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We present a new method which accounts for changes in the properties of gravitational-wave detector
noise over time in the PyCBC search for gravitational waves from compact binary coalescences. We use
information from LIGO data quality streams that monitor the status of each detector and its environment to
model changes in the rate of noise in each detector. These data quality streams allow candidates identified
in the data during periods of detector malfunctions to be more efficiently rejected as noise. This method
allows data from machine learning predictions of the detector state to be included as part of the PyCBC
search, increasing the total number of detectable gravitational-wave signals by up to 5%. When both
machine learning classifications and manually generated flags are used to search data from LIGO-Virgo’s
third observing run, the total number of detectable gravitational-wave signals is increased by up to 20%
compared to not using any data quality streams. We also show how this method is flexible enough to
include information from large numbers of additional arbitrary data streams that may be able to further
increase the sensitivity of the search.

DOI: 10.1103/PhysRevD.106.102006

I. INTRODUCTION

In the years since the first detection of gravitational waves
by LIGO-Virgo [1–3], the rate of detection has grown by
over an order of magnitude [4–7]. However, identifying
gravitational waves in the collected data still requires the use
of analysis pipelines that carefully look through the data. To
date, all events detected by LIGO have been identified by at
least one pipeline that uses matched filtering [8–10]. Awide
variety of matched filter pipelines have been developed to
analyze LIGO data [11–14]. One such pipeline that has been
in use since the first detection of gravitational waves utilizes
the PyCBC software suite [15]. We refer to the offline search
configuration of this pipeline [16–18] as PyCBC.
The PyCBC search for gravitational waves from compact

binary coalescenses (CBCs), is one of the main matched
filter searches used to identify signals in LIGO data. PyCBC
has been used to identified the vast majority of gravitational-
wave signals to date [4–7,19–21]. As a matched filter search
pipeline, PyCBC uses templates based on post-Newtonian
and numerical models of gravitational-wave signals [22,23]
to identify similar features in gravitational-wave detector
strain data. Peaks in the matched filter signal-to-noise ratio
(SNR) time series (referred to as “triggers”) are found from
these templates, and coincident sets of these triggers are
assigned a ranking statistic that captures how likely it is
that each trigger is a candidate gravitational-wave signal.
The significance of these candidates is then estimated by

simulated large amounts of background data by shifting the
time stamp of triggers in one detector more than the
gravitational-wave travel time between each site [24].
One of the main challenges to detecting gravitational

waves with matched filter searches is the presence of non-
Gaussian noise artifacts in the data. These artifacts are bursts
of excess power that are referred to as “glitches.” Glitches
are problematic for searches for gravitational waves as they
can mimic or mask some features of astrophysical signals. It
is also known that specific glitches can impact the measured
search background [25,26]. As glitches are known to not be
astrophysical in origin, it is imperative that PyCBC does not
mistake a glitch for a real signal. Numerous features in
PyCBC are designed to better differentiate glitches from
gravitational-wave signals using the gravitational-wave
strain data alone. However, any additional information that
can better help PyCBC differentiate signals from glitches
will improve the ability of PyCBC to identify gravitational-
wave events.
In recent observing runs, hundreds of thousands of

additional data streams beyond the gravitational-wave strain
data were recorded at each LIGO observatory; these data
streams were used to both operate the detector and monitor
the detector environment [27,28]. These additional data
streams, referred to as “auxiliary data,” can also be used to
identify the source of glitches in LIGO data or predict the
presence of a glitch in the strain data. Auxiliary data has
been shown to be beneficial for use in gravitational-wave
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analyses to reject potential candidates due to noise [29],
subtract contributions of persistent noise from the strain
time series [30,31], and validate the astrophysical origin of
observed gravitational-wave events [32]. Information from
auxiliary data streams is generally repackaged into more
informative “data quality products” that are used by PyCBC.
In this work, we introduce a new method to incorporate

information from these data quality products into the
PyCBC search for gravitational waves. This method is
designed to use information from data quality products
while evaluating the significance of a given gravitational
wave candidate, rather than simply rejecting candidates that
occur during data quality flag segments. This is accom-
plished by using data quality information as a part of the
statistic used to rank candidates in PyCBC. We will also
demonstrate how this method is generic enough to allow any
data stream to be incorporated into the search pipeline,
including the iDQ time series [33], data quality flags
[29,32,34], and the large number of auxiliary data streams
that are recorded at each site. While the methods described
in this text are generalizable to the analysis of data from all
ground-based gravitational interferometers, such as Virgo
[2] or KAGRA [35], we exclusively work with data from the
two LIGO detectors, LIGO Hanford and LIGO Livingston,
in this work. We find that use of this new method increases
the number of detectable gravitational-waves in a variety of
different applications.
This work is organized as follows. In the remainder of

this section, we outline the current methods used in the
PyCBC search for compact binaries [16–18], with emphasis
on how the properties of the detector noise are modelled in
the search. We also discuss some of the current products that
are produced by the LIGO collaboration to track the data
quality. We then explain, in Sec. II, our proposed improve-
ment to the noise model in PyCBC, and how this improved
model can be used in a variety of cases. We demonstrate the
benefits of our improved model for multiple applications in
Sec. III. Finally, we discuss how this improved model will
benefit future searches for gravitational waves in Sec. IV.

