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Abstract

We study families of Dirac-type operators, with compatible per-
turbations, associated to wedge metrics on stratified spaces. We
define a closed domain and, under an assumption of invertible
boundary families, prove that the operators are self-adjoint and
Fredholm with compact resolvents and trace-class heat kernels.
We establish a formula for the Chern character of their index.
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Introduction

In this article we establish an index formula for families of Dirac-type
operators on stratified spaces endowed with metrics of iterated conic-
type singularities. In the process we construct the resolvent and heat
kernel of these operators by extending the b-calculus of Melrose and the
edge calculus of Mazzeo to manifolds with corners and fibered bound-
aries. We establish refined asymptotic expansions of these operators of
relevance to the study of analytic and spectral constructions and their
connections to topology. In the present paper we use them to carry out
the heat equation proof of the index theorem.

Our index theorem seems to be the first example of an index theo-
rem for singular metrics on stratified spaces of arbitrary depth since the
Gauss-Bonnet and signature theorems for piecewise flat admissible met-
rics established by Cheeger [Che83]. Since this seminal paper there has
been much interest and progress in index theory on spaces with isolated
conic singularities and, more recently, non-isolated conic singularities
which we will review below.

Most singular spaces arising from smooth objects, such as zero sets
of polynomials, orbits of group actions, and many moduli spaces, are
Thom-Mather stratified spaces. They can be written as the union of
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smooth manifolds known as strata. One stratum is dense and referred
to as the regular part, while the others make up the singular part. Each
singular stratum has a tubular neighborhood in the stratified space that
fibers over it, the fiber is itself a stratified space and is known as the
link of that stratum. The depth of a stratified space is the length of
the longest chain of inclusions among the closures of singular strata.
(See, e.g., [Alb17, Klo09] and references therein for more on stratified
spaces.)

Every Thom-Mather stratified space bX can be ‘resolved’ to a manifold
with corners X by a procedure that goes back to Thom [Tho69] and
was recently reformulated by Melrose (see [ALMP12,AM11,Alb17]).
The boundary hypersurfaces ofX are partitioned into collective (i.e. dis-
joint unions of) boundary hypersurfaces, BY , one per singular stratum
Y � of bX, which participate in smooth fiber bundles of manifolds with
corners,

Z � BY

�Y���! Y,

in which Y is the resolution of the closure of Y � in bX and Z is the
resolution of the link of Y � in bX. These fiber bundles satisfy compat-
ibility conditions at intersections of collective boundary hypersurfaces,
see Definition 1.1. We refer to this structure on X as an iterated fibra-
tion structure and emphasize that it is equivalent to the Thom-Mather
structure on bX.

There is a map � : X �! bX relating a stratified space and its resolu-
tion that restricts to a di↵eomorphism between the interior of X and the
regular part of bX, bXreg. This relation allows us to define the analogues
of smooth objects on bX. For example, we can define a smooth function
on bX to be a continuous function on bX whose restriction to bXreg = X�

extends to a smooth function on X. We can study these functions on
X without reference to bX,

C1

� (X) = {f 2 C1(X) : f
��
BY

2 �⇤Y C1(Y ) for all Y }.

The di↵erentials of these functions locally span a vector bundle, known
as the wedge cotangent bundle,

wT ⇤X �! X,

described in more detail below.
Following the paradigm of [Mel93], we can think of the present paper

as carrying out geometric analysis in the ‘wedge category’ where, e.g.,
the rôle of the contangent bundle is supplanted by the wedge cotangent
bundle. For example, our metrics will be Riemannian metrics on the
interior that extend to bundle metrics on the wedge (co)tangent bundle,
and our Cli↵ord bundles will have Cli↵ord actions over the interior that
extend to actions of the Cli↵ord algebra of the wedge cotangent bundle.
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In contrast to the situation in [Mel93], the dual bundle wTX, known
as the wedge tangent bundle, does not have a natural Lie bracket; this
leads us to define ‘wedge di↵erential operators’ in terms of ‘edge dif-
ferential operators’. A related issue is that wedge di↵erential operators
generally have multiple extensions from smooth sections of compact
support to closed operators on L2-spaces. Indeed, formally self-adjoint
operators will often have closed extensions that are not self-adjoint.

Thus our first task in studying Dirac-type wedge operators is to
identify a well-behaved closed extension. We carry this out under the
assumption that certain model operators analogous to the ‘boundary
families’ in [BC90a, BC90b] are invertible; however as in [MP97a,
MP97b] we include appropriate pseudodi↵erential perturbations and
we will show in a forthcoming paper that as in loc. cit. this is a ‘mini-
mal’ assumption in that it corresponds to the vanishing of a topological
obstruction (see Remark 4.2).

Theorem 1. Let X be a manifold with corners and an iterated fibra-
tion structure endowed with a totally geodesic wedge metric, let (E, gE,
rE , cl ) be a wedge Cli↵ord module with associated Dirac-type operator
gX (after conjugation, see (1.20)) and let QX be a compatible pertur-
bation. If gX,Q = gX + QX satisfies the Witt assumption (i.e., has
invertible boundary families, see Section 2 below, in particular Defini-
tion 2.4) then gX,Q with its vertical APS domain

DVAPS(gX,Q)

= graph closure of {u 2 ⇢1/2
X

H1

e (X;E) : gX,Qu 2 L2(X;E)},

is a closed operator on L2(X;E) that is self-adjoint and Fredholm with
compact resolvent.

The heat kernel of g2
X,Q

with the induced domain is trace-class and
has a short-time asymptotic expansion of the form

Tr(e�tg2
X,Q) ⇠ t�(dimX)/2

1X

j=0

depth(X)X

k=0

aj,kt
j/2(log t)k.

We refer the reader to the text for precise definitions and statements.
For example the trace of the heat kernel has fewer powers of log t for
small values of j, see Corollary 5.7. The nomenclature ‘Witt assump-
tion’ stems from the case of the signature operator which satisfies this
assumption if and only if X is a Witt space in the sense of [Sie83,
Che79b], see, e.g., [ALMP12]. As explained in a forthcoming com-
panion paper, allowing for a compatible perturbation in our theorems
means in particular that they apply to the signature operator on the
more general class of ‘Cheeger spaces’ studied in [ALMP18,ALMP17]
(originally introduced by Banagl [Ban02] and known as L-spaces, see
[ABL+15]). Below we also discuss the ‘geometric Witt assumption’
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assumed in most of these references and analyzed in the recent preprint
[HLV].

There are immediate consequences to the spectral theory of such
gX,Q, for example:

Corollary 2. The spectrum of (g2
X,Q

,DVAPS) is a discrete subset of

R+ that satisfies Weyl’s law

#{eigenvalues, with multiplicity, less than ⇤}

⇠ Vol(X)

(4⇡)
1

2
dimX�(1 + 1

2
dimX)

⇤
1

2
dimX .

The zeta function of g2
X,Q

, ⇣(s) = Tr((gX,Q

��
ker(gX,Q)?

)�2s), is holomor-

phic on {s 2 C : Re(s) > 1

2
dimX} and extends to a meromorphic

function on C with poles of order at most 1 + depth(X).

In light of the theorem above, a family of wedge Dirac-type operators

gM/B on the fibers of a fiber bundle, X � M
 ��! B, of manifolds

with corners and iterated fibration structures determines an index in
KdimX(B). Our second main result is a formula for the Chern character
of this index.

Recall that Bismut and Cheeger, in their study of the families in-
dex theorem for manifolds with boundary [BC90a, BC90b, BC91],
established a formula for the Chern character of the index of a family
of spin Dirac operators on even-dimensional spaces with isolated conic
singularities and invertible boundary families. Namely, if M �! B is
the resolution of these spaces to manifolds with boundary,

Cheven(Ind(gM/B)) =

Z

M/B

bA(M/B) Ch0(E)�J (@M/B) in Heven(B),

where J is a di↵erential form depending globally on the geometry of the
boundary fibration @M �! B. Our theorem involves Bismut-Cheeger
J -forms and ⌘-forms extended to allow for Dirac-type operators on
singular spaces and compatible smoothing perturbations.

Theorem 3. Let M
 ��! B be a fiber bundle of manifolds with cor-

ners and iterated fibration structures, E �!M a wedge Cli↵ord bundle
with associated Dirac-type operator gM/B and Q an admissible pertur-
bation. If gM/B,Q with its vertical APS domain satisfies the Witt as-
sumption, then

Chdim(M/B)(Ind(gM/B,Q),rInd)

=

Z

M/B

bA(M/B) Ch0(E)�
X

N2S (M)

Z

N/B

bA(N/B)JQ(BN/N)

+ d⌘Q(M/B),
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where Chj denotes the even or odd Chern character in accordance with
the parity of j, and dim(M/B) = dimX. The sum is taken over the set
S (M) of boundary hypersurfaces of M transverse to the map  : M �!
B, i.e. those which also fibre over B. (In the even dimensional case,
the left hand side is the Chern character obtained after stabilizing the
null space of gM/B,Q to a bundle over B by compressing the Bismut
superconnection; in the odd case, the left hand side is the di↵erential
form obtained by suspension and integration.)

Bismut and Cheeger obtained the index formula for a family of spin
Dirac operators on manifolds with boundary with invertible boundary
families by deforming a neighborhood of the conic singularities to a
cylindrical end. In the process the J -form was shown to converge to
the Bismut-Cheeger ⌘-form, introduced in [BC89]. Melrose and Piazza
[MP97a, MP97b] used the b-calculus to establish the families index
theorem for arbitrary families of Dirac-type operators by allowing ap-
propriate pseudodi↵erential perturbations. The boundary contributions
correspondingly depend on the perturbation.

We discuss the definition of the Bismut-Cheeger ⌘ and J forms
for families of compatibly perturbed Dirac-type operators on stratified
spaces in §6.2. This extends the definition of ⌘-invariants for spaces with
conic singularities in [Che87, §8] and for spaces with non-isolated conic
singularities (i.e., stratified spaces of depth one) in [PV]. Heuristically,

given a fiber bundle qX � |M  ̌��! qB, a vertical family of Dirac-type
operators g|M/ qB, and a connection for  ̌, the ⌘-forms and J -forms are

both related to the heat kernel of a family of Dirac-type operators on
|M ⇥ R+, but with di↵erent extensions of  ̌. Indeed,

⌘  !

0

BBB@

qX |M ⇥ R+

✏✏
qB ⇥ R+

1

CCCA
, J  !

0

BBB@

qX ⇥ R+ |M ⇥ R+

✏✏
qB

1

CCCA

where in the former case the R+ factor results in an ‘auxiliary Grassman
variable’ but does not change the fiber, while in the latter the fiber
qX ⇥ R+ is endowed with an exact conic metric dr2 + r2g qX .
In order to find the relation between the ⌘ and J forms associated

to |M �! qB, we attach the cone over |M to the boundary of a half-
cylinder over |M . That is, we form a ‘b-c suspension’ (where b-c refers

to b-metric and conic-metric) of |M of the form

(|M⇥[0, 1]s, g(|M⇥[0,1]s)/
qB), g(|M⇥[0,1]s)/

qB =

(
ds2 + s2g|M/ qB near s = 0
ds

2

(1�s)2
+ g|M/ qB near s = 1
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we extend g|M/ qB to a family of Dirac-type operators acting on the fibers

of |M ⇥ [0, 1]s �! qB and then, using an extended families index formula
together with some characteristic form computations, conclude the fol-
lowing in Theorem 7.4. See Section 7 for a detailed description of the
transgression forms herein.

Theorem 4. For a fiber bundle |M �! qB as above, the relation
between the ⌘ and J -forms for wedge Dirac-type operators with a com-
patible perturbation Q is

JQ(|M/ qB)� ⌘Q(|M/ qB)

=

Z

|M/ qB
T bA(|M/ qB) Ch0(E) +

X

qN2S q (
|M)

Z

qN/ qB
T bA( qN/ qB)JQ(B qN/ qN)

+ d⌘b�w,Q,

where, for any family qL �! qB as above, T bA(qL/ qB) is the restriction to
qL⇥{0} of a transgression between the bA-forms on qL⇥R+ corresponding
to a cylindrical metric and a conic metric, and ⌘b�w,Q denotes a ‘b-wedge
⌘-form’.

To prove Theorem 4 we extend Theorem 3 to manifolds with cor-
ners with metrics that are of ‘wedge-type’ at all collective boundary
hypersurfaces but one, where they are of ‘b-type’ (i.e., asymptotically
cylindrical, albeit with a singular cross-section).

The formula for the exterior derivative of the ⌘-forms is already in
Theorem 3. Together with Theorem 4 this implies a formula for the
exterior derivative of the J -forms, namely

dJQ(|M/ qB)

=

Z

|M/ qB
bAc(|M/ qB) Ch0(E) +

X

qN2S(|M)

Z

qN/ qB
bAc( qN/ qB)JQ(B qN/ qN).

Here, for any qL, bAc(qL/ qB) is the restriction to qL⇥ {0} of the bA-form on
qL⇥ R+ corresponding to a conic metric.

Previous results. The index theorem of Atiyah-Singer for closed mani-
folds [AS63] was soon generalized to operators on manifolds with bound-
ary admitting local elliptic boundary conditions by Atiyah and Bott
[AB64] and later extended to operators admitting global elliptic bound-
ary conditions by Atiyah, Patodi, and Singer [APS75]. The resulting
formula for a Dirac-type operator g on a Cli↵ord bundle E �!M takes
the form

ind(g) =
Z

M

bA(M) Ch0(E)� ⌘(g@M )
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where bA is the A-hat genus of M , Ch0(E) the twisting curvature of
the Cli↵ord bundle, and ⌘(g@M ) the ⌘-invariant of the induced Dirac-
type operator on the boundary. The boundary conditions in this paper
involve the projection onto the sum of the eigenspaces corresponding
to positive eigenvalues of an induced boundary operator and are now
known as Atiyah-Patodi-Singer, or APS, boundary conditions.

Already in [APS75] it was pointed out that the resulting domain
had a natural interpretation as the domain of an operator on a com-
plete non-compact manifold obtained by attaching a cylinder to the
boundary. Melrose [Mel93] showed that in fact one can consider the
APS index theorem as the index theorem in the ‘category’ of manifolds
with asymptotically cylindrical ends. The present project is analogous
to Melrose’s treatment, we obtain the index theorem in the ‘category’ of
manifolds with corners and iterated fibration structures endowed with
wedge metrics.

Cheeger’s proof of the Ray-Singer conjecture connecting analytic and
Reidemeisiter torsion [Che77, Che79a] (established independently by
Müller [Mül78]), led him to develop analysis on spaces with singu-
larities, particularly what we refer to as stratified spaces with wedge
metrics. Cheeger realized that the Atiyah-Patodi-Singer index formula
can be obtained as the natural index theorem in the context of man-
ifolds with conic singularities, see [Che79b, Che80, Che83] for the
signature and Gauss-Bonnet theorem both for isolated singularities and
for piecewise flat metrics on stratified spaces. Chou [Cho85, Cho89]
showed for isolated conic singularities that the same was true for the
Dirac operator.

For a fiber bundle of closed operators M
 ��! B, Atiyah and Singer

[AS71] showed that the index theorem generalizes to families of opera-
tors on the fibers of  . They showed that such a family has an index in
the form of a virtual bundle over B and, among other things, they com-
puted the Chern character of this index bundle. Bismut [Bis86] used
heat equation methods to establish the formula for the Chern character
of the index bundle.

In [Wit85], Witten derived a formula for the ⌘ invariant of a manifold
fibering over a circle. This formula was established rigorously by Bis-
mut and Freed [BF86a, BF86b] for spin Dirac operators and Cheeger
[Che87] for the signature operator. This was generalized by Bismut and
Cheeger [BC89] and Dai [Dai91] to fiber bundles of arbitrary closed
manifolds. They considered the behavior of the ⌘ invariant as the metric
on the total space of the fiber bundle undergoes an ‘adiabatic limit’ in
which the fibers are collapsed to a point. The limit involves a ‘higher’
version of the ⌘-invariant, known as the Bismut-Cheeger ⌘-forms. These
forms are of even degree if the dimension of the fiber is odd and of odd
degree if the dimension of the fiber is even.
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The rôle played by the ⌘-invariant in the Atiyah-Patodi-Singer index
theorem for manifolds with boundary is played by the ⌘-forms in the
formula for the Chern character of the index bundle of a family of Dirac-
type operators on a manifold with boundary. This was established by
Bismut and Cheeger for spin Dirac operators on even dimensional mani-
folds with boundary [BC90a, BC90b, BC91] assuming invertibility of
an induced boundary family of Dirac operators (referred to as the ‘Witt
assumption’ below). Melrose and Piazza [MP97a, MP97b] proved a
formula conjectured in [BC91] for the case of odd dimensional mani-
folds with boundary, extended the Bismut-Cheeger result to Dirac-type
operators, and removed the assumption of invertible boundary fami-
lies. They introduced the notion of a ‘spectral section’ of the boundary
family and proved an index theorem for each spectral section.

(In the present paper we make the assumption of invertible boundary
families as in the work of Bismut-Cheeger mentioned above, but we allow
perturbations as in the approach of Melrose-Piazza. In a subsequent
paper we will characterize the existence of these perturbations in terms
of spectral sections.)

The approach adopted by Bismut and Cheeger to establish the fami-
lies index theorem for Dirac operators on manifolds with boundary was
to attach a cone to the boundary and consider a family of metrics,
parametrized by " 2 [0, 1], interpolating between the conic singular-
ity and an infinite cylindrical end. An intermediate result is an index
theorem for families of Dirac operators on spaces with isolated conic
singularities. One e↵ect of the " degeneration is to ‘scale away’ the
small eigenvalues of the boundary family of Dirac operators so that the
Dirac operators on the spaces with conical singularities are essentially
self-adjoint and there is no need to choose a domain. The Chern charac-
ter of the index bundle of the family of Dirac operators on spaces with
isolated conic singularities involves another di↵erential form invariant,
the Bismut-Cheeger J -forms. Bismut-Cheeger showed that the "-limit
of the J -form in this case is the ⌘ form.

Index theory is now a vast field. Among the many ways in which
singular spaces arise in index theory there are spaces arising from folia-
tions (see, e.g., [CS84, BKR10]) and group actions (see, e.g., [Ati74]).
Index theorems on complete metrics on manifolds with possibly fibered
boundary include [Car01, LM05, MR04, MR06, Vai01, MR11,
AM09a, AM10, AM09b, AR09a, LMP06, Hun07, Pia93, MN].
Index theory on manifolds with corners endowed with complete metrics
have been studied in, e.g., [MP92, MN98, LM02, Loy05, Bun09,
MN12, Ste89, Mül96, HMM97].

There is a powerful groupoid approach to index problems on the in-
terior of manifolds with corners, see e.g., [ALN07, DLR15, CN14,
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CRLM14, BS] for complete metrics, [DLN09] for isolated conic sin-
gularities, and [DS] for a Boutet de Monvel type calculus.

An approach of Nazaikinskii, Yu, Savin, Sternin, and Schulze, see
[NkSSS05, NkSSS06, SS10] in the stratified setting proceeds by de-
composing the index of a pseudodi↵erential operator on a stratified
space into a sum of contributions from each stratum with the property
that each is a homotopy invariant of the symbol. These papers make
use of the analytic tools developed by Schulze and his collaborators, see
e.g., [Sch07, SS95]. Our treatment benefits from recent advances in
parallel analytic tools in, e.g., [ARS, MV14, MV12, KM16, GRS15,
MW17].

Already in [Ati71, Sin71] Atiyah and Singer called for the devel-
opment of index theory on stratified spaces such as algebraic varieties.
Index theory on spaces with isolated conic singularities is now very well
understood see, e.g., [Les97, FH95, BL96, BS88]. However, there are
few explicit index formulæ associated to singular metrics on stratified
spaces beyond the case of isolated conic singularities. For a stratified
space with a single singular stratum and a wedge metric there are in-
dex theorems for the signature operator by Chan, Hunsicker-Mazzeo,
Brüning, and Cheeger-Dai [Cha97,HM05, Brü09,CD09]. The ⌘ and
⇢ invariants have been studied by Piazza and Vertman [PV]. Atiyah
and LeBrun [AL13] obtain an index theorem on a smooth four di-
mensional manifold endowed with a singular wedge metric. Lock and
Viaclovsky [LV13] prove an index theorem for anti-self-dual orbifold-
cone metrics, again in four dimensions. In previous work, the authors
[AGR16] proved an index theorem for spin Dirac operators satisfying
the geometric Witt condition.
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1. Families of Dirac-type wedge operators

1.1. Iterated fibration structures and wedge geometry on man-
ifolds with corners. LetX be an n dimensional manifold with corners,
by which we mean an n dimensional topological manifold with boundary
with a smooth atlas modeled on (R+)n whose boundary hypersurfaces
are embedded. We denote the set of boundary hypersurfaces of X by
M1(X).
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A collective boundary hypersurface refers to a finite union of
non-intersecting boundary hypersurfaces.

Definition 1.1 (Melrose [AM11, ALMP12, Alb17]). An iterated
fibration structure on a manifold with corners X consists of a collection
of fiber bundles

ZY � BY

�Y���! Y

where BY is a collective boundary hypersurface of X with base and
fiber manifolds with corners such that:

i) Each boundary hypersurface of X occurs in exactly one collective
boundary hypersurface BY .

ii) If BY and BeY intersect, then dimY 6= dim eY , and we write

Y < eY if dimY < dim eY .

iii) If Y < eY then eY has a collective boundary hypersurface B
Y eY

participating in a fiber bundle �
Y eY : B

Y eY �! Y such that the
diagram

(1.1) BY \BeY

�Y $$

�eY // B
Y eY

�
Y eY}}

✓ eY

Y

commutes.

Unless stated otherwise, we will assume that X is compact and that
dimZY > 0 for all Y .

There is no real loss of generality in assuming that the bases are
connected, but the fibers of the boundary fibrations will generally be
disconnected.

There is a functorial equivalence between Thom-Mather stratified
spaces and manifolds with corners and iterated fibration structures see,
e.g., [ALMP12], [Alb17, Theorem 6.3]. Under this equivalence, the
bases of the boundary fibrations correspond to the di↵erent strata. We
will denote this set by

S(X) = {Y : Y is the base of a boundary fibration of X}.

Both the bases and fibers of the boundary fiber bundles themselves
are manifolds with corners and iterated fibration structures, see e.g.,
[AM11, Lemma 3.4]. The assumption dimZY > 0 corresponds to
the category of pseudomanifolds within the larger category of stratified
spaces.

The partial order on S(X) gives us a notion of depth

depthX(Y ) = max{n 2 N0 : 9Yi 2 S(X) s.t. Y = Y0 < Y1 < . . . < Yn}.
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The depth of X is then the maximum of the integers depthX(Y ) over
Y 2 S(X). Moreover, for each p 2 @X, the set {Y 2 S(X) : p 2 BY }
is totally ordered with respect to < and thus has a unique element of
maximal depth Y (p). We denote

depthX(p) = depthX(Y (p)).

This stratum Y (p) is the unique element in S(X) for which p 2 BY

and p lies over the interior of Y , i.e. �Y (p) 2 Y � = Y \ @Y . (Indeed, if
p 2 BY and Y 6= Y (p), then Y (p) < Y and p 2 BY \BY (p) , so from (1.1),
�Y (p) 2 B

Y (p)Y ⇢ @Y , and if �
Y (p)(p) 2 @Y (p) then �

Y (p)(p) 2 B
Y 0Y (p)

for some Y 0 < Y (p), contradicting the maximality of Y (p).)
If H is a boundary hypersurface then, because it is assumed embed-

ded, there is a non-negative function ⇢H such that

⇢�1

H
(0) = H and |d⇢H | 6= 0 on H,

where | · | denote the norm with respect to some smooth background
metric on M ; we call any such function a boundary defining func-
tion, or bdf, for H. It is always possible (see, e.g., [AM11, Proposition
1.2]) to choose: a boundary defining function ⇢H for each H 2M1(X),
an open neighborhood UH ✓ X of each H, and a smooth vector field
VH defined in UH such that

VH⇢K =

(
1 in UH if K = H

0 in UH \ UK if K 6= H

[VH , VK ] = 0 in UH \ UK

for all H,K 2M1(X). We refer to these choices as a boundary prod-
uct structure, and will always assume that our boundary defining
functions are chosen this way.

For each Y 2 S(X) we denote a collective boundary defining function
by

⇢Y =
Y

H2BY

⇢H ,

we also use the notation

⇢X =
Y

H2M1(X)

⇢H

for a total boundary defining function.
A boundary product structure allows us to extend an iterated fibra-

tion structure to a collared iterated fibration structure. Indeed,
let us assume for simplicity of notation that the neighborhoods UH co-
incide with ⇢�1

H
([0, 1)), so that UH

⇠= [0, 1)⇢H ⇥H. For each Y 2 S(X),
we write

C (BY ) =
[

H2BY

UH
⇠= [0, 1)⇢Y ⇥BY , Y + = [0, 1)⇢Y ⇥ Y
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and we denote the natural extension of �Y by

�Y + : C (BY ) �! Y +.

