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Abstract

The demand for searching, querying multimedia data such as image, video and
audio is omnipresent, how to effectively access data for various applications is a
critical task. Nevertheless, these data usually are encoded as multi-dimensional
arrays, or tensor, and traditional data mining techniques might be limited due
to the curse of dimensionality. Tensor decomposition is proposed to allevi-
ate this issue. Commonly used tensor decomposition algorithms include CP-
decomposition (which seeks a diagonal core) and Tucker-decomposition (which
seeks a dense core). Naturally, Tucker maintains more information, but due
to the denseness of the core, it also is subject to exponential memory growth
with the number of tensor modes. Tensor train (77) decomposition addresses
this problem by seeking a sequence of three-mode cores: but unfortunately, cur-
rently, there are no guidelines to select the decomposition sequence. In this

paper, we propose a GTT method for guiding the tensor train in selecting

*This work is an extended version of Mao-Lin Li, K. Sel¢uk Candan, Maria Luisa
Sapino. “GTT: Guiding the Tensor Train Decomposition” published in the International
Conference on Similiarity Search and Applications (SISAP) 2020. This work is supported
by NSF#1610282 “DataStorm: A Data Enabled System for End-to-End Disaster Planning
and Response”, NSF#1633381 “BIGDATA: Discovering Context-Sensitive Impact in Com-
plex Systems”, NSF#1909555 “pCAR: Discovering and Leveraging Plausibly Causal (p-
causal) Relationships to Understand Complex Dynamic Systems”, and “FourCmodeling”:
EUH2020 Marie Sklodowska-Curie grant agreement No 690817. Results were obtained using
the ChameleonCloud resources supported by the NSF.

! Arizona State University, {maolinli@asu.edu, candan@asu.edu}

2University of Turino, {mlsapino@di.unito.it}

Preprint submitted to Journal of BKTEX Templates March 15, 2022



20

the decomposition sequence. GTT leverages the data characteristics (including
number of modes, length of the individual modes, density, distribution of mutual
information, and distribution of entropy) as well as the target decomposition
rank to pick a decomposition order that will preserve information. Experi-
ments with various data sets demonstrate that GTT effectively guides the TT-
decomposition process towards decomposition sequences that better preserve
accuracy.

Keywords: Low-rank embedding, Tensor train decomposition, Order selection.

1. Introduction

Tensors are commonly used to represent multi-dimensional sets. Conse-
quently, tensor decomposition operations, such as CP [1] [2] and Tucker [3]
form the basis of many Al techniques for data analysis and knowledge discov-
ery. In the Tucker-decomposition, for example, given a tensor with d modes,
each entry in the resulting 1 X 79 X ... X rq dense core encodes the strength of
the d-way relationship among the groups consisting of elements of the individual
modes.

Tucker decomposition has been shown to be highly effective in any applica-
tions [4] [5], but due to the denseness of the core, it also is subject to exponential
memory growth with the number of tensor modes. The tensor train (77) de-
composition addresses this problem, by seeking a sequence of 3-mode cores [6]:
while, collectively, this sequence (or “train”) of cores capture the high-modal
information, they require fewer resources. Consequently, the TT-decomposition
has been used in various applications, including deep learning [7][8], crowdsourc-

ing [9] and recommendation systems [10].

1.1. Impact of the Decomposition Order

One critical challenge with the TT-decomposition, however, is the fact that
finding an optimal TT representation is non-trivial [12]. Figure 1 illustrates
this issue: given a 3-mode (modea: ID, modep: Diagnosis and modec: Ra-

dius) tensor from the Wisconsin Diagnostic Breast Cancer data set in UCI
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Figure 1: Effect of the decomposition order on the accuracy for a 3-mode tensor from
the Wisconsin Diagnostic Breast Cancer data [11]: ID(modea), Diagnosis(modep) and

Radius(modec). See Section 7 for more details

Machine Learning Repository [11]; the figure compares the relative Frobre-
nius norm difference (ratio of the norm of the difference tensor to the norm
of the original tensor) between the input tensor and the reconstructed tensor
for different TT-decomposition orders. As the figure shows, the ordering of the
TT-decomposition has a significant impact on the ability of the final represen-
tation in preserving the original information: in this case, the order ACB is

(0.77 — 1.02)/1.02 = 24.5% better than the closest alternative.

1.2. Our Contributions
In our preliminary work [13], we proposed a novel approach for guiding the
tensor train (GTT) in selecting the mode sequence for tensor train decomposi-

tions for categorical data sets. More specifically,

e we identify significant relationships among various data characteristics and

the accuracies of different tensor train decomposition orders;
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e we propose four order selection strategies, (a) aggregate mutual informa-
tion (AMI), (b) path mutual information (PMI), (c) inverse entropy (IE),

and (d) number of parameters (NP), for tensor train decomposition; and

e we show that good tensor train orders can be selected through a hybrid
(HYB) strategy that takes into account multiple characteristics of the

given categorical-valued data set.

In this paper, we extend the GTT technique to data sets with continouous/non-
categorical attributes. We further introduce two statistics collection strate-
gies statistics-then-discretization (StD) and discretization-then-statistics (DtS)
to encode continuous-valued data in the form of a tensor for analysis. Exper-
iments reported in Section 7 show that the proposed HYB strategy provides
an effective order selection strategy for both categorical and continuous valued,

without any additional decomposition time overhead.

1.3. Organization of the Paper

This paper is organized as follows: In the next section, we present the re-
lated work for tensor decomposition techniques. Section 3 presents the relevant
notations and the background for the tensor train decomposition. Section 4
describes the problem statement we tackle. Section 5 describes the data char-
acteristics we extract for the proposed method: guide the tensor trains (GTT)
in Section 6. Section 7 experimentally evaluates the effectiveness of GTT. And

then we conclude the paper in Section 8.

2. Related Work

2.1. Tensor

The tensor model maps a multi-attribute schema into an d-modal array.
More formally, let [; denote the number of distinct values that the j* attribute
(or the j*" mode) can take. The tensor X is then an d-modal array such that X' €

Rl xl2x-xla  Inptuitively, the modes of the tensor represent different factors
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that impact an observation and the value that the tensor records for a given
cell corresponds to an observation for a specific combination of factor instances.
Tensor unfolding, or matrization, is one of fundamental operation for tensor
methods. Considering a tensor as a multi-modal array, unfolding it consists
of reading its element in such a way as to obtain a matrix instead of tensor.
Mode-i unfolding is obtained by considering the i*” mode as the first dimension
of a matrix and collapsing the other into the other dimension of that matrix.
For a tensor of size (I3 X lg X -+ X l3), the mode-i unfolding of this tensor will

be the size (I;,11 X -+ X l_1 X L1 X -+ X lg).

