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Abstract

“Discrepancy error covariance” refers to the cross-covariance between the signal and the noise
terms in an additive model. Traditionally, the signal and noise are assumed independent in ad-
ditive models to avoid issues with confounding and non-identifiable expressions in the marginal
likelihood. This assumption is made even in settings where it is known that discrepancy error co-
variances exists. Recently, a model has been proposed that allows for discrepancy error covariances
that avoids issues with confounding. These models introduce a telescoping sum within the addi-
tive model’s expression such that the latent process of interest is dependent on other terms of the
telescoping sum that are included as part of the noise. However, when evaluating the telescoping
sum one obtains signal and noise terms that are independent, which avoids such concerns with con-
founding. The current model that allows for discrepancy error covariances only includes two terms
in this telescoping sum, and consequently, a natural extension is to include more terms within the
telescoping sum, which leads to a deep architecture to the statistical model. We refer to this model
as the “deep hierarchical generalized transformation” (DHGT) model due to a relationship with
the recently introduced hierarchical generalized transformation model. We show that the DHGT is
extremely efficient to implement, and can allow for exact Bayesian implementation without the use
of MCMC (i.e., we can sample directly from its posterior distribution). We illustrate the DHGT
using a simulation and an analysis of the 2017 Haypress wildfire downloaded from the Geospatial
Multi-Agency Coordination (GeoMAC) database. These illustrations show that discrepancy errors
that arise from common model misspecifications in the spatio-temporal setting can be leveraged to
improve prediction.
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1 Introduction

Bayesian models for dependent data often assume that the signal and noise terms in additive mod-

els are independent of each other (Cressie, 1993; Gelman et al., 2013; Banerjee et al., 2015; Cressie

and Wikle, 2011). However, this assumption is often false. For example, survey statistics estimates

are often modified based on disclosure limitations, and can create a type of signal-to-noise depen-

dence (e.g., see Quick et al., 2013). Survey errors such as nonresponse bias (Groves et al., 2001)

are often a consequence of the value of the signal. Model misspecification can also induce sig-

nal to noise dependence, since the fitted misspecified model is close to the latent process, but the

misspecification introduces an unaccounted for error (Bradley et al., 2020). Additionally, several

spatial sampling designs naturally lead to discrepancy errors (Wikle and Royle, 2005; Holan and

Wikle, 2012).

There are very few models that allow for known discrepancy error covariances in a formal

statistical framework. In time-series, there are models that include “leverage effects” in stochastic

volatility models (Black, 1976), which assume the volatility to be correlated with the latent process

in a particular way. Part of the difficulty with assuming signal-to-noise cross-dependence in a

traditional spatio-temporal additive model is that confounding between the marginal signal and

noise covariances occur in a hierarchical model (Bradley et al., 2020).

More recently Bradley et al. (2020) developed an approach that makes use of “process aug-

mentation,” which is similar to but different from data augmentation (e.g., see Tanner and Wong,

1987; Albert and Chib, 1993; Wakefield and Walker, 1999; Wolpert and Ickstadt, 1998, among

others). In particular, a process is introduced into the additive model expression, and cancels out

through the use of a telescoping sum to avoid issues with confounding. That is, denote data with

Z, two independent random variables with Y (1) and Y (2), and an additive mean-zero independent
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error term ε . Then, assume

Z = Y (2)+δ

δ = Y (1)−Y (2)+ ε, (1)

where notice Z = Y (1) + ε , which is the more traditional independent signal-and-noise additive

model, since Y (2) cancels out through the telescoping sum in the above expression. However,

cov(Y (2),δ ) = cov(Y (2),Y (1))− var(Y (2)), which is not necessarily zero and hence the signal Y (2)

is correlated with the noise term δ . Thus, one simultaneously obtains a model for Z that avoids

confounding between a signal and a noise term (i.e., between Y (1) and ε), however there is an

implied cross covariance between the signal Y (2) and the error δ . Bradley et al. (2020) show that

a Bayesian implementation of this process augmentation strategy for discrepancy error modeling

is fairly straightforward. First, one samples from the traditional posterior distribution for Y (1),

and then samples Y (2) from the distribution for Y (2)|Y (1). This general strategy has been extended

to allow for possibly non-Gaussian data in Bradley (2022b) and Nandy et al. (2022). Here, Y (1)

and Y (2) can be considered as successive transformations, both of which are aimed at estimating

the latent process for the data; hence, this model is referred to as the hierarchical generalized

transformation (HGT) model.

The interpretation of the augmented processes Y (1) and Y (2) as successive transformations is

similar to the successive transformations used in a neural network, where neural networks refer to

the transformations as activation functions (Bishop et al., 1995). One main difference between the

transformations in an HGT (i.e., Y (1) and Y (2)) and the activation functions in a neural network

is that HGT treats Y (1) and Y (2) as unknown, whereas activation functions are prespecified and

known (e.g., the sigmoid activation function).

Consider Figure 1 for a naive example implementation of an HGT, and let [Y (1)|Z] be the

bracket notation for the distribution of Y (1) given Z. In the left panel of Figure 1, we provide the
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Figure 1: The blue line represents the piecewise polynomial test function, the orange lines indicate
the posterior mean, and the transparent region represent 95% credible intervals. The x-axis indi-
cates location s. The left panel displays the posterior mean from [Y (1)|Z], which is chosen to overfit
the data. The right panel displays the posterior mean from [Y (2)|Y (1)], which uses Haar wavelets.
See Section 4.1 for more details. There are discontinuities in the credible interval in the top right
panel due to the use of Haar wavelets.

posterior mean of Y (1) from a posterior distribution [Y (1)|Z] that perfectly interpolates the data.

Then in the right panel, we provide the posterior mean of Y (2) from a second layer posterior distri-

bution [Y (2)|Y (1)], which makes use of Haar wavelet basis functions (Novikov et al., 2005). In the

HGT, posterior samples from the first layer augmented process Y (1) are used as “new transformed

data” in the second layer posterior distribution [Y (2)|Y (1)]. Inferences on the latent process are

then based on summaries of Y (2) (i.e., Y (1) is marginalized). The implicit assumption here is that

samples of Y (1) from [Y (1)|Z] are reasonable to use in place of Z, since samples from the over-

fitted [Y (1)|Z] are close to Z. That is, we assume that summaries of Y (1) are a reasonable “initial

estimate” of the latent process, which motivates its use as new transformed data for inference on

Y (2). Then samples of Y (2) are averaged to produce a“second estimate” of the latent process. We

say that Figure 1 is a “naive” example, since the posterior mean of Y (2) clearly has problematic

discontinuities that arise from using too few Haar wavelets; however, despite this misspecification,

the posterior mean of Y (2) more precisely predicts the true mean than the initial overfitted Y (1) in

terms of mean squared prediction error.