Choosing compatible boundary product structures on each Y 2 S(X)
(existence is checked by a simple induction on the depth of X), the
extended boundary fibrations participate in commutative diagrams,

(1.2) C (BY ) \ C (BeY )

�
Y + &&

�eY +
// C (B

Y eY )

�(Y eY )+zz

✓ eY +

Y +

whenever Y < eY .
This structure will be useful when we discuss Getzler rescaling below

(§5). In that setting, we will have a filtration of a vector bundle defined
on collective boundary hypersurfaces and we will need to extend it into a
neighborhood of the boundary consistently; a collared iterated fibration
structure makes this easy to do.

Various di↵erential geometric objects have natural analogues that
take the iterated fibration structure into account. For example, we
define

C1

� (X) = {f 2 C1(X) : f
��
BY

2 �⇤Y C1(Y ) for all Y 2 S(X)}.

(This corresponds to the smooth functions on X that are continuous
on the underlying stratified space. If an open cover of X is the lift of
a cover of the underlying stratified space, then there is a compatible
partition of unity in C1

�
(X) see, e.g., [ABL+15, Lemma 5.2].)

The edge vector fields on X [Maz91] are

Ve = {V 2 C1(X;TX) :

V
��
BY

is tangent to the fibers of �Y for all Y 2 S(X)},

or, equivalently, they are the b-vector fields (vector fields tangent to the
boundary) that when applied to C1

�
(X) yield functions that vanish at

the boundary of X.
There is a vector bundle, the edge tangent bundle, eTX, together with

a natural vector bundle map ie : eTX �! TX that is an isomorphism
over the interior and satisfies

(ie)⇤C1(X; eTX) = Ve.

In local coordinates near a point in BY , (x, y, z), where x is a bdf, y
denotes coordinates along Y , and z denotes coordinates along Z, a local
frame for eTX is given by

x@x, x@y, @z.
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Note that the vector fields x@x and x@y vanish at BY as sections of TX
but not as sections of eTX. If Y = {pt} then the edge tangent bundle
coincides with the b-tangent bundle discussed in §3.1.

The universal enveloping algebra of Ve is the ring Di↵⇤

e(X) of edge
di↵erential operators [Maz91, §2]. Thus these are the di↵erential op-
erators on X that can be expressed locally as finite sums of products
of elements of Ve. They have the usual notion of degree and extension
to sections of vector bundles, as well as an edge symbol map defined on
the edge cotangent bundle, see [Maz91, ALMP12, ALMP18].

Remark 1.2. In [ALMP12, ALMP18, ALMP17] the edge tan-
gent bundle was referred to as the ‘iterated edge tangent bundle’. We
prefer to think of it as the edge tangent bundle of the iterated fibra-
tion structure. Similarly, the wedge tangent bundle, defined below, was
referred to in loc. cit. as the ‘iterated incomplete edge tangent bundle’.

Among the metrics most closely associated to these spaces are met-
rics that degenerate conically reflecting the conic degeneration of the
space. We will define these formally in Section 1.2, but they include
cones on cones and bundles of cones on bundles of cones, and so on.
Metrics of this form, wedge metrics, are singular at the boundary of
X. However, they can be seen as smooth (or more generally I-smooth
or polyhomogeneous, see Section 3.1) sections of a rescaled bundle of
symmetric tensors.

Formally, we proceed as follows. Let X be a manifold with corners
and iterated fibration structure. Consider the ‘wedge one-forms’

V⇤

w = {! 2 C1(X;T ⇤X) :

for each Y 2 S(X), i⇤BY
!(V ) = 0 for all V 2 kerD�Y }.

Just as we have done with the edge tangent bundle, we can identify V⇤
w

with the space of sections of a vector bundle. That is, there exists a
vector bundle wT ⇤X, the wedge cotangent bundle of X, together with
a bundle map

(1.3) iw : wT ⇤X �! T ⇤X

that is an isomorphism over the interior of X and such that

(iw)⇤C1(X;wT ⇤X) = V⇤

w ✓ C1(X;T ⇤X).

In particular, in local coordinates near the collective boundary hyper-
surface BY the wedge cotangent bundle is spanned by

dx, xdz, dy

where x is a boundary defining function for BY , dz represents covectors
along the fibers and dy covectors along the base.
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The dual bundle to the wedge cotangent bundle is the wedge tangent
bundle, wTX. It is locally spanned by

@x,
1

x
@z, @y.

A wedge metric is simply a bundle metric on the wedge tangent bun-
dle. Below we will make further assumptions on the metric, see Sec-
tion 1.2.

Wedge di↵erential operators are defined in terms of edge di↵erential
operators: P is a wedge di↵erential operator of order k acting on sections
of a vector bundle E if ⇢k

X
P is an edge di↵erential operator of order k

acting on sections of E,

(1.4) Di↵k

w(X;E) = ⇢�k

X
Di↵k

e (X;E).

See, e.g., [MV14, GKM13, ALMP12, ALMP18].
By a smooth family of manifolds with corners and iterated fibration

structures we will mean first of all a fiber bundle

X �M
 ��! B

where X, M , and B are manifolds with corners. Since M is locally
di↵eomorphic to X ⇥ U , U ✓ B, every boundary hypersurface of M
corresponds to either a boundary hypersurface of B or a boundary hy-
persurface of X. The latter are the boundary hypersurfaces that are
transverse to  . We want the fibers of  to have iterated fibration
structures that themselves vary smoothly. We formalize this as follows.

Definition 1.3. A locally trivial family of manifolds with cor-
ners and iterated fibration structures over B is:

• a fiber bundle of manifolds with corners X �M
 ��! B,

• a partition of the boundary hypersurfaces of M transverse to  ,
which we denote by S (M) ⇢ S(M), into collective boundary
hypersurfaces {BN : N 2 S (M)}, where each N is a manifold

with corners endowed with a fiber bundle map N
 N���! B,

• a collection of fiber bundles ZN � BN

�N���! N satisfying Defi-
nition 1.1(ii–iii),

satisfying that, for all N 2 S (M), the diagram

(1.5) BN

� � //

�N

✏✏

M

 

✏✏

N

 N ""
B

commutes.
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For each b 2 B the fiber of  : M �! B, X =  �1(b) has a iterated
fibration structure with

S(X) = {Yb =  �1

N
(b) : N 2 S (M)}

and boundary fiber bundles determined by the diagrams, one for each
N 2 S (M),

X M

 

✏✏
Z BY

�Y

✏✏

-
�

<<

BN

�N

✏✏

.
�

==

B

Y N
 N

==

In particular, BY is the typical fiber of �N �  N . We will always use
BN to denote collective boundary hypersurfaces ofM andBY to denote
collective boundary hypersurfaces of X and hope the similar notation
does not cause confusion.

Analogously to what we have done before, the  -wedge one forms
are the covectors on M that vanish on vertical vectors at all boundary
hypersurfaces transverse to  ,

V⇤

w( )
= {! 2 C1(M ;T ⇤M) :

for each N 2 S (M), i⇤BN
!(V ) = 0 for all V 2 kerD�N},

and can be identified with the sections of a vector bundle, w( )T ⇤M . We
refer to this as the ‘ -wedge cotangent bundle’ and to the dual bundle
w( )TM , as the ‘ -wedge tangent bundle’. The latter has a sub-bundle
determined by its sections,

C1(M ;wTM/B) = {V 2 C1(M ;w( )TM) :

(⇢XV )( ⇤

Bf) = 0 for all f 2 C1(B)},

where ⇢XV 2 C1(M ;TM) acts by di↵erentiation, which we will call the
vertical wedge tangent bundle. The vertical wedge cotangent bundle is

the dual bundle wT ⇤M/B �!M . A choice of connection for M
 ��! B

induces splittings

(1.6) w( )TM = wTM/B �  ⇤TB, w( )T ⇤M = wT ⇤M/B �  ⇤T ⇤B.

1.2. Totally geodesic wedge metrics. Let M
 ��! B be a family

of manifolds with corners and iterated fibration structures. A verti-
cal wedge metric on M will refer to a bundle metric on wTM/B. For
simplicity we will work with a subset of these metrics which we call
‘totally geodesic vertical wedge metrics’. For simplicity of notation, in
this section we discuss these metrics on a fixed fiber X =  �1(b) of  .
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We define totally geodesic wedge metrics inductively by the depth
of the space. If X has depth zero, so is a smooth manifold, a wedge
metric is simply a Riemannian metric. Assuming we have defined totally
geodesic wedge metrics at spaces of depth less than k, let X have depth
k. A wedge metric gw on X is a totally geodesic wedge metric if, for
every Y 2 S(X) of depth k there is a collar neighborhood C (BY ) ⇠=
[0, 1)x ⇥BY of BY in X, a metric gw,pt of the form

(1.7) gw,pt = dx2 + x2gBY /Y + �⇤Y gY

where gY is a totally geodesic wedge metric on Y , gZY
+ �⇤gY is a

submersion metric for BY

�Y���! Y , and gZY
restricts to each fiber of

�Y to be a totally geodesic wedge metric on ZY , and

(1.8) gw � gw,pt 2 x2C1(C(BY ;S
2(wT ⇤X)).

O↵ of these collar neighborhoods the form of the metric is fixed by the
induction, meaning if depthX(p) = k0 < k there is a neighborhood of p
which is isometric, via a stratified di↵eomorphism, to an open subset of
a totally geodesic wedge space of depth k0.

(Here “totally geodesic wedge space” means a manifold with corners
with iterated fibration structure equipped with a totally geodesic wedge
metric.)

If at every step gw = gw,pt we say that gw is a rigid or product-type
wedge metric. If at every step gw � gw,pt = O(x) as a symmetric two-
tensor on the wedge tangent bundle, we say that gw is an exact wedge
metric. We will always work with totally geodesic wedge metrics.

For (X, gw) a totally geodesic wedge space of depth k, if p 2 X has
depthX(p) = k0 < k, then by definition there is an open neighborhood
of p which is isometrically stratified di↵eomorphic to an open neighbor-
hood in a totally geodesic wedge space (X 0, g0w) of depth k0. Identify-
ing this open neighborhood with its image, p then lies over a maximal
depth stratum Y of X 0, as so the metric form in (1.7) and (1.8) ap-
plies directly to p in X 0. By our discussion on local depth above, p lies
over the interior of Y , and therefore there is a contractible open ball
�Y (p) 2 O ⇢ Y � and a corresponding neighborhood [0, 1)x ⇥ Z ⇥ O
lying entirely in X, such that x is a boundary defining function of
BY and the metric satisfies (1.7) and (1.8) in this neighborhood. Be-
low, our local analysis proceeds in this way; about each point p we
take a neighborhood corresponding to a contractible O in the interior
of the unique stratum Y above whose interior p lies, and use the cor-
responding metric decomposition in (1.7)–(1.8) locally in that neighbor-
hood.

For points that lie in an intersection BY \BeY with Y < eY , the metric
decomposition (1.7)–(1.8) does not in general hold on BeY uniformly up
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to its boundary hypersurface BY \ BeY , as a simple example demon-
strates. Consider the “cone on a cone” metric on [0, 1)s ⇥ [0, 1)r ⇥X,

ds2 + s2(dr2 + r2gZ).

This is an open subset of a totally geodesic wedge space of depth two.
The corresponding singular space is

bX = C(C(Z)) = [0, 1)s ⇥ ([0, 1)r ⇥ Z/{r = 0}⇥ Z) /{s = 0}⇥ C(Z),

the resolved boundary fibrations for which areBY = [0, 1)r⇥Z �! pt =
Y and BeY = [0, 1)s⇥Z �! [0, 1)s = eY . Thus r, s are boundary defining
functions and the above metric decomposition is not of the form (1.7)–
(1.8) with respect to r. However, under the coordinate transformation
x = s sin r, y = s cos r the metric becomes

dx2 + x2
✓
arctan2(x/y)

x2
(x2 + y2)gZ

◆
+ dy2.

In regions with s � c > 0, x is a local boundary defining function for
BeY and this expression shows that the metric satisfies (1.7) and (1.9),

for points lying above the interior of eY . Note that x is not a valid
boundary defining function on the whole of BeY as it is O(rs). On the
other hand s is a global bdf of BY and the metric decomposition holds
on the whole of BY .

Let us describe the asymptotics of the Levi-Civita connection of
a totally geodesic wedge metric at BY for Y 2 S(X). First let us
start by recalling the behavior of the Levi-Civita connection of a sub-
mersion metric. Endow BY with a submersion metric of the form
gBY

= gBY /Y +�⇤gY . We denote the associated splitting of the tangent
bundle T@X by

TBY = TBY /Y � �⇤Y TY

and the orthogonal projections onto each summand by

h : TBY �! �⇤TY, v : TBY �! TBY /Y.

Given a vector field U on Y , we denote its horizontal lift to BY by
eU . The Levi-Civita connection of (BY , gBY

), rBY , can be written in
terms of the Levi-Civita connectionsrY on the base and the connections
rBY /Y on the fibers using two tensors: 1) the second fundamental form
of the fibers, defined by

S�Y : TBY /Y ⇥ TBY /Y �! �⇤TY, S�Y (V1, V2) = h(rBY /Y

V1
V2)

and, 2) the curvature of the fibration, defined by

R�Y : �⇤TY ⇥ �⇤TY �! TBY /Y, R�Y (eU1, eU2) = v([eU1, eU2]).
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The behavior of the Levi-Civita connection (cf. [HHM04, Proposition
13]) is then summed up in the table:

gBY

⇣
rBY

W1
W2,W3

⌘
V0

eU0

rBY

V1
V2 g@X/Y

⇣
rBY /Y

V1
V2, V0

⌘
�⇤gY (S�Y (V1, V2), eU0)

rBY

eU
V gBY /Y

⇣
[eU, V ], V0

⌘
� �⇤

Y
gY (S�Y (V, V0), eU) �1

2
gBY /Y (R�Y (eU, eU0), V )

rBY

V
eU ��⇤

Y
gY (S�Y (V, V0), eU) 1

2
gBY /Y (R�Y (eU, eU0), V )

rBY

eU1

eU2
1

2
gBY /Y (R�Y (eU1, eU2), V0) gY (rY

U1
U2, U0)

We want a similar description of the Levi-Civita connection of a to-
tally geodesic wedge metric. We define an operator r on sections of the
wedge tangent bundle through the usual Koszul formula

2gw(rW0W1,W2) = W0gw(W1,W2)+W1gw(W0,W2)�W2gw(W0,W1)

+ gw([W0,W1] ,W2)� gw([W0,W2] ,W1)� gw([W1,W2] ,W0).

We will consider wedge metrics gw and g0w that di↵er by gw � g0w =
Ow(x2), where the Ow(xp) notation reminds the reader that these are
tensors on wedge vector fields. In particular, for any such pair, if Wi 2
C1(X;wTX), i = 0, 1, 2, then gw(Wi,Wj) � g0w(Wi,Wj) = O(x2), and
by the Koszul formula and the fact, seen below, that x[Wi,Wj ] is a
smooth wedge vector field,

(1.9) gw(rW0W1,W2)� g0w(r0

W0
W1,W2) = O(x).

Thus to understand the leading asymptotics of the Levi-Civita connec-
tion of a totally geodesic wedge metric, it su�ces to understand the
leading asymptotics of a product-type wedge metric.

Fix a product-type wedge metric gw,pt = dx2+x2gBY /Y +�⇤gY such
that gw�gw,pt = x2eg, the splitting of the tangent bundle ofX associated
to gBY /Y + �⇤gY extends to a splitting of the wedge tangent bundle of
C (BY ) and hence induces a splitting

(1.10) wTC (BY ) = h@xi � 1

x

wTBY /Y � �⇤Y TY.

In terms of which a convenient choice of vector fields is

@x,
1

x
V, eU

where V denotes a �Y -vertical wedge vector field at {x = 0} extended
trivially to C (BY ) and eU denotes a wedge vector field on Y , lifted
horizontally to BY and then extended trivially to C (BY ). Note that,
with respect to gw,pt, these three types of vector fields are orthogonal,
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and that their commutators satisfy
⇥
@x,

1

x
V
⇤
= � 1

x2V 2 x�1C1(C (BY ),
1

x

wTBY /Y ),
h
@x, eU

i
= 0,

⇥
1

x
V1,

1

x
V2

⇤
= 1

x2 [V1, V2] 2 x�1C1(C (BY ),
1

x

wTBY /Y ),
h
1

x
V, eU

i
= 1

x

h
V, eU

i
2 C1(C (BY ),

1

x

wTBY /Y ),
h
eU1, eU2

i
2 xC1(C (BY ),

1

x

wTBY /Y ) + C1(C (BY ),�
⇤

Y TY ).

Remark 1.4. It is important to understand that the inductive defi-
nition of product type and totally geodesic wedge vector fields does not
imply that for a fixed gw, every BY has a collar neighborhood with a
metric that of the canonical form above. Indeed, such a decomposition
can only be assumed on the complement of those BY 0 with Y 0 < Y .
Here we compute the asymptotics of the connection and curvature on a
neighborhood where the decomposition holds, and when we work at a
corner, i.e. an intersection of BY \BY 0 , we assume the decomposition
holds only on a neighborhood of the deeper one.

Below we will work with a local frame of wedge vector fields, orthog-
onal with respect to gw,pt,
(1.11)

@x,
1

x
V↵, eUi, ↵ = 1, . . . , vY = dimZY , i = 1, . . . , hY = dimY,

where the V↵ are a local frame of wTBY /Y , the eUi are the horizontal
lifts of a local frame Ui of wTY .

If W1 2 {@x, V↵, eUi} and W2,W3 2 {@x, 1xV↵, eUi} then we find

gw,pt(rW1W2,W3) = 0 if @x 2 {W1,W2,W3}
except for gw,pt(rV1@x,

1

x
V2) = �gw,pt(rV1

1

x
V2, @x) = gBY /Y (V1, V2)

and otherwise

gw,pt (rW1W2,W3)
1

x
V3

eU3

rV1
1

x
V2 gBY /Y

⇣
rBY /Y

V1
V2, V3

⌘
x�⇤

Y
gY (S�Y (V1, V2), eU3)

reU
1

x
V gBY /Y

⇣
[eU, V ], V3

⌘
� �⇤

Y
gY (S�Y (V, V3), eU) �x

2
gBY /Y (R�Y (eU, eU3), V )

rV
eU �x�⇤

Y
gY (S�Y (V, V3), eU) x

2

2
gBY /Y (R�Y (eU, eU3), V )

reU1
eU2

x

2
gBY /Y (R�Y (eU1, eU2), V3) gY (rY

U1
U2, U3)

We point out a few consequences of these computations, valid for an
arbitrary totally geodesic wedge metric. First note that the operator

r : C1(X;wTX) �! C1(X;T ⇤X ⌦ wTX)

defines a connection on the wedge tangent bundle. Thus, in particu-
lar, the curvature tensor Rw of r is a well-defined 2-form on all of X
with values in endomorphisms of wTX. Also note that this connection
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asymptotically preserves the splitting of wTC (BY ) into two bundles

(1.12) wTC (BY ) =
⇥
h@xi � 1

x

wTBY /Y
⇤
� �⇤Y TY

in that if W1,W2 2 Vw are sections of the two di↵erent summands then

(1.13) gw(rW0W1,W2) = O(x) for all W0 2 C1(X;TX).

Let us denote by

v+ : wTC (BY ) �! h@xi � 1

x

wTBY /Y,

h+ : wTC (BY ) �! h@xi � �⇤TY,
the orthogonal projections onto their images, while v and h continue to
denote projection onto wTBY /Y and �⇤wTY , and define connections

rv+ = v+ � r � v+ : C1(C (BY ); h@xi � 1

x

wTBY /Y )

�! C1(C (BY );T
⇤C (BY )⌦

�
h@xi � 1

x

wTBY /Y
�
),

rh = �⇤rY : C1(C (BY );�
⇤

Y TY ) �! C1(C ;T ⇤C (BY )⌦ �⇤Y TY ).

Denote by j" : {x = "} ,! C (BY ) the inclusion, and identify {x = "}
with BY = {x = 0}, note that the pull-back connections j⇤"rv+ and
j⇤"rh are independent of " and

(1.14) j⇤0r = j⇤0rv+ � j⇤0rh.

Using the above description of the asymptotics of the Levi-Cevita
connection, we can now describe some aspects of the asymptotics of
its curvature tensor. These will be used in particular in the Getzler
rescaling in Section 5 below.

Proposition 1.5. Let (X, gw) be a manifold with corners and an
iterated fibration structure endowed with a totally geodesic wedge metric.
Let Y 2 S(X) and let x be a bdf for BY in which the canonical metric
form decomposition (1.7)–(1.8) holds.

1) If W1, W2 are vector fields tangent to BY then Rw(W1,W2) asymp-
totically preserves the splitting

wTC (BY ) =
⇥
h@xi � 1

x

wTBY /Y
⇤
� �⇤Y TY

2) For N,W0 2 C1(X;TX), with W0 tangent to the fibers of �Y ,
W1,W2 2 C1(X;wTX),

gw(Rw(N,W0)W1,W2) = gw(Rw(N,vW0)v+W1,v+W2)

�N(x)
⇣
�⇤Y gY (S�Y (vW0,vW2),hW1)

� �⇤Y gY (S�Y (vW0,vW1),hW2)
⌘
+O(x).

3) For N and Wi, i = 0, 1, 2 as in part (2), noting that x�1hW0 is
smooth up to {x = 0}, and writing

eU = hN |x=0, eU0 = x�1hW0|x=0, eUi = hWi|x=0, i = 1, 2
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with eU, eUi the horizontal lifts of U,Ui 2 C1(Y, TY ), i = 0, 1, 2, we
have

gw(rN (Rw(N,W0))hW1,hW2) = N(x)gY (R
Y (U,U0)U1, U2)

+ (N(x))2gBY /Y (R�Y (hW2,hW1),vW0) +O(x).

Proof. If a connection asymptotically preserves a splitting of the bun-
dle, then its curvature evaluated in vector fields tangent to the boundary
hypersurface will also asymptotically preserve that splitting. By (1.9)
and (1.12), the gw connection preserves the splitting, so statement (1)
above is correct.

Moving on to the part (2), for any N,W0 2 C1(X;TX), W1,W2 2
C1(X;wTX), since Rw is a tensor, its value at @X only depends on the
values of the vector fields at the boundary, so if N |x=0 = N |x=0 and
W 0|x=0 = W0|x=0 as elements of C1(X;TX), and W 1,W 2 agree with
W1,W2 at x = 0 as elements of C1(X;wTX), then

gw(Rw(N,W0)W1,W2) = gw(Rw(N,W 0)W 1,W 2) +O(x).

The assumption that W0 is tangent to the fibers of �Y is equivalent
to W0 � vW0 2 xC1(X;TX). It therefore su�ces, by the previous
paragraph, to consider W0 = vW0 2 {V↵} and W1,W2 2 {@x, 1xV↵, eUi}
extended to C (BY ) as above. Note that for the W1,W2 thus selected,
r@xWi 2 xC1(X;wTX). To see that the second part of the proposition
holds, we will decompose W1 = v+W1 + hW1,W2 = v+W2 + hW2.

We claim that

(1.15) gw(Rw(N,vW0)hW1,hW2) = O(x).

Indeed, for N 2 {V↵, eUi}, (1.9) and the connection asymptotics above,
together with the fact that [V↵, Ui] is vertical, imply Rw(N,vW0)hW1 2
xC1(X;wTX), while if N = @x then

Rw(N,vW0)hW1 2 r@xrvW0hW1 + xC1(X;wTX),

and again by (1.9) and the connection asymptotics h(r@xrvW0hW1) 2
xC1(X;wTX), so (1.15) is true.

Moreover, since N � N(x)@x is tangent to BY , by the first part of
the proposition the splitting is preserved, i.e.

gw(Rw(N,vW0)hW1,v+W2) = N(x)gw(Rw(@x,vW0)hW1,v+W2)

gw(Rw(N,vW0)v+W1,hW2) = N(x)gw(Rw(@x,vW0)v+W1,hW2).

It follows that

(1.16)

gw(Rw(N,W0)W1,W2) = gw(Rw(N,vW0)v+W1,v+W2)

+N(x)
⇣
gw(Rw(@x,vW0)hW1,v+W2)

+ gw(Rw(@x,vW0)v+W1,hW2)
⌘
+O(x),
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so to conclude (2) we need only evaluate these two final terms on the
right hand side.

Using [@x,W0] = 0, and that r@xWi 2 xC1(X,wTX), we have

gw(Rw(N(x)@x,vW0)W1,W2) = N(x)@x(gw(rvW0W1,W2)) +O(x).

If W1 = @x,W2 = hW2, or W2 = @x,W1 = hW1 then (1.9) and the
asymptotics of the connection above gives gw(rvW0W1,W2) = O(x2).
Thus, the @x terms from v+W1 and v+W2 drop out below and we obtain

N(x)@x(rvW0v+W1,hW2) = N(x)�⇤Y gY (S�Y (vW0,v+W1),hW2),

N(x)@x(rvW0hW1,v+W2) = �N(x)�⇤Y gY (S�Y (vW0,vW2),hW1),

which together with (1.16) establishes part (2) of the proposition.
Next consider gw(rN (Rw(N,W0))hW1,hW2). Here Rw(N,W0) is a

section of hom(wTX) and correspondingly

rN (Rw(N,W0))hW1 = rN (Rw(N,W0)hW1)�Rw(N,W0)rN (hW1).

Since the connection asymptotics imply rN (hW1) = hrN (hW1) +
xC1(X;wTX), part (2) of the proposition implies that

gw(Rw(N,W0)rN (hW1),hW2) = O(x),

so we have

gw(rN (Rw(N,W0))hW1,hW2) = N(gw(Rw(N,W0)hW1,hW2))+O(x).