2.2. Tensor Decomposition

Tensor decomposition has been shown to be effective in multi-aspect data
analysis for capturing high-order structure in high-dimensional data [4]. The
CANDECOMP/PARAFAC (CP) and the Tucker [14] are the two most pop-
ular tensor decomposition algorithms. The CP decomposition factorizes the
tensor into r component matrices (where r is a user supplied non-zero integer
value also referred to as the rank of the decomposition). The Tucker decomposi-
tion generalizes singular value matrix decomposition (SVD) to high dimensional
data. However, a major challenge is its high computational complexity and large
memory overhead. There are several parallel and block-based implementations
to alleviate this issue, such as GridParafac [15], GigaTensor [16], HaTen2 [17],
BICP [18].

2.8. Tensor Train Decomposition

Tensor-train decomposition [6] provides a memory-saving representation called
TT-format, , which preserves the representation power. For example, Given a
d-modal tensor, the space complexity of traditional tensor decomposition (e.g.
Tucker) is exponential in d, whereas TT-format has a with linear space com-
plexity by creating a linear tensor network (see Figure 2).

TNrSVD [19] adapts the randomized SVD to implement TT-decomposition,
and FastTT [20] computes the TT-decomposition of a sparse tensor by its spar-

sity. However, as discussed in the introduction, TT-decomposition involves
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Figure 2: An example of T'T-decompostion for converting a 3-mode tensor X'1*!2%13 into

TT-format.

strictly sequential multi-linear products over latent cores and this makes it dif-
ficult to search for best TT representation for a given tensor. [21] and [12] ex-
tended TT-decomposition by adding auxiliary variables to obtain an alternative
s data structure, Tensor Ring (TR), which provides circular dimensional permu-
tation invariance — the sequence can be shifted circularly without changing the
result [22], however, it does not eliminate the need to pick a ( circularly-arranged)

permutation of modes.

2.4. Feature Selection in High Dimensional Data

100 Feature selection techniques, such as [23] [24], search for the most relevant
attributes of the data set (for a given application) to reduce the dimensionality,
for example, Entropy tends to be low for data that contain tight clusters [25, 26].
Various other data characteristics, such as variance, mutual information, have
been used for selecting the order of decisions in supervised machine learning,

105 such as decision trees.
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Table 1: Notations used in the paper

Description
X A tensor
px Density of tensor X'
Xo) A mode-i unfolding matrix of a tensor X

l; Length of mode 4 in a tensor

mi The mode 7 in a tensor
h

T2 The mode in the z'" position in a sequence of a given tensor train de-

composition

11 A permutation of modes (w1, 72, ..., 7q)
Ty TT-rank of mode 4
X A discrete random variable with possible values {z1,...,z,}
U Left factor matrix
S Singular matrix
Vv Right factor matrix
G; 3-mode core for mode ¢ of TT-decomposition
H; Shannon entropy of random variable for mode 3%
Hy); Conditional entropy of the random variable for mode 4 given the random
variable for mode j
H; jy Averaged conditional entropy for H;|; and Hj;
MI j Mutual information between mode ¢ and mode j

2.5. Guiding the Tensor Train Decomposition (GTT)

Inspired by above researches, in our preliminary work [13], we proposed
GTT, which leverages various data properties (e.g. mode entropy, pair-wise
mutual information) of high-dimensional and categorical data sets as a guide-
line to select an effective sequence for tensor train decomposition. In this paper,
we extend these results to continuous valued data and consider alternative dis-

cretization strategies for tensor-encoding of continuous valued data sets.

3. Preliminaries

Table 1 summarizes the key notations. Intuitively, the tensor model maps
a schema with d attributes to a d-modal array (where each potential tuple is a
tensor cell). TT-decomposition [6] is obtained by applying a sequence of singular

value decompositions (SVD) to approximate the original tensor: given



Algorithm 1 TT-SVD (adapted from [6])
Input:

A permutation IT = (my, 7o, ..., m4), of modes;
A d-mode tensor X € Rim Xlwa X Xlny .
=1

A list of target tt-ranks, (Tuy, Trys Tras -« s Trg)s Trg = T ;

a
Output:
TT-format with TT-cores Gr,,Gry, ... Gr,-
e numel(C) : number of elements in C.
e reshape(A,[dy,...,dy]) : reshape an array A into shape dq X do X -+ X dj, .
e min(a,b) : return a if a < b, else return b.

1: procedure TT-SVD(X, (Try, Py Trgs - -« 5Ty )

2: C=2x.

3 for k<~ 1tod—1do

4: C + reshape(C,[rzy_, X lr,, %D
5: U,S,V =SVD(C,rg, =min(ra,,lz.))-

6: Gy < reshape(U, [Tre_yslny s Try])-

7 C« SVT.

8: end for

9: Gr, + C.

10: return TT-format with TT-cores Gr,,...,Gr,.

11: end procedure

e (i) a permutation, Il = (my,m2,...,7q), of modes, where 7. is mode in the

2t position in a sequence of a given tensor train decomposition,

0 e (ii) an input tensor, X' € Rim Xlmy X1

ﬂd s
e (iii) a sequence of decomposition ranks, (Tro,Tr,sTrgs- -, Tn,), Where rp, =
Try = 1,

the tensor train decomposition approximates the input tensor, X, with a se-
quence of tensor cores Gy, € R™™—1XImXme f— 1 d where X ~ Xy =

s Gy Gy G,
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In the index form the decomposition is written as:

X~ X(ing, ings - siny)

= Z Gy (g By s Oy ) X Gy (Qy iy s Q) =+ X Gy (g5 gy Qg ),

Qg s Qg 5oy, Xy

where i,  represents the index of mode 7, and 1 < a,,, <7, .

In this paper, we will assume that all ranks (except ro = rr, = 1) have the
same value, r. Note that, while there are several non-parametric decomposition
techniques, such as [27] which can learn also the appropriate rank, this is outside
of the scope of this paper — most tensor decomposition (in fact most latent

semantic search) literature takes the number of latent-semantics as input.

Algorithm. Algorithm 1 presents the pseudocode and Figure 2 visualizes the
TT-SVD process for a 3-mode tensor X € Rz XIx2XIrs  wwhere I; represents the

size of mode 3.