A. Identifying gravitational-wave signals

The PyCBC search for compact binaries [16–18] iden-
tifies gravitational-wave events using matched filtering
with gravitational waveforms predicted by general rela-
tivity [22,23]. The SNR for a matched filter with a specific
waveform template h is [10]

ρ2ðtÞ≡ khsjhik2
hhjhi ; ð1Þ

where the inner product, hji, is defined as

hajbiðtÞ ¼ 4Re
Z

∞

0

ãðfÞb̃�ðfÞ
SnðfÞ

e2πitfdf; ð2Þ

with s the strain data, h the template, and SnðfÞ the
estimated power spectral density for the time in question.
This is equivalent to cross-correlation in the frequency
domain. Peaks in this SNR time series are labeled as
triggers and correspond to potential signals in the data that
are similar to the template.
If data from gravitational-wave detectors were purely

stationary and Gaussian noise, the matched filter SNR
would be sufficient to identify signals in the data. However,
variations in the properties of the noise, both over short and
long periods, complicate the problem. To account for the
nonidealized features in the data, a “ranking statistic” is
created that includes additional information about the data
and expected signal properties to better differentiate signals
from noise. Ideally, an astrophysical signal should receive a
high ranking statistic, while a noise fluctuation should
receive a lower ranking statistic (often referred to as being
“down-ranked”).
The generic form of the ranking statistic is given by the

ratio of the signal and noise distributions [18] for a given set
of parameters,  κ,

Λoptð  κÞ ¼ ηS
brSð  κÞ
rNð  κÞ

; ð3Þ

where ηS is the overall rate of signals and r̂Sð  κÞ is the
transfer function between the true rate of signals the
detectable rate, and rNð  κÞ is the rate of noise.
It is convenient to consider the ratio of these two

distributions as the difference of their logarithms,

Rð  κÞ ¼ log rSð  κÞ − log rNð  κÞ: ð4Þ

The parameters,  κ, that are used in both the PyCBC signal
and noise models encode details about the physical proper-
ties of the triggers and how well the measured data matches
that expected of an astrophysical signal. In addition to the
matched filter SNR, numerous signal consistency tests are
included [10,36] to measure how well a candidate trigger
matches the expected signal morphology. The signal model
is based on the expected distribution of these parameters for
astrophysical signals. These parameters are then used to
calculate a single reweighted SNR, ρ̂, that quantifies how
well the data matches a real signal in each detector. This
value is generally referred to as the “single-detector statistic.”
Additional parameters that corresponds to relationships
between the data in multiple detectors are also used. Full
details of the signal model are provided in [18]. We will
outline the noise model in additional depth for convenience.
The PyCBC noise model is based on fitting the distri-

bution of triggers in the data to an exponential decay
function. The rate of noise triggers for a given template in a
particular detector,  θ, is fit to an exponential given by
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rNðρ̂;  θÞ ¼ μð  θÞαð  θÞ exp
h
−αð  θÞðρ̂ − ρ̂thÞ

i
: ð5Þ

For a given template,  θ, the term μð  θÞ is the number of
triggers above threshold and αð  θÞ is the exponential decay
rate with respect to ρ̂. This ρ̂ is the same single-detector
ranking statistic that is used in the signal model. Only
triggers with ρ̂ > ρ̂th are considered in this fit.
In this time-independent PyCBC noise model, a number

of approximations are already used to calculate μð  θÞ and
αð  θÞ [17]. First, a maximum likelihood fit of this noise
model is performed for each detector and each template in
the search individually. However, there are not enough
triggers identified per template to accurately measure both
parameters for each template. Kernel smoothing is used to
reduce noise in the measured values of μ and α with respect
to the duration of each template, τð  θÞ. Hence the noise
model used in the search is rNðρ̂;  θÞ ≈ rNðρ̂; τð  θÞÞ.
This model of the noise does not include any time

dependence, meaning that this fit assumes a single distri-
bution is valid for each template during the entire analysis
period. To account for variation in the properties of the noise
with respect to time, it is typical for the PyCBC search to be
run separately over relatively short chunks of data (typically
5 days). However, it is known [32,34] that gravitational-
wave detector data contains short term fluctuations on both
the hour- and second-scale. While some techniques have
been developed to account for these fluctuations [37,38],
they do not introduce explicit time-dependence into the
noise model itself.

B. LIGO data quality information

At each LIGO observatory, hundreds of thousands of data
streams are recorded during an observing run to control and
monitor the detectors [28]. A subset of these data streams
have been found to be highly correlated with periods of
excess noise in LIGO strain data. For example, ground
motion that introduces additional motion of the test masses
and increases the chances of scattered light is well moni-
tored by seismic sensors. However, when this information is
used to support the astrophysical analyses, this data is first
curated into data quality products. These data quality
products combine multiple data streams into a single data
product that is simpler for astrophysical analyses to utilize.
Similar data quality products are produced for other
gravitational-wave observatories [39,40]. The process of
developing and finalizing these curated data quality prod-
ucts has taken multiple months in previous observing runs
[41], increasing the total amount of time required to
complete end-to-end analyses of LIGO data.
One example of a data quality product are “data quality

flags” [29,32,34], which mark time periods likely to contain
glitches based on information from specific auxiliary data
streams. Data quality flags are binary data streams sampled
at 1 Hz that have multiple categories to indicate the different

severity of noise likely to be present in the detector. These
flags are used by PyCBC to remove times from an analysis
or veto triggers identified during a data quality flag. Other
searches [12,42] instead use these flags to replace the data
with zeroes during flagged times.
Another data quality product that has been used in

analyses is the iDQ time series [33]. This product is based
on a machine-learning algorithm that uses a large number of
auxiliary data streams to predict the likelihood of a glitch
being present in the detector strain data at a given time. In
O3, iDQ was a single time series sampled at 128 Hz. One
key difference compared to data quality flags is that iDQ is
not a binary data stream, and instead assigns a likelihood to
each sample based on the probability that the strain data
contains a glitch. Methods to incorporate iDQ into a
different pipeline used to search for gravitational waves
from compact binaries, GstLAL [11], were recently developed
[43]. This method directly used the iDQ likelihood as
an additional term in the ranking statistic of the GstLAL.
Additional details on GstLAL can be found in [42,44,45].
Comparisons between the methods introduced in this work
and those currently implemented in GstLAL are discussed in
Sec. II C.
As use of curated data quality products has been con-

sistently shown to increase the sensitivity of searches for
gravitational waves [26,29,43], it is also likely that the
auxiliary data used to generate these products can also
benefit gravitational-wave searches. Furthermore, it is
possible some useful information from the auxiliary data
is discarded when curated data products are generated. Use
of the raw auxiliary data is also attractive as it would reduce
the time to complete an end-to-end analysis of LIGO data by
no longer requiring time to generate data quality products.
However, the large number of different data streams with
disparate properties has made it difficult to develop generic
methods to incorporate this data.