Since W0 is tangent to the fibers of �Y , we decompose W0 = xW 0 +
vW0,, so hW 0 = eU0. For the first summand, we have

N(gw(Rw(N, xW 0)hW1,hW2)) = N(x)gw(Rw(N,W 0)hW 0,hW2)

= N(x)gY (R
Y (U,U0)U1, U2) +O(x).

For the second summand we have

N(gw(Rw(N,vW0)hW1,hW2))

= Ngw(�Rw(vW0,hW1)N �Rw(hW1, N)vW0,hW2)

= N (�gw(Rw(N,hW2)vW0,hW1) + gw(Rw(N,hW1)vW0,hW2))

= N(x)
⇣
� gw(Rw(N,hW2)

1

x
vW0,hW1)

+ gw(Rw(N,hW1)
1

x
vW0,hW2)

⌘

Now

gw(Rw(N,hW2)
1

x
vW0,hW1) = N(gw(rhW2

1

x
vW0,hW1))

= �1

2
(Nx)gBY /Y (R�Y (hW2,hW1),vW0) +O(x)
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and so altogether

gw((rNRw)(N,vW0)h+W1,h+W2)

= 1

2
(Nx)2

⇣
gBY /Y (R�(hW2,hW1),vW0)

� gBY /Y (R�(hW1,hW2),vW0)
⌘
+O(x)

= (Nx)2gBY /Y (R�(hW2,hW1),vW0) +O(x).

q.e.d.

This establishes the asymptotics of the curvature at each boundary
hypersurface. Let us consider the implications at a corner. Suppose
Y, eY 2 S(X) and Y < eY so that the boundary fiber bundles participate
in (1.1). Near BY \BeY a ‘boundary product structure’ as in §1.1 yields
a collar neighborhood of the form

[0, 1)x ⇥ [0, 1)r ⇥ (BY \BeY )

with x a boundary defining function for BY and r a boundary defining
function for BeY . In this collar, the vector field @x is �eY -horizontal, the
vector field 1

x
@r is �Y -vertical, and any wedge vector field that is vertical

with respect to �eY is also vertical with respect to �Y . We will eventually
carry out a Getzler rescaling argument where we rescale in the horizontal
directions at each boundary hypersurface, so the interesting expressions
at the corner are the ones of the form

gw(Rw(@r,W0)veY W1, @x), gw(r@rRw(@r,W0)heY W1, @x),

with W0 a vector field tangent to the fibers of �eY and (hence) �Y and
W1 a wedge vector field. The first expression is equal to

gw(Rw(veY W1, @x)@r,W0) = xgw(Rw(xrveY W1, @x)
1

x
@r,

1

xr
W0) = O(x),

while the second expression has leading term at the corner involving

R�eY (heY W1, @x) = veY ([heY W1, @x]) = 0.

The upshot is the vanishing at the corner of every term in these asymp-
totics in which @x occurs as a horizontal vector field.

1.3. Dirac-type wedge operators. Let X � M
 ��! B be a fiber

bundle of manifolds with corners and iterated fibration structures in the
sense of Definition 1.3 and fix a choice of splitting as in (1.6).

Definition 1.6. Let gM/B be a totally geodesic vertical wedge metric
on M . A wedge Cli↵ord module along the fibers of  consists of

1) a complex vector bundle E �!M
2) a Hermitian bundle metric gE
3) a connection rE on E compatible with gE
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4) a bundle homomorphism from the ‘vertical wedge Cli↵ord algebra’
into the endomorphism bundle of E,

cl : Clw(M/B) = C⌦ Cl
�
wT ⇤M/B, gM/B

�
�! End(E)

compatible with the metric and connection in that, for all ✓ 2
C1(M ;wT ⇤M/B),
• gE(cl (✓)·, ·) = �gE(·, cl (✓)·)
• rE

W
cl (✓) = cl (✓)rE

W
+ cl (rM/B

W
✓) as endomorphisms of E, for

all W 2 TM .

This information determines a smooth family of wedge Dirac-type
operators by

DM/B : C1

c (M�;E)
r

E

����! C1

c (M�;T ⇤M ⌦ E)
cl��! C1

c (M�;E)

where we have used that T ⇤M and wT ⇤M are canonically isomorphic
over the interior of M .

If the fibers of  are even dimensional we will want for E to admit a
Z2 grading

E = E+ � E�

compatible in that it is orthogonal with respect to gE , parallel with
respect to rE , and odd with respect to cl .

In local coordinates, we can write

DM/B =
nX

i=1

cl (✓i)rE

(✓i)]

where ✓i runs over a gw-orthonormal frame of T ⇤M/B. If we restrict
to a fiber X of  and then further to a collar neighborhood of BY ,
Y 2 S(X), this takes the form

(1.17) cl (dx)rE

@x
+ cl (x dzi)rE

1

x
@zi

+ cl (dyj)rE

@yj

= cl (dx)rE

@x
+ cl (x dzi) 1

x
rE

@zi
+ cl (dyj)rE

@yj

plus an element of Di↵1

e(X;E). Here x is a boundary defining function
for BY , and we recognize (1.17) as a wedge di↵erential operator of order
one.

We are interested in this operator acting on the natural family of
vertical L2 spaces associated to the wedge metric gw and the Hermitian
metric gE , which we denote L2

w(M/B;E). However it is convenient to
work with L2 spaces with respect to a non-degenerate density, so let us
define a multiweight on M ,

(1.18) b(H) = 1

2
(dimBN/N) for all H ✓ BN and N 2 S (M)

so that

(1.19) L2

w(M/B;E) = ⇢�b
M

L2(M/B;E).
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(On each fiber X of  we have b(H) = 1

2
(dimBY /Y ) for all H ✓ BY

and Y 2 S(X).) Define the unitarily equivalent family of operators
gM/B by

(1.20) gM/B = ⇢bMDM/B⇢
�b
M

= DM/B �
X

N2S (M)

dimBN/N

2⇢N
cl (d⇢N )

Then gM/B is also a vertical family of wedge di↵erential operators of
order one, and studying gM/B as operators on L2(M/B;E) is equivalent
to studying DM/B as a family of operators on L2

w(M/B;E).

1.4. Bismut superconnection. We briefly recall the construction of
the Bismut superconnection and refer to [MP97a], [AR09a], [BGV04,
Chapter 9-10] for more details.

Let M
 ��! B be a family of manifolds with corners and iterated

fibration structures as in Definition 1.3, endowed with a splitting
w( )TM = wTM/B �  ⇤TB

as in (1.6) and a vertical wedge metric gM/B. Denote the projections
onto the summand of the splitting by v (left) and h (right). These
data determine a connection on the bundle wTM/B, rM/B, as follows.
We choose a Riemannian metric gB on B, and obtain

gM = gM/B �  ⇤gB,

a wedge metric on M . As in §1.2 the Koszul formula defines a Levi-
Civita connection on w( )TM which we denote rM and use to define

rM/B = v rMv .

Just as for families of closed manifolds, this defines a connection on
wTM/B that is independent of the choice of the metric gB.

We embed gM in a one-parameter family of wedge metrics on M ,

gM," = gM/B + 1

"
 ⇤gB,

limiting to the degenerate metric on w( )TM ,

gM,0(V,W ) = gM/B(v V,v W ),

in that the dual metrics on the wedge cotangent bundle converge.
Consider the connection

r� = v rMv � h rMh .

Following Bismut, we can describe the di↵erence between this connec-
tion and rM in terms of the fundamental tensors of  .

Define

(1.21)
S 2 C1(M ;wT ⇤M/B ⌦ wT ⇤M/B ⌦  ⇤TB),

bR 2 C1(M ; ⇤TB ⌦  ⇤TB ⌦ wT ⇤M/B)



FAMILIES DIRAC INDEX ON PSEUDOMANIFOLDS 233

by the equations

S (W1,W2)(A) = gM/B(r
M/B

A
W1 � [A,W1],W2)

bR (A1, A2)(W ) = gM/B([A1, A2],W ).

Using the splitting, we extend these trivially to ⌦3(w( )TM), and then
define

! 2 C1(M ;w( )T ⇤M ⌦ ⇤2(w( )T ⇤M)),

! (X)(Y, Z) = S (X,Z)(Y )� S (X,Y )(Z)

+ 1

2
bR (X,Z)(Y )� 1

2
bR (X,Y )(Z) + 1

2
bR (Y, Z)(X).

This tensor is isomorphic to rM �r� via gM by [BGV04, Prop 10.6]
and allows us to define

r0 = r� + 1

2
⌧(! )

where
⌧ : ⇤2(w( )T ⇤M) �! hom(w( )T ⇤M),

⌧(↵ ^ �)� = 2(gM,0(↵, �)� � gM,0(�, �)↵).

As the notation is meant to indicate, this is the limiting connection of
the Levi-Civita connections of the metrics gM," as "! 0.

Given a wedge Cli↵ord module E �! M , we can extend it to the
bundle

E =  ⇤⇤⇤B ⌦ E.

This has a natural Cli↵ord action

cl 0 : Cl0(w( )T ⇤M) = C⌦ Cl ( ⇤T ⇤B � wT ⇤M/B, gM,0) �! End(E)
cl 0(↵) = e(h ↵) + cl (v ↵) for ↵ 2 C1(M ;w( )T ⇤M)

where e is exterior multiplication, with connection

rE,0 =  ⇤rB �rE + 1

2
cl 0(! )

that is compatible with r0 in that

rE,0
W

cl 0(✓) = cl 0(✓)rE,0
W

+ cl 0(r0

W ✓), for all W 2 C1(M ;TM).

We will need to know about the curvature of rE,0. It is easy to see that,
for any U, V 2 C1(M ;TM),

v R
M,"(U, V )v = RM/B(U, V ), h R

M,"(U, V )h =  ⇤RB(U, V ).

It follows from Proposition 10.9 of [BGV04] that

RM,0(T1, T2)(T3, T4) = lim
"!0

RM,"(T1, T2)(T3, T4)

as long as h Ti = 0 for some i (which will hold in all cases we need
to consider). In particular, applying Proposition 1.5 to RM/B," lets us
conclude that the corresponding asymptotics hold for RM,0.
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The Dirac-type operator corresponding to E with Cli↵ord action cl 0
and connection rE,0 is known as the Bismut superconnection and
denoted AM/B. As a map C1(M ;E) �! C1(M ;E) it is given by

AM/B = AM/B,[0] + AM/B,[1] + AM/B,[2]

where AM/B,[j] : C1(M ;E) �! C1(M ; ⇤⇤jB ⌦ E). Explicitly, in
terms of local orthonormal frames {f↵} for TB and {ei} for wTM/B,
with dual coframes {f↵}, {ei}, we have
(1.22)

AM/B = cl (ei)rE

ei
+e↵

�
rE

f↵
+ 1

2
k (f↵)

�
�1

4

X

↵<�

bR (f↵, f�)(ei)e
↵e�cl (ei),

where k is the trace of S . Note that AM/B,[0] is DM/B, the Dirac-type
operator associated to E.

As E is a wedge Cli↵ord bundle, its homomorphism bundle has a
decomposition

(1.23) hom(E) ⇠= Cl(wT ⇤M/B)⌦ hom0

Cl(wT ⇤M/B)
(E)

where hom0

Cl(wT ⇤M/B)
(E) denotes homomorphisms that commute with

Cl(wT ⇤M/B), see e.g., [Vai01, Lemma 5.1]. The curvature of rE de-
composes as 1

4
cl (RM ) + K 0

E
, where K 0

E
commutes with the Cli↵ord

action and is known as the ‘twisting curvature’ of rE , see e.g., [Mel93,
Lemma 8.33]. The square of the wedge Bismut superconnection satisfies
a Lichnerowicz formula [BGV04, Theorem 3.52],

(1.24) A2

M/B
= �M/B,0 + 1

4
scal(gw)� 1

2

X

a,b

K 0

E(ea, eb)cl 0(ea)cl 0(eb)

where the sum is over both horizontal and vertical tangent vectors and
�M/B,0 is the vertical family of operators which at Mb is the Bochner
Laplacian corresponding to rE,0��

Mb

.

For each N 2 S (M), we have three related fiber bundles at the
corresponding collective boundary hypersurface

ZY BN

�N

✏✏
 |BN

⇥⇥

Y N

 N

✏✏
B

and from the asymptotics of wedge connections we see that

(1.25) S 
��
BN

= S N , bR 
��
BN

= bR N .

We will see that the contribution of �N to these tensors can be recovered
by passing to ‘rescaled normal operators’, see Remark 5.4 below.
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2. Witt condition

2.1. Boundary families. Let M
 ��! B be a fiber bundle of mani-

folds with corners and iterated fibration structures and gM/B a totally
geodesic vertical wedge metric on M . Given a  -vertical wedge Cli↵ord
module over M , E �! M , we will explain how at each N 2 S (M)
there is an induced �N -vertical wedge Cli↵ord module on BN . This has
a Cli↵ord action not just by wT ⇤BN/N but by all of wT ⇤M/B

��
BN

, we

encode this as a Cl(F )-wedge Cli↵ord bundle for an appropriate bundle
F �! B. We refer to the corresponding family of vertical Dirac-type
operators as the boundary family of DM/B at N and denote it DBN/N .

Let N 2 S (M) with corresponding collective boundary hypersurface
BN and fix a choice of boundary defining function x. Choose a collar
neighborhood C (BN ) ⇠= [0, 1)x ⇥BN and identify

wT ⇤M/B
��
C (BN )

= N⇤

MBN � xwT ⇤BN/N � �⇤NT ⇤N,

where N⇤

M
BN is the (rank one) conormal bundle of BN , and then fur-

ther identify

N⇤

MBN = hdxi, xwT ⇤BN/N ⇠= wT ⇤BN/N.

The  -vertical wedge metrics gM/B on wT ⇤M/B induce a �N -vertical
wedge metric gBN/N on wT ⇤BN/N . Choose a metric gB on B and let

gM = gM/B �  ⇤gB, so that rM/B is given, as above, in terms of the

Levi-Civita connection rM of gM by

rM/B = v � rM � v .

The metric gM is a totally geodesic wedge metric on M and thus in
particular there is a corresponding wedge metric on BN , with vertical
connection

rBN/N = v�N � r
BN � v�N .

In order to relate rBN/N with the restriction of rM/B to BN , recall
from §1.2 that the restriction of rM to BN will respect the splitting

(2.1) wT ⇤C (BN ) =
⇥
hdxi � 1

x

wT ⇤BN/N
⇤
� �⇤NT ⇤N

so that j⇤
0
rM = v+

�N
� rM � v+

�N
� h�N � rM � h�N . Let us denote the

fully diagonal connection by

r� =
@

@x
dx�rBN/N � h�Nr

Mh�N .

The di↵erence between this and a direct sum connection with respect
to the splitting (2.1) comes from the fact that in a frame like (1.11),
letting the connection act on di↵erential forms,

rM

V1
( 1
x
V2)

[(@x) = �gBN/N (V1, V2), rM

V1
dx = ( 1

x
V1)

[.
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Thus we have

(2.2) r�

W
✓ = j⇤0rM

W ✓ �
⇣
g(dx, ✓)( 1

x
vW )[ � g(( 1

x
vW )[, ✓)dx

⌘
.

The Cli↵ord connection rE which is by definition compatible with rM

can be modified in a standard way to obtain a Cli↵ord connection com-
patible with r�, namely, writing S = rM � r�, following [BC90a,
page 375],

rE,�

W
:= rE

W �
1

4
hS(W )ei, ejigM cl (ei)cl (ej)

for orthonormal frame ei and dual frame ei. (Indeed, from the fact that
S(W ) is anti-symmetric, it follows that 1

4
hS(W )ei, ejigM cl (ei)cl (ej)X =

cl (S(X)).) Restricting to BN via j0 from (1.14), we let rE|N be given
by

(2.3) rE|N

W
= j⇤0rE

W � 1

2
cl (dx)cl (( 1

x
vW )[)

and this is compatible with the restriction of r� to BN .
After identifying xwT ⇤BN/N

��
x=0

with wT ⇤BN/N we see that rE|N

is a metric connection with respect to the restriction of gE which re-
stricts to the fibers of BN/N to be compatible with gBN/N . Thus alto-
gether we obtain a wedge Cli↵ord module for the induced vertical wedge
metric gBN/N on BN �! N that moreover is compatible with the Clif-
ford action of the base and normal covectors, i.e., the Cli↵ord action by
sections of the bundle hdxi � �⇤

N

wT ⇤N/B.
As the bundle N⇤

M
BN = hdxi �! BN is trivial there is no loss,

and some convenience, in treating it as the pull-back of a trivial bundle
over N . We introduce the notation T ⇤N+/B for the direct sum of
T ⇤N/B and a trivial bundle over N formally generated by dx, so that
N⇤

M
BN � �⇤NT ⇤N/B = �⇤

N
T ⇤N+/B.

Definition 2.1. Let X �M
 ��! B be a fiber bundle of manifolds

with corners and iterated fibration structures in the sense of Defini-
tion 1.3, with a vertical wedge metric gM/B. If F �! B is a real vector

bundle with bundle metric gF , a wedge Cli↵ord module (E, gE ,rE , cl )
is a Cl(F )-wedge Cli↵ord module if there is a bundle homomorphism
(also denoted cl )

cl : Cl( ⇤F ) = C⌦ Cl (F, gF ) �! End(E)

satisfying, for all ⌘ 2 C1(M ; ⇤F ),

gE(cl (⌘)s1, s2) = �gE(s1, cl (⌘)s2) for all si 2 C1(M ;E)

rE(cl (⌘)s) = cl (⌘)rEs, for all s 2 C1(M ;E)

cl (⌘)cl (✓) + cl (✓)cl (⌘) = 0 for all ✓ 2 C1(M ;wT ⇤M/B).
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Note that if F has rank zero, a Cl(F )-wedge Cli↵ord module is just
a wedge Cli↵ord module.

Clearly if D is the Dirac-type operator corresponding to (the under-
lying wedge Cli↵ord module (E, gE ,rE , cl ) of) a Cl(F )-wedge module,
and ✓ 2 C1(M ;F ) then Dcl (✓) = �cl (✓)D.

We have seen that a wedge Cli↵ord bundle (E, gE ,rE , cl ) along the

fibers of M
 ��! B induces a Cl(T ⇤N+/B)-wedge Cli↵ord module,

(E|N , gE |N ,rE|N , cl ) along the fibers of BN

�N���! N . Let us finally
consider the relation between the corresponding Dirac-type operators.

To each N 2 S (M) we can associate a �N -vertical family of opera-
tors

⇢NDM/B

��
BN

.

From the local expression (1.17) we see, letting Vi be an orthonormal
frame of vertical vectors and V i the dual frame, that

⇢NDM/B

��
BN

= cl (x V i)j⇤0rE

Vi

where Vi runs over a local frame for the vertical wedge tangent bundle

associated to BN

�N���! N . Replacing the connection j⇤
0
rE by rE|N

yields

cl (x dzi)(rE|N

@zi
+ 1

2
cl (dx)cl (x dzi)) = DBN/N + v

2
cl (dx)

where we recall that v = dimBN/N . Thus we can conclude:

Lemma 2.2. A wedge Cli↵ord module along the fibers of  : M �!
B induces, for each N 2 S(N), a Cl(T ⇤N+/B)-wedge Cli↵ord module
along the fibers of �N : BN �! N . The vertical operator of a family
of wedge Dirac-type operators DM/B defined by the former is equal to
the family of wedge Dirac-type operators defined by the latter, which we
denote DBN/N , plus a zero-th order term

⇢NDM/B

��
BN

= DBN/N + v

2
cl (dx).

We will denote the restriction of DBN/N to the fiber over y 2 N by

DBN/N

��
Zy

= DZy

when it is clear from context. Note that Cli↵ord multiplication by the
global section dx of T ⇤N+ satisfies

DBN/N � cl (dx) = �cl (dx) �DBN/N .

Hence for any choice of closed domain for DZy
, invariant under mul-

tiplication by cl (dx), we have

s 2 �-eigenspace of DZy
() cl (dx)s 2 (��)-eigenspace of DZy

.

() (Id+cl (dx))s 2 �-eigenspace of cl (dx)DZy
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and so the eigenvalues of DZy
, �DZy

, and cl (dx)DZy
coincide, including

multiplicity.
Lemma 2.2 highlights one advantage of working with gM/B from (1.20)

since the induced vertical family is precisely the boundary family of
Dirac operators,

⇢NgM/B

��
BN

= DBN/N .

Note that since we are interested in gM/B on the space L2(M/B;E),
we are interested in the boundary family DBN/N as an operator on
L2(BN/N ;E|N ).

2.2. Witt assumption and vertical APS domain. Let  : M �! B
be a fibration of manifolds with corners with iterated fibration structure
as in Definition 1.3 (so B is closed) with typical fiber X, let gM/B be
a vertical wedge metric, and E �! M a wedge Cli↵ord module as
in Definition 1.6. Let DM/B be the corresponding family of vertical
wedge Dirac-type operators and DX the restriction of DM/B to a fixed
fiber X. As an unbounded operator on L2

w(X;E), for an arbitrary
totally geodesic wedge metric gM/B|X , DX generally has many closed
extensions. As discussed in, e.g., [ALMP18], the two canonical closed
domains,

Dmin(DX) = {u 2 L2

w(X;E) :

9(un) ✓ C1

c (X�;E) s.t. un ! u and (DXun) is L
2

w-Cauchy},
Dmax(DX) = {u 2 L2

w(X;E) : DXu 2 L2

w(X;E)},

where in the latter DXu is computed distributionally, satisfy

⇢XH1

e (X;E) ✓ Dmin(DX) ✓ Dmax(DX) ✓ H1

e (X;E).

Here

H1

e (X;E) = {u 2 L2

w(X;E) : V u 2 L2

w(X;E) for all V 2 C1(X; eTX)}

is the edge Sobolev space introduced in [Maz91]. We consider the
following domain:

Definition 2.3. The vertical APS domain of DX is the graph

closure of ⇢1/2
X

H1
e (X;E) \Dmax(DX),

DVAPS(DX) = {u 2 L2

w(X;E) : 9(un) ✓ ⇢1/2X
H1

e (X;E) \Dmax(DX)

s.t. un ! u in L2

w and (DXun) is L
2

w-Cauchy}.

As in [ALMP18], this domain induces a domain for each vertical
family DBY /Y , namely the corresponding vertical APS domain. Note
that this domain is invariant under multiplication by cl (dx) so that the
spectrum of each DZy

has the symmetries mentioned at the end of §2.1.
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Definition 2.4. The operator (DX ,DVAPS) satisfies the geometric
Witt condition if

Y 2 S(X), y 2 Y =) Spec(DZy
) \ (�1

2
, 1
2
) = ;.

If, instead, we only require

Y 2 S(X), y 2 Y =) Spec(DZy
) \ {0} = ;

then we say that (DX ,DVAPS) satisfies the Witt condition. (Tacitly,
we take the domain of the links to be the VAPS domains. Thus the
definition could be stated without reference to a domain on the whole
of X, specifically only with reference to the spectrum of Spec(DZy

,
DV APS(DZy

)). Since this notation is cumbersome we speak only of the
VAPS domain on X and think of the domains on the fibres as induced.)

The analysis in [ALMP18] can be used to show that the geometric
Witt condition

Y 2 S(X), y 2 Y =) Spec(DZy
) \ (�1

2
, 1
2
) = ;

implies Dmin(DX) = Dmax(DX) so that DX is essentially self-adjoint.

Remark 2.5. We use the nomenclature ‘vertical APS domain’ be-
cause the di↵erent local ideal boundary conditions for DX involve the
spectrum of DZy

in the interval (�1

2
, 1
2
). The vertical APS domain cor-

responds to projecting o↵ of the negative half of this interval, analogous
to the Atiyah-Patodi-Singer boundary conditions [APS75].

2.3. Normal operator. As in §2.2, let DX be the restriction of DM/B

to a fiber of  : M �! B. At every Y 2 S(X), y 2 Y �, there is a
normal operator of DX , modeling its behavior on a model wedge,

R+

s ⇥ Rh

u ⇥ Zy,

where h = dimY , acting on sections of the bundle E
��
Zy

pulled back

along the natural projection. This operator is given by

Ny(DX) = cl (dx)@s + 1

s
(DZy

+ v

2
cl (dx)) +

X
cl (H[

j)Hj

= cl (dx)@s + 1

s
(DZy

+ v

2
cl (dx)) +DRh

where the sum ranges over an orthonormal frame for TyY , and through-
out this section we use the notation

v = dimZy.

The normal operator of gX is then

Ny(gX) = Ny(DX)� s�1 v

2
cl (dx).

The vertical APS domain for DX induces domains for both DZy
and

Ny(DX), which are easily identified as the corresponding vertical APS
domains. The induced domain for the normal operator can be described
in terms of I-smooth (i.e., polyhomogeneous) asymptotic expansions.
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Indeed, the operator DZy
is independent of s, and so we are in the

‘constant indicial root’ situation studied in, e.g., [ALMP18]. Note that
if f is a section of E

��
Zy

over the model wedge and is O(s0) as s ! 0

then for almost all � 2 C, sNy(DX)(s�f) = O(s�). We say that � is
an indicial root if there is an f such that sNy(DX)(s�f) = O(s�+1).