The first major contribution of this article is to propose a natural extension of the HGT by
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increasing the terms in the telescoping sum in the expression of the discrepancy error. This deep

representation will lead to J processes Y (1), . . . ,Y (J), that will allow one to incorporate several

modeling strategies into a single joint statistical model. For example, one might consider a Y (3)

that smooths across the discontinuities in the second panel of Figure 1. Another illustrative ex-

ample is in the context of modeling wildfire spread, where one could use a spatial basis function

expansion model for the logit probability of a fire (e.g.,see Cressie and Johannesson, 2008; Wikle,

2010; Paciorek, 2007, among several others). However, this basis function expansion does not

allow for cellular automata (CA) dynamics that are implicit in wildfire spread (Hooten and Wikle,

2010; Quaife and Speer, 2021; Currie et al., 2019; Achtemeier, 2003; Albinet et al., 1986; Duarte,

1997; Wolfram, 1983). By the phrase “CA dynamics,” we are referring to the auto-regressive

terms in statistical CA models (Hooten and Wikle, 2010) that dictate how the probability of a fire

changes over time. Using process augmentation one can incorporate CA dynamics directly into the

Bayesian model. This “deep” HGT (DHGT) framework is particularly exciting because it allows

one to sequentially consider several models within a single well defined uncertainty quantification

Bayesian framework. Moreover, combining these models in this way, as opposed to other existing

strategies (e.g., see Bayesian model averaging Raftery et al., 1997), allows one to leverage co-

variances in the discrepancy error (e.g., Y (1)−Y (2)) to improve prediction (e.g., see Bradley et al.,

2020, for a result that states if signal-to-noise dependence is present then incorporating discrepancy

error covariances leads to smaller mean squared prediction error).

To understand why the DHGT can aid with prediction, it is important to notice that the aug-

mented processes Y (1), . . . ,Y (J−1) are all assumed misspecified, however, Y ( j) is specified to be

from a “more realistic” model than Y ( j−1). By “more realistic” we mean that the assumptions

of the j-th Layer Bayesian hierarchical model (BHM) is known to be more realistic in practice

than the assumptions of the ( j−1)-th Layer BHM. Hence, as one sequentially samples from these

posterior distributions, one is sequentially sampling from progressively more realistic models. For

example, in our application of predicting wildfires, we define the model for Y (1) to assume inde-
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pendence and perfectly fit the data in its posterior mean. Since the first layer overfits the data, the

original features of the data are not completely smoothed across, and hence, may be reasonable to

use as data in the second layer BHM. The model for Y (2) assumes a type of spatio-temporal basis

function expansion that ignores temporal dynamics. Although the BHM for Y (2) is misspecified

(since temporal dynamics are ignored), spatio-temporal basis function expansion models are ar-

guably more realistic than an overfitted model that assumes the data is independent. Finally the

model for Y (3) is specified in a way that incorporates both spatio-temporal basis functions and tem-

poral dynamics, and hence is a more realistic model than Y (2), which ignores temporal dynamics.

In this article, we focus on two types of misspecification that arise in spatial and spatio-temporal

applications: (1) when too few basis functions are used to model spatial dependencies (Stein,

2014), and (2) ignoring spatio-temporal dynamics (Wikle and Hooten, 2010).

Our second main contribution is that the implied sampler from the Bayesian hierarchical model

can be implemented in a dynamic programming fashion. That is, sampling the current layer Y ( j)

only requires knowledge on the previous layer Y ( j−1), but is conditionally independent of Y (k) for

k≤ j−2. This is a similar property that makes back-propagation in traditional feed-forward neural

networks particularly efficient (e.g., see Bishop et al., 1995, for a standard reference). The current

deep Bayesian models more often require sophisticated Markov Chain Monte Carlo (MCMC)

techniques such as Hamiltonian Monte Carlo (HMC; Neal, 2011) that requires all previous lay-

ers Y (1), . . . ,Y ( j−1) at each update (i.e., they do not allow for dynamic programming) (e.g., see

Papamarkou et al., 2022, for a complete discussion).

Our third main contribution is to introduce how Bayesian implementation can be done exactly

without the use of Markov chain Monte Carlo (MCMC) under a certain specification of the DHGT.

In particular, MCMC can be avoided when specifying the first augmented process to be a particular

conjugate saturated model (as done in Bradley, 2022b) and the remaining augmented processes

specified to be a Gaussian mixed effects model with improper priors. This specification leads to an

exact sampler through conjugacy (Diaconis and Ylvisaker, 1979). There has been a renewed effort
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in the literature to develop general models that allow one to sample directly from the posterior

distribution without the use of MCMC. For example, see Gong (2019) who produce an exact

procedure to preserve differential privacy, Zhang et al. (2021) for a particular Gaussian model,

Bradley (2022a) for an exact procedure using conjugate models, and van Erven and Szabó (2021)

for exact Bayesian inference in variable selection. Considering that there has been a boom in

approximate Bayesian methodologies that do not require MCMC (e.g., see, Rue et al. (2009),

Wainwright et al. (2008), and Katzfuss and Guinness (2021)), exact methods represent an important

key future direction of Bayesian analysis.

The remainder of the paper is organized as follows. In Section 2, we introduce the notion

of deep discrepancy error covariances and we present the DHGT. Section 3, we describe exact

Bayesian inference without the use of MCMC under a particular specification of the DHGT, we

refer to as the conjugate DHGT. In Section 4, we illustrate how to leverage discrepancy errors

induced by model misspecification. We consider two common misspecifications in spatio-temporal

models. In particular, in a simulation study we illustrate the methodology and high predictive

performance of our method when discrepancy errors are introduced from a poor specification of

basis functions. In an analysis of the 2017 Haypress wildfire, we illustrate the use of discrepancy

errors introduced by misspecifying a dynamic model. We end with a discussion in Section 5. For

convenience of exposition, proofs of technical results and additional details are provided in the

Appendix.

2 Methodology

In Section 2.1, we introduce the notion of deep discrepancy errors. Then in Section 2.2, we intro-

duce the Bayesian hierarchical model (BHM) that allows for deep discrepancy errors, which we

call DHGT. Section 2.3 discusses the posterior distribution for the DHGT.
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2.1 Deep Discrepancy Errors for Spatio-Temporal Data

We introduce space and time into the notation. Let s ∈ D ⊂ Rd , where D is a spatial domain

and t = 1, . . . ,T indexes discrete time. Consider augmenting with J possibly dependent random

processes Y (1), . . . ,Y (J) as follows:

g
[
E
{

Zt(s)|Y (1)
t (s), . . . ,Y (J)

t (s)
}]

= Y (J)
t (s)+δt(s)

δt(s) =
J−1

∑
j=1

{
Y ( j)

t (s)−Y ( j+1)
t (s)

}
; s ∈ D, t = 1, . . . ,T, (2)

where g is an appropriate link function used in generalized linear models (GLM; McCullagh and

Nelder, 1989). We have that g
[
E
{

Zt(s)|Y (1)
t (s), . . . ,Y (J)

t (s)
}]

= Y (1)
t (s), which, similar to (1),

arises due to the telescoping nature of δt(s). For prediction of the latent process, we use summaries

of Y (J)
t (·), which effectively filters out the error δt(·). The main benefit of introducing augmented

processes is that the cross-covariance between the signal and the noise is not necessarily zero, and

hence, can be leveraged to improve predictions. That is,

cov
{

Y (J)
t (s),δt(u)

}
=

J−1

∑
j=1

cov
{

Y (J)
t (s),Y ( j)

t (u)−Y ( j+1)
t (u)

}
=

J−1

∑
j=1

cov
{

Y (J)
t (s),Y ( j)

t (u)
}
− cov

{
Y (J)

t (s),Y ( j+1)
t (u)

}
= cov

{
Y (J)

t (s),Y (1)
t (u)−Y (J)

t (u)
}

; s,u ∈ D,

so that the covariance between the “signal” Y (J)
t (s) and the “noise” δt(u), is equivalent to the

covariance between the signal Y (J)
t (s) and the error Y (1)

t (u)−Y (J)
t (u), which is not necessarily zero.