II. IMPROVED NOISE MODEL

The changing state of the detectors means that the
PyCBC background will also change with respect to time.
Therefore a more complete description of the noise model
that accounts for this time-dependence should be given as

rNðρ̂;  θ; tÞ ¼ μð  θ; tÞαð  θ; tÞ exp
h
−αð  θ; tÞðρ̂ − ρ̂thÞ

i
; ð6Þ

where μð  θ; tÞ is the trigger density for a given template with
respect to time and αð  θ; tÞ is the exponential decay rate of
the background for a given template with respect to time.
Due to practical limitations, we only consider the

time-dependence of the trigger density, μ, and ignore the
time-dependence of the decay rate, α. The time-dependent
variations that we hope to capture with this improved noise
model can occur over timescales of seconds. Although a
large number of triggers are identified by PyCBC per
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analysis, the average number of triggers per second in recent
analyses is only 10 triggers per second, even though
hundreds of thousands of templates are used to search the
data. The modest rate of triggers, combined with the large
number of templates considered, means that there is much
less than 1 trigger per template per second. This is not a
sufficient number of triggers to accurately measure second-
scale variations in the trigger rate. However, if we suitably
bin the times and templates, this is a sufficient number
of triggers to measure the time-dependence of the trigger
rate. When using bins, we approximate the overall time-
dependence of the trigger rate as the originally measured
trigger rate multiplied by an additional bin-dependent factor.
With these approximations, the only change to the noise

model is to μð  θ; tÞ, where the time-dependence is modeled
as the product of a time-independent term, μð  θÞ and a time-
dependent term δð  θ; tÞ. Hence the new expression for
trigger density is

μð  θ; tÞ ≈ μð  θÞδð  θ; tÞ ð7Þ

for a given θ, and time, t. The calculation of δðθ; tÞ is
different depending on the type of data quality stream that
is being considered.
This method makes no assumptions about the input data

that is used as part of the noise model. In the case that the
auxiliary data is noninformative (i.e., not correlated with
times of high trigger density), the method should identify
that no excess in triggers is measured, and no change to the
noise model will be applied. Therefore, the sensitivity of

the PyCBC search will not be impacted if noninformative
auxiliary data is used by this method.

A. Binning the parameter space

In the current PyCBC noise model, the trigger rate, μð  θÞ,
is calculated for each individual template. In practice, it is
not possible to also determine the time-dependent correction
to the trigger rate, δð  θ; tÞ, for each individual template. This
is due to the relatively low rate of triggers per template per
second. In order to approximate the value of δð  θ; tÞ, we
choose to group templates with similar duration into bins
(denoted by θb). We also group times based on the value of
the data quality stream,ΩðtÞ, using additional bins (denoted
by Ωd). We then calculate a single value of δðθb;ΩdÞ for
each combination of fθb;Ωdg. These data quality bins span
the range of values that the data quality stream can take and
a single time-dependent correction is calculated for all times
in each data quality bin. If we have N template bins and
M data-quality bins, this means we only need to estimate
N ×M different corrections to the trigger rate. An example
of how these bins could be constructed with 3 template bins
and 4 data quality bins, along with the parameters of an
example trigger, is shown in Fig. 1.
We will label each template bin as θb and each data

quality bin Ωd. This means that the time-dependent
correction the trigger rate in our noise model is defined as

μð  θ; tÞ ≈ μð  θÞδðθb;ΩdÞ: ð8Þ

FIG. 1. An example of how the template and data quality (DQ) bins are constructed and applied. Left: a plot of the three different
template bins corresponding to different parts of the template bank used in the search. In this case, the range of templates is characterized
using the masses of the primary and secondary components of the simulated compact binary system template. An “×” marks the
template parameters of an example candidate is in the template bin θ2. Right: a plot of an example data stream that is used to construct
four different data quality bins. The dotted line marks the time of an example candidate. In this case, the example candidates is in data
quality bin Ω1. Therefore the time-dependent term used in the PyCBC noise model for this candidate would be δðθ2;Ω1Þ.
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Care must be taken when deciding on the number of bins
to use in an analysis. As the presence of a gravitational-
wave signal will naturally cause more triggers to be
observed, there is a risk that real signals will be down-
ranked if the total number of triggers produced by a signal
is a significant fraction of the total number of triggers in a
single bin. Conversely, if not enough bins are used,
variations in time and across the template bank may not
be captured. We found that having at least 50 triggers in
each bin was sufficient to minimize the chance that a real
signal would be artificially down-ranked.
In this work, we chose bin sizes such that the smallest bin

contained at least this minimum number of triggers. This
resulted in the choice of 10 template bins and either 2 (the
binary case where one bin is much smaller than the other)
or 200 (the nonbinary case where all bins are the same size)
data quality bins. This means that either 20 or 2000
different values of δðθb;ΩdÞ must be calculated for every
data stream.
We construct our template bins based on template

duration, with the goal of recording an equal number of
triggers in each template bin. A representative chunk of
LIGO data from O3 was used to calculate the specific values
of the bin edges used. The bin edges are linearly spaced at
f0; 10; 20…; 100g percentile of the trigger template dura-
tion. After calculating the bin edges for this representative
chunk of data, the same values of template duration were
used as bin edges in all analyses. This is the default binning
strategy used in this work. Two alternate binning strategies
were also investigated, but were found to result in a smaller
sensitivity increase than our default strategy. More details
are given in Sec. III C.

