binomial deviance.
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