Accuracy. To evaluate the accuracy, we use the Frobenius norm of the difference
between mode-i unfolding &/;), of the original tensor and mode-i unfolding ‘)E'H(,-)

HX(i)_A?l'I“) I 7rob

of the reconstructed tensor, Xi: Error(Xmg, X) = . Note that

HX(r) ”Fm)b
this term gives the same value independently of the mode ¢ selected for matrix

unfolding.

4. Problem Statement

In this paper, we aim to seek a decomposition sequence that minimizes the

reconstruction error:

Problem 1 (Tensor Train Decomposition Sequence Selection). Let us be

given a d-dimensional tensor with a permutation of modes (wy,ma,...,mq), X €
Rim Xlwy X Xlry - and a sequence of TT-ranks, (Txy, Try s Trgs -+ s Try), Where v, =
Tz, = 1. Our goal is to find a permutation, Il = (m,ma,...,mq), which mini-

mizes the approrimation error; i.e.,

IT = argmin (Error(/\;n, X)) ,
Iep

where P denotes the set of all possible d! permutations.
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5. Tensor Data Characteristics to Guide Tensor Train Decomposition

In this paper, we propose a novel approach to guide the tensor trains (GTT)
in selecting the decomposition sequence. GTT leverages the various charac-
teristics/statistics of the input data tensor (sparse or dense) to identify and

recommend a mode ordering for the TT-decomposition process.

5.1. Tensor Encoding

A high-dimensional data set can be viewed as a set of tuples or a tensor.
When the attributes of the data set are categorical, the tensor representation is
easy to obtain: As we illustrated in Figure 2, a given data set with categorical
entries in tuple representation can be converted to an occurrence tensor with
one-hot-encoding paradigm, in which each entry with value 1 indicates the pres-
ence of the corresponding tuple in the data set and 0 indicates its absence. Note
that duplicated tuples will be discarded in the tensor encoding. Nevertheless,
we will keep these duplicated tuples when we compute other data characteristics
in the following sections.

For data sets with continuous entries, however, we need to discretize the
modes with continuous values into categorical values before such an encoding
is possible. There are various methods for obtaining discrete representation of
continuous valued data sets; these include equal-width binning, equal-frequency
binning, k-means clustering, or decision trees [28]. Here, we adopt equal-width
binning: let C; be a set of continuous values of mode i; given a number, N;, of
bins, we compute the length, W;, of the discretization window as

(max(C;) — mm(Cl))

W; = N,

(2)

Given this window size, each entry, v, in C; will be represented with the corre-

sponding bin.

5.2. Statistics Collection Strategies for Continuous Valued Data

As described above, discretization is a necessary tensor encoding step for

data sets with continuous entries. However, the data statistics that will be used

10
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for guiding the tensor train decomposition process can be collected before or

after the discretization process.

5.2.1. Discretization-then-Statistics (DtS)

Given a data set with continuous entries, Discretization-then-Statistics (DtS)
strategy first categorizes continuous entries into discrete values with the method
described above to generate a corresponding tensor, and then extracts data

characteristics treating the data as categorical.

5.2.2. Statistics-then-Discretization (StD)

Given a data set with continuous entries, Statistics-then-Discretization (StD)
strategy first extracts data characteristics from the continuous data and then
categorizes continuous entries into discrete values to generate the corresponding
tensor encoding.

We experimentally evaluate the performance of these two statistics collection

strategies in Section 7.

5.3. Data Characteristics

Here, we describe data characteristics, or features, relevant for tensor train
mode sequence selection. Let us consider a tensor with n tuples and m modes

(or dimensions).

5.3.1. Mode Lengths

Given a data set with d modes, we hypothesize that the value of d will
have an indirect impact on the selected order. In particular, as the value of d
increases, the number of parameters that need to be solved during the decompo-
sition process increases and different orderings may lead to different number of
parameters — this may have an impact on the strategy to be used for permutation
selection. Given a d-mode tensor with a permutation of modes (my, s, ..., 74),

X € Rlm Xlmy X Xlny e compute the average of mode lengths, along with the

11
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absolute and relative standard deviations:

Hiength(X) = average(ly, ,lry, ... lx,), (3)
Olength(X) = stdev(ln,,lny, -, 1x,), (4)
¢length(X) = Ulength/,“length- (5)

Intuitively, the larger the lengths of the modes, the larger will be the number
of parameters to be sought. The absolute and relative standard deviations

indicate how discriminative the mode length feature is in the given tensor.

5.3.2. Mode Entropy

We next argue that the entropy of the data captured by the various modes
of the data may also impact the tensor train decomposition order. Intuitively,
entropy would indicate how easy it is to have a low-rank approximation of a
tensor along a given mode and the absolute and relative standard deviations

indicate how discriminative the mode entropy feature is.

Modes with Categorical Data. Given a data set with d modes, for the data with

categorical entries, let X; be a discrete random variable with possible values

{z1,...,2zp,} for mode i. Given this, we can compute the Entropy for mode 4
as _
H;=H(X;) == pi(j)logy pi(4), (6)
j=1

where p;(j) represents the probability that x; occurs in the given mode .

Modes with Continuous Data. For the data sets with continuous entries, we
cannot directly apply the basic entropy definition. To quantify entropy for con-
tinuous variables, [29] extends the idea of Shannon entropy, a measurement for
the level of surprise of a random variable, to continuous probability distributions
through differential entropy. The actual continuous version of discrete entropy
is the limiting density of discrete points (LDDP) [30] and the conventional dif-

ferential entropy extended from discrete Shannon entropy [29] is a limiting case

12
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of the LDDP and loses its fundamental association with discrete entropy. There-
fore, here, we adapt the method proposed in [31], where the entropy estimator
is based on the first nearest neighbor distances of the sample points: let X; be
a continuous random variable for mode 7 in certain metric space, i.e. there is a
distance function ||z — z'|| between any two instances of X;; the entropy of X
can be estimated as:

N

Hf = H*(X;) = —(k) + ¥(N) + log(cq) + % > loge(i), (7)
i=1

where
e 1 the digamma function.
e k: the k-nearest neighbor, we set k = 1 as default.

e N: the numbers of instances

cq: the volume of the d-dimensional unit ball.
e ¢(i): twice the distance from x; to its kth nearest neighbor.

The detailed proof can be found in [31, 32].