Recall, the augmented processes Y (1), . . . ,Y (J−1) are interpreted as misspecified, however, Y ( j+1)

is specified to be from a more realistic model than Y ( j). From this perspective the discrepancy

error Y ( j)−Y ( j+1) represents model misspecification error.
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Bradley et al. (2020) showed that if discrepancy error covariances are known to be present

then one can obtain more precise predictions (i.e., smaller mean squared prediction error). This is

not surprising since in general, it is well-known that incorporating a known covariance (e.g., see

Cressie, 1993, for examples in spatial statistics) into a statistical model can lead to more precise

predictions (i.e., they can be leveraged). The main difference between this model for cross signal

to noise covariance and that in Bradley et al. (2020) is that we can leverage additional covariances

when J > 2. In particular, we assume cov
{

Y ( j)
t (s),Y ( j−1)

t (u)
}

to be not necessarily zero for each

j and J > 2.

2.2 Hierarchical Models with Deep Discrepancy Errors: Deep Hierarchical

Generalized Transformation Models

Let h, p and π represent generic probability mass functions (pmf) or probability density functions

(pdf). Recall that a traditional BHM can be written as the product of a “data model,” “process

model,” and “parameter model” sometimes written as (e.g., see Cressie and Wikle, 2011, for a

standard reference),

Data Model : h(z|yyy(1),θθθ (1))

Process Model : p(yyy(1)|θθθ (1))

Parameter Model : π(θθθ (1)), (3)

where the n-dimensional vector of observed data z = {Zt(sit) : i = 1, . . . ,nt , t = 1, . . .T}′, sit ∈D is

the i-th observation at time t, the n-dimensional vector y( j) = {Y ( j)
1 (sit) : i = 1, . . . ,nt , t = 1, . . .T}′

is the vectorized augmented process in (2), nt is the number of observed data at time t, T is the

number of observed time points, n = ∑
T
t=1 nt , and θθθ

( j) ∈ Ω j is a generic real-valued vector, for

j = 1, . . . ,J. Note that one can allow elements of θθθ
(1) to represent random effects, in which case

(3) can easily be modified to include those elements in the process model. Now, consider what we
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call the “deep hierarchical generalized transformation (DHGT) model,” which is defined to be the

product of the following:

First Layer BHM : h(z|yyy(1),θθθ (1))p(yyy(1)|θθθ (1))π(θθθ (1))

Second Layer BHM : h(yyy(1),θθθ (1)|yyy(2),θθθ (2))p(yyy(2)|θθθ (2))π(θθθ (2))
1

m2(yyy(1),θθθ (1))

Third Layer BHM : h(yyy(2),θθθ (2)|yyy(3),θθθ (3))p(yyy(3)|θθθ (3))π(θθθ (3))
1

m3(yyy(2),θθθ (2))
,

...

J−th Layer BHM : h(yyy(J−1),θθθ (J−1)|yyy(J),θθθ (J))p(yyy(J)|θθθ (J))π(θθθ (J))
1

mJ(yyy(J−1),θθθ (J−1))
, (4)

where we assume each pdf/pmf is proper, and the term

m j(yyy( j−1),θθθ ( j−1)) =
∫ ∫

h(yyy( j−1),θθθ ( j−1)|yyy( j),θθθ ( j))p(yyy( j)|θθθ ( j))π(θθθ ( j))dyyy( j)dθθθ
( j), j ≥ 2,

guarantees that the joint statistical model is proper; this can be verified by successively integrating

out yyy(J),θθθ (J), . . . ,yyy(2),θθθ (2),yyy(1), θθθ
(1), and z in the expression of the joint distribution formed by

(4). The recently proposed HGT is a special case of the DHGT in (4), which occurs when J = 2.

Thus, for J (> 2), the model in (4) is considered “deep.” The term yyy(1) is on the right-hand-side of

the “|” symbol in the First Layer BHM, and yyy(1) is on the left-hand-side of the “|” symbol in the

Second Layer BHM. In general, the only way we can change the order of conditional probabilities

is through Bayes rule (e.g., see Gelman et al., 2013, among others). Hence, the need for the terms

1
m j(yyy( j−1),θθθ ( j−1))

, which can be interpreted as applications of “Bayes rules,” however nested within a

single hierarchical model.
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Consider the j-th Layer BHM with j ≥ 2 for discussion,

j−th Layer Transformed Data Model :
h(yyy( j−1),θθθ ( j−1)|yyy( j),θθθ ( j))

m j(yyy( j−1),θθθ ( j−1))

j−th Layer Process Model : p(yyy( j)|θθθ ( j))

j−th Layer Parameter Model : π(θθθ ( j)). (5)

Notice that in (5), yyy( j−1) and θθθ
( j−1) are treated as (transformed) data for the processes and parame-

ters yyy( j) and θθθ
( j). Thus, within the DHGT’s layers we sequentially treat (yyy(1),θθθ (1)), . . . ,(yyy(J−1),θθθ (J−1))

as new transformed data. Depending on the specifications of (5), cov(yyy( j),yyy( j−1)) is not necessarily

zero, which allows one to leverage these covariances to possibly improve predictions (in terms of

mean squared prediction error) provided they are present.

2.3 The Posterior Distribution for the Deep Hierarchical Generalized Trans-

formation Model

The posterior distribution for the DHGT model in (4) is given by (see the Appendix for details),

f (yyy(1),θθθ (1), . . . ,yyy(J),θθθ (J)|z) = f (yyy(1),θθθ (1)|z)

{
J

∏
j=2

f (yyy( j),θθθ ( j)|yyy( j−1),θθθ ( j−1))

}
. (6)

where f (yyy( j),θθθ ( j)|yyy( j−1),θθθ ( j−1)) is the j-th Layer BHM’s posterior distribution,

f (yyy( j),θθθ ( j)|yyy( j−1),θθθ ( j−1)) =
h(yyy( j−1),θθθ ( j−1)|yyy( j),θθθ ( j))p(yyy( j)|θθθ ( j))π(θθθ ( j))∫ ∫

h(yyy( j−1),θθθ ( j−1)|yyy( j),θθθ ( j))p(yyy( j)|θθθ ( j))π(θθθ ( j))dyyy( j)dθθθ
( j)

.

The distribution f (yyy( j),θθθ ( j)|yyy( j−1),θθθ ( j−1)) is the posterior distribution of the j-th layer BHM that

treats yyy( j−1) and θθθ
( j−1) as new transformed data. Again, this shows that within the DHGT’s layers

we sequentially treat (yyy(1),θθθ (1)), . . . ,(yyy(J−1),θθθ (J−1)) as new transformed data for the next layer.

This leads to an extremely efficient (relative to other deep BHMs) dynamic sampling procedure,
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Algorithm 1 Step-by-step procedure for sampling from the DHGT posterior distribution given in
Equation (6).

1: Set b = 1 and initialize yyy( j), θθθ
( j), and independent posterior predictive samples yyy( j)

new with
yyy( j)[0], θθθ

( j)[0], and yyy( j)[0]
new .

2: Sample yyy(1)[b] and θθθ
(1)[b] from f (yyy(1),θθθ (1)|z).