B. Binary data quality streams

The simplest case we can consider is a binary data
quality stream that only consists of 1s and 0s. Times where
the data quality stream is 1 are often referred to as “active”
times, and times that the stream is 0 are referred to as
“inactive” times. Data quality flags are one example of a
binary data stream. In this scenario, the time dependence of
δðθb;ΩdÞ is also binary. We only have two data quality
bins, labeled Ω1 and Ω0. For times that the stream is active,
the time-dependent term of the noise model, δðθb;Ω1Þ, is
defined as

δðθb;Ω1Þ ¼
Nb;1

T1

T tot

Ntot
ð9Þ

for a given template bin, θb. Nb;1 is the total number of
triggers in template bin b during times the data quality
stream is active, while Ntot is the total number of triggers in
the analysis. Similarly, T1 is the total amount of time the
data quality stream is active, while T tot is the total amount
of time in the analysis.

If the binary data quality stream is correlated with
periods of high trigger density, then δðθb;Ω1Þ > 1.
However, this is not guaranteed to be the case. If
δðθb;Ω1Þ ≤ 1, we impose δðθb;Ω1Þ ¼ 1. This is so that
the data stream does not increase the significance of a
candidate. All times when the data quality stream is
inactive are also fixed to δðθb;Ω0Þ ¼ 1.
Directly calculating the value of δðθb;Ω1Þ
When calculating this time-dependent term of the noise

model, we use the merger time of each candidate and do not
consider the different durations of signals across the
template bank. For candidates with shorter, subsecond
templates, the effect of this assumption is likely minimal,
as this timescale is similar to the duration of many glitches.
This assumption is less valid for longer signals as it does
not account for data quality issues that may be many
seconds before the time of merger of a candidate, but still
overlapping the candidate. However, the signal consistency
tests used by PyCBC are conversely most effective for low-
mass candidates [10,16] and have been shown to effectively
mitigate the impact of data quality issues on the sensitivity
of the search for such long-duration candidates. Therefore,
despite this assumption, we still expect this method to
increase the sensitivity of the PyCBC search in regions of
the parameter space that are known to be limited by data
quality issues.

C. Nonbinary data quality streams

We can also consider a data quality stream that takes an
arbitrarily large number of values. Such data quality
streams include the iDQ time series or auxiliary data. In
this case, we bin the data points into multiple data quality
bins based on the value of each data point. The total number
of bins used with this method must be tuned for each
analysis. In this work, we choose to use 200 data quality
bins so that each bin contained a sufficient number of
triggers to reduce the bias of individual astrophysical
signals.
The correction, δðθb;ΩdÞ, for each data quality bin,Ωd is

calculated using the same formula as the binary case. Again
similar to the binary case, we fix δðθb;ΩdÞ ≥ 1. Times
where the data quality stream is not defined are still still
used to calculate the total time and total number of triggers,
but these triggers during these times are not reranked using
this method.
We can also compare this correction to the model

suggested for use with the iDQ time series in [43]. There
are two main differences between our model and the model
from [43]. Firstly, in our model the correction to the total
trigger density is directly computed for each combination of
template bin and data quality bin. This ensures that an
accurate correction is applied for any data quality stream.
Compared to the analytic model designed for use with the
iDQ time series described in [43], there is a reduced risk of
reranking candidates by too much or too little. Our method
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also does not impose a maximum correction to the trigger
density as was done in [43]. While this does introduce a risk
of an arbitrarily high correction being applied, such a case
would not occur unless there was indeed a strong correlation
between the data quality stream and the PyCBC triggers,
implying that the trigger is unlikely to come from an
astrophysical signal.

D. Multiple data quality streams

For the time-dependent correction associated with two
different data quality streams, δn and δm, we define the joint
time-dependent correction, δnm, as

δnmðθb;ΩdÞ ¼ max ðδnðθb;ΩdÞ; δmðθb;ΩdÞÞ: ð10Þ

This conservative choice ensures that if more beneficial
data quality information is available, the relevant triggers
will be down-ranked by a larger amount. The choice to
downrank candidates by the largest time-dependent cor-
rection may lead to some triggers being down-ranked more
or less than would be optimal. For example, this choice
ignores any correlations between the two data quality
streams. However, as both astrophysical signals and trig-
gers caused by noise are down-ranked the same amount, we
do not expect this to decrease the sensitivity of the search as
compared to not using any data quality streams.

III. APPLICATIONS

One of the significant benefits of this method of
incorporating data quality streams into the PyCBC search
is its versatility in a variety of applications. In this section,
we will demonstrate a number of use cases for this method
and investigate how incorporating each data quality stream
increases the detection rate of gravitational-wave signals by

the PyCBC search. In all cases, we find evidence that
incorporating these data quality streams can increase the
number of detectable gravitational waves.
The O3 strain data used in this section from both the

LIGO Hanford and LIGO Livingston detectors is available
from the Gravitational Wave Open Science Center
(GWOSC) [46]. Although most auxiliary data recorded
by LIGO is not yet publicly available, there has been a
release of auxiliary data around one event [47] and a small
number of data quality products that are released publicly
alongside the strain data. The majority of these analyses in
this section demonstrate how data quality products not yet
publicly released could be used to improve the sensitivity
of the PyCBC search. The source of each data quality
stream, either public or not public, is described in the
relevant section.

A. Search configuration

The analyses presented in this section use data from five
different analysis periods. These time periods correspond to
the chunks of data analyzed by the LIGO-Virgo collabo-
rations during O3. The start and end times of each chunk
are listed in Table I. We label each chunk by a number
between 1 and 5. These chunks were chosen due to known
data quality issues that may impact the sensitivity of the
PyCBC search.
In all examples presented here, we use the ranking

statistic introduced in this work and available as part of the
PyCBC code repository found at [15]. We use a single-
detector ranking statistic that includes the chi-squared test
[10], the sine-Gaussian test [36], and accounts for variation
in the detector’s power spectral density with time [37]. We
use the same template bank as was used in PyCBC analyses
presented in GWTC-3 [6,49–51]. Unless explicitly stated,

TABLE I. A list of the time periods analyzed and the data quality flags used as data quality streams in this work. All data quality flag
names are sourced from [48]. Flag time refers to the analyzable time impacted by each individual flag in the analyses period.