Let us describe the induced domain for the normal operator in more
detail. Analogously to [ALMP18, §1], we can consider an intermediate
domain where we have imposed the vertical APS ‘boundary condition’
at all of the BY 0 with Y < Y 0,

Dmax,Y <(gX) = graph closure of Dmax(gX) \
 
Y

Y <Y 0

⇢1/2
Y 0

!
L2(X;E).

As explained in loc. cit., elements in the induced domain for the nor-
mal operator have a partial asymptotic expansion. (In the setting of
[ALMP18], under an assumption of constant indicial roots, domains
were defined by an inductive process. Elements of the maximal domain
have partial asymptotic expansions with distributional coe�cients at
strata of depth one on which we can impose ideal boundary conditions.
Elements of the resulting domain have partial asymptotic expansions
with distributional coe�cients at strata of depth two and so on.)

Lemma 2.6. The indicial roots of Ny(DX) are the eigenvalues of
DZy

shifted by �v

2
. Every f in

Dmax,Y <(Ny(DX)) = graph closure of

Dmax(Ny(DX)) \
 
Y

Y <Y 0

⇢1/2
Y 0

!
L2

w(R+

s ⇥ Rh

u ⇥ Zy;E
��
Zy

),

has a partial asymptotic expansion as s! 0,

f ⇠
X

�2Spec(DZy
)

�2(�
1

2
,
1

2
)

f�s
�
v

2
+� + ef

in which each f� is a distributional element of the � eigenspace of
cl (dx)DZy

and

(2.4) ef 2 x1�H�1

e (R+

s ⇥ Rh

u ⇥ Zy) :=
\

">0

x1�"H�1

e (R+

s ⇥ Rh

u ⇥ Zy).

The vertical APS domain of Ny(DX) consists of those f such that f� = 0
whenever �  0.

Note that the notation c� in weights to denote the above
type of intersection is used throughout.
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Proof. Applying Ny(DX) to s�f yields

sNy(DX)(s�f) = s�((� + v

2
)cl (dx) +DZy

)f +O(s�+1)

so � will be an indicial root when (�+ v

2
� cl (dx)DZy

) is not invertible,
i.e.,

� 2 �v

2
+ Spec(cl (dx)DZy

) = �v

2
+ Spec(DZy

).

The existence of the asymptotic expansion is established in [ALMP18,
Lemma 2.2]. q.e.d.

Note that the translation invariance of Ny(DX) in Rh allows us to
Fourier transform in u and obtain the family of model operators,

Y ⇥ Rh 3 (y, ⌘) 7! N(y,⌘)(DX) = cl (dx)(@s + v

2s
) + 1

s
DZy

+ icl (⌘).

By a standard computation (cf. [AGR16, Lemma 2.10], [ALMP12,
Lemma 5.5], [Les93, Proposition 4.1], [Cho85, Proposition 2.25]) we
can establish injectivity and self-adjointness as follows.

Proposition 2.7. For each (y, ⌘) 2 Y ⇥Rh, the operator N(y,⌘)(DX),
together with the corresponding domain Dmax,Y <(N(y,⌘)(DX)), is injec-
tive if ⌘ = 0 and otherwise has null space spanned by

[

�2Spec(DZy
)\[0,1/2)

n
s1/2K

��
1

2

(s|⌘|)���cl ( ⌘
|⌘|
)s1/2K

�+
1

2

(s|⌘|)cl (dx)��

: cl (dx)DZy
�� = ���

o
.

It follows that, if DX satisfies the Witt condition at Y , Ny is injective
and self-adjoint with its vertical APS domain.

Proof. Since L2(svds) = s�v/2L2(ds), the operator N(y,⌘)(DX) acting
on L2

w is equivalent to the operator

N(y,⌘)(gX) = sv/2N(y,⌘)(DX)s�v/2 = cl (dx)@s + 1

s
DZy

+ icl (⌘)

acting on L2(ds).
First note that, with Ay = cl (dx)DZy

, we have

N(y,⌘)(gX)2=�@2s+ 1

s2
(D2

Zy
�cl (dx)DZy

)+|⌘|2=�@2s+ 1

s2
(A2

y�Ay)+|⌘|2.
It will be useful to recall that the null space of

�@2s + 1

s2
(�2 � �) + |⌘|2 = s1/2(�@2s � 1

s
@s +

1

s2
(�� 1

2
)2 + |⌘|2)s�1/2

= �s1/2�2
�
s2@2s + s@s � ((�� 1

2
)2 + s2|⌘|2)

�
s�1/2

is spanned by s� and s1�� if ⌘ = 0, and otherwise by s1/2I
��

1

2

(s|⌘|) and

s1/2K
��

1

2

(s|⌘|). In view of the asymptotics

I↵(z) = O(z|↵|) as z ! 0, I↵(z) = O(1
z
ez) as z !1

K↵(z) = O(z�|↵|) as z ! 0 (↵ 6= 0), K↵(z) = O(1
z
e�z) as z !1,
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none of these are in L2(ds) except for s1/2K
��

1

2

(s|⌘|) when |�� 1

2
| < 1.

Now since

cl (dx)DZy
= �DZy

cl (dx), cl (⌘)DZy
=�DZy

cl (⌘)

=) cl (dx)Ay = �cl (dx)DZy
cl (dx)=�Aycl (dx), cl (⌘)Ay=Aycl (⌘),

the operator N(y,⌘)(gX) = cl (dx)(@s� 1

s
Ay)+ icl (⌘) preserves the space

F� = E�(Ay)� E��(Ay), on which it acts by

N(y,⌘,�) =

✓
icl (⌘) cl (dx)(@s + 1

s
�)

cl (dx)(@s � 1

s
�) icl (⌘)

◆
.

If we further identify

F� // E2

�
= E�(Ay)2

(a, b) � // (a, cl (dx)b)

we end up with the map

eNy,⌘,� =

✓
icl (⌘) �cl (dx)(@s + 1

s
�)cl (dx)

cl (dx)2(@s � 1

s
�) �cl (dx)icl (⌘)cl (dx)

◆

=

✓
icl (⌘) @s +

1

s
�

�(@s � 1

s
�) �icl (⌘)

◆

satisfying eN 2

y,⌘,�
=

✓
|⌘|2 � @2s + 1

s2
(�2 � �) 0

0 |⌘|2 � @2s + 1

s2
(�2 + �)

◆
.

Thus any element of the L2-null space of eN 2

y,⌘,�
has the form

(as1/2K
��

1

2

(s|⌘|), bs1/2K
�+

1

2

(s|⌘|)).

Recall that [AS64, (9.6.26)]

@zK⌫(z) = �K⌫�1(z)� ⌫

z
K⌫(z) = �K⌫+1(z) +

⌫

z
K⌫(z)

hence applying eNy,⌘,� to the putative element of the null space results
in
✓
(cl (⌘)a� b|⌘|)s1/2K

��
1

2

(s|⌘|), (�a|⌘|� cl (⌘)b)s1/2K
�+

1

2

(s|⌘|)
◆

= 0

() cl (⌘)a = |⌘|b,

and significantly a = 0 () b = 0. This means that to get an element
in L2 we need both |� � 1

2
| < 1 and |� + 1

2
| < 1, i.e., |�| < 1

2
. This

establishes the first part of the proposition.
Recall that, for ⌫ 2 R⇤, K⌫(z) ⇠ C⌫z�|⌫| as z ! 0. Thus the ele-

ments of the null space of Ny are spanned by elements with non-trivial
asymptotics at both exponents � and ��, for � 2 Spec(Ay) \ [0, 1/2).
There are no such elements in the vertical APS domain.
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Finally we show that the vertical APS domain is self-adjoint by show-
ing the vanishing of its deficiency indices by a similar argument. Indeed,
the null space of Ny ± i is contained in the null space of N 2

y + 1. Ana-
lyzing this as above shows that solutions are built up from elements of
the form

(as1/2K
��

1

2

(sh⌘i), bs1/2K
�+

1

2

(sh⌘i)).

where h⌘i =
p
|⌘|2 + 1 and solutions coming from the null space of

Ny ± i further satisfy that a = 0 () b = 0. Since this requires non-
trivial asymptotics at exponents � and ��, there are no such solutions
in the vertical APS domain. q.e.d.

3. Edge calculus with bounds and wedge heat calculus

3.1. Conormal distributions on manifolds with corners. We
briefly recall some of the results of [Mel92] that we will use in our
constructions and refer the reader to loc. cit. for details. (See also, e.g.,
[Gri01], [Maz91, §2A].)

Recall that we use the notation

⇢X =
Y

H2M1(X)

⇢H

for a ‘total boundary defining function’. A multiweight for X is a map

s : M1(X) �! R [ {1}

and we denote the corresponding product of boundary defining functions
by

⇢sX =
Y

H2M1(X)

⇢s(H)

H
.

We write s  s0 if s(H)  s0(H) for all H 2M1(X).
A smooth map between manifolds with corners f : X �! Y is a

b-map if, for each H 2M1(Y ), and some choice of boundary defining
functions, we have

f⇤⇢H =
Y

H2M1(X)

⇢
ef (H,G)

G

where ef (H,G) is a non-negative integer. (These are called ‘interior
b-maps’ in [Mel92] because they map the interior of the domain into
the interior of the target.) The map

ef : M1(X)⇥M1(Y ) �! N0

is known as the exponent matrix of the b-map f and we write

ker(ef ) = {H 2M1(X) : ef (H,G) = 0 for all G 2M1(Y )}.
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The vector fields tangent to the boundary hypersurfaces of X are
known as the b-vector fields and are denoted

Vb = {V 2 C1(X;TX) : V is tangent to each H 2M1(X)}.

There is a vector bundle, the b-vector bundle, bTX, together with a
natural vector bundle map ib : bTX �! TX that is an isomorphism
over the interior of X and satisfies

(ib)⇤C1(X; bTX) = Vb.

Thus, for example, if x is a boundary defining function for a boundary
hypersurfaceH ofX then, nearH, the vector field x@x is non-degenerate
at H as a section of bTX. Indeed, it does not vanish at H because it
is not an element of xVb. We refer to any such vector field as a radial
vector field for H. It is determined up to an element of xVb, and its
restriction to the boundary generates a canonical trivialization of the
null space of ib over H, known as the b-normal bundle, bNH.

The di↵erential of a b-map f : X �! Y extends to a bundle map be-
tween b-tangent bundles and b-normal bundles. If both of these induced
maps are surjective, f is a b-fibration.

Conormal functions. Let µ denote a positive section of the density
bundle ⌦(X). Denote

L2(X) = L2(X,µ) = {u : X �! C measurable :

Z

X

|u|2 µ <1}

and, for n 2 N0 and s a multiweight, the weighted b-Sobolev spaces
corresponding to µ are

⇢sXHn

b
(X) = ⇢sXHn

b
(X,µ)

= {u : X �! C measurable : Vb(X)n(⇢�s
X
u) ✓ L2(X)}.

The L2-based conormal spaces are

⇢sXH1

b
(X) =

\

n2N0

⇢sXHn

b
(X)

though we shall usually use

A s
�(X) =

\

s0<s

⇢s
0
XH1

b
(X).

We refer to these as conormal functions with multiweight s�. We denote
the union over all multiweights by

A ⇤(X) =
[

s

⇢sXH1

b
(X).

By Sobolev embedding, any function in A ⇤(X) is smooth in the in-
terior of X, and indeed the individual ⇢s

X
H1

b
(X) are preserved by the
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action of Vb(X). They are also C1(X)-modules, so it makes sense to
talk about conormal sections of a vector bundle E �! X, e.g.,

A s
�(X;E) = A s

�(X)⌦C1(X) C1(X;E).

I-smooth (or polyhomogeneous) expansions. Regularity at the
boundary hypersurfaces is often manifest in an asymptotic expansion
reminiscent of the Taylor series but with exponents that are not neces-
sarily integers and with the presence of powers of logarithms,

u ⇠
X

usj ,px
sj (log x)p

with coe�cients usj ,p themselves conormal functions. We keep track of
the allowed exponents in index sets and refer to this class of functions
as I-smooth (I for index set) or as polyhomogeneous.

An index set E is a discrete subset of C⇥ N0 such that

{(sj , pj)} ✓ E, |(sj , pj)|!1 =) Re sj !1.

To ensure independence from the choice of bdf x we also require

(z, p) 2 E, p � 1 =) (z, p� 1) 2 E

(z, p) 2 E =) (z + k, p) 2 E for all k 2 N.
We often denote the index set {(↵+ n, 0) 2 C⇥N0 : n 2 N0} simply

as ↵. The extended union of two index sets is

E[F
= E[F[{(z, p) 2 C⇥N0 : 9q 2 N0 s.t. (z, q) 2 E & (z, p�q�1) 2 F}.
Given an index set E we define

ReE = {Re(z) : (z, 0) 2 E}, inf E = minReE.

We allow the empty set as an index set and define inf ; =1.
To each index set E and w 2 R we assign the polynomial

b(E,w;�) =
Y

(z,p)2E

Re z<w

(�� z).

Note that if rH is a radial vector field for H then the null space of the
di↵erential operator b(E, s; rH) is spanned by

{xz(log x)p : (z, p) 2 E,Re z < w}.
An index family E on a manifold with corners is an assignment of

an index set E(H) to each boundary hypersurface H. To each index
family E we associate a multiweight inf E . Given an index family, a
multiweight w, a choice of radial vector field rH for each boundary
hypersurface, and an ordering of the boundary hypersurfaces we define
the di↵erential operator

b(E ,w) =
Y

H2M1(X)

b(E(H),w(H); rH)
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and the spaces of partially I-smooth conormal functions by
(3.1)

BE/w
phg

A s
�(X) = {u 2 A s

�(X) : b(E , r)u 2 A r
�(X) for all s  r  w}.

Thus these are conormal functions with multiweight s� that have an
asymptotic expansion at each boundary hypersurface H with exponents
in E(H) with real part less than w(H) and with remainder a conormal
function with multiweight w�. The space of (totally) I-smooth conor-
mal functions with index family E is

A E

phg
(X) =

\

w

BE/w
phg

A s
�(X)

where s is any multiweight satisfying s < inf E .
When the empty set is used as an index set we interpret B;/w

phg
A s

�(X)=
A w

� (X) whenever s  w.

Pull back and push forward. If f : X �! Y is a b-map, then to
each multiweight r on Y we associate a multiweight on X,

M1(X) 3 H 7! f ]r(H) =
X

G2M1(Y )

ef (H,G)r(G).

Note that f ]r(H) = 0 for any H 2 ker(ef ). Let nf be the multiweight
on X,

nf (H) =

(
1 if H 2 ker(ef )

0 else

To an index family F on Y we associate an index family on X,

M1(X) \ ker(ef ) 3 H

7! f ]F(H) =
n
(S, P ) : 9{(sG, pG) 2 F(G) : ef (H,G) 6= 0}

s.t. S =
X

ef (H,G)sG, P =
X

pG
o

and f ]F(H) = 0 for all H 2 ker(ef ). For any multiweights r, r0 and
index family F on Y , pull-back along f gives a map [Mel92, Theorem
3]

f⇤ : BF/r0A r
�(Y ) �! Bf

]
F/(f

]r0+nf )A f
]
r

�
(X).

Similarly, if f : X �! Y is a b-fibration (defined above) we can
associate to each multiweight s on X a multiweight on Y ,

M1(Y ) 3 G

7! f]s(G) = min{s(H)/ef (H,G) : H 2M1(X), ef (H,G) 6= 0},
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and to each index family E on X an index family on Y ,

M1(Y ) 3 G 7! f]E(G) =
[

H2M1(X)

ef (H,G) 6=0

{(z/ef (H,G), p) : (z, p) 2 E(H)}.

For any multiweights s, s0 and index family E on X satisfying

H 2 ker(ef ) =) inf E(H) > 0,

push-forward along f gives a map [Mel92, Theorem 5]

f⇤ : BE/s0A s
�(X; ⇢�1

X
⌦) �! Bf]E/f]s0A f]s(Y ; ⇢�1

Y
⌦).

These theorems hold with functions replaced by sections of a vec-
tor bundle with only notational di↵erences. Another useful extension
is to sections that are also conormal with respect to an interior p-
submanifold. A submanifold W ✓ X is a p-submanifold if every point
in W has a neighborhood U in X such that

(3.2)
X \ U = X 0 ⇥X 00, where @X 00 = ;,

W \ U = X 0 ⇥ {p00} for some p00 2 X 00.

We will not detail this extension but refer the reader to e.g., [EMM91,
Appendix B].

3.2. Edge double space. Given a manifold with corners and an iter-
ated fibration structure X, we follow [Maz91] and define edge pseudo-
di↵erential operators by describing their integral kernels on a replace-
ment of X2 that takes the iterated fibration structure into account.

Recall that the radial blow-up of a manifold with corners X along
a p-submanifold W (as in (3.2)) is the manifold with corners [X;W ]
obtained by replacing W with the inward-pointing part of its spherical
normal bundle, see e.g., [Mel93, §4.2], [MM95, §2.2], [Mel, Chapter
5].

Recall that there is a partial order on S(X), Y < Y 0 i↵ BY \BY 0 6= ;
and dimY < dimY 0. The edge double space associated to X is obtained
from X2 by blowing-up certain p-submanifolds. For each Y 2 S(X) we
denote the fiber diagonal of �Y in X2 by

BY ⇥�Y BY = {(⇣, ⇣ 0) 2 (BY )
2 : �Y (⇣) = �Y (⇣

0)}.

Definition 3.1. Let X be a manifold with corners and an iterated
fibration structure. Let S(X) = {Y1, Y2, . . . , Y`} be a listing of S(X)
such that Yi < Yj =) i < j, i.e., such that the list is non-decreasing
in depth. The edge double space of X is

(3.3) X2

e = [X2;BY1 ⇥�Y1 BY1 ;BY2 ⇥�Y2 BY2 ; . . . ;BY`
⇥�Y

`

BY`
].

As in, e.g., [DM12, MP97a], there is an analogous construction for
families of manifolds with corners.
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Definition 3.2. Given a fiber bundle M
 ��! B of manifolds with

corners and iterated fibration structures as in Definition 1.3, fix a non-
decreasing list of S (M), {N1, N2, . . . , N`}, let the families edge dou-
ble space be

(M/B)2e =
h
M ⇥ M ;BN1 ⇥�N1

BN1 ; . . . ;BN`
⇥�N

`

BN`

i
.

The map  induces a fiber bundle

X2

e � (M/B)2e
 (2)����! B.

Let us check, as is implicit in Definition 3.1, that after performing
the first k� 1 blow-ups, the lift of BYk

⇥�Y
k

BYk
to the blown-up space

is a p-submanifold. Local coordinates near BY , say x, y, z where x is a
bdf for BY , y are coordinates along Y and z coordinates along the fiber
Z of �Y , induce coordinates x, y, z, x0, y0, z0 near BY ⇥BY , in which

BY ⇥�Y BY = {x = x0 = 0, y = y0}
and so this is a p-submanifold whenever Y is a closed manifold, e.g., for
Y1.

If Y < eY , so that eY has a collective boundary hypersurface B
Y eY as

in (1.1), let us label the fibers of these fiber bundles,

(3.4) Z ◆ BeY Z

�eY Z // W

eZ BY \BeY
�eY //

�Y
$$

B
Y eY

�
Y eY}}

✓ eY

Y

and choose coordinates near BY \BeY of the form

(3.5) x, y, w, r, ez,

in which x is a bdf for Y and r is a bdf for eY , y are coordinates along
Y , w coordinates along W and ez coordinates along eZ, so that (x, y, w)
are coordinates along eY and (w, r, ez) are coordinates along Z. In the
induced coordinates x, y, w, r, ez, x0, y0, w0, r0, ez0, we have

BY ⇥�Y BY = {x = x0 = 0, y = y0},
BeY ⇥�eY

BeY = {r = r0 = 0, (x, y, w) = (x0, y0, w0)}

which shows that the latter is not a p-submanifold. After blowing-up
the former, projective coordinates with respect to x0 are given by

(3.6) s =
x

x0
, u =

y � y0

x0
, w, r, ez, x0, y0, w0, r0, ez0
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and the interior lift of BeY ⇥� BeY is given by

(3.7) {r = r0 = 0, s = 1, u = 0, w = w0},
which is a p-submanifold.

Thus the manifolds blown-up in (3.3) are p-submanifolds. We denote
the blow-down map by

�(2) : X
2

e �! X2

and the compositions with the projections onto the left and right factors
by

X2
e

�(2),L

⌘⌘

�(2)

✏✏ �(2),R

��

X2

⇡L~~
⇡R !!

X X

Since the collective boundary hypersurfaces may contain more that one
connected component, this is an ‘overblown’ version of the double space
in [Maz91, §2] and an edge version of the double space in [MP92,
Appendix].

The edge double space has collective boundary hypersurfaces, for each
Y 2 S(X),

B(1)

Y
⇥X $ B(2)

10
(Y ), X⇥B(1)

Y
$ B(2)

01
(Y ), B(1)

Y
⇥�Y B

(1)

Y
$ B(2)

��
(Y ),

where the notation indicates that, e.g., the interior lift of B(1)

Y
⇥ X is

the boundary hypersurface B(2)

10
(Y ) of X2

e . We denote the family of
collective boundary hypersurfaces produced by the blow-ups by ↵(X2

e )
(the ‘front faces’) and the other collective boundary hypersurfaces by
sf(X2

e ) (the ‘side faces’), thus

(3.8)
↵(X2

e ) = {B(2)

��
(Y ) : Y 2 S(X)},

sf(X2

e ) = {B(2)

10
(Y ),B(2)

01
(Y ) : Y 2 S(X)}.

We use similar notations for the family edge double space (M/B)2e , e.g.,

B(2)

��
(N).

It will be useful to describe the structure of these collective hyper-
surfaces in more detail. If S(X) = {Y }, the case treated in [Maz91],
then the restriction of the blow-down map

B(2)

��
(Y ) �! BY ⇥�Y BY

is the fiber bundle map of the inward pointing spherical normal bundle of
BY ⇥�Y BY in X2. The fiber is a quarter sphere Sh+1

++
, where h = dimY .

Invariantly the spherical normal bundle at a point q 2 BY ⇥�Y BY is
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obtained from TqX2 by moding out by tangent vectors to BY ⇥�Y BY ,
removing zero, and taking the R+-orbit space of the dilation action,

S(NX2(BY ⇥�Y BY )q) = R+�[(TqX
2/Tq(BY ⇥�Y BY )) \ {0}].

and so every vector field on X2 transverse to BY ⇥�Y BY (i.e. not in
the image of its tangent space via the inclusion) defines a section of the
spherical normal bundle, and every inward-pointing vector field defines

a section of the fiber bundle B(2)

��
(Y ) �! BY ⇥�Y BY . As pointed out

in [MM87, (3.10)], there is a canonical section: let ⌫ 0 be any vector
field on X that is inward pointing at BY , denote the corresponding
vector fields acting on the left, respectively right, factor of X in X2 by
⌫ 0
L
, respectively ⌫ 0

R
, set ⌫ = ⌫ 0

L
+⌫ 0

R
and let [⌫�Y ] be the induced section

of B(2)

��
(Y ) �! BY ⇥�Y BY ,

[⌫�Y ] : BY ⇥�Y BY �! B(2)

��
(Y ).

A di↵erent choice of ⌫ 0 would change the value ⌫ 0(y, z) at a point
(y, z) 2 BY by multiplication by a positive constant and addition of
a vector tangent to T(y,z)BY , and correspondingly change ⌫(y, z, z0)
by multiplication by a positive constant and addition of a vector in
T(y,z,z0)(BY ⇥�Y BY ), and hence would not change [⌫](y, z, z0). We de-
note the image of [⌫] by

⌫�Y (BY ) = [⌫�Y ](BY ⇥�Y BY ) ✓ B(2)

��
(Y ).

For reasons described below, this will be referred to as the identity
section of the Sh+1

++
-bundle, in analogy to the zero section of a vector

bundle.
A choice of connection for BY ⇥�Y BY �! Y lets us identify the

normal bundle to BY ⇥�Y BY in X2 with the pull-back of TY (as the
normal bundle to the diagonal of Y in Y 2), times two copies of N+

X
BY ,

the inward-pointing normal bundle to BY in X, one for each factor of
X2,

S(TY ⇥ (N+

X
BY )

2) = B(2)

��
(Y ) �! BY ⇥�Y BY .

With this identification, the identity section ⌫�Y (BY ) is the subset
⇡({0}⇥ {NL}⇥ {NR}) where ⇡ is the projection from TY ⇥ (N+

X
BY )2

minus its zero section onto its sphere bundle, and NL, NR, denote the
pull-back along the left and right of an inward-pointing vector field
transverse to BY in X. We can compose the blow-down map with the
fiber bundle map BY ⇥�Y BY �! Y to obtain a fiber bundle

Sh+1

++
⇥ Z2� B(2)

��
(Y ) �! Y.

Thus near its front face, X2
e is locally di↵eomorphic to R+⇥Sh+1

++
⇥Z2⇥

UY with UY an open set in Y over which �Y is trivial.
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Finally, in local projective coordinates analogous to (3.6),

s =
x

x0
, u =

y � y0

x0
, z, x0, y0, z0,

X2
e is locally di↵eomorphic to

R+

s ⇥ Rh

u ⇥ [0, 1)x0 ⇥ UY ⇥ Z2.