3: Sample yyy( j)[b] and θθθ
( j)[b] from f (yyy( j),θθθ ( j)|yyy( j−1)[b],θθθ ( j−1)[b]) for j = 2, . . . ,J, which is the

posterior distribution associated with the j-th BHM that treats yyy( j−1)[b] and θθθ
( j−1)[b] as new

transformed data.
4: Generate new posterior predictive samples of the mTP-dimensional vector yyy( j)[b]

new from
h(·|yyy( j)[b],θθθ ( j)[b]), which is defined in the j-th Layer BHM. The elements of yyy( j)[b]

new are stacked
over times t = 1 . . . ,TP, TP is the number of time points that are predicted, and the set DP ⊂ D
consists of a collection of m≥ n pre-specified prediction locations.

5: Set b = b+1.
6: Repeat Steps 2−6 until b = B for a prespecified value of B.

which is presented in Algorithm 1.

Statistical inference is based on summaries of yyy(J)new. The posterior mean (and variance) of yyy(J)new

is estimated by averaging (and taking the variance) across b in Step 4, and are used for prediction

of the latent process. Using the posterior mean of yyy(J)new for inference effectively filters out the

discrepancy error δt(s) introduced in Equation (2). The steps in Algorithm 1 suggests that the

summaries of the process Y ( j)
t (s) represents our “ j-th estimate” of the value of the latent process,

and samples of Y ( j)
t (s) will be used as new transformed data at the ( j + 1)-th level BHM. By

marginalizing across Y ( j)
t (s) for 1 ≤ j < J, we are deciding to keep our final J-th estimate for

inference.

Traditional neural network models use dynamic computing (e.g., the output from one layer

is passed as input to the next in backward propagation). This sampler has a similar propagation

pattern (i.e., the output is used as input in Steps 2 and 3), which arises by the expression of the

posterior distribution in (6). Many deep Bayesian models don’t have this dynamic computing

feature, and thus, can be difficult to implement (e.g., see Papamarkou et al., 2022, for a complete

discussion).
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Another important feature of the Algorithm in Steps 1 − 6 is that the normalizing con-

stants 1
m j(yyy( j−1),θθθ ( j−1))

never needs to be computed. This is simply because in Equation (6),

each layer in the hierarchy draws from a conditional distribution that we will have in closed

form. Thus, valid posterior inference using the DHGT only requires the conditional distributions

f (yyy( j),θθθ ( j)|yyy( j−1),θθθ ( j−1)) to be well-defined densities or masses.

3 Conjugate DHGT: Exact Bayesian Inference without MCMC

In this section, we provide guidance on a specific class of DHGTs one might consider in practice

in more complicated spatio-temporal settings. We refer to this class of DHGTs as the “conjugate

DHGT”. A motivating feature of the conjugate DHGT is that one can sample directly from the ex-

act posterior distribution in (6) without the use of MCMC. The strategy to obtain an exact sampler

is to develop the use of conjugate priors (Diaconis and Ylvisaker, 1979), which can be sampled

from directly, in this DHGT framework. The formal specification of the levels of the conjugate

DHGT are provided in Sections 3.1 and 3.2.

3.1 First Layer Bayesian Hierarchical Model: Univariate Conjugate Models

The first goal of this section is to define h(z|yyy(1),θθθ (1)), p(yyy(1)|θθθ (1)), and π(θθθ (1)) in the First Layer

BHM of the conjugate DHGT. The second goal of this section is to provide the First Layer posterior

distribution f (yyy(1),θθθ (1)|z) for the conjugate DHGT.

The specification of the First Layer BHM is motivated by the goodness-of-fit of the DHGT. In

general, one should assess the goodness-of-fit of a model, and determine if the model oversmooths

(i.e., model outputs are too far from the data) or overfits (i.e., model outputs are too close to the

data) (Gelman, 1996). This is important when considering the procedure to implement a DHGT,

which involves J layers of nested smoothing. Thus, to avoid oversmoothing, we specify Y (1)

to overfit the data Z so that samples from [Y (2)|Y (1)] smooths overfitted values (as opposed to
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smoothing smoothed values).

We use the same specification of the First Layer BHM used in the HGT introduced by Bradley

(2022b). Here, the First Layer BHM is specified to be a saturated model (i.e., there as many

parameters as observations). A useful by-product of this perspective is that the conjugate saturated

model can be implemented without the use of MCMC. Let Zt(s)|Y (1)
t (s) be distributed from the

exponential family,

h(Zt(s)|Y (1)
t (s),bt(s))= exp

{
Zt(s)Y

(1)
t (s)−bt(s)ψ(Y (1)

t (s))+ c(Zt(s))
}

; Zt(s)∈Z ,Y (1)
t (s)∈Y ,

(7)

where Zt(s) is conditionally independent of all other processes and parameters given Y (1)
t (s) and

bt(s), Z is the support of the data, Y is the support of the process, bt(s) is a real-valued parameter,

both ψ(·) and c(·) are known real-valued functions, and bt(s)ψ(·) is the log partition function

(Lehmann and Casella, 1998). One can also allow for the case where bt(·) is unknown (e.g.,

Gaussian with unknown variance). When the univariate conjugate prior distribution exists it is

equal to (Diaconis and Ylvisaker, 1979),

p(Y (1)
t (s)|α,κ) = N (α,κ) exp

{
αY (1)

t (s)−κψ(Y (1)
t (s))

}
; Y (1)

t (s) ∈ Y ,
α

κ
∈Z ,κ > 0, (8)

where N (α,κ) is a normalizing constant, and we use the shorthand Y (1)
t (s)|α,κ ∼ DY(α,κ).

The DY distribution is straightforward to simulate from when applied to Gaussian, Poisson, and

binomial data, and simply involves simulating from a univariate Gaussian, the log of a univariate

gamma, and the logit of a univariate beta distribution, respectively (e.g.,see Bradley, 2022b, for

more details). From (7) and (8), we have the posterior is given by

Y (1)
t (s)|Zt(s),α,κ ∼ DY(α +Zt(s),κ +bt(s)) ,

where α and κ are chosen to overfit the data to avoid over-smoothing yyy(J) when sampling from the
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posterior distribution in Equation (6). Summaries from the First Layer BHM can be interpreted as

crude initial estimates, which will be improved (in terms of prediction error) by the next augmented

process Y (2).

Let

βββ
(1)|σ2

β
∼ N(000`,σ2

β
I`)

ηηη
(1)|σ2

η ∼ N(000r,σ
2
ηIr)

ξξξ
(1)|σ2

ξ
∼ N(000n,σ

2
ξ

In), (9)

where σ2
β

, σ2
η , and σ2

ξ
are given an inverse-gamma priors, 000` is a `-dimensional vector of zeros,

I` is a `× ` identity matrix, and θθθ
(1) = (βββ (1)′,ηηη(1)′,ξξξ (1)′

)′. One can consider different prior and

process model specifications for θθθ
(1) provided that the specifications are proper.

To sample from the First Layer BHM’s posterior distribution (i.e., f (y(1),θθθ (1)|z)) we sample

Y (1)
t (sit) independently (and directly) from the conjugate distribution DY(α +Zt(s),κ +bt(s)) and

sample θθθ
(1) from its distribution π(θθθ (1)). As described in Section 2.3, we marginalize across

Y (1)
t (s), . . . ,Y (J−1)

t (s), and inference on the latent process is done using summaries of Y (J)
t (s). This

is particularly important considering Y (1)
t (s) is saturated and will naturally overfit. In the Appendix,

we provide some additional technical details on the marginalized DHGT.