Chunk GPS interval Data quality flag
Flag
time Description

1 1239641067–
1240334090

L1:DCH-
PEM_EY_ACC_BEAMTUBE_OMICRON_GT_100

1.06% 70 Hz periodic glitches due to an
automated camera shutter in the End-Y

station at LIGO Livingston.
2 1241724868–

1242485150
H1:DCH-EARTHQUAKE_CS_Z_BLRMS_GT_1000 0.48% Nonstationary noise due to high

ground motion at LIGO Hanford.
L1:DCH-THUNDER_MIC_BP_GT_300 0.05% Excess noise due to thunderstorm at

LIGO Livingston.
3 1262192836–

1262946499
L1:DCH-WHISTLES 0.45% Glitches caused by radio frequency

(rf) beat notes at LIGO Livingston.
4 1263751734–

1264528232
L1:DCH-WHITENED_RF45_AM_CTRL_GT_1P75 0.27% Glitches due to 45 MHz control signal

at LIGO Livingston.
L1:DCH-WHISTLES 0.83% Same as chunk 3.

5 1264528056–
1265133171

L1:DCH-WHITENED_RF45_AM_CTRL_GT_1P75 0.54% Same as chunk 4.

L1:DCH-WHISTLES 0.16% Same as chunk 3.
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triggers with a single-detector statistic above 6.5 are used to
calculate the time-dependent correction to the PyCBC noise
model. This threshold was tuned by hand to balance
including a sufficient number of triggers to model the
time-dependence and focusing on the tail of the non-
Guassian distribution of triggers.
We compare the sensitivity of the search with and

without incorporating data quality information by compar-
ing the volume-time (VT) of the search in each case. This is
done using a large number of simulated signals that are
recovered by the PyCBC search pipeline. The distance at
which a simulated signal can be detected is then used to
estimate the sensitive volume. This volume multiplied by
the duration of the analysis is the VT of the search. When
evaluating the ratio of the VT in each analysis, we calculate
the ratio of the VT by using multiple thresholds of the
inverse false alarm rate (IFAR) that is assigned to each
simulated signal in order to determine if a signal was
detected by the search. We further present results for
simulated signals with different chirp masses [52], M ¼
ðm1m2Þ3=5=ðm1 þm2Þ1=5 for signals produced by the
merger of objects with masses m1 and m2. Errors for the
ratio of the sensitive VT between analyses with and without
DQ are estimated by calculating the VT ratio for 20
additional thresholds close to the chosen IFAR threshold.

B. iDQ time series

We analyze each of the chunks discussed above with
PyCBC using the iDQ log-likelihood time series produced
in low-latency as a nonbinary data quality stream. The low-
latency log-likelihood time series were produced by iDQ
using the OVL classifier [53,54]. This classifier was trained
using triggers from 844 LIGO auxiliary data streams at
each detector. This set includes all data streams that were
determined to not be sensitive to gravitational-wave signals
by LIGO detector characterization studies [32]. Separate
instances of the classifier were trained for each interfer-
ometer used. Each instance of the classifier was trained on
triggers generated from 14 days of detector data and used to
make predictions until being replaced by a newly trained
classifier. After the training of each classifier completed,
training of a new classifier began on the most recent
14 days of data. We used the time series produced in
low-latency, as opposed to time series produced offline at
higher latency (and available at [55]), because we found
that using the low-latency version of the iDQ timeseries led
to larger increases in the sensitivity of PyCBC. This is
likely due to the fact that the low-latency data was produced
without the use of multiple time-chunks that were analyzed
independently (as was done when producing the offline
data) and was therefore more consistently normalized over
the time period considered in this work [33].
Before using the iDQ time series in our analysis, we first

preprocess the data stream. We downsample the log-like-
lihood time series from 128 Hz to 1 Hz. This is done by

maximizing the iDQ time series over each integer second of
data. The downsampled log-likelihood time series is then
converted to percentiles, and each trigger is associated with
the log-likelihood percentile at the time of the trigger. Each
template bin is divided into 200 sub-bins by the triggers’
iDQ log-likelihood percentiles, as described in Sec. II C.
We find that including the iDQ time series increases the

sensitive VTof the search across the entire parameter space.
This increase in search sensitivity from using the iDQ log-
likelihood time series in PyCBC is shown in the upper left
plot of Fig. 2. We find that the gain in sensitivity generally
independent of chirp mass, and is larger for higher choices
of IFAR. For triggers with chirp mass above 80 M⊙, we
find a 10% increase in sensitive VT at an IFAR of
1000 years. This is the largest increase among the chirp
masses and IFAR thresholds we considered.
Compared to the results of the Godwin et al. imple-

mentation of iDQ into GstLAL [43], our results show a
larger increase in sensitive VT for the highest mass
triggers. This is likely because we directly compute the
time-dependent correction to the trigger rate instead of
assuming an analytic formula for down-ranking triggers.
We find that the required correction during times corre-
sponding to the highest percentiles of the iDQ time series
is lower than used in the Godwin et al. implementation. It
also does not down-rank any excess noise correlated with
iDQ time series percentiles below 50, even in cases where
we include a correction.