The submanifold ⌫�Y (BY ) in these coordinates is {s = 1, u = 0}. Notice
that if we view R+

s ⇥ Rh
u as the ‘ax+b’ group, R+ n Rh, with product

(s, u) · (s0, u0) = (ss0, s0u+ u0),

then (1, 0) is the identity element of the group. This is the reason
why we refer to ⌫�Y (BY ) as the identity section. The action of edge
pseudodi↵erential operators is by convolution with respect to this group
(see, e.g., [Maz91, (3.5)]).

As we discuss now, this structure persists in a modified way in the
setting of manifolds with iterated fibration structures.

Remark 3.3. It may be useful to consider a ‘toy case’ with under-
lying stratified space

bX = Y ⇥ C[0,1)(W ⇥ C[0,1)( eZ)),

where C[0,1) denotes the truncated cone, so that

X = Y ⇥[0, 1)x⇥W⇥[0, 1)r⇥ eZ, S(X) = {Y, eY = Y ⇥[0, 1)x⇥W}
with collective boundary hypersurfaces

BY = {x = 0} = Y ⇥W ⇥ [0, 1)r ⇥ eZ,

BeY = {r = 0} = Y ⇥ [0, 1)x ⇥W ⇥ eZ

participating in the (trivial) fiber bundles

Z = W ⇥ [0, 1)r ⇥ eZ � BY

�Y���! Y, eZ � BeY
�eY���! eY

whose compatibility diagram takes the form

Z = W ⇥ [0, 1)r ⇥ eZ◆BeY Z
= W ⇥ eZ

�eY Z // W

eZ BY \BeY = Y ⇥W ⇥ eZ
�eY //

�eY &&

B
Y eY = Y ⇥W

�
Y eY||

✓ eY

Y

To construct X2
e , we start with X2 and blow-up

BY ⇥�Y BY = {x = x0 = 0, y = y0}

= diag(Y 2)⇥ {x = x0 = 0}⇥W 2 ⇥ [0, 1)2r ⇥ eZ2.
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Near the resulting front face the blown-up space is locally di↵eomorphic
to

R+

R
⇥ ShY +1

++
⇥ Y ⇥W 2 ⇥ [0, 1)2r ⇥ eZ2

where hY is the dimension of Y and R is a defining function for the
front face. In this local description, the interior lift of the submanifold

BeY ⇥�eY
BeY = {r = r0 = 0, (y, x, w) = (y0, x0, w0)}

= diag(Y 2 ⇥ [0, 1)2x ⇥W 2)⇥ {r = r0 = 0}⇥ eZ2

is equal to (cf. (3.7))

R+

R
⇥ {[(1, 0)]}⇥ Y ⇥ diag(W 2)⇥ {r = r0 = 0}⇥ eZ2

= R+

R
⇥
⇣
⌫�Y (BY ) \ (diag(W 2)⇥ {r = r0 = 0}⇥ eZ2)

⌘
,

where {[(1, 0)]} denotes the identity element of the ‘ax+b group’, as
discussed above, and ⌫�Y (BY ) is the identity section of S(TY ⇥ R2

+).
Blowing-up the interior lift of BeY ⇥�eY

BeY produces the manifold

X2
e . The normal bundle of the interior lift of BeY ⇥�eY

BeY fibres over

[0, 1)R⇥Y ⇥W with fiber RhY +hW+1 where hY , hW are the dimensions
of Y and W , respectively; indeed the normal bundle is exactly R+ ⇥
R⇥ TY ⇥ TW . So near the intersection of the front faces this space is
locally di↵eomorphic to

R+

R
⇥ R+

eR
⇥ S(R⇥ TY ⇥ TW ⇥ R2

+)⇥ eZ2,

where R, eR are defining functions forB(2)

��
(Y ) andB(2)

��
(eY ), respectively.

The third term is a fibre bundle ShY +hW+2

++
� S(R⇥TY ⇥TW ⇥R2

+)!
[0, 1)R ⇥ Y ⇥W ' eY .

With an eye to the case of non-trivial fiber bundles, note that the
normal bundle of BeY ⇥�eY

BeY is naturally isomorphic to eT eY ⇥ R2
+,

where eT eY is the edge tangent bundle, generated by the vector fields
x@x, x@y, @w, as can be seen by lifting these vector fields to X2 from the
left projection and restricting to the interior lift of BeY ⇥�eY

BeY . So in
fact this neighborhood can be expressed as

R+

eR
⇥ S(eT eY ⇥ R2

+)⇥ eZ2,

where ShY +hW+2

++
� S(eT eY ⇥ R2

+)! eY .

In particular, B(2)

��
(Y ) is locally di↵eomorphic to

R+

eR
⇥ ShY +1+hW+1

++
⇥ Y ⇥W ⇥ eZ2.

To compare this to

Z2

e = [Z2;BeY Z
⇥�eY Z

BeY Z
]

= [(W ⇥ [0, 1)r ⇥ eZ)2; diag(W 2)⇥ {r = r0 = 0}⇥ eZ2]
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note that this space has a similar description near its front face, namely

R+

eR
⇥ ShW+1

++
⇥W ⇥ eZ2.

Thus the local description of B(2)

��
(Y ) fibers over Y and we can think of

the fiber as a ‘suspended’ version of the edge double space of Z,

[ShY +1

++
⇥ Z2; ⌫�Y (BY ) \ (BeY Z

⇥�eY Z
BeY Z

)].

The front faces of the edge double space of X are related to the edge
double spaces of the fibers of its boundary fibrations, but as pointed out
in the remark, they are ‘suspended’ versions. To define this structure in
general we momentarily replace a boundary fiber bundle Z � BY �!
Y with an arbitrary fiber bundle of manifolds with corners with iterated
fibration structures:

Definition 3.4. Let qX � |M
q ��! qB be a fiber bundle of mani-

folds with corners and iterated fibration structures and let S q (
|M) =

{ qN1, . . . , qN`} be a non-decreasing listing of S q (
|M). Let ⇡ : S++(|M ⇥ q 

|M) �! |M ⇥ q 
|M be the pull-back of the fiber bundle S(eT qB ⇥ R2

+)

from B to |M ⇥ q 
|M and let ⌫ q (

|M) denote the identity section. The

suspended edge double space of |M/ qB is

(|M/ qB)2
Sus(e)

= [S++(|M ⇥ q 
|M); ⌫ q (

|M) \ ⇡�1(B qN1
⇥�|N1

B qN1
); . . . ;

⌫ q (
|M) \ ⇡�1(B qN` ⇥�|N

`

B qN`)].

This fibers over qB and we denote the typical fiber by qX2

Sus qB(e)
,

qX2

Sus qB(e)
� (|M/ qB)2

Sus(e)
�! qB.

Proposition 3.5 (Structure of the front faces of X2
e ). Let X be

a manifold with corners and an iterated fibration structure. For each
Y 2 S(X), let

�(2)
Y

: B(2)

��
(Y ) �! Y

denote the composition of �(2) : X
2
e �! X2 with the fibration BY ⇥�Y

BY �! Y , restricted to B(2)

��
(Y ). This map participates in a fiber

bundle with fiber the suspended edge double space of Z,

Z2

SusY (e)
� B(2)

��
(Y ) = (BY /Y )2

Sus(e)

�
(2)
Y����! Y.

Note that if Y is a maximal element of S(X) (and hence the fiber

Z of BY

�Y���! Y is a closed manifold), then the fiber bundle in the
proposition over Y is

S(RdimY ⇥ R2

+)⇥ Z2� B(2)

��
(Y )

�
(2)
Y����! Y,
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just as in [Maz91].

Proof. If Y has depthX(Y ) = k then the fiber Z of �Y : BY �! Y
is a manifold with corners and an iterated fibration structure of depth
equal to k�1. Z has one collective boundary hypersurface for each eY 2
S(X) such that Y < eY . Indeed following diagram (3.4), this boundary
hypersurface, which we denote BeY Z

, is the fiber of the restriction of
�Y to BY \ BeY and its boundary fibration is the restriction of �eY .
Consequently we have
(3.9)

Z2 ◆ BeY Z
⇥�eY Z

BeY Z

�eY Z // W

eZ2 (BY \BeY )⇥�eY
(BY \BeY )

�eY //

�Y ''

B
Y eY

�
Y eY⇤⇤

Y

Let X2
e (k + 1) denote the blow up in X2 of all the fibre diagonals

of strata of depth greater than or equal to k + 1. Let N+(Y ) denote
the inward pointing normal bundle of the interior lift of BY ⇥�Y BY to
X2

e (k + 1). Composing the projection down to BY ⇥�Y BY with the
projection of this space down to Y , we see, e.g. by using (3.6) and lifting
vector fields from the left projection and restricting to the interior lift,
that we have a diagram of fiber bundles

Z2 N+(Y )

✏✏

RhY eTY ⇥ R2
+

✏✏
Y

where eTY is the edge tangent bundle.
Thus when we blow up the interior lift of BY ⇥�Y BY to X2

e (k + 1),

we produce a boundary hypersurface B(2)

��
(Y ) = S(N+(Y )) which we

can identify with the pull-back to S(eTY ⇥ R2
+) �! Y of two copies of

the Z bundle over Y . In particular we have a fiber bundle map

Sh+1

++
⇥ Z2� B(2)

��
(Y )

�
(2)
Y����! Y.

If eY > Y , the interior lift of BeY ⇥�eY
BeY intersects B(2)

��
(Y ) at the

identity section of S(eTY ⇥ R2
+) over the submanifold BeY Z

⇥�eY Z
BeY Z
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of Z (e.g., by the computation (3.7)). The restriction of �
(2)

Y fibers over
Y ,
(3.10)

[(0, 1, 1)]⇥BeY Z
⇥�eY Z

BeY Z
� B(2)

��
(Y ) \ �](BeY ⇥�eY

BeY )
�
(2)
Y����! Y.

Hence blowing these submanifolds up in the appropriate order produces
(BY /Y )2

Sus(e)
as required. q.e.d.

We point out that, just as when S(X) = {Y }, the maps

X2
e

�(2),L

~~

�(2),R

  
X X

obtained by blowing-down and then projecting onto the left or right
factor of X, are b-fibrations.

The double edge space has a distinguished submanifold, the interior
lift of the diagonal, which is known as the edge diagonal and denoted
diage. It is a p-submanifold of X2

e and its normal bundle is canonically
identified with the edge tangent bundle.

3.3. Edge pseudodi↵erential operators. Let X be a manifold with
an iterated fibration structure. We define the edge pseudodi↵erential
operators as the natural analogue of the operators defined by Mazzeo in
[Maz91] by specifying the structure of their integral kernels. These will
be conormal distributions as in §3.1 on the manifold with corners X2

e

defined in §3.2. We will first define the ‘small calculus’ which includes
edge di↵erential operators and then the ‘large calculus’ which can be
shown to include the inverse of invertible edge di↵erential operators
when they have constant indicial roots. Elements in this calculus are
very well behaved but since the hypothesis of constant indicial roots is
very restrictive, we also define a ‘calculus with bounds.’

Our convention is that the integral kernels of operators acting on
functions will be weighted sections of the density bundle of X, pulled
back along the projection onto the second factor of X2. We introduce
the multiweight

d : M1(X
2

e ) �! R,

d(H) =

(
�(dim(Y ) + 1) if H ✓ B(2)

��
(Y ) for some Y 2 S(X)

0 otherwise

and the weighted right density bundle over X2
e ,

⌦d,R = ⇢d
X2

e
�⇤
(2),R

⌦(X).
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Following [Maz91, Definition 3.3] in the simple edge case, the small
edge calculus of a manifold with corners and an iterated fibra-
tion structure is the filtered algebra of pseudodi↵erential operators
consisting of the union, over r 2 R, of the operators defined by the
integral kernels:

 r

e(X) = ⇢1
sf(X2

e )
Ir(X2

e , diage;⌦d,R),

where ⇢sf(X2
e )

is a total boundary defining function for the ‘side faces’
defined in (3.8), i.e.

⇢sf(X2
e )

=
Y

H2sf(X2
e )

⇢H

(We use classical, one-step distributions conormal to the diagonal, see
loc. cit..) Note that our convention is that the integral kernels are
right-densities so that they will map functions to functions.

If E and F are vector bundles over X, we define the vector bundle
Hom(E,F ) over X2

e by

Hom(E,F ) = �⇤
(2),L

F ⌦ �⇤
(2),R

E0

where E0 denotes the dual bundle to E, and then the edge pseudodif-
ferential operators acting between sections of E and F are given by

 r

e(X;E,F ) = ⇢1
sf(X2

e )
Ir(X2

e , diage; Hom(E,F )⌦ ⌦d,R)

for each r 2 R. We abbreviate  r
e(X;E) =  r

e(X;E,E).
The edge smoothing operators in the small calculus are

 �1

e (X;E,F ) =
\

r2R
 r

e(X;E,F ) = ⇢1
sf(X2

e )
C1(X2

e ; Hom(E,F )⌦⌦d,R).

The integral kernels of edge di↵erential operators lifted to X2
e are

supported on the edge diagonal and identifying the operators with their
kernels (and multiplying by a section of the weighted density bundle,
on which the operators act trivially) we have

Di↵k

e (X;E,F ) ✓  k

e (X;E,F ), for all k 2 N0.

The conormal singularity at the diagonal means [Hör07, Definition
18.2.6] that elements of the small calculus have a symbol map defined
on the conormal bundle to the diagonal, i.e., the edge cotangent bundle,

�r :  
r

e(X;E,F ) �! ⇢�r

RC
C1(RC(eT ⇤X),⇡⇤ hom(E,F ))

where RC(eT ⇤X) denotes the radial compactification of the edge cotan-
gent bundle, ⇡ : RC(eT ⇤X) �! X denotes the projection, and ⇢RC

denotes a boundary defining for the boundary at radial infinity. Define
�r 2 C1(eS⇤X,⇡⇤ hom(E,F )) by multiplying �r by ⇢r

RC
and restricting

to the boundary. The symbol fits into a short exact sequence,

 r�1
e (X;E,F ) �

�
//  r

e(X;E,F )
�r // // C1(eS⇤X,⇡⇤ hom(E,F )).
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In Appendix A we construct a triple edge space X3
e such that com-

position of edge pseudodi↵erential operators is given by pull-back, mul-
tiplication, and push-forward along b-fibrations; the behavior of distri-
butions conormal along the lifted diagonal is essentially the same as in,
e.g, [Maz91], and hence, for any rA, rB 2 R,

A 2  rA
e (X;G,F ), B 2  rB

e (X;E,G)

=) A �B 2  rA+rB
e (X;E,F ) and �rA+rB

(A �B) = �rA(A) � �rB (B).

If A 2  r
e(X;E,F ) has invertible symbol, we say that A is elliptic

(or edge elliptic). If A is elliptic then we can find B 2  �r
e (X;F,E)

satisfying

��r(B) = �r(A)�1

and any such is known as a symbolic parametrix of A. These satisfy

A �B � Id 2  �1

e (X;F ), B �A� Id 2  �1

e (X;E).

The large edge calculus of a manifold with corners and an
iterated fibration structure consists of, for any r 2 R, and E an
index family for X2

e ,

(3.11)  r,E

e,phg
(X;E,F ) =  r

e(X;E,F ) +A E

phg
(X2

e ; Hom(E,F )⌦⌦d,R).

Definition 3.6. Let Eff be the index set for X2
e given by

Eff (B(2)

��
(Y )) = N0, Eff (B(2)

10
(Y )) = Eff (B(2)

01
(Y )) = ;, 8 Y 2 S(X).

The edge calculus with bounds of a manifold with corners and
an iterated fibration structure consists of, for any r 2 R, multi-
weight w for X2

e ,

 �1,w
e (X;E,F ) = B

Eff/w
phg

A �N

�
(X; Hom(E,F )⌦ ⌦d,R),

 r,w
e (X;E,F ) =  r

e(X;E,F ) + �1,w
e (X;E,F ).

with notation as in (3.1) and �N < min(0,w).
(We will always implicitly assume that the multiweight used in the

edge calculus with bounds, w above, is positive on ↵(X2
e ) so that one

can restrict to ↵(X2
e ).)

As in [Maz91, §5], for each Y 2 S(X) we have a restriction map (with

sf(B(2)

��
(Y )) the collective boundary hypersurface given by intersections

of B(2)

��
(Y ) with the side faces of X2

e )

(3.12) eN Y :  r,w
e (X;E) �!  r,wY

Nsus(eTY +)
(BY /Y ;E), where
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 r,wY

Nsus(TY +)
(BY /Y ;E)

= ⇢1
sf(B

(2)
��

(Y ))
Ir(B(2)

��
(Y ), diage \B

(2)

��
(Y ); Hom(E)⌦ ⌦d,R)

+ B
(Eff/w)|

B
(2)
��

(Y )

phg
A �N

�
(B(2)

��
(Y ); Hom(E)⌦ ⌦d,R).

The notation indicates that the latter space is a ‘non-commutative sus-
pension’ (cf. [AM10, §1], [MM98, §4]) which refers to the following.
We can identify the fibers of the bundle eTY +, over Y , with the Lie
group G = R+ n Rh, i.e.,

(s, u) · (s0, u0) = (ss0, u+ su0),

and the composition of edge pseudodi↵erential operators induces convo-
lution with respect to this action for the normal operators. Moreover,
 r,gY

Nsus(eTY +)
(BY /Y ;E) is naturally a bundle of operators over Y , and

the normal operators of di↵erential operators form a special sub-bundle,
namely the product lie algebra U(g) ⇥ Di↵⇤

e(Z) where U(g) is the uni-
versal enveloping algebra of g, the Lie algebra of the Lie group G above.
This goes also for zeroeth order operators, including the identity oper-
ator, in particular

(3.13) eN Y (Id) = �⌫�Y (BY )IdZ ,

with ⌫�Y (BY ) the identity section.
With ⇢X a total boundary defining function for X, for Y 2 S(X) we

now have a composite map g 2 Di↵w(X) to eN Y (⇢Xg), which is related
to the ‘wedge’ normal operator above by

(3.14) eN Y (⇢Xg) = (⇢X/
Y

Y 0Y

⇢0
Y 0)NY (g),

where ⇢0
Y 0 is the pullback of ⇢Y 0 to X2

e to the right factor. NY (g) is
not the normal operator of an edge operator; it is a wedge operator on

B(2)

��
(Y ).

Consider the normal operators {eN Y A}Y 2S(X) of an edge pseudo-

di↵erential operator with bounds A 2  r,w
e (X;E,F ). Since these are

defined by restriction of the integral kernel to the front faces of X2
e ,

they automatically agree on the intersections of the front faces B(2)

��
(Y ),

but it will be useful in the parametrix construction below to have a
concrete understanding of these intersections. Let Y < eY , so we have

a diagram (3.9). The intersection of B(2)

��
(Y ) with �(2)eY

: B(2)

��
(eY ) �! eY

takes place ‘in the base’ of �(2)eY
, i.e. exactly over B

Y eY 2M1(eY ). Thus

(3.15) eN eY (A)|
B

(2)
��

(Y )\B
(2)
��

(eY )
2  r,weY

Nsus(eT eY +)
(BeY /

eY ;E)|Y ,
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where the restriction on the right hand side comes from fibration of
 

r,weY
Nsus(eT eY +)

(BeY /
eY ;E) over eY discussed in the previous paragraph. On

the other hand, the intersection B(2)

��
(Y ) \ B(2)

��
(eY ) is the front face

obtained from blow up of �
]
(BeY ⇥�eY

BeY ) in B(2)

��
(Y ) (see (3.10)), and

is trivially equal to (�(2)eY
)�1(B

Y eY ). Thus restriction of eN Y (A) to this

front face is really taking the normal operator of an (albeit suspended)
edge pseudodi↵erential operator. This is summarized in the diagram

(3.16)  r,w
e (X;E)

e
N eY //

e
NY

✏✏

 
r,weY
Nsus(eT eY +)

(BeY /
eY ;E)

res

✏✏

 r,wY

Nsus(eTY +)
(BY /Y ;E)

res //  
r,weY
Nsus(eT eY +)

(BeY /
eY ;E)|Y

where res means ‘restriction’.
To each index family E we assign a multiweight w(E) such that

 r,E

e,phg
(X;E,F ) ✓  r,w(E)

e (X;E,F )

by defining, for each Y 2 S(X),

w(E)(B(2)

10
(Y )) = inf E(B(2)

10
(Y )), w(E)(B(2)

01
(Y )) = inf E(B(2)

01
(Y )),

w(E)(B(2)

��
(Y )) = inf(Re E(B(2)

��
(Y )) \ N0)

with the convention that the infimum of the empty set is 1.
These operators act on Sobolev sections of vector bundles. In view

of the inclusion of the large calculus into the calculus with bounds, it
su�ces to describe the mapping properties of the latter. We prove the
following theorem in Appendix A, where as usual we identify opera-
tors with their integral kernels, so for a multiweight g, ⇢g

X
 r,g

e (X;E,F )
is the space of operators with integral kernel in ⇢g

X
( r

e(X;E,F ) +

 �1,w
e (X;E,F )). Moreover we will use multiweights for the front faces,

specifically multiweights f : ↵(X2
e ) �! R, notation as in (3.8), and cor-

responding weight functions

⇢f
↵(X2

e )
=

Y

H2↵(X2
e )

⇢f(H)

H

Theorem 3.7 (Action on edge Sobolev spaces). Let f be a multi-

weight for ↵(X2
e ). Any A 2 ⇢f

↵(X2
e )
 r,g

e (X;E,F ) defines a bounded map,

for any t 2 R,

(3.17) ⇢sHt

e(X;E) �! ⇢s
0
Ht

0
e (X;F )



260 P. ALBIN & J. GELL-REDMAN

as long as t � t0 + r and, for each Y 2 S(X),

(3.18)

g(B(2)

01
(Y ))) + s(Y ) > �1

2

g(B(2)

10
(Y )) > s0(Y )� 1

2

f(B(2)

��
(Y )) + s(Y ) � s0(Y ).

Essentially by Arzela-Ascoli we can see that the inclusion

⇢sHt

e(X;E) �! ⇢s
0
Ht

0
e (X;E)

is compact if (and only if) s > s0 and t > t0. Combining with the map-
ping properties, we can identify the edge pseudodi↵erential operators
that act as compact operators.

Corollary 3.8. If A is as in Theorem 3.7 then the operator (3.17)
is compact if t > t0 + r and the inequalities in (3.18) are strict.

In Appendix A we study the composition of these pseudodi↵erential
operators at the level of their integral kernels. One advantage of study-
ing composition at this level is that one can then deduce composition
results for functions spaces (Sobolev spaces, Hölder spaces, etc.) see,
e.g., [Maz91].

Theorem 3.9 (Composition of edge pseudodi↵erential operators).

1) Let rA, rB 2 R and let EA, EB be index families for X2
e such that

Re(EA(B(2)

01
(Y ))) + Re(EB(B(2)

10
(Y ))) > �1 for all Y 2 S(X).

If A 2  rA,EA

e,phg
(X2

e ;G,F ) and B 2  rB ,EB

e,phg
(X2

e ;E,G) then

C = A �B 2  rA+rB ,EC

e,phg
(X2

e ;E,F )

where EC is the index family on X2
e given by, for each Y 2 S(X),

EC(B(2)

10
(Y )) = EA(B(2)

10
(Y )) [

⇣
EA(B(2)

��
(Y )) + EB(B(2)

10
(Y ))

⌘
,

EC(B(2)

01
(Y )) = EB(B(2)

01
(Y )) [

⇣
EA(B(2)

01
(Y )) + EB(B(2)

��
(Y ))

⌘
,

EC(B(2)

��
(Y )) =

⇣
EA(B(2)

10
(Y )) + EB(B(2)

01
(Y )) + dim(Y ) + 1

⌘

[
⇣
EA(B(2)

��
(Y )) + EB(B(2)

��
(Y ))

⌘

2) Let rA, rB 2 R and let gA, gB be multiweights for X2
e such that

gA(B
(2)

01
(Y )) + gB(B

(2)

10
(Y )) > �1 for all Y 2 S(X).

If A 2  rA,gA
e (X2

e ;G,F ) and B 2  rB ,gB
e (X2

e ;E,G) then

C = A �B 2  rA+rB ,gC
e (X2

e ;E,F )
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where gC is the multiweight on X2
e given by, for each Y 2 S(X),

gC(B
(2)

10
(Y )) = min

⇣
gA(B

(2)

10
(Y )), gA(B

(2)

��
(Y )) + gB(B

(2)

10
(Y ))

⌘
,

gC(B
(2)

01
(Y )) = min

⇣
gB(B

(2)

01
(Y )), gA(B

(2)

01
(Y )) + gB(B

(2)

��
(Y ))

⌘
,

gC(B
(2)

��
(Y )) = min

⇣
gA(B

(2)

10
(Y )) + gB(B

(2)

01
(Y )) + dim(Y ) + 1,

gA(B
(2)

��
(Y )) + gB(B

(2)

��
(Y ))

⌘
.

Proof. The proof of (1) is carried out, following [Maz91], in Appen-
dix A by constructing a ‘triple edge space’ and analyzing the integral
kernel of the composite geometrically via the push-forward and pull-
back theorems. As explained in §3.1, these same theorems apply to
partially polyhomogenous distributions with conormal errors. Once we
recall that the multiweight gC denotes the order of the conormal error,
we can deduce the behavior of the multiweights in (2) from the behavior
of the index sets in (1). q.e.d.