Spatio-temporal BHMs often assume Zt(s) is conditionally independent given Y (1)
t (s) and

Y (1)
t (s) is assumed correctly specified and dependent across space and time. Then, upon marginal-

izing Y (1)
t (s) we obtain data that is dependent over space and time (see Cressie and Wikle, 2011,

for a standard reference on this use of conditional independence). However, the process augmenta-

tion framework is different from a standard BHM because we include Y (1)
t (s), . . . ,Y (J)

t (s) for J > 1

with Y (1)
t (s), . . . ,Y (J−1)

t (s) assumed misspecified. To see how dependence is modeled in the data

consider the case where Zt(s) is normally distributed with ψ(Y (1)
t (s)) = Y (1)

t (s)2 and bt(s) = 1
2σ2

Z

with σ2
Z > 0. Let α = 0 and κ = 1

2σ2
Y

with σ2
Y > 0. It follows that that the b-th first layer posterior
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sample from f (Yt(s)|Z(1)
t (s),α,κ) is given by (Gelman et al., 2013),

Y (1)[b]
t (s) =

σ2
Y

σ2
Y +σ2

Z
Zt(s)+

(
σ2

Y σ2
Z

σ2
Y +σ2

Z

)1/2

ε
(1)[b]
Y , (10)

where ε
(1)[b]
Y is independently drawn from a standard normal distribution. As σ2

Z→ 0 then Y (1)[b]
t (s)

converges to Zt(s) almost surely. Thus, when σ2
Z ≈ 0 we have that Y (1)[b]

t (s) ≈ Zt(s) so that the

new transformed data is equivalent to original data in this limiting case. Thus, when σ2
Z ≈ 0 spatio-

temporal dependence of the data is effectively modeled in the second layer BHM. This is another

reason why overfitting in the first layer is particularly important.

3.2 Remaining Layer Bayesian Hierarchical Models: Spatio-Temporal Mixed

Effects Models

The first goal of this section is to define h(yyy( j−1),θθθ ( j−1)|yyy( j),θθθ ( j)), p(yyy( j)|θθθ ( j)), and π(θθθ ( j)) in the

j-th Layer BHM of the conjugate DHGT ( j ≥ 2). The second goal of this section is to provide the

j-th Layer posterior distribution h(yyy( j),θθθ ( j)|yyy( j−1),θθθ ( j−1)) for the conjugate DHGT.

Assume that (y( j−1)′,βββ ( j−1)′,ηηη( j−1)′,ξξξ ( j−1)′
)′ is new transformed data for (y( j)′,βββ ( j)′,ηηη( j)′,ξξξ ( j)′

)′

according to the following model

h(yyy( j−1),θθθ ( j−1)|yyy( j),θθθ ( j)) = Normal





yyy( j)

βββ
( j)

ηηη( j)

ξξξ
( j)


,σ2I2n+`+r


; j ≥ 2, (11)

where Normal(·, ·) is a shorthand for the normal distribution and θθθ
( j) = (ξξξ

( j)′
,βββ ( j)′,ηηη( j)′)′. Define

y( j) to be a spatio-temporal mixed effects model with large-scale, small-scale, and fine-scale terms
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(e.g., see Cressie and Wikle, 2011, among others) so that

yyy( j) = X( j)
βββ
( j)+G( j)

ηηη
( j)+ξξξ

( j)
, (12)

and p(y( j)|θθθ ( j)) = δ

{
yyy( j),

(
In X( j) G( j)

)
θθθ
( j)
}

, where X( j) be a n× ` matrix of covari-

ates, G( j) be a n× r matrix of spatio-temporal basis functions (Wikle, 2010), and δ is the Dirac

delta function. That is, δ

{
yyy( j),

(
In X( j) G( j)

)
θθθ
( j)
}

is equal to one when yyy( j) equals

( In X( j) G( j) )θθθ ( j) and is zero otherwise. Substituting (12) into (11) leads to,



yyy( j−1)

βββ
( j−1)

ηηη( j−1)

ξξξ
( j−1)


=



X( j)
βββ
( j)+G( j)

ηηη( j)+ξξξ
( j)

+ εεε
( j)
y

βββ
( j)+ εεε

( j)
β

ηηη( j)+ εεε
( j)
η

ξξξ
( j)

+ εεε
( j)
ξ



=



In X( j) G( j)

000p,n Ip 000p,r

000r,n 0r,p Ir

In 0n,p 0n,r


︸ ︷︷ ︸

H( j)


ξξξ
( j)

βββ
( j)

ηηη( j)


︸ ︷︷ ︸

θθθ
( j)

+



εεε
( j)
y

εεε
( j)
β

εεε
( j)
η

εεε
( j)
ξ


︸ ︷︷ ︸

εεε( j)

= H( j)
θθθ
( j)+ εεε

( j); j ≥ 2, (13)

which is simply a (structured) regression model with εεε( j) ∼ Normal(0002n+`+r,σ
2I2n+`+r). We

assume an improper “flat” model on θθθ
( j) (i.e., π(θθθ ( j)) = 1) in the j-th Layer BHM for j ≥ 2.

However, more informative priors can be used in the initial BHM to define the model for θθθ
(1) if

available (see Section 3.1).
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A natural limitation to the DHGT is that the marginal process model for y(J) (starting with the

joint distribution implied by (4)) consists of unknown integrals, and hence can not be interpreted

directly. See the Appendix for an expression for the marginal process model for y(J). However,

the improper model specification for j≥ 2 allows us to have a heuristic interpretation on a limiting

case. In particular, when σ2 goes to zero, Equation (12) shows that for each j ≥ 2, βββ
( j), ηηη( j), and

ξξξ
( j) is almost surely equal to βββ

( j−1), ηηη( j−1), and ξξξ
( j−1) in the limit, where recall βββ

(1), ηηη(1), and

ξξξ
(1) are given an interpretable and standard specifications in Section 3.1. Consequently, we choose

σ2 to be “small” fixed value.

Using a straightforward complete the squares argument we have that the j-th layer BHM’s

posterior distribution is given by,

f (θθθ ( j)|yyy( j−1),θθθ ( j−1)) = Normal


(H( j)′H( j))−1H( j)′



yyy( j−1)

βββ
( j−1)

ηηη( j−1)

ξξξ
( j−1)


,σ2(H( j)′H( j))−1


f (yyy( j)|θθθ ( j),yyy( j−1),θθθ ( j−1)) = δ

{
yyy( j),

(
In X( j) G( j)

)
θθθ
( j)
}
. (14)

It follows that the b-sample from the j-th layer BHM’s posterior distribution in (14) is given by

θθθ
( j)[b] = (H( j)′H( j))−1H( j)′





yyy( j−1)

βββ
( j−1)

ηηη( j−1)

ξξξ
( j−1)


+σεεε

[b]


,

y( j)[b] =

(
In X( j) G( j)

)
θθθ
( j)[b], (15)
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Figure 2: The blue line represents the piecewise polynomial test function, the orange lines indicate
the posterior mean, and the transparent region represent 95% credible intervals. The x-axis indi-
cates location s. The title indicates which model is being summarized. See Section 4.1 for more
details. There are discontinuities in the credible interval in the top right panel due to the use of
Haar wavelets.

where εεε [b] is a (2n+ `+ r)-dimensional random vector consisting of iid standard normal random

variables. The expression in (15) with σ = 0 is equivalent to the recently proposed Exact Posterior

Regression (EPR) from (Bradley, 2022a), which was derived analytically from a Bayesian gener-

alized linear mixed effects model on a single latent process. The results in Bradley (2022a) allow

one to compute (15) efficiently by only inverting `× ` matrices, r× r matrices and n×n diagonal

matrices. We make use of these matrix inversion formulas in Section 4.