Entropy Statistics for the Tensor. Given the entropy for each mode of the ten-
sor, we can compute the average and standard deviation statistics as follows
(note that we use entropy for categorical variable H in the following formulas
and sections, but entropy for continuous variable H* can be substituted for data

sets with continuous values):

Pentropy(X) = average(Hy,Ha,...,Hy), (8)
Oentropy(X) = stdev(Hy, Ho,...,Hy), (9)
(bentropy (X) = Uentropy/:u'ent'ropy- (10)

The absolute and relative standard deviations indicate how discriminative the

mode entropy feature is in the given tensor.

13



a5 5.3.3. Tensor Density
Note that the above definition of entropy is meaningful especially for sparse
tensors® Therefore, we also compute a density statistic. Given a d-mode tensor
X € Rlixlzxxla e compute the density p of X as

# of nonzero values in X
l1><lg><---><ld

p(X) = (11)

5.8.4. Pairwise Average Conditional Entropy
The above statistics of mode length and entropy consider each mode in
isolation. Yet, as we mentioned in Section 3, the tensor train representation
links consecutive modes in the sequence, and we believe these links provide us
20 extra information for the sequence. To measure the strengths of the linkages,
we can abstract the given data set as a mode-graph representation and compute
pairwise statistics to guide tensor train decomposition. First of these pairwise

statistics is the pairwise average conditional entropy described below.

Mode Pairs with Categorical Data. Let X; denote a discrete random variable
with possible values {z;1,...,%;n, } corresponding to mode i. The conditional

entropy of X; given X is defined as:
Hy; = H(Xi|X;) ij zjn)H (X X5 = ;). (12)

Given this, we can compute average pairwise conditional entropy as ACE

25 %HJ“ Note that at each step of the TT-decomposition process, the algo-

(4,3) =

rithm creates a core that links two modes of the tensor. Intuitively, the average
pairwise entropy (ACE) indicates the ease with which one can obtain the low-

rank decomposition of a pair of modes.

Mode Pairs with Continuous Data. Let X; and X; be two continuous random
variables; the conditional entropy, of X; given X; can be computed based on
the formula:

1= Hie — B, (13

i

3 Alternative definitions of entropy may be used for dense tensors

14
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where H(*Z ) is the joint entropy of X; and X; and H; is the entropy estimate
for mode j discussed in Section 5.3. Average pairwise entropy (ACE) can then

be computed similarly as above.

Mixed Mode Pairs. Mode pairs could be mixed, e.g. (1) X; is continuous and
X, is categorical or (2) X; is categorical and X is continuous. Since there
is no direct way to compute the joint entropy for mixed node pairs, here we
approximate the joint entropy for X; and X; as H(*i,j) for later conditional
entropy computation. And the approximation of the joint entropy for mixed
node pairs is based on the property that H; ;) <= H; + H;.

*

Hence, the conditional entropy for mixed mode pair Hi|j could be estimated

as:
e X; is continuous and X is categorical:

H

ilj

~ H}, . — H; (14)

(i,4) — I

where H.

() ~ Hi + Hj

e X; is categorical and X is continuous:
* * *
Hjj; ~ H ) — Hj, (15)

where H*

(i,g) ~ Hi + Hj.

In both cases, average pairwise entropy (ACE) can then be computed simi-

larly as above.

Conditional Entropy Statistics for the Tensor. Given the above, we can then

compute the average and standard statistics for ACE as follows:

Pace(X) = average(ACE( ;) |1 # j), (16)
Oace(X) = stdev(ACE ;) | i # 7), (17)
¢ace (X) = O—ace/,ulac& (18)

The average and standard deviation statistics indicate how significant this fea-
ture is in the data and how discriminative the feature is to help select pairs of

modes to consider in sequence.

15



250

255

5.4. Pairwise Mutual Information

A related measure to conditional entropy is the pairwise mutual information.

Mode Pairs with Categorical Data. Let X; be a discrete random variable with
possible values {x1,...,zy,} for mode 7. The mutual information of X; and X

is defined as

Pxixp) (@)

Mgy = 3 D pexxy(ey)log(C = —0) 19)
T€X; yeX; px; (2)px; (y)

= Hi— Hy; = Hj = Hyi (20)

where p(x, x,) is the joint probability mass function of X; and Xj.

Mode Pairs with Continuous Data. For mode pairs with continuous entries,
we can leverage the entropy conditional entropy formulations presented in the

previous subsections to compute pairwise mutual information:

MI}, ;= H; — Hj; = Hf — H| (21)

li®
Mized Mode Pairs. 1f X; is continuous and X is categorical, we approximate

the pairwise mutual information M I (*l ;) as

MIG 5y ~ Hi — Hj (22)

il

If X; is categorical and X; is continuous, on the other hand, to avoid having

to use an approximated value for H}j ., we approximate the pairwise mutual

i5°
information MI(*i ;) as
MIG gy ~ Hj — Hj;. (23)

Pairwise Mutual Information Statistics for the Tensor. We then compute that

average and standard statistics for mutual information as follows:

pmi(X) = average(MlI ;) | i # j), (24)
(bmi (X) = Umi/ﬂmi- (26)

16
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Intuitively, mutual information can be used to measure how closely related the
rows and columns of a given matrix are; the more closely related two modes

are, the better are the chances to obtain a more accurate decomposition.

6. GTT: Guiding Tensor Trains towards Highly Accurate Decompo-

sitions

Given the tensor data characteristics for discrete and continuous valued data
described in the previous section, here we present various GTT strategies for

guiding the tensor trains decomposition process.

6.1. GTT-NP: Number of Parameters

Consider the TT-decomposition process depicted in Figure 2. Here a 3-mode
input tensor X € Rim1 *lr2XIxs is heing converted into TT-format with a given
decomposition sequence IT = (w1 (mode; ), w2 (modes), m3(modes)) following Al-
gorithm 1. In this example, the total number of parameters that the two SVD
algorithms involved in the process have to solve for is the sum of the number
of variables for U, SVT, U’ and SV'T, which is (rpy, X Lz, X 7x,) + (Fe, X Ip, X

Lrg) + (ray X by X Ty) 4+ (Try X Iny). It is easy to generalize this to

d—1 d
NPH(X):Z Ti—1 Xlﬂi X7ri+1r; X H lﬂ-j
i—1 _U’_’ j=it1
svT

The first guiding strategy, GTT-NP, computes the number, NPg(X) of pa-
rameters for each possible permutation, II, and selects an order with the least

number of parameters.