We formalize the notion of smooth family of edge operators using the
space (M/B)2e , e.g.,

 r

e(M/B;E,F ) = ⇢1
sf((M/B)2e)

Ir((M/B)2e , diagM ; Hom(E,F )⌦ ⌦d,R),

and  �1,w
e (M/B;E,F ) = B

Eff/w
phg

A�N

�
(M/B; Hom(E,F )⌦ ⌦d,R).

The composition results in Appendix A are established in the setting of
families.

3.4. Bi-ideal. As in, e.g., [Mel93, Proposition 5.38], [MM95, §4.12],
we point out a useful bi-ideal property of some edge pseudodi↵erential
operators.

For each a 2 R+, define the residual edge pseudodi↵erential operators
of weight a to be

 �1,a

e,res (X;E,F ) = ⇢a
↵(X2

e )
 �1,a

e (X;E,F ).

Theorem 3.10. For a 2 R+

 �1,a

e,res (X;G,H) �B(L2(X;F,G)) � �1,a

e,res (X;E,F ) ✓  �1,a

e,res (X;E,H),

where B(L2(X;F,G)) is the space of bounded operators on L2(X;F,G).

Proof. This result is by now standard, see e.g. [Maz91], but we sketch
a proof for the convenience of the reader. For simplicity of notation, let
us assume that E,F,G,H are trivial line bundles. Let A,C 2  �1,a

e,res (X)
and B 2 B(L2(X)). In terms of their distributional kernels on X2, the
composition is given by

KABC(⇣, ⇣
0) =

Z Z
KA(⇣, ⇣

00)KB(⇣
00, ⇣ 000)KC(⇣

000, ⇣ 0) d⇣ 00 d⇣ 000,
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and so smoothness of KABC in ⇣ is inherited from smoothness of KA in
⇣, while smoothness of KABC in ⇣ 0 is inherited from the corresponding
smoothness of KC .

Next we lift this smooth function from X2 to X2
e and check that it is

conormal to the boundary hypersurfaces. Indeed, the b-vector fields on
X2

e are spanned by the lifts of the edge-vector fields on X along �(2),L
and �(2),R. The kernel �⇤

(2)
KABC has stable regularity with respect to

the left lift of edge-vector fields because KA does, and with respect to
the right lift of edge-vector fields because KB does. q.e.d.

3.5. Wedge heat space. Recall that the edge double space was de-
fined in §3.2 as

X2

e =
h
X2;B(1)

Y1
⇥�Y1 B(1)

Y1
; . . .B(1)

Y`
⇥�Y

`

B(1)

Y`
],

where {Y1, . . . , Y`} is a non-decreasing listing of S(X), and has collective
boundary hypersurfaces, for each Y 2 S(X),

B(1)

Y
⇥X$ B(2)

10
(Y ), X⇥B(1)

Y
$ B(2)

01
(Y ), B(1)

Y
⇥�Y B

(1)

Y
$ B(2)

��
(Y ).

Now we construct the wedge heat space. Starting with the space
X2 ⇥R+

t
we blow-up {t = 0} parabolically so that ⌧ =

p
t is a smooth

function. We will not include this blow-up explicitly but simply change
the notation to X2 ⇥ R+

⌧ .

Definition 3.11. Let X be a manifold with corners and an iterated
fibration structure and {Y1, . . . , Y`} a non-decreasing listing of S(X).
The intermediate wedge heat space of X is

(3.19) HXw,0 =
h
X2 ⇥ R+

⌧ ;BY1 ⇥�Y1 BY1 ⇥ {0};

. . . ;BY`
⇥�Y

`

BY`
⇥ {0}; diagX ⇥{0}

i
,

and the wedge heat space of X is

(3.20) HXw =
h
X2 ⇥ R+

⌧ ;BY1 ⇥�Y1 BY1 ⇥ {0};BY1 ⇥�Y1 BY1 ⇥ R+

⌧ ;

. . . ;BY`
⇥�Y

`

BY`
⇥ {0};BY`

⇥�Y
`

BY`
⇥ R+

⌧ ; diagX ⇥{0}
i
.

Remark 3.12. In order to describe the heat kernel of g2
X

as a conor-
mal distribution with bounds the intermediate space HXw,0 would suf-
fice, see, e.g., [MV12]. However below we will allow for perturbations
of gX by smoothing edge pseudodi↵erential operators and this requires
the slightly more complicated space HXw.

To deal smoothly with a family of wedge heat operators we construct
a families wedge heat space to carry their integral kernels.
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Definition 3.13. Given a fiber bundle M
 ��! B of manifolds with

corners and iterated fibration structures as in Definition 1.3, fix a non-
decreasing list of S (M), {N1, N2, . . . , N`}, and let the families wedge
heat space be

H(M/B)w =
h
M⇥ M⇥R+

⌧ ;BN1⇥�N1
BN1⇥{0};BN1⇥�N1

BN1⇥R+

⌧ ;

. . . ;BN`
⇥�N

`

BN`
⇥ {0};BN`

⇥�N
`

BN`
⇥ R+

⌧ ; diagM ⇥{0}
i
.

The map  induces a fiber bundle

HXw� H(M/B)w
 (H)����! B.

As with the double space, implicit in the definition of HXw is the
fact that for eY 2 S(X) of depth k, the interior lift of BeY ⇥�eY

BeY ⇥ {0}
to the space in which the BY ⇥�Y BY ⇥ {0} have been blown up for all

Y < eY is a p-submanifold. It is helpful to see this explicitly. If Y < eY ,
we have a diagram as in (3.4) and attendant coordinates x, y, w, r, ez,
together with their primed versions on the right factor on X2. Working
in the interior of Y , after blowing-up BY ⇥�Y BY ⇥ {⌧ = 0}, projective
coordinates with respect to x0 are given by T = ⌧/x0 and the other
coordinates in (3.6), in which the interior lift of BeY ⇥� BeY ⇥ {⌧ = 0}
is given by

(3.21) {T = 0, r = r0 = 0, s = 1, u = 0, w = w0},
again a p-submanifold.

We denote the blow-down map by

�(H) : HXw �! X2 ⇥ R+

⌧

and its composition with the projections onto the left or right factor of
X by �(H),L, �(H),R respectively. There are boundary hypersurfaces

X2 ⇥ {0}$ B(H)

00,1
, diagX ⇥{0}$ B(H)

dd,1

and collective boundary hypersurfaces, one for each Y 2 S(X),

BY ⇥X ⇥ R+ $ B(H)

10,0
(Y ), X ⇥BY ⇥ R+ $ B(H)

01,0
(Y ),

BY ⇥�Y BY ⇥ {0}$ B(H)

��,1
(Y ), BY ⇥�Y BY ⇥ R+ $ B(H)

��,0
(Y ).

We denote the collective boundary hypersurfaces of H(M/B)w analo-

gously to those of HXw, e.g., B
(H)

��,1
(N).

We introduce the abbreviations

↵(HXw) =
[

Y 2S(X)

B(H)

��,1
(Y ), lf(HXw) =

[

Y 2S(X)

B(H)

10,0
(Y ),

rf(HXw) =
[

Y 2S(X)

B(H)

01,0
(Y ), ef(HXw) =

[

Y 2S(X)

B(H)

��,0
(Y ).
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so that, e.g., ⇢lf(HXw) refers to the product of boundary defining func-

tions over all B(H)

10,0
(Y ) for Y 2 S(X). The ‘edge faces’ making up

ef(HXw) do not intersect the lower depth front faces, nor the ⌧ = 0
diagonal

diagX ⇥{0} \ ef(HXw) = ? = B(H)

��,1
(eY ) \B(H)

��,0
(Y ), Y < eY .

Also as with the double space, the faces created by the blow ups are
fibre bundles whose fibers are suspended versions of wedge heat spaces.
This will be a wedge heat space where the time [0,1)⌧ is compacti-
fied along with other normal directions, and we need analogues of the
identity section above.

Given a fiber bundle |M �! qB and a vector bundle E �! qB, the
pull-back of S(E ⇥ R3

+) = (E ⇥ R3
+)/R+ to |M has two subbundles, e⌫0

and e⌫t, given, respectively, by the inclusion of R2
+ ,! R2

+ ⇥R+ into the
right factor and the projection R2

+ ⇥ R+ �! R2
+ o↵ the right factor, of

the identity section. Concretely, e⌫0 is given by the lift of the subbundle
[{0}⇥ (1, 1, 0)] ⇢ S(E ⇥ R3

+) to |M , and e⌫t is given by the lift of [{0}⇥
(x, x,

p
1 + x2 )]. For trivial fibrations |M = pt = qB with E = Rh we

denote these by

e⌫0(Sh+2) = [(0, 1, 1, 0)] 2 (Rh ⇥ R3

+ \ (0, 0, 0, 0))/R+,

e⌫t(Sh+2) = [(0, x, x,
p
1 + x2 )] 2 (Rh ⇥ R3

+ \ (0, 0, 0, 0))/R+,

the R+ acting by dilation.

Definition 3.14. Let qX � |M
q ��! qB be a fiber bundle of manifolds

with corners and iterated fibration structures and let { qN1, . . . , qN`} be a

non-decreasing listing of S q (
|M). Let S+++(|M ⇥ q 

|M) be the pull-back

of the fiber bundle S(T qB ⇥ R3
+) from qB to |M ⇥ q 

|M and let e⌫ q ,0(
|M)

denote the ⌧ = 0 identity section. The intermediate suspended
wedge heat space H(|M/ qB)Sus(w),0 is

H(|M/ qB)Sus(w),0 = [S+++(|M ⇥ q 
|M); ⌫ q (

|M) \ ⇡�1(B qN1
⇥�|N1

B qN1
);

. . . ; ⌫ q (
|M) \ ⇡�1(B qN` ⇥�|N

`

B qN`); ⌫ q (
|M) \ ⇡�1(diag(|M))].

This fibers over qB and we denote the typical fiber by H qXSus qB(w),0 so
that

H qXSus qB(w),0� H(|M/ qB)Sus(w),0 �! qB.
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The suspended wedge heat space H(|M/ qB)Sus(w) is

H(|M/ qB)Sus(w) = [S+++(|M ⇥ q 
|M);

⌫ q (
|M) \ ⇡�1(B qN1

⇥�|N1
B qN1

); e⌫ q ,t(
|M) \ ⇡�1(B qN1

⇥�|N1
B qN1

);

. . . ; ⌫ q (
|M) \ ⇡�1(B qN` ⇥�|N

`

B qN`); e⌫ q ,t(
|M) \ ⇡�1(B qN` ⇥�|N

`

B qN`);

⌫ q (
|M) \ ⇡�1(diag(|M))].

and participates in the fiber bundle

H qXSus qB(w)� H(|M/ qB)Sus(w) �! qB.

As anticipated, the suspended wedge heat spaces describe the struc-
ture of the front faces of the wedge heat space.

Proposition 3.15 (Structure of the front faces of HXw). Let X be
a manifold with corners and an iterated fibration structure.

For each Y 2 S(X), let

�(H)

Y
: B(H)

��,1
(Y ) �! Y

denote the composition of �(H) : HXw �! X2 ⇥ R+
⌧ with the fibration

BY ⇥�Y BY ⇥ {0} �! Y . Then B(H)

��,1
(Y ) = H(BY /Y )Sus(w) and �

(H)

Y

is the fiber bundle map

HZSus(w)� B(H)

��,1
(Y )

�
(H)
Y����! Y.

For the intermediate heat space, HXw,0, the corresponding front face is
the total space of the fiber bundle

HZSus(w),0� H(BY /Y )Sus(w),0

�
(H)
Y����! Y.

The edge face corresponding to Y , B(H)

��,0
(Y ), participates in a fiber

bundle with typical fiber the suspended edge double space of Z,

Z2

SusY (e)
� B(H)

��,0
(Y ) �! (Y ⇥ R+)res

and base given by

(Y ⇥ R+)res = [Y ⇥ R+;BY
0
1Y
⇥ {0}; ...;BY 0

rY
⇥ {0}],

where {Y 0

1
, . . . , Y 0

r} are the strata with Y 0

i
< Y indexed in non-increasing

order of depth.

Finally, the interior of the boundary hypersurface B(H)

dd,1
is naturally

identified with the edge tangent bundle eTX.

Proof. Let HXw,0(k+1) be the intermediate space obtained by blow-
up of all the interior lifts of the BY 0 ⇥�

Y 0 BY 0 ⇥ {⌧ = 0} with Y 0 of
depth not less than k + 1, and let Y 2 S(X) have depth k. Then the
normal bundle of BY ⇥�Y BY ⇥ {0} fibers over eTY ⇥ (R+)3 with fibre
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Z2. Thus the blow up of the interior lift of BY ⇥�Y BY ⇥ {0} gives a
front face ↵ that fibres

ShY +2

+++
⇥ Z2� ↵ �! Y.

The section e⌫0(↵) is the subbundle of ↵ over Y given by e⌫0(ShY +2

+++
)⇥Z2.

From this we see that for eY > Y , the interior lift of BeY ⇥�eY
BeY ⇥ {0}

intersects ↵ exactly in the fibres at e⌫0(ShY +2

+++
) ⇥BeY Z

⇥�eY Z
BeY Z

, and

the diagonal intersects it at e⌫0(ShY +2

+++
) ⇥ Z2. This yields the structure

of the front faces of the intermediate wedge heat space. For the wedge
heat space it su�ces to note that the blow ups of the BYi

⇥�Yi BYi
⇥R+

⌧

intersect the intermediate front faces exactly at the e⌫t.
To see that the statement for the B(H)

��,0
(Y ) holds, note that the lifts

of BY 0 ⇥�
Y 0 BY 0 ⇥{0} �! Y 0⇥{0} for Y 0 < Y intersect the blowdown,

BY ⇥�Y BY ⇥R+ �! Y ⇥R+ exactly in the bases over the BY 0Y ⇥{0} ⇢
Y ⇥ R+

Finally the boundary hypersurface B(H)

dd,1
is the inward-pointing part

of the spherical normal bundle to diage⇥{0} and, as the normal bundle
to the edge diagonal in the edge double space is the edge tangent bundle,

B(H)

dd,1
is its radial compactification. q.e.d.

3.6. Wedge heat operators. Let us specify the weighted density bun-
dle we will use for operators. Define a multi-weight for HXw by

h : M1(HXw) �! R,

h(J) =

8
>>>><

>>>>:

�(dimY + 3) if J ✓ B(H)

��,1
(Y )

�(dimY + 1) if J ✓ B(H)

��,0
(Y )

�(dimX + 2) if J ✓ B(H)

dd,1

0 otherwise

and then

(3.22) ⌦h,R = ⇢h�⇤
(H),R

⌦(X).

We will often denote a nowhere-vanishing section of �⇤
(H),R

⌦(X) by µR.
By a wedge heat operator we will mean an element of

BE/w
phg

A �m�1

�
(HXw; Hom(E)⌦ ⌦h,R)

where E and w are, respectively, an index set and multiweight for HXw.
Recall that, e.g., on a smooth manifold L the composition of two heat

operators is given by the formula

KA�B(⇣, ⇣
0, t) =

Z
t

0

Z

L

KA(⇣, ⇣
00, t� t0)KB(⇣

00, ⇣ 0, t0) d⇣ 00 dt0.

In Appendix B we define the composition of two wedge heat operators
by a version of this formula and then analyze it using the geometric
microlocal approach of Melrose, cf. [MP97a, Appendix].
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Theorem 3.16 (Composition of wedge heat operators).

1) Let EA, EB be index families for HXw such that

Re(EA(B(H)

dd,1
)) > 0, Re(EB(B(H)

dd,1
)) > 0, and

Re(EA(B(H)

01,0
(Y ))) + Re(EB(B(H)

10,0
(Y ))) + 1 > 0 for all Y 2 S(X),

and let

A 2 A EA

phg
(HXw; Hom(E)⌦ ⌦h,R), B 2 A EB

phg
(HXw; Hom(E)⌦ ⌦h,R),

then the composition is defined and satisfies

C = A �B 2 A EC

phg
(HXw; Hom(E)⌦ ⌦h,R),

with EC(B(H)

dd,1
) = EA(B(H)

dd,1
) + EB(B(H)

dd,1
) and, for each Y 2 S(X),

EC(B(H)

10,0
(Y )) = EA(B(H)

10,0
(Y ))[

�
EA(B(H)

��,1
(Y )) + EB(B(H)

10,0
(Y ))

�

EC(B(H)

01,0
(Y )) = EB(B01,0(Y ))[

�
EA(B(H)

01,0
(Y )) + EB(B(H)

��,1
(Y ))

�

EC(B(H)

��,1
(Y )) = EA(B(H)

��,1
(Y )) + EB(B(H)

��,1
(Y ))

EC(B(H)

��,0
(Y )) = (EA(B(H)

��,0
(Y )) + EB(B(H)

��,0
(Y )))

[
�
EA(B(H)

10,0
(Y )) + EB(B(H)

01,0
(Y )) + dimY + 1

�
.

2) Let wA, wB be multiweights for HXw such that

{w·(B
(H)

dd,1
)} [ {w·(B

(H)

��,1
(Y )) : Y 2 S(X)} ✓ (0,1) [ {1},

and let EA and EB be index sets as above. If we have

wA(B
(H)

01,0
(Y )) +wB(B

(H)

10,0
(Y )) + 1 > 0 for all Y 2 S(X),

then for any

A 2 BEA/wA

phg
A �m�1

�
(HXw; Hom(E)⌦ ⌦h,R),

B 2 BEB/wB

phg
A �m�1

�
(HXw; Hom(E)⌦ ⌦h,R),

the composition is defined and satisfies

C = A �B 2 BEC/wC

phg
A �m�1

�
(HXw; Hom(E)⌦ ⌦h,R),

where EC is as above and wC is the multiweight on HXw given by

wC(B
(H)

dd,1
)=min(w(EA)(B(H)

dd,1
)+wB(B

(H)

dd,1
),wA(B

(H)

dd,1
)+w(EB)(B(H)

dd,1
)),
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and, for each Y 2 S(X),

wC(B
(H)

10,0
(Y )) = min(wA(B

(H)

10,0
(Y )),w(EA)(B(H)

��,1
(Y )) +wB(B

(H)

10,0
(Y )),

wA(B
(H)

��,1
(Y )) +w(EB)(B(H)

10,0
(Y ))),

wC(B
(H)

01,0
(Y )) = min(wB(B

(H)

01,0
(Y )),w(EA)(B(H)

01,0
(Y ))+wB(B

(H)

��,1
(Y )),

wA(B
(H)

01,0
(Y )) +w(EB)(B(H)

��,1
(Y ))),

wC(B
(H)

��,1
(Y )) = min(w(EA)(B(H)

��,1
(Y )) +wB(B

(H)

��,1
(Y )),

wA(B
(H)

��,1
(Y )) +w(EB)(B(H)

��,1
(Y ))),

wC(B
(H)

01,0
(Y )) = min

⇣
dimY + 1 +wA(B

(H)

10,0
(Y )) +w(EB)(B(H)

01,0
(Y )),

dimY + 1 +w(EA)(B(H)

10,0
(Y )) +wB(B

(H)

01,0
(Y )),

w(EA)(B(H)

��,0
(Y )) +wB(B

(H)

��,0
(Y )),

wA(B
(H)

��,0
(Y )) +w(EB)(B(H)

��,0
(Y ))

⌘
.

The restriction on the multiweights in the second part of the theorem,
which holds for all of the multiweights that we will make use of, is made
only to simplify the statement of the theorem.

Proof. The proof of (1) is carried out in Appendix B following Mel-
rose’s geometric microlocal approach, see, e.g., [MP97a], [DM12],
[Alb07], [MM95]. As explained in §3.1, the same pull-back and push-
forward theorems used to prove (1) establish (2). q.e.d.

We formalize the notion of smooth family of wedge heat operators
using the space H(M/B)w, as elements of

BE/w
phg

A �m�1

�
(H(M/B)w; Hom(E)⌦ ⌦h,R)

where E and w are, respectively, an index set and multiweight for
H(M/B)w, and h is the multiweight above extended to H(M/B)w, i.e.,
(3.23)

h : M1(H(M/B)w) �! R,

h(H) =

8
>>>>>><

>>>>>>:

�(dim(N/B) + 3) if H ✓ B(H)

��,1
(N) for some N 2 S (M)

�(dim(N/B) + 1) if H ✓ B(H)

��,0
(N) for some N 2 S (M)

�(dim(M/B) + 2) if H = B(H)

dd,1

1 if H = B(H)

00,1

0 otherwise

The composition results in Appendix B are established in the setting of
families of operators.
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4. Resolvent and heat kernel of gM/B

Let us return to our usual setting with M
 ��! B a locally trivial

family of manifolds with corners and iterated fibration structures with
a totally geodesic vertical wedge metric gM/B, and E �! M wedge
Cli↵ord module along the fibers of  . Recall that DM/B denotes the
associated Dirac-type operator acting on L2

w(M/B;E), the wedge L2-
space and gM/B denotes the unitarily equivalent operator acting on
L2(M/B;E), see (1.19). We assigned a ‘vertical APS domain’ to this
operator, DVAPS(gM/B), and in this section we will describe the struc-
ture of the resolvent and heat kernel of gM/B under the Witt assumption
from Definition 2.4.

4.1. Compatible perturbations. Before carrying out these construc-
tions, we will generalize the operators under consideration by allowing
certain perturbations by smoothing operators. The perturbations we
will use in the main result of this paper will be compactly supported in
the interior of (M/B)2e, but we allow more general perturbations that
share su�ciently many properties of gM/B so as to not seriously a↵ect
the analysis. In a future publication we will make use of these more
general perturbations.

Let

Q 2 ⇢�1

↵((M/B)e)
 �1

e (M/B;E)

so that gM/B +Q has a model operator at every N 2 S (M), y 2 N�,

modeling its behavior on the model wedge R+
s ⇥ Rh

u ⇥ Zy, acting on
sections of the pull-back of E

��
ZY

, given by

Ny(gM/B +Q) = cl (dx)@s + 1

s
(DZy

+ eN y(⇢Y Q)) +DRh .

Here eN y(⇢Y Q) = QZy
is the restriction of the integral kernel of ⇢Y Q

to the fiber of B(2)

��,1
(N) over y 2 N�. Thus, as in (3.12), QZy

is a non-
commutative suspension operator, translation invariant with respect to
the Lie group R+ n Rh.

Our analysis of Ny(gM/B) in §2.3 made use of two convenient facts,
first that DZy

is independent of the variables (s, u), and secondly that it
anti-commutes with Cli↵ord multiplication by covectors in T ⇤(N/B)+.
Our methods are insensitive to perturbations that maintain these two
properties.

Definition 4.1. Let M
 ��! B be a family of manifolds with corners

and iterated fibration structures with a vertical wedge metric gM/B and
E �!M a wedge Cli↵ord module along the fibers of  . By a compati-
ble perturbation (of the associated gM/B) we will mean a self-adjoint
family of operators Q = QM/B satisfying two properties:
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i) The integral kernel of QM/B is an element of

⇢�1

↵((M/B)2e)
�⇤
(2)

C1(M ⇥ M ; Hom(E)),

ii) At every N 2 S (M), y 2 N ,

cl (✓)QZy
+QZy

cl (✓) = 0,

for every covector ✓ in T ⇤
y (N/B)+, where QZy

is the operator on Zy

whose integral kernel is the restriction of ⇢NQM/B to the fiber ofBN⇥�N
BN ✓M ⇥ M over y.

Remark 4.2. In a subsequent paper we will study the existence of
compatible perturbations. For the purpose of this paper we restrict
ourselves to an example of how these will arise.

Consider a single manifold with boundary, X, whose boundary BY

participates in a fiber bundle of closed manifolds

Z � BY

�Y���! Y,

together with a wedge Cli↵ord module (E, gE ,rE , cl ) and associated
Dirac-type operator gX . The boundary family DBY /Y is a family of
Dirac-type operators that anti-commute with Cli↵ord multiplication
in the T ⇤Y +-directions and so determine an index class in the C⇤-K-
theory group K⇤(Cl(T ⇤Y +)). This index vanishes if and only if there
is a family of smoothing operators QBY /Y 2  �1(BY /Y ;E) such that
DBY /Y +QBY /Y is a family of invertible operators with the same anti-
commutation property. If q is any smooth function on X2 that is equal
to the Schwartz kernel of QBY /Y on diagY ⇥Z2 ✓ {x = x0 = 0} ✓ X2,

and we set QX = ⇢�1

B
(2)
��

(Y )
�⇤
(2)

q, then QX is a compatible perturbation

of gX .

We will use the notation

gM/B,Q = gM/B +QM/B, DZy ,Q = DZy
+QZy

, etc.,

with the understanding that QM/B is a compatible perturbation. We
define the vertical APS domain of gM/B,Q as the graph closure of the

intersection of Dmax(gM/B,Q) with ⇢
1/2

X
H1

e (X;E) and say that the Witt
condition is satisfied if

0 /2 Spec(DZy ,Q),

where the spectrum refers to DZy
+QZy

with its vertical APS domain in
L2(Zy;E|Zy

). The compatibility conditions are chosen so that Proposi-
tion 2.7 holds after replacing gM/B with gM/B,Q with the same proof.