4 Spatial and Spatio-Temporal Illustrations

In our illustrations, we induce discrepancy error through model misspecification (Bradley et al.,

2020), which we leverage to improve predictions. We focus on two potential model misspecifica-
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tions that arise in spatio-temporal statistics: in Section 4.1 we induce discrepancy error by choosing

too few basis functions to model spatial dependencies (Stein, 2014), and in Section 4.2 we induce

discrepancy error by ignoring spatio-temporal dynamics (Wikle and Hooten, 2010).

4.1 Simulations

We consider a standard test function to illustrate the predictive performance of various choices of

DHGT in Section 3.1. In particular, we use the “piecewise polynomial” test function from Nason

and Silverman (1994) computed using the R package wavethresh (Nason and Nason, 2016). We

assume the data is Gaussian distributed with mean given by the test function and variance that

implies a signal-to-noise ratio equal to ten. In this section, as an illustration, we create discrepancy

error by choosing too few basis functions. Low-rank basis function expansions can capture large

scale features, but there can be a rather large error (what we refer to as discrepancy error) between

the low-rank expansion and the actual process (Stein, 2014). The DHGT gives a way to explicitly

account for this error to improve predictions.

The First Layer BHM is given by the saturated conjugate model in Section 3.1, the Second

Layer BHM is defined as a mixed effects model in (3.2) with σ2 ≡ 0, X(2) a `= 4 matrix of Haar

wavelets, and G(2) a r = 4 matrix of Haar wavelets. Together X(2) and G(2) produce 8 coarse

Haar wavelet functions (Novikov et al., 2005). The third Layer BHM is specified with X(3) as an

n-dimensional vector of ones, and G(3) as an n×40 matrix of Gaussian radial basis functions. The

matrix G(3) is based on 20 equally spaced knots over 256 equally spaced points in [0,1] with a

bandwidth of 0.01 and another 20 equally space knots with a bandwidth 0.001.

The wavelets are purposely misspecified in the sense that we use only eight coarse Haar wavelet

functions (Novikov et al., 2005) in the Second Layer BHM. Typically, more wavelets would be

used, and hence a discrepancy error is likely present which can be leveraged to improve predictions

of Y (3). As an illustration see Figure 2, where n = 256 and note that this data can be interpreted
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as a one-dimensional spatial process with s = 1/256,2/256, . . . ,1, n = 256, and T = 1. Here, the

blue line represents the piecewise polynomial test function, the orange lines indicate the posterior

mean, and the transparent region represent 95% credible intervals. As we increase the value of

J in the subplots of Figure 2, we see that the estimates of the posterior mean are progressively

becoming smoother and closer to the true test function, and the credible intervals are becoming

successively smaller. The use of coarse Haar wavelets force a clear piece-wise constant pattern

at J = 2 in Figure 2, however, it follows the general trend of the true test function. In J = 3,

we smooth this piece-wise test function when J = 2 to obtain an estimate that is closer to the

true smooth test function in Figure 2. As a frame of reference we fit a single Gaussian BHM,

where the latent mean is modeled with a Gaussian radial basis function expansion implemented

via rstan (Arezooji, 2020). In Figure 2, we see that the DHGT with J = 1 and J = 2 are worse

than the traditional BHM implemented with rstan, however, the traditional BHM implemented

with rstan performs worse (visually when comparing the estimate to the truth) than the DHGT

with J = 3. Computationally, all three DHGTs are considerably faster than the traditional BHM for

this sample, where DHGT with J = 2 was computed in 0.18 seconds, DHGT J = 3 was computed

in 0.37 seconds, and the BHM implemented via rstan took 47.14 seconds.

In Table 1, we provide the average root mean squared error (RMSE) between the posterior

mean and the test function over 50 independent replicate datasets to see if these patterns are con-

sistent over multiple samples. We also provide the continuous rank probability score (CRPS) from

Gneiting et al. (2005). Here, we see DHGT with J = 3 is similar to the traditional BHM in terms of

average RMSE with an interval estimate for RMSE overlapping that of the traditional BHM. The

DHGT (J = 3) is better than the traditional BHM in terms of CRPS with interval estimates that

do not overlap. Computationally the DHGT with J = 3 is marginally slower than the DHGT with

J = 2 in a practical sense, and is considerably faster than the traditional BHM implemented with

rstan. Not only are the DHGT’s faster, but simulations from the posterior distribution are exact,

and do not have any of the computational overhead of MCMC. Hence, we obtain predictions with

20



Method Average MSE CI MSE CRPS CI CRPS Average CPU

DHGT (J = 1) 0.324 (0.319,0.28) 0.223 (0.221,0.225)

DHGT (J = 2) 0.236 (0.235,0.237) 0.129 (0.128,0.130) 0.216

DHGT (J = 3) 0.147 (0.144,0.149) 0.071 (0.069,0.073) 0.426

Stan 0.151 (0.148,0.154) 0.087 (0.084,0.090) 48.859

Table 1: Fifty independent replicate data sets were generated according to Section 4.1. The column
“RMSE” gives the RMSE between the posterior mean and test function, “CI MSE” displays the
average RMSE plus or minus two standard deviations. Similarly, the average CPU (in seconds) is
given. We do not give the CPU time for DHGT with J = 1 since it is in real-time. The continuous
rank probability score (CRPS) is computed as defined in Gneiting et al. (2005). The column “CI
CRPS” displays the average CRPS plus or minus two standard deviations across the simulated data
sets.

similar to better inferential performance as the traditional BHM (with J = 3), but is consistently

and considerably faster.

This illustration is useful for understanding when to use DHGT. In particular, each layer is

purposely misspecified to be increasingly smooth as j increases. Using eight wavelets gives a

quick crude approximation of the function in the Second Layer BHM, which is refined in the Third

Layer BHM. Thus, when it is computational difficult to incorporate the latent process/function’s

complexity in a single BHM, the DHGT can be used to successively refine the predictions (as seen

in the succession of panels in Figure 2).

4.2 Analysis of the 2017 Haypress Wildfire

The 2017 Haypress fire was the largest out of 19 fires in the 2017 Orleans Complex fire in Siskiyou

County California from July 2017 to January 2018 (e.g., see Yoo and Wikle, 2022, who analyzed

22 observed time points using a level-set model). This dataset was downloaded from the GeoMac

database (Group, 2019). There are T = 52 total time points, and each time point we observe an

image of the progressing perimeter of the wildfire. These images are discretized on a 100× 100
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grid leading to n = 520000. We let Zt(si) = 1 if the fire is burning at time t at the i-th grid cell si,

and Zt(si) = 0 if the fire is not burning at time t at the i-th grid cell si. Hence, the data is assumed

to be Bernoulli distributed. See the first row of Figure 3, for a plot of the data at two time points

t = 31 and t = 32. These two time points were chosen as there was a large jump in the perimeter

of the fire.