6.2. GTT-AMI and GTT-PMI: Mutual Information

Aggregate Mutual Information (AMI). Mutual information (Equation 19 or
Equation 23) can be seen as a measure of dependency between the two vari-
ables. GTT-AMI guides the TT-decomposition process based on the aggregate

mutual information each mode has with the rest of the modes in the tensor.

17
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Mode1 | Mode2 | Mode3 Ml 3= 0.2
1 2 1
2 4 2
3 3 1 Pick one (m; in this case)
3 3 2
1 2 1
1 1 2
Dataset AMI;=15+02=17 Sequence: m,->m, ->m,

v AMI;=15+0.7=2.2
AMI;=0.2+0.7=0.9

Figure 3: GTT-AMI computation for a 3-mode tensor. We first compute pair-wise mutual
information and then aggregate these mutual information to decide which mode should be
selected to decompose. In this example, Mode 2 will be first mode to decompose, since it has

the largest aggregated mutual information.

More specifically, given a d-mode tensor, the AMI value for mode 7 is computed
as
d
AMI; =Y MI ;).

j=1
We argue (and later experimentally show) that a potential strategy to guide
the ordering of the modes in the TT-decomposition would be to (a) first find
the mode with the largest AMI value and (b) then select this as the first mode.
The process is, then, continued by (¢) recomputing the AMI values among the
remaining modes, (d) finding the mode with the largest (updated) AMI value
among the remaining modes, and (e) selecting this as the next mode in the
sequence. The process is repeated until all the modes have been ordered (when
only two modes remain, the order is picked randomly). Figure 3 illustrates an
example for a 3-mode (Mode 1: m1, Mode 2: mgy, Mode 3: mg) categorical data
set. First, we compute AMI for each mode, which are: AMI; =1.5+0.2 = 1.7,
AMI, = 15407 = 2.1, and AMI3 = 0.2+ 0.7 = 0.9. In this case, AMI
strategy described above would select mode mso as the first mode followed by
my or mg. Intuitively, this process ensures that, at each step of the process,
we consider and factorize a matrix where the rows have the highest statistical

dependency with the columns.
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Path Mutual Information (PMI). Note that the above process, which first picks
the mode with the highest aggregate mutual information with the rest of the
modes, is likely to lead to orderings where the total mutual information along
the sequence is low: Figure 4 illustrates an example, where M1 9y = 1.5,
Ml 5 = 0.2, and M3 = 0.7. With a total MI of (1.5 + 0.7) = 2.2, the
orders m; — mo — mg and mg — mo — mj have the highest total mutual
information. In fact, surprisingly, permutations with a low total MI tend to
lead to higher accuracies than orders with a high total MI. This somewhat
counter-intuitive result (which we experimentally validate in the “Experimental
Results” section), indicates that the accuracies of initial decomposition steps
are very important in obtaining high accuracy in TT-decompositions. We refer

to this strategy as path mutual information (GTT-PMI).

Model | Mode2 | Mode3 PMI (my ->my->m3)=15+0.7=2.2
1 2 1 PMI (m; ->m3->my)=0.2+0.7=0.9
2 2 2 PMI (m; ->mq->m3)=15+02=17
3 3 1 PMI (m; ->m3->m,)=0.7+0.2=0.9
3 3 2 PMI (m3z ->m;->my) =02+ 15=17
1 2 1 PMI (m3z->m;->m;)=0.7+15=22
1 1 2

Dataset

Figure 4: GTT-PMI computation for a 3-mode tensor. We first compute pair-wise mutual
information and then for a given sequence of order (path), we accumulate its corresponding
pair-wise mutual information and then select the sequence which has the lowest accumulated

mutual information.

6.3. GTT-IE: (Inverse) Entropy

Remember that at the first step of the TT-decomposition process, we first
matricize a given tensor X and then apply SVD to obtain U and SV7T matrices:
here U represents clusters along the first selected mode and SV7 represents
tensor X except the first mode. In the following steps of the algorithm, we
apply several other clustering steps on the remaining matrix SV7T. It is therefore
important that the matrix SV lends itself to a good clustering. One strong

indicator of this is the entropy: if SV has high entropy, it is likely that it will
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H, H, Hs

’,IIVIode 1\\‘ ‘I\lllode 2‘\‘ ‘,IIVIode 3:\‘

1 T 3 T 1 H, = H(Mode 1)= 1.5

| R H, = H(Mode 2)=1.9

3 v 3 o2

V1ol 2 Hs <H; <Hy:

N1/ N1/~ 2/ Sequence: Mode; -> Mode,; -> Mode,

Dataset

Figure 5: GTT-IE computation for a 3-mode tensor. We first compute entropy of each mode,
and then decides a TT-decomposition sequence based on entropy in ascending order. In this
example, the decomposition order is Mode 3 — Mode 1 — Mode 2.

lead to better clusters. Since the overall entropy in X is fixed, this implies that
the matrix U should ideally have low entropy.

This leads to a third strategy, GTT-IFE, which guides the TT-decomposition
process based on the (inverse) entropy of each mode: at each step the algorithm
selects the mode with the lowest entropy among the remaining modes. Again,
Figure 5 illustrates an example of GTT-IE. Given a 3-mode (mj, ma, ms)
categorical data set, IE strategy computes the entropy with Equation 6 for each
mode (Hy, Ha, Hs), and then decides a TT-decomposition sequence based on

entropy in ascending order.

6.4. GTT-HYB: Hybrid Strategy

In Table 3, we list the data sets we use in our experiments along with the
(non-hybrid) strategy with the best accuracy performance. As we see in the
table, none of the strategies lead to a universally accurate order. While this is
initially disappointing, the facts that different strategies work well for different
data sets and that, often, where one strategy fails to lead to an accurate decom-
position, another strategy excels, indicate that a hybrid strategy which carefully
switches between the different approaches can lead to a better accuracy than

any of the individual strategies.
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Algorithm 2 GTT-HYB
Input:

e A d-mode tensor X € Rim*lm>XXlrg where I = (11, mo,...,m4), is a
permutation of modes in X’;

e A feature vector X € R™ in Section 5 for X;

o A list of target tt-ranks, (Tug, Tays Tras -« Try)s Frg = Tmy = 1

e Linear SVM classifiers for GTT-NP, GTT-PMI and GTT-IE:

Ine,fpurs frE;

Output:

A sequence of decomposition order recommended by GTT-HYB.

e SGx : Selected GTT for X.

o fsa(X, (P, Ty Ty« -+ Tmy)) ¢ Separation between X and the classifier for

SG.