From §2.3 we know that the indicial roots of gM/B,Q at y 2 N ,
N 2 S (M) are equal to the positive eigenvalues of the induced Dirac-
type operator DZy ,Q, acting on L2(BN/N ;E|N ) with its vertical APS
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domain. Define an ‘indicial multiweight’, I, for M by
(4.1)

I(BN ) = min{� 2 Spec(DZy ,Q) \ R+ : y 2 N} for all N 2 S (M)

and a corresponding multiweight I(2) for (M/B)2e by

I(2)(B(2)

10
(N)) = I(2)(B(2)

01
(N)) = I(BN )

I(2)(B(2)

��
(N)) = 2I(BN ) + dim(N/B) + 1 for all N 2 S (M).

The weight at the front faces B(2)

��
(N) is explained by the composition

formula for edge pseudodi↵erential operators: composing an operator
with the given weights at the side faces produces this weight at the
front faces. We use the same notation for the indicial multiweights of
X and X2

e .

Theorem 4.3. Let gM/B,Q be a family of compatibly perturbed Dirac-
type wedge operators endowed with its vertical APS domain and satis-
fying the Witt assumption. Then (gM/B,Q,DVAPS) is a family of self-
adjoint, Fredholm operators with compact resolvent. The generalized

inverse of gM/B,Q is a family valued in ⇢↵((M/B)2e)
 �1,I(2)

e (M/B;E).
For each fiber X of  , the eigenfunctions of gX,Q are elements of

⇢I
X
H1

e (X;E), the resolvent is a meromorphic function on C with values
in the edge calculus with bounds,

(gX,Q � �)�1 2 ⇢↵(X2
e )
 �1,I(2)

e (X;E),

and the projection onto the �-eigenspace of gX,Q satisfies

(4.2) ⇧� 2 ⇢↵(X2
e )
 �1,I(2)

e (X;E).

Define the indicial multiweight for the heat space, in terms of (4.1),
by

(4.3)

I(H)(B(H)

10,0
(N)) = I(H)(B(H)

01,0
(N)) = I(BN ),

I(H)(B(2)

��,0
(N)) = 2I(BN ) + dim(N/B) + 1,

I(H)(B(H)

��,1
(N)) =1 8N 2 S (M),

and I(H)(B(H)

00,1
) = I(H)(B(H)

dd,1
) =1.

We also define an index set for the heat space by

(4.4)

H(B(H)

dd,1
) = 2, H(B(H)

00,1
) = ;, and

H(B(H)

10,0
(N)) = H(B(H)

01,0
(N)) = H(B(H)

��,0
(N)) = ;,

H(B(H)

��,1
(N)) = 2 8N 2 S (M).
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Theorem 4.4. Let gM/B,Q be a compatibly perturbed family of Dirac-
type wedge operators endowed with its vertical APS domain and satis-
fying the Witt assumption. The heat kernel of g2

M/B,Q
satisfies

e�tg2
M/B,Q 2 BH/I(H)

phg
A �m�1

�
(H(M/B)w; Hom(E)⌦ ⌦h,R)

where I(H) and H are given by (4.3), (4.4) and ⌦h,R is the density bundle
from (3.22).

The rest of this section consists of a proof of Theorems 4.3 and 4.4
by induction on the depth of M . Our base case consists of closed man-
ifolds, for which these theorems are well-known, even with a smoothing
perturbation (e.g., [BGV04, Proposition 9.46], [MP97a, Appendix],
[AR09a, AR09b, AR13]). Thus we now assume that these theorems
are known for all spaces of depth less than k, and that X has depth k.

4.2. The model wedge. In the situation above, choose N 2 S (M),
y 2 N�, let Z = ��1

N
(y) and let

Ny(gM/B,Q) = cl (dx)@s + 1

s
DZ,Q +DRh = Ny(DM/B,Q)� cl (dx)dimZ

2s

be the normal operator of gM/B,Q on the model wedge at y, R+
s ⇥Rh⇥Z,

from §2.3. In this section, we make use of the inductive hypothesis that
Theorems 4.3 and 4.4 hold for DZ,Q to describe the Green’s function
and heat kernel of Ny(gM/B,Q).

Our assumptions on the perturbation and inductive hypothesis on
the link invite us to analyze Ny(gM/B,Q) by using the Fourier trans-

form on Rh and the Hankel transform on each eigenspace in a spectral
decomposition on Z (as is done in, e.g., [Che79b], [CT82], [Che83],
[Cho85], [Les97, §2.3], [Tay11, §8.8], [MV12, §3.2]).

Thus we consider

(Ny(gM/B,Q))
2 = �@2s + 1

s2
((cl (dx)DZ,Q � 1

2
)2 � 1

4
) +�Rh

as an operator on L2(ds d⌘ dz) and using the inductive hypothesis of
discrete spectrum of DZ,Q with its vertical APS domain, denote the
eigenvalues of the self-adjoint operator (cl (dx)DZ,Q � 1/2)2 by {`i}1i=1

and the corresponding eigensections by {�i}. As in [Tay11, §8.8], by
writing

F (s, z) =
X

fi(s)�i(z)

for appropriate coe�cients fi, we have

(�@2s + 1

s2
((cl (dx)DZ,Q� 1

2
)2� 1

4
))F (s, z) =

X
(�@2s +

`i�
1

4

s2
)(fi(s)�i(z))

and this will equal µ2F (s, z) if we take

fi(s) =
p
s J⌫i(µs)

with ⌫2
i
= `i.
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Note that there is a potential sign ambiguity in ⌫i. As s ! 0+,

fi(s) = O(s
1

2
+⌫i) will be in L2

loc
(ds) for ⌫i > �1, so the ambiguity is only

for the small eigenvalues `i < 1. The choice of square root corresponds
to di↵erent domains for Ny(gM/B,Q)

2. In terms of the eigenvalues {�i}
of cl (dx)DZ,Q, we have `i = (�i � 1

2
)2 so this ambiguity corresponds

to � in (�1

2
, 3
2
). If we restrict attention to domains of Ny(gM/B,Q)

2

induced from domains of Ny(gM/B,Q) then, arguing as in the proof of

Proposition 2.7, the ambiguity corresponds to � in (�1

2
, 3
2
) \ (�3

2
, 1
2
) =

(�1

2
, 1
2
). (Thus, as is well-known, these are the small eigenvalues that

distinguish domains, see for example the discussion in [Cho85, top of
page 37] in terms of which we are taking �b.)

In particular, as we are interested in the vertical APS domain for
Ny(gM/B,Q), which induces

DVAPS(Ny(gM/B,Q)
2) = {F 2 DVAPS(Ny(gM/B,Q)) :

Ny(gM/B,Q)(F ) 2 DVAPS(Ny(gM/B,Q))},

we define ⌫APS by

(4.5) ⌫APS(�) =

(
�|�� 1

2
| if � 2 (0, 1

2
)

|�� 1

2
| if otherwise

.

Then we can, as in [Tay11, Sec. 8.8], diagonalize Ny(gM/B,Q)
2 by com-

bining first the map

H(g) =
M

�2Spec(DZy,Q)

(H⌫APS(�)
(s�1/2g�)),

where H⌫APS(�)
denotes the Hankel transform, g� denotes the projec-

tion of g onto the corresponding (i.e., (� � 1

2
)2 � 1

4
) eigenspace of

(cl (dx)DZ,Q � 1/2)2 � 1/4, and then the Fourier transform in Rh. This
yields a unitary map onto L2(� d� d⌘, `2) which replaces Ny(g2M/B,Q

)

with multiplication by �2 + |⌘|2.
The operator Ny(gM/B, Q)2 is injective on its vertical APS domain

and has an (unbounded) inverse G, determined by multiplication by
H(Gg) = (�2 + |⌘|2)�1H(g), and satisfying

(4.6) (Ny(gM/B, Q))2G = Id .

Below we will analyze the integral kernels of the heat kernel and of G,
in particular we will use the integral kernel of the unbounded operator

(4.7) G = Ny(gM/B, Q))G,

the Green’s function for Ny(gM/B,Q), to construct a parametrix for
gM/B,Q.
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The heat kernel on the model wedge. The heat kernel of a product
is the product of the heat kernels, so to begin with let us disregard the
factor of Rh and focus instead on the exact Riemannian cone

Z+ = R+

s ⇥ Z, gZ+ = ds2 + s2gZ .

We denote E pulled-back to R+
s ⇥ Z by the same symbol, and the

corresponding Dirac-type operator by

(4.8) gZ+,Q = cl (dx)@s + 1

s
DZ,Q.

It follows from Proposition 2.7 that gZ+,Q is injective and self-adjoint
with its vertical APS domain. Thus the corresponding domain for

g2
Z+,Q

= �@2s + 1

s2
((cl (dx)DZ,Q � 1

2
)2 � 1

4
),

namely

DVAPS(g2Z+,Q
) = {u 2 DVAPS(gZ+,Q) : gZ+,Qu 2 DAPS(gZ+,Q)},

is also a self-adjoint domain.

Let e
�tg2

Z+,Q be the heat kernel of (g2
Z+,Q

,DAPS(g2Z+,Q
)) considered

as a density,

(4.9) e
�tg2

Z+,Q = K µR.

From the spectral theorem we know that K is a distribution on the space

(Z+)2 ⇥ R+

t

such that:

• limt!0 e
�tg2

Z+,Q = Id,
• For every t > 0, the map

DVAPS(g2Z+,Q
) 3 s 7! e

�tg2
Z+,Qs 2 L2(Z+;E)

is valued in DVAPS(g1Z+,Q
) =

T
DVAPS(g`Z+,Q

). In particular the

section K(r, z, r0, z0, t) is smooth in all of its variables in the interior
of (Z+)2 ⇥ R+

t
,

• For each t, e
�tg2

Z+,Q is a self-adjoint operator, and hence we have
the symmetry K(r, z, r0, z0, t) = K(r0, z0, r, z, t).

We will improve these properties by showing that e
�tg2

Z+,Q , viewed as a
distribution on a di↵erent compactification of the interior of (Z+)2⇥R+

t
,

extends nicely to the boundary.
Recall, e.g., from [Les97, Proposition 2.3.9], that given a > �1 and

f 2 C1
c (R+), the solution to

(
(@t + (�@2s + s�2(a2 � 1

4
)))u(s, t) = 0

lim
t!0

u(s, t) = f(s)
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is given by

u(s, t) =

Z
1

0

p
ses
2t

Ip(a2)

✓
ses
2t

◆
exp

✓
�s2 + es2

4t

◆
f(es) des

where Ip(a2) denotes the modified Bessel function of the first kind,
p(a2) = a if a � 1 and otherwise satisfies p(a2) 2 {±a} with di↵er-
ent choices corresponding to di↵erent domains of (�@2s +s�2(a2� 1

4
)) as

an unbounded operator on L2(R+). In projective coordinates as above,
this shows that this heat kernel is a right density times the function

p
s

2�
Ip(a2)

⇣ s

2�2

⌘
exp

✓
�s2 + s0

4�2

◆
.

Hence we can write the heat kernel on the exact cone as

(4.10)
X

�2Spec(DZy,Q)

p
ss0

2�
I⌫APS(�)

✓
ss0

2�2

◆
exp

✓
�s2 + (s0)2

4�2

◆
��(z, ez)

where ⌫APS is given by (4.5) and ��(z, ez) is the projection onto the
�-eigenspace of cl (dx)DZy ,Q. Convergence of this sum in the space of
polyhomogeneous conormal distributions is used in [MV12, Proposition
3.2]. See also [Che83, Example 3.1].

To establish the asymptotics of this kernel our strategy, following
Mooers [Moo99] and others, e.g., [Che83, §2], [Les97, §2.2], is to
exploit the homogeneity of the cone. For each c > 0, we set

⌥c : (Z
+)2⇥R+

t
�! (Z+)2⇥R+

t
, ⌥c(s, z, s

0, z0, t) = (cs, z, cs0, z0, c2t);

we use the same symbol to denote the corresponding scalings on (Z+)2

and Z+ and trust that this will not lead to confusion.
As E is pulled-back from Z, it makes sense to pull-back a section of

E over Z+ along ⌥c and it is easy to see that

⌥⇤

c : C1

c ((Z+)�;E) �! C1

c ((Z+)�;E)

extends to a bounded map on L2(Z+;E) and satisfies

⌥⇤

c � r@r = r@r �⌥⇤

c , ⌥⇤

c � @z = @z �⌥⇤

c .

It follows that ⌥⇤
c preserves DVAPS(g`Z+,Q

) for any ` 2 N and satisfies

⌥⇤

c �gZ+,Q = c�1gZ+,Q �⌥⇤

c , ⌥⇤

c � (t@t+ tg2
Z+,Q

) = (t@t+ tg2
Z+,Q

) �⌥⇤

c .

In particular, if u is a solution of the heat equation with initial data f ,
then ⌥⇤

cu solves the heat equation with initial data ⌥⇤
cf . However,

⌥⇤

cu(⇣, t) =

Z
t

0

Z

Z+
K(cs, z, s0, z0, c2t)f(s0, z0) ds0 dz0 dt

s
0
=cr

0
�����! c

Z
t

0

Z

Z+
K(cs, z, cr0, z0, c2t)f(cr0, z0) dr0 dz0 dt,
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so uniqueness for the heat equation shows that ⌥⇤
cK = c�1K and hence,

as a right density, the heat kernel is invariant under this dilation,

(4.11) ⌥⇤

ce
�tg2

Z+,Q = e
�tg2

Z+,Q .

This is the dilation invariance that we will exploit.
To do so, we first blow-up {t = 0} parabolically so that ⌧ =

p
t is

a generator of the smooth structure. Secondly we blow-up the cone-tip
at time zero, to obtain the space

H1Z
+ = [R+

s ⇥Z⇥R+

s0⇥Z 0⇥R+

⌧ ; {s = s0 = ⌧ = 0}] ⇠= Z⇥Z 0⇥S2+⇥R+

R

where S2+ = {(!s,!s0 ,!⌧ ) 2 [0,1)3 : !2
s+!

2

s0+!
2
⌧ = 1}. The blow-down

map is

H1Z+
� // Z+ ⇥ Z+ ⇥ R+

t

(z, z0, (!s,!s0 ,!⌧ ), R) � // ((R!s, z), (R!s0 , z0), R2⌧2)

and we note that ⌥c lifts to be simply R 7! cR. We denote {R = 0} by
BR(H1Z+).

Instead of using polar coordinates, we can use projective coordinates

r =
s

s0
, z, s0, z0, � =

⌧

s0
,

valid away from !s0 = 0, in which s0 is a boundary defining function for
BR(H1Z+) and ⌥c is s0 7! cs0.

Let ⇡L : Z+⇥Z+⇥R+

t
�! Z+ be the projection onto the left factor

of Z+, and let �L = ⇡L � �. We have

�⇤LD
2

Z+,Q
= (s0)�2

�
�@2s + 1

s2
((cl (dx)DZ,Q � 1

2
)2 � 1

4
)
�
.

The plan is to identify the heat kernel at s0 = 1 and then use dilation
invariance.

To this end, let � : R �! R+ satisfy

�(r) =

(
1 if |r � 1| < 1/4

0 if |r � 1| > 1/2
,

and define the operator

(4.12) eD = cl (dx)@s + ((1� �(s)) + �(s)

s
)DZ,Q,

which we can interpret as an operator on S1⇥Z where S1 = [0, 2]/0 ⇠ 2
and coincides (thought of as an operator on R+ ⇥ Z) with DZ+,Q on
3/4  r  5/4

Let e�t eD2
denote the heat kernel of eD2 on S1 ⇥ Z endowed with its

vertical APS domain and note that the inductive hypothesis applies to

it. We consider e�t eD2
as a right density and denote it as eKµR.

We will multiply the model wedge heat kernel K by cut-o↵ functions

to obtain a kernel on S1⇥Z that we can compare to e�t eD2
= eKµR. Let
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e� : R �! R+ satisfy �e� = e� and e�(r) = 1 for |r�1| < � for some � > 0.
Set

F1(r, z, r
0, z0, ⌧) = e�(r)e�(r0)K(r, z, r0, z0, ⌧)

so that

(@t + eD2)F1(r, z, r
0, z0, ⌧) = E(r, z, r0, z0, ⌧)

Note that E ⌘ 0 for |r � 1| < �, indeed

E(r, z, r0, z0, ⌧)

= (�e�00(r)K(r, z, r0, z0, ⌧)� 2e�0(r)@r(K(r, z, r0, z0, ⌧)))e�(r0).

Let F2(r, z, r0, z0, ⌧) = eK � E, so (@t + eD2)(F1 � F2) = 0. Note that
F2(r, z, 1, z0, ⌧) = O(⌧1). Indeed,

Z
⌧

0

Z

S1⇥Z

eK(r, z, r00, z00, s) � E(r00, z00, 1, z0, ⌧ � s)dsdr00dz00,

and the right factor is supported away from r00 = 1, hence rapidly
decaying. Also, the restriction of F1 � F2 to r0 = 1 satisfies

lim
⌧!0

(F1 � F2)(r, z, 1, z
0, ⌧) = e�(r, z)�(r,z)(1, z0) = �(r,z)(1, z

0),

By uniqueness, it follows that

eK(r, z, 1, z0, ⌧) = (F1 � F2)(r, z, 1, z
0, ⌧),

eK(r, z, s0, z0, ⌧) = (s0)�1(F1 � F2)(r, z, 1, z
0, ⌧),

in particular

(4.13) eK �K = O(⌧1) for r0 = 1, r 2 [1� �, 1 + �],

and this goes most of the way toward proving the required regularity of

the heat kernal of the normal operator e�tNy(g2
M/B,Q

). Note that we are
interested in the dimensionally reduced heat kernel which arises in the

model problem, namely, whereas in general e�tNy(g2
M/B,Q

)(s, z, u, s0, z0, u0)
is a function on (R+ ⇥ Z ⇥ Rh)2, our heat kernel is a function on
R+ ⇥ Rh ⇥ Z2 obtained, in vulgar terms, by setting s0 = 1, u0 = 0.
This is essentially the e↵ect of the fact that on the resolved heat dou-
ble space the t = 0 diagonal intersects the front face on the fiber di-
agonal, so really the heat kernel we are interested in is the one with

limt!0 e
�tNy(g2

M/B,Q
) = �s=1�u=0IdZ . Due to its equivariant nature with

respect to the ax+ b group, the heat kernel can be described in full as
a function of s/s0 and u� u0.

Proposition 4.5. The heat kernel of the normal operator,

e�tNy(g2
M/B,Q

), is a conormal distribution in the space

(4.14) B
RN/I

(H)
N

phg
A �m�1

�
(B(H)

��,1
(N); Hom(E)⌦ ⇢�n�2

dd,1
�⇤
(H),R

⌦(M/B))
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where I(H)

N
is the restriction of I(H) to B(H)

��,1
(N), and

RN (B(H)

10,0
\B(H)

��,1
) = RN (B(H)

01,0
\B(H)

��,1
)

= RN (B(H)

00,1
\B(H)

��,1
) = RN (B(H)

��,0
\B(H)

��,1
) = ;,

RN (B(H)

dd,1
\B(H)

��,1
) = 2,

that inverts the vertical heat operator 1

2
�@� + �2(Ny(gM/B,Q))

2.

Proof of Proposition 4.5 under inductive hypothesis. Without loss of
generality we assume that B = pt, so X = M is a manifold with corners
with iterated fibration structure of depth k carrying a single wedge Dirac
type operator; thus the base of a boundary hypersurfaceBY corresponds

to a heat front face B(H)

��,1
(Y ) that is a bundle with fibre HZSus(w) with

Z of depth less than k, and again without loss of generality we assume

that Y is a point since the heat kernel is product type, so B(H)

��,1
(Y ) =

HZSus(w). By our inductive hypothesis, Theorem 4.4 applies to eK above,

and thus eK lies in BH/I(H)

phg
A �m�1

�
(H(S1 ⇥ Z)w; Hom(E)⌦ ⌦h,R). The

lift of the set s0 = 1 to H(S1⇥Z)w is a suspended heat space itself, and
a neighborhood of its diagonal, say s 2 [1� �, 1 + �], may be identified
with the same neighborhood in HZSus(w).

From the expression for the heat kernel in (4.10), the high order
asymptotics of the modified Bessel functions, and the inductive hypoth-
esis, we see that for any " > 0, with s 2 [0, 1 � "), s0 = 1, the heat
kernel has the appropriate asymptotics at the side faces. This together
with (4.13) gives the proposition. q.e.d.

Green’s function on the model wedge. We now prove the analogous
statement above for the right inverse G(N) = G(N)y of Ny(gM/B,Q)
constructed in (4.7). As in the case of the model heat kernel above, we
are interested in the dimensionally reduced problem, i.e. the solution
to Ny(gM/B,Q)G(N)y = �s=1�u=0IdZ which is the restriction to s0 �
1 = u0 = 0. There are several available approaches to this, including
pushforward of the model heat operator. We will use induction to obtain
the structure of G(N) near the conormal singularity at the diagonal and
direct analysis at the boundary of the front face.

Note that the computation of the null space of the normal operator
in Proposition 2.7 (see the notation introduced there) can be used to
write down integral kernels of the inverses of these operators as in, e.g.,
[DS88, §XIII.3, Theorem 16]. For the vertical APS domain we have,
see e.g., [BS88, Lemma 4.1]

(�@2s + 1

s2
((cl (dx)DZ,Q � 1

2
)2 � 1

4
) + z2)�1(s, es)

=
M

�2Spec(Ay)

p
ses I⌫APS(�)

(sz)K⌫APS(�)
(esz)⇧�, for s < es
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(and interchanging s with es for es < s) where ⌫APS is defined in (4.5) and
Im(z2) 6= 0. For ⌘ 2 Rh, denoting the above distrubution with z = |⌘|
by qG(s, es, ⌘, z, z0) we have that G(s, es, u, z, z0) = (F�1

⌘!u
qG)(s, es, u, z, z0),

An explicit decomposition for G(N) is then obtained as

G(N)y(s, u, z, z
0) = Ny(gM/B,Q)(F�1

⌘!u
qG)(s, es, u, z, z0)|es=1.

Proposition 4.6. Let N 2 S (M) and denote the Green’s function
of Ny(gM/B,Q) constructed above by G(N). The integral kernel of G(N)
is an element of

 
�1,I

(2)
N

Nsus(T (N/B)+)
(BN/N ;E)

defined in (3.12), where I(2)
N

denotes the restriction of the indicial mul-

tiweight to B(2)

��
(N) defined in (4.1).

Proof of Proposition 4.6 under inductive hypothesis. Fixing a base point
y 2 Y , from Proposition 3.5, the factors R+ ⇥ Rh ⇥ (Zy)2 on which
G(N)y is initially defined are not identical to the interiors of the fibers

of B(2)

��
(Y ), since blowups of lower depth strata intersect these fibers

above (s = 1, u = 0) in the first two factors. Thus we consider two

regions separately, fixing C > 0; first B(2)

��
(Y )y \max(|s � 1|, |u|) < C

and then its complement.
In the first region, which is a neighborhood of the intersection of the

lifted diagonal in X2
e with B(2)

��
(Y )y, the operator Ny(gM/B,Q) is equal

to a normal operator on a lower depth space and the claimed structure of
the Green’s function follows by induction. (Indeed, take eD as in (4.12)
in let g0,Tn be the flat Laplacian on a Rn descended to a flat torus, then
eD + g0,Tn is a normal operator on a family over S1 ⇥ Tn with typical
fiber Z.)

Finally, we consider the region

B(2)

��
(Y )y \ {max(|s� 1|, |u|) � C}

= S(RdimY ⇥ R2

+)⇥ Z2

e \ {max(|s� 1|, |u|) � C}.

By induction, mapping properties of wedge operators and Theorem 4.3,

the projections have integral kernel in B
Eff/I(2)

phg
A �N

�
(Z2

e ; Hom(E) ⌦
⌦d,R) (as it has no conormal singularity on the diagonal), and the ex-
pression above in the eigenfunctions on the link can be used directly to
show that G(N)y admits an asymptotic expansion with coe�cients in
this space of distributions on Z2

e .
We treat the interiors of the boundary hypersurfaces of S(RdimY⇥R2

+)
and their intersection (a codimension two corner) separately. The region
s < 1 and s > 1 are analogous so we treat only the s < 1 case. The
interior of the corresponding boundary hypersurface has a neighborhood
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of the form {|u| < C, s < 1}⇥Z2
e with s a (local) bdf, and here we have

an expansion
X

�2Spec(Ay)

X

i2N0

s⌫(�)+ia⌫,i(u)�⌫(�)(z)�⌫(�)(z
0),

with a⌫,i 2 C1(|u| < C) and �⌫(�) the eigenfunctions of Ay. Near the

corner of S(RdimY ⇥ R2
+), one can proceed as Section 5 of in [Maz91].

Smooth parametric dependence on Y completes the proof. q.e.d.

Remark 4.7. Recall from our discussion of the normal operators

above that B(2)

��
(Y )\B(2)

��
(eY ) is a front face of the resolved (suspended)

double space on which the normal operators’ Schwartz kernels live. It
follows from the proof and the inductive hypothesis that for N 0 < N ,
G(N)|

B
(2)
��

(N)\B
(2)
��

(fN 0)
is equal to the Green’s function for the normal

operator on that face.

4.3. Resolvent of gM/B,Q. We have described, for each N 2 S (M),
y 2 N�, the inverse of the normal operator Ny(gM/B,Q). Putting these
together, we specified the integral kernel

G(N) = {Gy(N) : N 2 S (M), y 2 N}.
In fact this also determines the integral kernel over the boundary of each

N 2 S (M). Indeed, recall that the structure of B(2)

��
(N) is described in

Proposition 3.5. At a boundary hypersurface BN 0N of N , fibering over

N 0 < N , the fibers of B(2)

��
(N) comprise one of the front faces of (Z 0)2e.