The First Layer BHM is given by the saturated conjugate model in Section 3.1, the Second

Layer BHM is defined as a mixed effects model in (3.2) with σ2 ≡ 0, X(1) a column vector with

all entries equal to one, and G(2) be a n× 27 matrix of bisquare basis functions (Cressie and

Johannesson, 2008) chosen using the R-package FRK (Zammit-Mangion and Cressie, 2021), with

one resolution, prune option set to 15, and sub-sampling option set to 20000. The Second Layer

BHM models the probability (on the logit scale) as a linear combination of a small set of bisquare

basis functions, which does not incorporate any time dynamics that are known to be present in an

evolving fire perimeter (e.g., see Hooten and Wikle, 2010; Quaife and Speer, 2021, among others).

The low-rank specification makes the Second Layer BHM computationally efficient, however, as

seen in Section 4, can be problematic. The lack of dynamic structure and low-rank specification

in the Second Layer BHM introduces a discrepancy error. Consequently, in the Third Layer BHM

we define a type of cellular automata (CA) that incorporates dynamic structure:

Y (2)
t (si) = Znew,t−1(si)β

(3)
1 +(1− INi,t−1)β

(3)
2 +(1−Znew,t−1(si))INi,t−1g(2)′t (si)ηηη

(3)+ξ
(3)
it (si)

≡ x(3)t (si)
′
βββ
(3)+(1−Znew,t−1(si))INi,t−1g(2)′t (si)ηηη

(3)+ξ
(3)
t (si), (16)

where i = 1, . . . ,10000, t = 1, . . . ,T , INi,t−1 is equal to 1 if the neighbor of Zt−1(si) is equal to one

(and zero otherwise). Hence, the first term indicates when the fire is recorded as burning at pixel

i and time t−1, the second term indicates when the fire is not burning at pixel i at time t−1 and

none of the neighboring pixels neighbors are burning at time t − 1, and the third term indicates

when the fire is recorded as not burning at pixel i at time t− 1 but one of the neighboring pixels
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is recorded as burning at time t − 1 (i.e., the perimeter of the fire). The term ξ (3) represents a

generic (Gaussian) error associated with the CA model, and the 2-dimensional vector x(3)t (si) =

{Znew,t−1(si),1− INi,t−1}′. Let Znew,t(si) be an independent sample of Zt(s), which is assumed to

be Bernoulli with probability exp{Y (2)
t (s)}/

[
1+ exp{Y (2)

t (s)}
]
. The third Layer BHM defines the

(t, i)-th row of the n× 2 matrix X(3) with xt(s)′ in (16), and the (t, i)-th row of the n× 27 matrix

G(3) is (1−Znew,t−1(si))INi,t−1g(2)′t (si), and g(2)′t (si) is the (t, i)-th row of G(2).

There are differences between the CA model in (16) and that in Hooten and Wikle (2010)

besides our use of a DHGT (i.e., (16) assumes the autoregressive model on the logit-scale, whereas

Hooten and Wikle (2010) impose this structure on the inverse-logit-scale). However, a possibly

more crucial difference is that Hooten and Wikle (2010) replaces Znew with Z in a traditional BHM

model creating a computationally difficult (in this setting) type of auto-regressive BHM. Our use

of posterior predictive data, which is only possible in the DHGT setting, specifies a linear model

that mimics this autoregressive structure (provided Znew is close to Z). This illustrates an exciting

feature of the DHGT, where one can mimic complicated autoregressive models using a linear

model.

In Figure 3, we plot the data, the posterior mean of the probability of a fire at time point 31 from

the Second Layer’s BHM using time points t = 1, . . . ,T =31 as observed data. We also provide the

forecast of the probability of a fire at time-point 32 computed using the posterior mean. Clearly, the

Second Layer BHM fails at forecasting because the implied BHM does not include any dynamic

structure. Now consider Figure 4, we again plot the data, the posterior mean of the probability of a

fire at time point 31 from the Third Layer’s BHM using time points t = 1, . . . ,T =31 as observed

data. We also provide the forecast of the probability of a fire at time-point 32 computed using

the posterior mean. The Third Layer BHM is able to forcast considerably better due to the CA

structure. This is verified using the area under the curve (AUC) metric, where the true positives

and false positives are computed at locations that are not burning at time point 31. That is, the AUC

is 0.65 for the Second Layer BHM and 0.75 for the Third Layer BHM. However, the improvement
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when incorporating dynamics is not constant. The above example considers a time where there is

a large change in the perimeter of the fire. Now consider using the data from times 1 to T =51 for

training and forecasting the perimeter of the fire at time point 52. There is a very small change

in the perimeter in this case and the AUC for the Second Layer BHM is 0.79 and the Third Layer

BHM has a marginal improvement of an AUC of 0.83. In this case, the discrepancy error is smaller

and hence, the improvement in prediction is small.

In Figure 5, we plot the posterior variances of Y (2) and Y (3) at time points 31 and 32. The

interior of the fire has small posterior variance, which is intuitively reasonable, since the fire is

observed at these locations at these times. There is more variability in our predictions at the

perimeter of the fire, which again is reasonable, since there is practical uncertainty in whether

or not the fire will spread near the perimeter. Forecast variances are larger than the in-sample

variances as expected. The strange circular features arising from model misspecification of Y (2)

arise in the posterior variance of Y (2). However, these patterns are not present in the posterior

variance for Y (3), since temporal dynamics have been incorporated.

5 Discussion

In this article, we introduce a new Bayesian statistical model that allows for discrepancy errors

between a signal term and a noise term in a spatio-temporal additive model, which we refer to

as the deep hierarchical generalized transformation model (DHGT). In particular, we extend the

process augmentation approach for discrepancy errors in Bradley et al. (2020), but augmenting the

process multiple times. The covariances can be written as a telescoping sum in an additive model,

which allows one to avoid confounding between the signal term’s covariance and the noise term’s

covariance. Moreover, a dynamic computing procedure naturally arises where posterior predictive

sample is used as data in the next layer’s posterior distribution. There exists specifications of

the DHGT that allows one to simulate directly from its posterior distribution without the use of
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Figure 3: The top row gives the fire perimeter at time points t = 31 and t = 32. In the bottom
left panel we produce the Second Layer BHM predicted (posterior mean) probability of a fire at
time point 31 using the time points 1, . . . ,31. In the bottom right panel we produce the Second
Layer BHM forecast (posterior mean) probability of a fire at time point 32 using the time points
1, . . . ,31. The darker red values are closer to the value of one, and lighter-pink values are closer to
zero. Notice that edge effects are present from the discretization.
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Figure 4: The top row gives the fire perimeter at time points t = 31 and t = 32. In the bottom
left panel we produce the Third Layer BHM predicted (posterior mean) probability of a fire at
time point 31 using the time points 1, . . . ,31. In the bottom right panel we produce the Third
Layer BHM forecast (posterior mean) probability of a fire at time point 32 using the time points
1, . . . ,31. The darker red values are closer to the value of one, and lighter-pink values are closer to
zero. Notice that edge effects are present from the discretization.
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Figure 5: In the top row we produce the Second Layer BHM posterior variance of the probability
of a fire at time point 31 and 32, respectively, using the time points 1, . . . ,31. In the bottom row we
produce the Third Layer BHM posterior variance of the probability of a fire at time point 31 and
32, respectively, using the time points 1, . . . ,31.

MCMC.

In our simulations, the second layer is specified to have a small number of basis functions
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leading to a discrepancy error between the true latent process and the model based on a low-rank

basis expansion. The results show that the DHGT performs as well to better than a baseline BHM,

but is considerably more computationally efficient. In the 2017 Haypress wildfire example, we

introduce a discrepancy error between the second and the third layers by ignoring CA dynamics

in the second layer and incorporating them in the third. We found that including a third layer that

leverages this discrepancy error improves one step ahead forecasting.