1: procedure GTT-HYB(X, (rrg, Ty Ty« - s Try))
2: SGx = ngafcsce{NP,PMl,IE}(fSG (X, (Trgs Ty s Trgy + + o5 Tg)))-
3: return the sequence of decomposition order recommended by SGx.

4: end procedure

To show the feasibility of such a hybrid technique, for each strategy?*, &, we
have considered the data characteristics described earlier Section 5 as features
and train a (linear) SVM classifier (with L1-regularization) that separates the
data sets for which the strategy provides better accuracies than the rest (i.e.,
strategy & vs. rest). In particular, with given training datasets (tensor in-

stances)®, for each scenario we consider the top-20% of the tensor instances for

4Note that the two mutual information based strategies, GTT-AMI and GTT-PMI, are
hard to separate; since, as we see in Tables 4 and 5 in Section 7, GTT-PMI is overall more

accurate among the two, we omit GTT-AMI in hybrid selection.
5For GTT-HYB, we randomly sample 80% of tensor instances as training data, and the

rest of 20% of tensor instances will be testing data. In experiments, we evaluate the proposed

approaches with testing data.
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Figure 6: GTT-HYB selects a strategy using SVM classifiers. We train a linear SVM classifier
for each GTT-strategy (GTT-NP, GTT-IE, and GTT-PMI), and then select a strategy which

has the maximum separation for a given data set. In this example, PMI would be selected.

which the given strategy returns the best results against the lowest-20% of the
tensor instances for which the given strategy returns the worst results. Intu-
itively, the separator can be interpreted as a feature selector that describes the
data characteristics that best matches the given strategy. For each decomposi-
tion scenario, we then select the strategy that is recommended collectively by
the trained separators; for any scenario for which the classifiers recommend more
than one strategy, we pick the strategy that has the largest margin from the
corresponding separator. Figure 6 depicts the concept of our GTT-HYB: each
GTT strategy has its linear SVM classifier. For a given data set. GTT-HYB
selects the strategy which has the largest margin. In this example, GTT-PMI
is selected since it has maximal separation. And the pseudo procedure of GTT-

HYB is described in Algorithm 2.

6.5. Complexity of GTT Decomposition

Let X be a d-mode input tensor and ¢ = |X| indicates the number of non-
zero entries in data set. Let also n; denote the size of mode d; and n denote the

average mode size.
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us  Guidance Step. The time complexities for the various strategies are as follows:

o GTT-AMI makes a pass over t data and for each it computes its contri-

bution to the mutual information among @

cost is O (t X @).

mode pairs; therefore its

e GTT-PMI also computes mutual information for all pairs of modes, but
350 then it further computes a minimum path on the resulting graph with d

nodes and @ edges; therefore its cost is O ((t X @) + (@ + dlog d))

e GTT-NP enumerates d! many sequences and, for each sequence computes
the corresponding number of variables at O(d) time — therefore it costs

O(d! x d).

355 e GTT-IE requires one pass over the entire data for computing all of the

mode entropies — i.e., its cost is O().

Note that, as we experimentally show in the next section (Table 4), the time
complexity for statistics collection is negligible relative to the time needed to
decompose the tensor.

0 Decomposition Step. GTT provides a decomposition order which is then
fed into TT-SVD to obtain the actual decomposition. The decomposition time
complexity is therefore equal to that of TT-SVD[6], which is O(dnr?) and the

number of parameters will be O(dnr + (d — 2)r3).

7. Experimental Results

365 Here, we present experimental evaluations of the proposed GTT strategies®.
Note that (once the decomposition order is selected) the data tensors are de-
composed using TT-SVD [6] on a 4-core CPU (2.7GHz each) machine, with
16GB RAM. And further settings are in the following:

60ur implementation and data sets can be found: https://shorturl.at/DMOSY
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Table 2: Data sets [11]

Data set #Inst. #Modes H Data set ‘ #Inst. #Modes
Categorical-valued data
dermatology 366 34 flare 1395 11
mushroom 8124 23 house-votes 435 17
soybean 307 36 tic-tac-toe 958 10
breast 699 10 nursery 12960 9
balance-scale 625 5 primary-tumor 339 18
hayes-roth 160 6 lymphography 148 19
car 172 7 spect 267 23
chess 3196 37
Continuous-valued data
iris 5 16 abalone 237 14
wine 206 9

Data Sets. We use both categorical and continuous valued data sets in our
experiments. Table 2 lists the data sets we use in these experiments. The
data sets are taken from the UCI Machine learning repository [11], where 15 of
them are categorical-valued data sets and 3 of them are continuous-valued data
sets. From each data set, we extracted randomly selected 3-, 4-, and 5-mode
tensor instances (up to 100 each, as allowed by the dimensionality of the data
set). The total number of tensors extracted from these data sets and used in
the experiments is 3632 (categorical-valued data) and 459 (continuous-valued

data).

TT-Ranks. Here, we consider two TT-ranks, 3 and 5. As discussed in Section 3,
we assume the target TT-rank is given and fixed for each mode. While there are
several non-parametric decomposition techniques, such as [27] which can learn
also the appropriate rank, this is outside of the scope of this paper. We leave

this to the future works.

Competitors. We compare five order selection strategies (GTT-AMI, GTT-PMI,
GTT-IE, GTT-NP, GTT-HYB) and a baseline strategy, ARB, which represents
the “average” decomposition performance of uninformed (i.e. arbitrary) order

selection.
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Table 3: The relative average ranking against ARB for each data set (we normalize average
ranking of ARB strategy as 1, and the bold number means the best ranking within four pro-
posed strategies - the lower, the better) and the percentage improvement in reconstruction
error (RE % impr.) against ARB using the GTT-HYB strategy - the higher, the better.
*Inst. weighted average = (# of instances for a data set * Relative average ranking or RE %

impr. for a strategy)/(total # of instances).

Relative average ranking RE % impr. using HYB
(Lower, the better) (Higher, the better)
r=3 r=>5 r=3 r=>5

Data set e | Np [ pmi [ ami || I [ NP | PMI | AMI % impr. % impr.