C. Alternate binning strategies

In addition to the default method of binning the template
parameter space that is explained in Sec. II A, we inves-
tigate two alternate methods of binning the template
parameter space.
In the first alternate binning method, we construct six

template bins with the bin edges in a geometric series
between 0.15 seconds and 150 seconds. Thus the lowest bin
edge is at 0.15 seconds, and each successive bin edge is
larger by a factor of

ffiffiffiffiffi
10

p
. This method contains fewer total

bins than the default method and the bins contain vastly
differing numbers of triggers. However, the bin with the
fewest total triggers was designed to contain roughly the
same number of triggers as each of the bins in the default
method.
For the second alternate binning method, we first convert

the trigger template durations into percentiles. We then
construct five bins with bin edges placed at percentiles of
f0; 6.25; 12.5; 25; 50; 100g in the trigger template duration
based on the entire bank of templates. Similar to the first
alternate method, the number of triggers in each bin is not
the same, but the smallest bin is roughly the same size as
each of the 10 bins when using the default method. The
only difference between this binning method and the
default method is the location of the bin edges; this method
places the bin edges in a geometric series with different
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amounts of triggers in each bin while the default method
uses a linear series so that each bin contains the same
number of triggers.
As part of evaluating which binning method to use in this

work, we compared the sensitive VT for each binning
method when using the iDQ time series to analyze chunk
2. The relative VT increases from using the default
binning method as compared to each of the two alternative
binning strategies are shown in Fig. 3. These alternate
binning strategies did not increase the sensitive VT as much
as the default binning method did, so they were not used in
any of our other analyses.

D. Data quality flags

We next investigate the benefits of using data quality
flags as a part of our time-dependent noise model. The
LIGO and Virgo collaboration uses a wide variety of data
quality flags to indicate periods when environmental or
instrumental noise sources are likely to affect the quality of
the strain data. Currently, the PyCBC search uses these
flags to remove triggers during these time periods from the
analysis. However this reduces the analyzable time and

could cause the search to miss some gravitational-wave
signals. We can instead use these data quality flags as
binary data streams to take into account the expected
increase in the trigger rate and reweight the detection
statistic of triggers accordingly. Table I details the data
quality flags active during the analysis periods that we
chose to analyze. These data quality flags are released via
GWOSC as a single, combined data stream [46] but are not
currently publicly available separately. We chose to con-
sider these data quality flags as multiple data streams, as
each data quality flags was designed to target a different
noise source, making it easier to measure the effect of these
noise sources on the PyCBC trigger rate.
We also choose to calculate the time-independent

portion of the PyCBC noise model after removing can-
didates that are present during the data quality flag
segments. These candidates are still considered potential
astrophysical candidates and their significance is esti-
mated as described in Sec. II B. We find that excluding
these time periods when calculating the time-independent
terms in the PyCBC noise model increases the sensitivity
as compared to including them.

FIG. 2. The ratio of the sensitive volume-time (VT) for the PyCBC search, comparing the sensitivity of the search when using data
quality (DQ) products as part of the ranking statistic versus using no data quality products. Each panel corresponds to using a different
combination of data quality products. All quoted VT ratios are relative to the same PyCBC analysis that does not use any data quality
products. Three different detection thresholds are considered for each combination of data quality products in addition to a range of
masses of simulated signals. Shaded regions correspond to the 1σ error in the measured VT ratio for each case. The measured VT ratio
for all combinations of data quality products is above 1.0, indicating that the use of these data quality products only has a positive effect.
Using both DQ flags and iDQ yields the largest increase in VT of the four cases considered.
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The upper right panel of Fig. 2 shows that including
data quality information in the PyCBC search increases its
sensitivity, in particular for high mass binaries. In this
region of the parameter space, the number of detectable
gravitational-wave signals increase by 10%. However, the
sensitivity gains vary greatly between analysis periods. As
shown in Fig. 4, including data quality information in the
search of chunk 1 data increases the sensitivity to signals
from binary black hole mergers up to 15%. On the other
hand, our approach has just a small effect for chunk 3. In
fact, this period is dominated by glitches that are effec-
tively identified and down-ranked by the PyCBC consis-
tency tests [36].
Figure 4 also shows how our approach compares to the

previous method that PyCBC use to incorporate data
quality flags, namely using the data quality flag segments
to veto candidates. The improvements in sensitivity are due
to the increased analyzable time. This increase in sensi-
tivity compared to using data quality flags as vetoes
directly translates into more events that can be detected
by PyCBC. Although the amount of time vetoed by data

quality flags in recent observing runs is less than 1% [32],
the high rate of detections makes it likely that some events
would be missed or recovered with less significance by
chance due to vetoes.
One such event, GW200129_065458, was identified by

the “PyCBC-Broad” search in GWTC-3 as a coincident
signal between LIGO Hanford and Virgo [6]. This event
was not identified as a three-detector coincidence because
the related trigger at LIGO Livingston was vetoed by a data
quality flag. We find that using data quality flags for
reranking triggers instead of vetoing them allows this event
to also be identified at LIGO Livingston with high
significance.

FIG. 4. The ratio of the sensitive volume-time (VT) for the
PyCBC search when using data quality (DQ) flags to rerank
PyCBC candidates (blue) or vetoing candidates (orange). The
sensitivity is calculated at fixed inverse false alarm rate of
10 years. Top: increase in search sensitivity for chunk 1, an
analysis where a data quality flag was known to have a positive
effect. The ratio of the search sensitivity when using reranking
versus vetoing candidates is shown in the second panel. Bottom:
increase in search sensitivity for chunk 3, an analysis where a data
quality flag was known to have minimal effect. The ratio of the
search sensitivity when using reranking versus vetoing candidates
is shown in the fourth panel. In both cases, reranking times during
data quality flags only increases the sensitivity of the search
compared to vetoing.