A common criticism with deep models is that one may not be able to learn all the parameters in

a model. In a Bayesian context this is equivalent to checking whether the data is independent of the

parameters so that the posterior distribution is equivalent to the prior distribution, and hence there

is no Bayesian learning. In our Bayesian discrepancy error model, the concept of “no Bayesian

learning” amounts to the j-th process and parameters being independent of the ( j−1)-th process

and parameters, since the ( j−1) layer is used as new transformed data for the j-th Layer BHM in

our expression of the posterior distribution in (6). Thus, if these layers are independent then we

have that their cross-covariance is zero, and there are no discrepancy error covariance to leverage

to improve predictions. This is seen explicitly in the Haypress wildfire, where at a particular

time point we would expect the temporal dynamics to be not needed, and as such, we saw small

improvements.

There are several developments to the conjugate DHGT methodology to consider in future

research. For example, the specification of J is chosen to be 3 in our examples. However, in

practice J could be made unknown and prior on J can be considered. Another limitation is that the

variance parameters are marginalized out and inference is limited to prediction. One direction that

requires significant exploration is to use the j-th layer’s variance parameters as new transformed

data for the ( j+ 1) layer’s variance parameters. There are also several developments to consider

for the general DHGT model as well. For example, a key limitation of a general DHGT is that

the hierarchical model expression contains integral expressions that may not always have closed

form. Finding closed form expressions of these integrals is an important consideration in future
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developments.

Appendix: Technical Results

Proof of Equation (6): We start by decomposing the joint posterior distribution into the product

of conditional distributions as follows.

f (yyy(J),θθθ (J), . . . ,yyy(1),θθθ (1)|zzz) = f (yyy(J),θθθ (J)|yyy(J−1),θθθ (J−1) . . . ,yyy(1),θθθ (1),zzz) f (yyy(J−1),θθθ (J−1), . . . ,yyy(1),θθθ (1)|zzz)
...

=

{
J

∏
j=2

f (yyy( j),θθθ ( j)|z,{yyy(w) : w < j},{θθθ (w) : w < j})

}
f (yyy(1),θθθ (1)|z).

(17)

Thus, we only need to derive f (yyy( j),θθθ ( j)|z,{yyy(w) : w < j},{θθθ (w) : w < j}). We split this result into

three cases, when j = 1, 1 < j < J, and j = J.

• Case 1, j = 1:

f (yyy(1),θθθ (1)|z) ∝ f (yyy(1),θθθ (1),z)

∝ h(z|yyy(1),θθθ (1))p(yyy(1)|θθθ (1))π(θθθ (1))∫ ∫
h(yyy(1)|yyy(2),θθθ (2))p(yyy(2)|θθθ (2))π(θθθ (2))dyyy(2)dθθθ

(2) 1

m2(yyy(1),θθθ (1))

∝ h(z|yyy(1),θθθ (1))p(yyy(1)|θθθ (1))π(θθθ (1))

∝ f (yyy(1),θθθ (1)|z),

where
∫ ∫

h(yyy(1)|yyy(2),θθθ (2))p(yyy(2)|θθθ (2))π(θθθ (2))dyyy(2)dθθθ
(2) 1

m2(yyy(1),θθθ
(1))

= 1 by definition of m2.
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• Case 2, 1 < j < J:

f (yyy( j),θθθ ( j)|z,{yyy(w) : w < j},{θθθ (w) : w < j}) ∝ f (yyy(1), . . . ,yyy( j),θθθ (1), . . . ,θθθ ( j),z)

∝ h(yyy( j−1),θθθ ( j−1)|yyy( j),θθθ ( j))p(yyy( j)|θθθ ( j))π(θθθ ( j))∫ ∫
h(yyy( j),θθθ ( j)|yyy( j+1),θθθ ( j+1))p(yyy( j+1)|θθθ ( j+1))π(θθθ ( j+1))dyyy( j+1)dθθθ

( j+1) 1

m j+1(yyy( j),θθθ ( j))

∝ h(yyy( j−1),θθθ ( j−1)|yyy( j),θθθ ( j))p(yyy( j)|θθθ ( j))π(θθθ ( j))

∝ f (yyy( j),θθθ ( j)|yyy( j−1),θθθ ( j−1)),

where
∫ ∫

h(yyy( j),θθθ ( j)|yyy( j+1),θθθ ( j+1))p(yyy( j+1)|θθθ ( j+1))π(θθθ ( j+1))dyyy( j+1)dθθθ
( j+1) 1

m j+1(yyy( j),θθθ ( j))
=

1 my definition of m j+1.

• Case 3, j = J:

f (yyy(J),θθθ (J)|z,{yyy(w) : w < J},{θθθ (w) : w < J}) ∝

f (yyy(1), . . . ,yyy(J),θθθ (1), . . . ,θθθ (J),z)

∝ h(yyy(J−1)|yyy(J),θθθ (J))p(yyy(J)|θθθ (J))π(θθθ (J))
1

mJ(yyy(J−1),θθθ (J−1))

∝ h(yyy(J−1)|yyy(J),θθθ (J))p(yyy(J)|θθθ (J))π(θθθ (J))

∝ f (yyy(J),θθθ (J)|yyy(J−1),θθθ (J−1)),

where we drop 1
mJ(yyy(J−1),θθθ (J−1))

, since (as a function of yyy(J) and θθθ
(J)) it is a proportionality

constant.

Substituting Case 1 through 3 into the expression in (17) completes the result.

The marginalized DHGT: Discarding samples of y( j) and θθθ
( j) 1≤ j < J effectively marginalizes
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these quantities from the DHGT. That is, the BHM used for inference is given by

Data Model : hm(z|y(J),θθθ (J))

Process Model : pm(yyy(J)|θθθ ( j))

Parameter Model : πm(θθθ
(J)), (18)

where the subscript “m” stands for “marginal.” To derive the marginal data model h(z|y(J),θθθ (J))

multiply each level in the DHGT in (4) to obtain the joint distribution of the data, processes, and

parameters. Then integrate out y( j) and θθθ
( j) for 1≤ j < J to obtain the joint distribution of z, y(J),

and θθθ
(J) as follows:

f (z,y(J),θθθ (J)) =∫
. . .
∫

h(z|yyy(1),θθθ (1))p(yyy(1)|θθθ (1))π(θθθ (1))

{
J−1

∏
j=2

h(yyy( j−1),θθθ ( j−1)|yyy( j),θθθ ( j))p(yyy( j)|θθθ ( j))π(θθθ ( j))

m j(yyy( j−1),θθθ ( j−1))

}

× h(yyy(J−1),θθθ (J−1)|yyy(J),θθθ (J))

mJ(yyy(J−1),θθθ (J−1))
dy(1)dθθθ

(1) . . .dy(J−1)dθθθ
(J−1)p(yyy(J)|θθθ (J))π(θθθ (J)).

This leads to

hm(z|y(J),θθθ (J)) =
f (z,y(J),θθθ (J))∫
f (z,y(J),θθθ (J))dz

pm(y(J)|θθθ (J)) =

∫
f (z,y(J),θθθ (J))dz∫ ∫

f (z,y(J),θθθ (J))dzdy(J)

πm(θθθ
(1)) =

∫ ∫
f (z,y(J),θθθ (J))dz dy(J),

where appropriate integrals are replaced with sums when z is discrete.
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