Categorical-valued Data
balance-scale 0.73 1.03 0.99 0.8 0.73 1.03 0.99 0.80 42% 43%
breast 0.79 1.08 1.02 0.99 0.82 1.09 0.99 0.97 6% %
car 1.24 0.90 1.02 0.69 1.26 1.23 1.03 0.70 -4% 1%
chess 0.88 0.97 1.01 0.89 0.86 0.97 1.01 0.88 -1% -3%
dermatology | 0.85 | 0.93 | 1.02 | 1.11 || 0.88 | 0.95 | 1.00 | 1.12 3% 4%
flare 0.92 0.89 0.85 1.18 0.94 0.92 0.84 1.17 1% 6%
hayes-roth 0.75 0.72 0.75 0.67 0.77 0.70 0.77 0.69 14% %
house_votes 0.96 1.03 0.89 1.18 0.93 1.04 0.89 1.16 -8% -6%
lymphography | 0.73 | 0.93 | 1.01 | 0.99 || 0.74 | 0.96 | 1.00 | 1.02 6% 5%
mushroom 0.92 0.87 0.82 1.10 1.02 0.78 0.86 1.12 3% 2%
nursery 0.90 0.76 0.92 0.72 0.94 0.80 0.93 0.69 10% 7%
primary-tumor 0.94 0.68 0.87 0.91 0.98 0.62 0.83 0.90 9% 12%
soybean 0.84 0.91 0.95 1.05 0.87 0.96 0.93 1.02 5% 3%
spect 0.97 1.00 0.92 0.91 0.97 1.00 0.91 0.90 8% 10%
tic-tac-toe 0.70 1.05 0.95 1.02 0.70 1.05 0.94 1.01 7% 17%
Average 0.87 0.92 0.93 0.95 0.89 0.94 0.93 0.94 7% 8%
*Inst. weighted 0.86 0.90 0.93 0.96 0.88 0.91 0.92 0.96 6% 7%
Average

7.1. Fvaluations for Categorical-valued Data Sets

Evaluation Criteria. For accuracy, we adapt the reconstruction error introduced
in Section 3. We report and compare average reconstruction errors for each

strategy and the percentage improvement over ARB:

o Given a d-mode tensor, we enumerate ALL (d!) permutations and compute

error for each permutation.

e We use the mean of all these d! reconstruction errors as the (average) error

for arbitrary selection, ARB.
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Table 4: Average reconstruction error, rate of improvement against arbitrary selection (ARB)

and average decomposition time.

Average Reconstruction Error Rate of Improvement Avg. Dec. Time

(Lower, the better) (Higher, the better) (ms)
Method r=3 ‘ r=>5 r=3 ‘ r=>5 r=3 ‘ r=>5
ARB 5.16 \ 5.33 I - \ - | 820 [ 53
IE 4.90 5.07 4.9% 5.0% 78.6 81.8
NP 5.05 5.30 2.0% 0.7% 84.4 82.5
PMI 4.95 5.13 4.0% 3.9% 81.5 84.3
AMI 4.98 5.19 3.4% 2.7% 82.1 82.3
HYB 4.86 5.01 I s8% | 61% [ so7 82.3

Table 5: Percentages of decompositions with better than (B) and worse than (W) the rank

of decomposition returned on average by an uniformed, arbitrary ARB selection strategy)

r=3 r=>5

Method
B ‘ w ‘ gain B ‘ w ‘ gain
IE 55.0 33.0 1.7 54.0 35.0 1.5
NP 36.0 25.0 1.4 35.0 26.0 1.4
PMI 47.0 31.0 1.5 47.0 32.0 1.5
AMI 45.0 42.0 1.1 45.0 42.0 1.1

| BHYB [[500 [ 260 20 [[51.0]240] 21 |

In addition to the absolute values of reconstruction errors, we also report per-
centages of decompositions with better than (B) and worse than (W) the average
ranking by arbitrary selection, ARB. We further report the ratio gain = B/W
— the value of gain indicates how well a given strategy promotes good decom-
position, while avoiding the bad ones.

We also report the average decomposition times for the decomposition orders

selected by the various strategies.

7.1.1. Evaluations and Analysis

Accuracy. In Table 3, we first list the relative average ranking for each proposed
strategy against ARB (lower, the better), as we can see, the best single strat-
egy can vary from data set to data set — this motivates the need for a hybrid
strategy (GTT-HYB) to select an effective combined strategy. As shown in
Table 3, GTT-HYB provides improvements for all data set except the car, and
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house_votes data sets. To get a more general view of the benefit of proposed
strategies, in Table 4, we aggregate all data sets and report average reconstruc-
tion errors and percentage of improvements against the baseline (ARB). As we
see in the table, all proposed GTT strategies improve reconstruction perfor-
mance against ARB, with GTT-IE providing the highest improvement among
the single criterion strategies. The table also shows that the hybrid strategy
(GTT-HYB, described in Section 6.4) provides the highest overall improvement
in accuracy. Table 3 also depicts the percentage improvement of reconstruction
error (RE) against ARB using the GTT-HYB strategy for each data set, and
we further see that the proposed hybrid strategy is indeed beneficial for 12 out
of 15 of the considered data sets.

Again, with aggregating all data sets, in Table 5, we report the percentage
of tensors for which each strategy returns better than (B) and worse than (W)
the arbitrary selection, ARB, and the overall gain (gain = B/W). As we see,
the GTT-IE strategy provides the largest gain among the four strategies and
as before GTT-HYB strategy provides the best overall gain for both target
tt-ranks.

Note that, among the two mutual information, based strategies, GTT-PMI
is more effective than GTT-AMI in terms of both reconstruction error (Table 4)
and gain (Table 5). Therefore, as reported in Section 6.4, we do not consider

GTT-AMI, when constructing a hybrid strategy.

Decomposition Time. Table 4 reports the average decomposition times for dif-
ferent strategies. As we discussed in Section 6.5, the proposed strategies do not
add any overhead to the decomposition time over arbitrary selection, ARB. In
fact, the hybrid strategy, GTT-HYB, appears to reduce the decomposition time
over ARB. While this is not our focus in this paper, we plan to explore this

further in future work.

Top-Contributors to Fach Strategy. In Table 6, we present the top-3 positive
and/or negative contributors (among the various statistics considered in Sec-

tion 5) for the GTT-IE, GTT-NP, and GTT-PMI strategies:
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Table 6: Three major contributors to the GTT-1E, GTT-NP, and GTT-PMI strategies (pos-

itive values indicate positive, negative values indicate negative contribution)

1E Cacel3.9]; bace[—2.7]; p[—1.9]

NP ¢length[3~1]; P[_20]7 Uentropy[_l-l]
PMI || 04ce[3-2]; Pace[—2.0]; tiengtn[1.8]

Table 7: The relative average ranking against ARB (lower, the better) between GTT-BEST
and GTT-HYB for each data set.