FIG. 3. The ratio of the sensitive volume-time (VT) for the
PyCBC search when using the iDQ time series with different
binning methods. In each case, the ratio of the measured VTwhen
using the default binning method versus an alternate binning
method is plotted. Top: the ratio of the sensitive VT when using
the default method of binning versus an alternate method that
contains bins of different sizes. Bottom: the ratio of the sensitive
VTwhen using the default method of binning versus an alternate
method that contains bins chosen based on the numerical value of
the template durations. These alternate binning strategies perform
very similarly, but the default method outperforms both alternate
binning methods.
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E. Multiple data quality products

In addition to considering the use of the iDQ time series
and data quality flags separately, we investigated the benefit
of using both types of data quality products at once. In
cases when a trigger is down-ranked by both the iDQ time
series and a data quality flag, only the larger amount of
down-ranking was used, as described in Sec. II D. We also
include data quality flag information in the same way as in
the previous section; triggers during data quality flags are
removed when the time-independent noise model is calcu-
lated but included when candidates are identified.
We find that including both the iDQ time series and data

quality flags increases the sensitivity of PyCBC by up to
20% compared to no use of data quality products, as shown
in the lower left panel of Fig. 2. This is roughly in line with
what would be expected from adding the sensitivity
increases from the individual data quality flag and iDQ
results. Although the auxiliary data streams that were used
to create the considered data quality flags are also used by
iDQ, this result suggests that the data quality issues
identified by each product are distinct.

F. Seismic monitors

Seismic activity is a major source of noise for LIGO
[56–58]. Seismic noise can couple into the detector and
appear as scattered light glitches [59,60]. We use seismic
trend data as another example of a nonbinary data quality
stream.
For the input data quality stream for our analysis, we use

accelerometer data from the corner station at each observa-
tory. These monitors measure ground motion in the direc-
tion perpendicular to the arms of the interferometer. The
chosen data streams are focused on ground motion from
0.03–0.1 Hz, which is often referred to as the “earthquake
band” as earthquakes are the main contributor to ground
motion at these frequencies. These specific accelerometers
have been chosen as they have been previously shown to be
correlated with excess noise in the gravitational-wave
detector data [48,61]. Additional monitors of ground motion
in directions parallel to the arms of the interferometer are
located at each observatory.
For this investigation, we choose a single analysis

period, chunk 2, covering from 5 May 2019 to 21 May
2019. Similar to the previous investigations, this time was
chosen due to the known presence of a data quality issue
that could be correlated with this data stream. This seismic
data is not available for public use via GWOSC, but is
displayed on the public “Detector Status” pages [62].
We found that this increased the sensitivity of the search

by as much as 5% in some regions of the trigger parameter
space. The increase in sensitivity from using these seismic
sensors across different template masses is shown in the
lower right panel of Fig. 2. For most of the parameter space,
only a marginal increase in sensitivity is measured.
Incorporating additional sensor data may further increase

these sensitivity gains. As the methods presented in this
work are fully generic for any time series, any useful
auxiliary information can be further incorporated into the
search.

G. Large numbers of auxiliary monitors

In each observation run, hundreds of thousands of
auxiliary data streams are recorded for the full duration
of the run and could potentially be incorporated into the
PyCBC search using the methods described in this work.
However, at the time of publication, the LIGO Scientific
Collaboration has only publicly released auxiliary data
streams for a single data segment for a small subset of
streams. This data release, containing data from 1169 data
streams for 3 hours around GW170814 [63] is available at
[47]. Although this amount of data is not sufficient to test if
these data streams can be used to increase the sensitivity of
the PyCBC search, we use this data release to demonstrate
how this method can be applied for a large number of
separate auxiliary monitors. We choose to only include an
auxiliary data stream if a data stream with the same name
was available from both sites. This reduced the total
number of data streams used to 1126.
For this investigation, we made multiple changes to the

standard workflow to both increase the likelihood that
relevant features of included auxiliary data streams are
identified as correlated with the PyCBC trigger rate and
decrease the computational cost. When possible, the
auxiliary data was bandpassed and the root-mean-square
(RMS) of the data was calculated with a 1 second stride.
The band-limited RMS is a common tool used in data
quality investigations to identify time periods with excess
noise [48,61]. Furthermore, the environmental sources of
noise in gravitational-wave detectors are generally most
prominent at lower frequencies [28], so bandpassing the
data removes the less useful high-frequency data. The
targeted frequency range for this study was frequencies less
than 100 Hz; specific frequency boundaries for the band-
passing were chosen based on the sample rate of the
relevant data in order to restrict the data to lower frequen-
cies while still retaining some useful information. Data
streams with a sample rate of higher than 100 Hz were
bandpassed between 10 Hz and 100 Hz while streams with
sample rates between 10 and 100 Hz were bandpassed
between 1 Hz and 10 Hz. Data streams with sample rates
below 10 Hz were instead set to the maximum value of that
stream in each 1 second stride. As this investigation was not
used to estimate the sensitivity of the search, we used a
small template bank targeting chirp masses between 10 M⊙
and 40 M⊙. Due to this smaller template bank and the small
amount of data considered, we lowered the SNR threshold
used to calculate the trigger rate to 4.5 in order to increase
the number of triggers considered.
Due to the large number of auxiliary data streams

considered, it is highly likely that some sources of noise
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will be observed by multiple streams. In this case, the
down-ranking applied is given by the description in Sec. II
D, namely that the maximum measured down-ranking
among all data streams will be applied.
The measured correlation between trigger rate in PyCBC

and the 1126 data streams is shown in Fig. 5. If the data
streams were uncorrelated with the rate of triggers, we
would expect that the distribution of the measured trigger
rate in each bin would follow a Poisson distribution. A fit of

the data with this distribution is shown in Fig. 5 as a black
dotted line. For most of these auxiliary data streams, there
is no clear correlation observed between the data stream
and the rate of triggers in PyCBC. However, for 10 data
streams at LIGO Livingston, there is at least one data
quality bin with a measured relative trigger rate above 3.25.
This threshold is much higher than expected due to chance
based on the fitted Poisson distribution.
The data streams that show the strongest correlation with

the PyCBC trigger rate includes sensors designed to detect
ground motion and magnetic noise at LIGO Livingston.
Monitors of ground motion [57,60] and magnetic noise
[64] are known to be correlated with glitches in LIGO data,
so it is not surprising that these data streams are the most
significant outliers in the small amount data considered in
this investigation. Details about these 10 outliers are
included in Table II.
As auxiliary data is only publicly available for 3 hours,

we were not able to use this improved noise model to
reanalyze the full LIGO dataset and identify new gravita-
tional-wave candidates. However, if auxiliary data does
become available, this method would allow this data to be
directly used in searches for gravitational waves.