TT-rank=3 TT-rank-5

Dataset GTT-BEST | GTT-HYB GTT-BEST | GTT-HYB
balance-scale 0.73 0.73 0.73 0.99
breast 0.52 0.72 0.54 0.73
car 0.63 1.25 0.82 1.15
chess 0.59 0.95 0.59 0.92
dermatology 0.52 0.92 0.52 0.92
flare 0.47 0.71 0.45 0.74
hayes-roth 0.47 0.78 0.46 0.83
house_votes 0.56 0.96 0.53 0.89
lymphography 0.49 0.75 0.51 0.78
mushroom 0.47 0.74 0.48 0.75
nursery 0.42 0.86 0.48 0.94
primary-tumor 0.49 0.69 0.47 0.64
soybean 0.47 0.86 0.47 0.86
spect 0.78 0.97 0.77 0.96
tic-tac-toe 0.64 0.99 0.64 0.87
Average 0.55 0.86 0.56 0.86

e For GTT-IE, the two main contributors are ogce and ¢gce.. This echos our
argument in Section 6.3: GTT-IE prefers that the entropies of the modes are
considered in ascending order and thus GTT-IFE is more effective when the
discriminatory power of ACE is high.

e Asdiscussed in Section 6.1, the number of parameters that needs to be learned
depends on the length of the modes and the more discriminative the mode
length parameter is, the more effective GTT-NP — this explains the positive
contribution of ¢jengen to the GTT-NP selection criterion.

e For the mutual information based strategy, GTT-PMI, the higher the spread
of ACE, the higher the impact of GTT-PMI. This confirms our discussion in
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Table 8: Relative average ranking against ARB selection strategy (lower, the better) for

continuous-valued data.

tt-rank, r=3
Statistics Collection | Width ARB | AMI | PMI IE NP HYB

5 1 1.19 1.42 0.88 1.29 1.04
DtS 10 1 1.19 1.43 0.91 1.25 0.97
15 1 1.16 1.44 1.05 1.24 0.99
5 1 0.93 1.02 0.89 1.29 0.82
StD 10 1 0.90 1.04 0.92 1.28 0.86
15 1 0.93 1.07 0.97 1.28 0.84

tt-rank, r=5
Statistic Collection Width ARB | AMI | PMI IE NP HYB

5 1 1.22 1.42 0.93 1.26 1.01
DtS 10 1 1.17 1.42 0.96 1.24 0.97
15 1 1.13 1.40 0.95 1.25 1.03
5 1 1.01 1.07 0.85 1.28 0.76
StD 10 1 0.99 1.08 0.87 1.27 0.75
15 1 0.99 1.06 0.90 1.24 0.76

Section 6.2: mutual information can be considered as a measure of dependency
and, since the entropy of a mode is fixed, its dependency with the adjacent
mode (mutual information) is constrained by the conditional entropy between
them. Hence, the more the parameter ACE is (i.e., the larger is the value of

Cace), the higher the benefits of GTT-PMI.

Compare with the best strategy within GTT. To further analyze the perfor-
mance of GTT, we compare the relative average ranking against ARB selection
strategy between GTT-BEST (select the best result within GTT-NP, GTT-
PMI and GTT-IE) and GTT-HYB. From the results in Table 7, we can see
both GTT-BEST and GTT-HYB provide better results than ARB - the “aver-
age” decomposition performance of uninformed (i.e. arbitrary) order. However,
GTT-BEST select decomposition order from the union set of GTT-NP, GTT-
PMI, and GTT-IE, which means, this selection could be like enumerating all
possible decomposition orders. Furthermore, GTT-BEST triples the computa-
tion effort and is not appropriate for the practical use, while GTT-HYB only

needs one-time effort to train classifiers and then could be applied to most of
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the data.

7.2. Fvaluations for Continuous-valued Data Sets

Here we consider the continuous-valued data sets in Table 2 and evaluate
the relative average ranking for each GTT strategy with various TT-ranks (3
and 5)7 against ARB (lower, the better) with alternative statistics collection
strategies, discretization-then-statistics (DtS) and statistics-then-discretization
(StD). For tensor encoding, we consider different discretization widths (5, 10,
15) for equal-width binning in Section 5.1.

As we see in the Table 8, we obtain the best overall results under the
StD statistics collection strategy, using GTT-HYB approach for ordering tensor
modes. This indicates that for continuous data, it is more effective to collect
statistics in the continuous domain and, once the statistics are collected, then,
the hybrid tensor-train guiding strategy is again the most effective approach.

Below, we look at these results in further detail:

Statistics Collection Strategies. In Table 8, we can see the GTT strategies with
StD have better performance than GTT strategies with DtS — as expected, this
is especially true for entropy-based GTT strategies (GTT-AMI,GTT-PMI).

It is interesting that GTT-IE has overall better performance with DtS dis-
cretization scenario than StD scenario, we think it is because GTT-IE only
focuses on the order of mode entropy individually instead of considering the
relationships across modes like GTT-AMI and GTT-PMI. Hence, we believe
DtS scenario simplifies the process of determining the order of model entropy
in GTT-IE and results in better performance. However, DtS scenario dimin-
ishes the potential benefit from actual entropy for continuous-valued data, which

degrades the performance of GTT-AMI, GTT-PMI, and also GTT-HYB.

“GTT-HYB is re-trained with continuous-valued data sets under the same settings in

Section 6.4.
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Discretization Width. As we see in Table 8, discretization width has only min-
imal effect on the results. Especially in StD, data characteristics are computed
before the discretization process; therefore, the impact of the size of the dis-

cretization window is especially minimal.

TT-Ranks. As expected, using higher TT-rank generally provides better de-
composition performance than lower TT-ranks — this is because higher TT-rank
means we preserve more information during decomposition process. Beyond
this, however, we do not see any significant impact of the TT-rank on the rela-

tive performance of GT'T strategies or statistics collection strategies.

8. Conclusion

In this paper, we proposed a novel approach for guiding the tensor train
(GTT) in selecting the decomposition sequence. We have shown that we can
leverage the various characteristics of the given data set to identify an effective
order strategy for both categorical and continuous data set. In particular, we
proposed three order selection strategies, (a) number of parameters (NP), (b)
aggregate mutual information (AMI, PMI), and (c) inverse entropy (IE) , for
guiding the tensor train decomposition sequence and we have shown that a
hybrid (HYB) strategy that combines these three strategies taking into account
the specific characteristics of the given data set can lead to good decomposition

sequences.
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