IV. CONCLUSIONS

We have demonstrated a novel method of directly using
auxiliary data in a search for gravitational waves. This
method can be applied to both the original auxiliary data
and derived data quality products that are distributed
alongside the strain data. Although this method was applied
to the PyCBC search for compact binaries, similar methods
can be incorporated to other search algorithms for both
compact binaries [12,13,42,65] and other gravitational-
wave sources [66,67].

With currently available data quality products, this
method was able to increase the sensitivity of the
PyCBC search across a wide range of masses. We find

FIG. 5. Histograms of the measured trigger rate in each data
quality bin from the 1126 auxiliary data streams considered in
this analysis. The relative trigger rate is the ratio of the rate of
triggers in each data quality bin versus the average rate of triggers
at each detector. The data is fit to a Poisson distribution, shown as
a black dotted line. Data from LIGOHanford (top) shows no clear
outliers, while data from LIGO Livingston (bottom) includes a
small numbers of outliers based on the fitted distribution.

TABLE II. List of the auxiliary data streams used in the search of 3 hours of data around GW170814 that are highly correlated with the
rate of PyCBC triggers. All data streams with a maximum trigger rate of over 3.25 are listed. Descriptions of each data stream are
sourced from [47]. The listed p-values are based on the Poisson distribution plotted in the lower panel of Fig. 5 and are the probability of
observing at least one instance of that value or higher in the considered dataset.

Data stream name Data stream description Maximum trigger rate P-value

L1:PEM-CS_ACC_LVEAFLOOR_BS_Z_DQ LVEA accelerometer 4.05 3.06 × 10−5

L1:HPI-BS_BLND_L4C_RX_IN1_DQ Pre-isolator motion in the global ifo basis 3.87 1.94 × 10−4

L1:HPI-ITMY_BLND_L4C_RX_IN1_DQ Pre-isolator motion in the global ifo basis 3.66 1.25 × 10−3

L1:HPI-HAM3_BLND_L4C_RX_IN1_DQ Pre-isolator motion in the global ifo basis 3.51 4.45 × 10−3

L1:HPI-HAM3_BLND_L4C_VP_IN1_DQ Pre-isolator motion in the global ifo basis 3.49 5.26 × 10−3

L1:PEM-EX_MAG_VEA_FLOOR_Y_DQ Magnetometer near ETMX chamber 3.43 8.62 × 10−3

L1:HPI-ITMX_BLND_L4C_RX_IN1_DQ Pre-isolator motion in the global ifo basis 3.42 9.35 × 10−3

L1:ASC-INP1_P_IN1_DQ Error signal for input beam in pitch 3.42 9.35 × 10−3

L1:HPI-ITMX_BLND_L4C_RY_IN1_DQ Pre-isolator motion in the global ifo basis 3.11 3.06 × 10−2

L1:PEM-CS_ACC_IOT1_IMC_Z_DQ LVEA accelerometer 3.26 3.37 × 10−2
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that the number of detectable gravitational-wave events is
increased by up to 20% for a subset of the gravitational-
wave signal population when using a combination of data
products. In general, the increase in sensitivity when using
these data quality streams was higher when using stricter
thresholds for detection and when considering signals with
higher masses. Using data quality flags as part of the
PyCBC search statistic rather than to reject candidates
increases the search sensitivity to 10% for the highest
masses and the strictest detection threshold considered in
this work. Including iDQ information via this method also
increases the sensitivity by a further 5%. We have also
considered using information from auxiliary data streams
that monitor seismic noise, which can improve the sensi-
tivity of PyCBC by up to 5%. Finally, we tested all auxiliary
data streams that are currently publicly available [47] and
identify 10 streams that show significant correlations. This
method also removes the need for data quality products to
be curated before use by PyCBC, reducing the time
required to fully analyze LIGO data.
Ultimately, the benefits of this method are limited by the

available data quality streams. Using data quality streams
that are highly predictive of a high rate of PyCBC triggers
will naturally increase the benefits of this method.
However, compared to previous methods of incorporating
data quality information, the method outlined in this work
will not decrease the overall sensitivity if the auxiliary data
stream is uninformative.
The versatility of this method will reduce the required

effort of LIGO data quality experts to produce derived data
quality products. Rather than using hand-tuned binary data
quality flags, this method allows the PyCBC search to
directly ingest the relevant auxiliary data stream. In
addition, directly ingesting the auxiliary data stream may
be more beneficial to the overall sensitivity of the search.
Similar methods can be applied to the low-latency

version of the PyCBC search, PyCBC LIVE [68,69]. One
practical difference for a low-latency implementation of
this method is that most auxiliary data streams are not
available at the latencies required for detection. At present,
only a subset of data quality flags and the iDQ time series
are available at the required latency.
There are a number of areas of improvement for this

method that could be explored in future works. First, we
could add additional time dependence to our improved
noise model. This method does not account for variance in
the αðtÞ parameter, which also could impact sensitivity of
the search. There is also an assumption that the auxiliary

data stream does not include any time delay between the
auxiliary data and the time of the PyCBC trigger. This may
not be valid for low-mass signals that last many seconds or
minutes, but data quality issues impacting this class of
signals are already mitigated by signal consistency tests
in the PyCBC analysis. Finally, this method could be
improved by better addressing the case of multiple
correlated input data streams. Addressing these limitations
would require significant changes to the method intro-
duced in this work and is therefore out of the scope of this
current study.
This work presents a novel method that is able to directly

use the large datasets produced at a gravitational-wave
observatory in an astrophysical analysis. At present, this
data is not publicly available. Hence, the maximum benefits
of this work can only be realized by internal LIGO
analyses. However, this method demonstrates one such
practical use of directly using this dataset in astrophysical
analyses and provides additional motivation for their
curation and release.
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