Namely, they comprise the front face corresponding to the boundary
hypersurface BNZ0 of Z 0 in the notation of (3.4). Since the integral
kernel G(N 0) has been specified over N 0, taking its normal operator
over the front face corresponding to BNZ0 , yields the extension of G(N)
to points over the boundary hypersurface BN 0N of N . By Remark 4.7,
these normal operators fit together smoothly since at each intersection

B(2)

��
(N) \B(2)

��
(N 0) the restriction of the integral kernel is the Green’s

function of the model operator induced by gM/B,Q with its vertical APS
domain.

We now proceed as in [ALMP18, §4] and obtain a parametrix for
gM/B,Q from the integral kernels G(N).

Proposition 4.8. Let gM/B,Q be a Dirac-type wedge operator en-
dowed with its vertical APS domain and satisfying the Witt assumption.
There is an edge pseudodi↵erential operator in the calculus with bounds

G(M) 2 ⇢↵((M/B)2e)
 �1,I(2)

e (M/B;E)

such that Ny(G(M)gM/B,Q) = Id for each N 2 S (M), y 2 N�, and
(4.15)

G(M)gM/B,Q � Id, gM/B,QG(M)� Id 2 ⇢↵((M/B)2e)
 �1,I(2)

e (M/B;E).
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Proof. At each N 2 S (M), recall that Ny(gM/B,Q) is not the re-

striction to B(2)

��
(N) of the lift of gM/B,Q to (M/B)2e , because this lift

is not tangent to that boundary hypersurface. Instead we have

Ny(gM/B,Q) =
1

s

eN y(⇢NgM/B,Q)

(recall that eN y, the edge normal operator, corresponds to restriction of
the integral kernel to the front face over y while Ny, the wedge normal
operator, is obtained by this equality and uses our fixed choice of bound-
ary product structure). Thus in order to have Ny(G(N)gM/B,Q) =
eN y(G(N)gM/B,Q) = Id, we see that near B(2)

��
(N) we should first ex-

tend G(N)1
s
o↵ of B(2)

��
(N), then multiply on the right by ⇢N and denote

the resulting distribution by eG(N), we obtain
eN y( eG(N)gM/B,Q) = G(N)1

s

eN y(⇢NgM/B,Q) = Id .

As mentioned above, since the restriction to B(2)

��
(N) of eG(N)gM/B,Q

is the kernel of the identity, we can patch together the eG(N) for each

B(2)

��
(N) as they will match at corners. We proceed as in [Mel93, Proof

of Proposition 5.43] to choose an extension of these kernels to obtain
G(M). Note that without this extension we would expect gM/B,QG(M)

to be O(⇢�1

B
(2)
10 (N)

) at each B(2)

10
(N), but by extending carefully o↵ of the

front face this singularity is avoided. This deals with the first operator
in (4.15), for the second we point out that

eN y(gM/B,QG(M)) = eN y(⇢NgM/B,Q)
eN y(G⇢

�1

N
)

= sNy(gM/B,Q)Gy(N)1
s
= s Id 1

s
= Id .

By construction, G(M) has weight min{Specb(Iy(gM/B,Q))\R+ : y 2
N} at each of B(2)

10
(N), B(2)

01
(N) for each N 2 S (M). It has a smooth

expansion at each B(2)

��
(N), where it also vanishes to first order. q.e.d.

We now have all the tools we need to proof Theorem 4.3.

Proof of Theorem 4.3. To simplify notation we assume thatB = pt, M =
X.

The equation hgX,Q�, iL2
w

= h�, gX,Q iL2
w

holds for C1
c sections

and both sides define continuous bilinear forms on ⇢1/2
X

H1
e (X;E) \

Dmax(gX,Q). Thus this is a symmetric domain for gX,Q in L2
w.

Next note that the mapping properties in Theorem 3.7 show that

G(X), R = gX,Q �G(X)� Id : L2

w = H0

e (X;E) �! ⇢1/2
X

H1

e (X;E),

are bounded operators, as are G(X)⇤ and R⇤ (since as is well-known
their integral kernels are obtained from those of G(X) and R by inter-
changing the two factors ofX2). Taking adjoints and specifying domains
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when necessary for clarity,

(gX,Q,DVAPS) �G(X) = Id�R =) (gX,Q �G(X))⇤ = Id�R⇤,

and since G(X)⇤ � (gX,Q,DVAPS)⇤ ✓ (gX,Q �G(X))⇤, we have that

u 2 D ((gX,Q,DVAPS)
⇤)

=) u = G(X)⇤g⇤X,Qu+R⇤u 2 Dmax(gX,Q) \ ⇢1/2X
H1

e (X;E)

✓ DVAPS(gX,Q)

so

DVAPS(gX,Q)
⇤ ⇢ Dmax(gX,Q) \ ⇢1/2X

H1

e (X;E) ⇢ DVAPS(gX,Q),

forcing equality of these three spaces.

Since ⇢1/2
X

H1
e (X;E) is compactly contained in L2

w, the resolvent and
the errors G(X)gX,Q � Id and gX,QG(X) � Id are compact on L2

w, so
the Fredholm and discrete spectrum properties follow.

Now note that, since G(X) is a compact operator, it is simultaneously
a parametrix for (gX,Q � �) for all �. It follows that the space of

eigensections of a given eigenvalue is an element of ⇢↵(X2
e )
 �1,I(2)

e (X;E),

and hence eigensections are in ⇢I
X
H1

e (X;E).
For � 2 C define Ri(�) by

G(X)(gX,Q � �) = Id�R1(�), (gX,Q � �)G(X) = Id�R2(�)

and note that Ri(�) 2 ⇢↵(X2
e )
 �1,I(2)

e (X;E). These errors can be im-

proved to Ri(�) 2 ⇢↵(X2
e )
 �1,I(2)

e (X;E) by the standard symbolic con-
struction. For each � 2 C \ Spec(gX ,DVAPS) we have (cf. [Maz91,
(4.25)])

(gX,Q � �)�1 = G(X) +R1(�)(gX,Q � �)�1R2(�) +R1(�)G(X)

which, by virtue of Theorems 3.9 and 3.10, is an element of the resid-

ual space ⇢↵(X2
e )
 �1,I(2)

e (X;E). (As in the proof of [Maz91, Theorem
4.20], the weights at the various faces ofX2

e follow from the fact that this
inverts (gX,Q � �).) This formula also shows that the resolvent is holo-

morphic as a map from C\Spec(gX,Q,DVAPS) into ⇢↵(X2
e )
 �1,I(2)

e (X;E)
and analytic Fredholm theory shows that it extends to a meromorphic
function on C.

Writing the projection onto the �-eigenspace as a contour integral,
together with elliptic regularity, then proves (4.2) and completes the
induction and the proof of Theorem 4.3. q.e.d.

Remark 4.9. It is easy to see from this construction that every
family of wedge Dirac-type operators whose vertical APS domain sat-
isfies the Witt condition can be connected smoothly through wedge
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Dirac-type operators to a family whose vertical APS domains satisfy
the geometric Witt condition.

Indeed recall, e.g., from [Hit74, §1.4], [Vai01, §A.2], that for a con-
formal change of metric g! = !2g there is a Cli↵ord bundle adapted to
this metric with Dirac-type operator D! = !�1(!�(n�1)/2D!(n�1)/2).
Thus if we scale each of the metrics gZ we can vary the operators,
through Dirac-type operators, and push away any small indicial roots
while maintaining the Witt condition. We lose special structures, e.g.,
this variation will take the signature operator through Dirac-type oper-
ators not equal to the signature operators of the varying metrics. This
yields a family over B ⇥ [0, 1] with the original family at B ⇥ {0}, and
such that the family over B⇥{1} satisfies the geometric Witt condition.
The wedge Dirac-type operators over B ⇥ [0, 1] with their vertical APS
domains form a smooth family of Fredholm operators. (For a discussion
of smoothness of this family of operators, see [MP97a]; the vertical
APS domain corresponds to the spectral section coming from a spectral
gap at zero.)

4.4. Heat kernel of g2
M/B,Q

. The construction of the heat kernel pro-
ceeds by solving model problems at the critical boundary hypersurfaces
of the wedge heat space. In Proposition 4.5 we have described the so-

lution of the model problem at each B(H)

��,1
(N), N 2 S (M).

We can similarly solve the model problem at B(H)

dd,1
. This proceeds

exactly as in, e.g., [Mel93, Chapter 7], [AM]. The result is naturally

compatible with e�tNy(g2
M/B,Q

) at B(H)

��,1
(N)\B(H)

dd,1
and combining these

we find a conormal density H1,1 with Schwartz kernel

H1,1 2 BH/I(H)

phg
A �m�1

�
(H(M/B)w; Hom(E)⌦ ⌦h,R)

with H the index set from (4.4) and

�⇤
(H),L

(t(@t + g2
M/B,Q

))H1,1 2 ⇢�1

lf(H(M/B)w)
⇢�1

ef(H(M/B)w)
⇢↵(H(M/B)w)

⇢dd,1B
H/I(H)

phg
A �m�1

�
(H(M/B)w; Hom(E)⌦ ⌦h,R).

Indeed, the vanishing at ↵(H(M/B)w) andB(H)

dd,1
comes from solving the

model problems at these faces, while the singular power of ⇢lf(H(M/B)w)

comes from the singularity of gM/B,Q in x as x! 0, at each boundary
hypersurface. This singular term would a priori be of order �2, but
proceeding as in [Mel93, Proof of Proposition 5.43] the extension can
be carried out so that the leading term vanishes.
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We can improve this parametrix by removing the Taylor expansion

at B(H)

dd,1
exactly as in [Mel93, Chapter 7]. This results in

H1,1 2 BH/I(H)

phg
A �m�1

�
(H(M/B)w; Hom(E)⌦ ⌦h,R),

�⇤
(H),L

(t(@t + g2
M/B,Q

))H1,1 2 ⇢�1

lf(H(M/B)w)
⇢�1

ef(H(M/B)w)

⇢↵(H(M/B)w)⇢
1

dd,1
BH/I(H)

phg
A �m�1

�
(H(M/B)w; Hom(E)⌦ ⌦h,R).

Similarly, we can solve away the expansion at ↵(H(M/B)w) by pro-
ceeding as in Proposition 7.28 of [Mel93] which in this context takes
the following form.

Proposition 4.10. For each N 2 S (M), let ⇢↵(H<N) = 1 if N is
minimal in S (M) and otherwise

⇢↵(H<N) =
Y

N
0
2S (M)

N
0
<N

⇢
B

(H)
��,1(N

0)
.

Given

f 2 ⇢1
dd,1

⇢1
↵(H<N)

B
(H/r)|

B
(H)
��,1

(N)

phg
A �m�1

�
(B(H)

��,1
(N);

Hom(E)⌦ ⇢�n�2

dd,1
�⇤
(H),R

⌦(M/B))

the equation

�⇤
(H),L

(t(@t + g2
M/B,Q

))
��
B

(H)
��,1(N)

u = f

has a unique solution

u 2 ⇢1
dd,1

⇢1
↵(H<N)

B
(H/r)|

B
(H)
��,1

(N)

phg
A �m�1

�
(B(H)

��,1
(N);

Hom(E)⌦ ⇢�n�2

dd,1
�⇤
(H),R

⌦(M/B)).

Proof. As usual, the solution to the equation is given by

u(t, ⇣, ⇣ 0) =

Z
t

0

Z

M

e
�tN

B
(H)
��,1

(N)
(g2

M/B,Q
)

(t� s, ⇣, ⇣ 00)f(s, ⇣ 00, ⇣ 0) dsd⇣ 00

but in order to understand the structure of u it is best to express this
in terms of pull-back and push-forward. The asymptotics of the first
factor are given by Proposition 4.5 and the composition is a particu-

lar case of Proposition B.2 (e.g., by extending o↵ of B(H)

��,1
(N), com-

posing, and then restricting back), which gives the asymptotics of the
result. q.e.d.

We can use this proposition to solve away the expansion at the front
faces, ↵(H(M/B)w), one face at a time. Let {N1, . . . , N`} be the list of
S (M) used in the construction of the heat space. Using this proposition
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to solve away successive terms at B(H)

��,1
(N1) we can construct, for any

` � 1, an improved parametrix

HN1
`,1
2 BH/I(H)

phg
A �m�1

�
(H(M/B)w; Hom(E)⌦ ⌦h,R),

�⇤
(H),L

(t(@t + g2
M/B,Q

))HN1
`,1
2 ⇢�1

lf(H(M/B)w)
⇢�1

ef(H(M/B)w)
⇢↵(H(M/B)w)·

· ⇢`B��,1(N1)
⇢1
dd,1

BH/I(H)

phg
A �m�1

�
(H(M/B)w; Hom(E)⌦ ⌦h,R).

Asymptotically summing successive di↵erences we can remove the error

at B(H)

��,1
(N) altogether,

HN1
1,1 2 BH/I(H)

phg
A �m�1

�
(H(M/B)w; Hom(E)⌦ ⌦h,R),

�⇤
(H),L

(t(@t + g2
M/B,Q

))HN1
1,1 2 ⇢�1

lf(H(M/B)w)
⇢�1

ef(H(M/B)w)
⇢↵(H(M/B)w)·

· ⇢1B��,1(N1)
⇢1
dd,1

BH/I(H)

phg
A �m�1

�
(H(M/B)w; Hom(E)⌦ ⌦h,R).

RelabelingHN1
1,1=HN2

1,1
, we now proceed in the same way atB(H)

��,1
(N2).

After carrying this out at B(H)

��,1
(N2), . . . ,B

(H)

��,1
(N`), we end up with

H1,1 2 BH/I(H)

phg
A �m�1

�
(H(M/B)w; Hom(E)⌦ ⌦h,R),

�⇤
(H),L

(t(@t + g2
M/B,Q

))H1,1 2 ⇢�1

lf(H(M/B)w)
⇢�1

ef(H(M/B)w)

⇢1
↵(H(M/B)w)

⇢1
dd,1

BH/I(H)

phg
A �m�1

�
(H(M/B)w; Hom(E)⌦ ⌦h,R).

Note that the error now vanishes to infinite order at all boundary
hypersurfaces lying over {t = 0}, so we can just as well view it as a
distribution on a simpler space, R+ ⇥ (M/B)2e ,

⇡⇤L(t@t + tg2
M/B,Q

)H1,1 2 ⇢�1

lf(H(M/B)w)
⇢�1

ef(H(M/B)w)

t1BH/I(H)

phg
A �m�1

�
(R+ ⇥ (M/B)2e ; Hom(E)⌦ ⇡⇤R⌦(M/B)).

A natural next step (as in [Mel93, Proposition 7.17]) is to interpret
the heat kernel as an operator with respect to convolution in t, so that
the error term satisfies

⇡⇤L(@t + g2
M/B,Q

)H1,1 = Id�A

with A 2 ⇢�1

lf(H(M/B)w)
⇢�1

ef(H(M/B)w)

t1BH/I(H)

phg
A �m�1

�
(R+ ⇥ (M/B)2e ; Hom(E)⌦ ⇡⇤R⌦(M/B))

and use a Volterra series to invert (Id�A).
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Proposition 4.11. Let A be the operator above, then

(Id�A)�1 = Id+S,

with S 2 ⇢�1

lf(H(M/B)w)
⇢�1

ef(H(M/B)w)

t1BH/I(H)

phg
A �m�1

�
(R+ ⇥ (M/B)2e ; Hom(E)⌦ ⇡⇤R⌦(M/B)).

Proof. Fix t0 > 0. Let us write the Schwartz kernel of A as

KA(⇢lf(H(M/B)w)⇢ef(H(M/B)w))
�1+"µR

for any fixed

" 2 (0, min
N2S (M)

I(BN )),

and point out that |KA|
��
tt0

is uniformly bounded on (M/B)2e , say by
C, and that

V" = max
B

Z

M/B

⇢�1+"

M
µ <1.

During this proof, let us write ⇢lf(H(M/B)w)⇢ef(H(M/B)w) as x.

If we similarly write the Schwartz kernel of Ak as KAkx�1+"µR then
assuming that |KAk |

��
tt0

is bounded by Cktk0/k! we see from

KAk+1(t, ⇣, ⇣ 00)x�1+"µ⇣00 =

Z
t

0

Z

⇣02 �1( (⇣))

(KAk(s, ⇣, ⇣ 0)x�1+"µ⇣0)

(KA(t� s, ⇣ 0, ⇣ 00)(x0)�1+"µ⇣00) ds

that

|KAk+1 |
��
tt0

Z

t0

0

Z

⇣02 �1( (⇣))

(Cks
k/k!)C(x0)�1+"µ⇣0 ds

 CCkV"t
k+1

0
/(k + 1)!

Hence we see that the Volterra series
P

Ak converges uniformly for
t  t0 and arbitrary t0.

We may run the same argument after di↵erentiating by any vector
field on (M/B)2e ⇥ R+ that is tangent to the boundary hypersurfaces,
and so we can conclude that the Volterra series converges in the space
of conormal sections of Hom(E). q.e.d.

Theorem 4.12. Let gM/B,Q be a family of compatibly perturbed Dirac-
type wedge operators acting on a Cli↵ord bundle E on a family of man-

ifolds with corners and iterated fibration structures, M
 ��! B. The

heat kernel of g2
M/B,Q

satisfies

e�tg2
M/B,Q 2 BH/I(H)

phg
A �m�1

�
(H(M/B)w; Hom(E)⌦ ⌦h,R)
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where I(H) and H are given by (4.3), (4.4) and ⌦h,R is the density bundle

from (3.22). The leading terms at B(H)

dd,1
and each B(H)

��,1
(N) are given

by

N
B

(H)
dd,1

(e�tg2
M/B,Q) = e��T (M/B)/M

N
B

(H)
��,1(N)

(e�tg2
M/B,Q) = e��

2
�T (N/B)/N e

��
2
D

2
C(�N )/N,Q

where e��T (M/B)/M denotes the Euclidean heat kernel on the fibers of
T (M/B) (at time one) and similarly e��

2
�T (N/B)/N , C(�N ) denotes the

mapping cylinder of �N ,

(4.16) Z+� C(�N )
�
+
N���! N

and DC(�N )/N,Q is the family of operators N 3 y 7! D
Z

+
y ,Q

from (4.8).

Proof. The operator H1,1(Id�S) satisfies the wedge surgery heat
equation with initial condition given by the (lift of the) identity since

�H,L(@t + g2
M/B,Q

)(G1(Id�S)) = (Id�A)(Id�S) = Id .

The composition result, Proposition B.2, yields the asymptotics of this
composition. The leading terms are immediate from the construction
above. q.e.d.

5. Getzler rescaling and the trace of the heat kernel

5.1. Getzler rescaling. The heat kernel construction above did not
significantly use that g2

M/B
is the square of a Dirac-type operator rather

than an arbitrary Laplace-type operator. We now refine the construc-
tion to take advantage of the Cli↵ord action on E and its compatibility
with gM/B,Q. Specifically, we proceed as in [Mel93, Chapter 8] to carry
out Getzler rescaling geometrically (see also [DM12, Vai01, AR09a])
by constructing ‘rescaled homomorphism bundles’ on the resolved heat
space which capture the relationship between the heat kernel and the
Cli↵ord action. The second property in Definition 4.1 ensures that com-
patible perturbations will not a↵ect the discussion. After carrying out
the rescaling for the family of Dirac-type operators we carry out the
analogous rescaling for the Bismut superconnection.

Recall the decomposition of the homomorphism bundle of E from
(1.23),

hom(E) ⇠= Cl(wT ⇤M/B)⌦ hom0

Cl(wT ⇤M/B)
(E).

The heat kernel is a section of Hom(E) �! H(M/B)w, the lift of ⇡⇤LE
⇤⌦

⇡⇤
R
E from M ⇥ M to H(M/B)w. The restriction of this bundle to

diagM is (canonically isomorphic to) hom(E) and hence inherits the
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decomposition above. In this way we see that Hom(E) �! H(M/B)w
has compatible filtrations at B(H)

dd,1
and each B(H)

��,1
(N),

Hom(E)
��
B

(H)
dd,1

= Cl⇤(wT ⇤M/B)⌦Hom0

Cl(wT ⇤M/B)
(E),

Hom(E)
��
B

(H)
��,1(N)

= Cl⇤(wT ⇤N/B)⌦Hom0

Cl(wT ⇤N/B)
(E),

where Hom0

Cl⇤(wT ⇤M/B)
(E) denotes the elements of Hom(E) that com-

mute with Cl(wT ⇤M/B), and similarly Hom0

Cl(wT ⇤N/B)
(E). In fact we

can extend the filtration of Hom(E)
��
B��,1(N)

even further by including

Cli↵ord multiplication by d⇢BN
, but it will be convenient not to do so.

It is easy to see from (1.1) that these filtrations are compatible.
We define a connection on Hom(E) �! H(M/B)w by

rHom(E) = @t dt⌦ �⇤LrE
⇤ ⌦ �⇤RrE

and then choose vector fields ⌫ and, for each N 2 S (M), ⌫N transverse

to B(H)

dd,1
and B(H)

��,1
(N), respectively, and tangent to all other boundary

hypersurfaces (e.g., by modifying the vector fields in a boundary product
structure as in §1.1). We define the space of rescaled sections of Hom(E)
by

� =
n
s 2 C1(H(M/B)w; Hom(E)) : for j 2 {0, . . . , dimM/B},
⇣
rHom(E)

⌫

⌘
j

s
��
B

(H)
dd,1
2 Clj(wT ⇤M/B)⌦Hom0

Cl(wT ⇤M/B)
(E),

for each N 2 S (M) and k 2 {0, . . . , dimN/B},
⇣
rHom(E)

⌫N

⌘
k

s
��
B

(H)
��,1(N)

2 Clk(wT ⇤N/B)⌦Hom0

Cl(wT ⇤N/B)
(E)
o
.

As in [Mel93, Chapter 8], there is a ‘rescaled’ vector bundle denoted
HomG(E) �! H(M/B)w with a bundle map ◆ : HomG(E) �! Hom(E)
such that

◆ � C1(H(M/B)w; HomG(E)) = � ✓ Hom(E).

We will refine the heat kernel construction to show that exp
⇣
�tg2

M/B,Q

⌘

is a section of HomG(E).
Given a vector field W on H(M/B)w it will be useful to know when

rHom(E)

W
preserves �. As shown in [Mel93, Proposition 8.12] directly

from the definition of �, this requires rHom(E)

W
to preserve the filtrations

at each boundary hypersurface, for the curvature KHom(E)(e⌫,W ) to
increase filtration degree by at most one (where e⌫ is the appropriate

transverse vector field), and for (rHom(E)

e⌫ )j(KHom(E)(e⌫,W )) to increase
filtration degree by at most two for all j � 1.
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Lemma 5.1. If W 2 C1(H(M/B)w;T (H(M/B)w)) is tangent to
the fibers of the fiber bundles

B(H)

dd,1
�! diagM and B(H)

��,1
(N) �! N for all N 2 S (M),

then rHom(E)

W
acts on sections of HomG(E).

Proof. Since rE is a Cli↵ord connection, it satisfies
⇥
rE , cl (✓)

⇤
= cl (r✓).

Hence it is immediate that rHom(E) preserves the filtration at B(H)

dd,1
,

while checking that it preserves the filtration at B(H)

��,1
(N) comes down

to checking that in a local frame as in (1.11)

g(rW1W2, eU) = O(x) for all W1 2 V,W2 2 {@x, 1xV },

which follows from (1.14). (Incidentally, this is why we do not rescale

at B(H)

��,1
(N) by Cl(T ⇤(N/B)+), as the connection would not preserve

this filtration.)
Next recall that

KHom(E)(W1,W2)

= KE((�L)⇤W1, (�L)⇤W2) � ·� · �KE((�R)⇤W1, (�R)⇤W2)

and that, since rE is a Cli↵ord connection,

KE(S1, S2) =
1

4
cl (R(S1, S2)) +KE

0
(S1, S2),

with KE
0
(S1, S2) 2 C1(M, homCl(wT ⇤M/B)(E)).

Thus the covariant derivatives of the curvature of Hom(E) involve at
most two Cli↵ord multiplications and hence can move the filtrations at

B(H)

dd,1
and each B(H)

��,1
(N) by at most two.

It follows that rHom(E)

W
will act on D whenever

R((�·)⇤⌫
��
B

(H)
dd,1

, (�·)⇤W
��
B

(H)
dd,1

) = 0, and

R((�·)⇤⌫N
��
B

(H)
��,1(N)

, (�·)⇤W
��
B

(H)
��,1(N)

)
��
BN

2 C1(BN ,⇤1(T ⇤N/B) ^ ⇤1(hdxi � xT ⇤BN/N))

where �· can be either �L or �R. If W
��
B

(H)
dd,1

is tangent to the fibers of

B(H)

dd,1
�! diagM then (�·)⇤W

��
B

(H)
dd,1

= 0, so the first condition holds.

From Proposition 1.5 we know that the second condition will hold as
long as (�·)⇤W

��
B

(H)
��,1(N)

is tangent to the fibers over N�. q.e.d.
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Now that we know that the connection acts on D, we can use the
Lichnerowicz formula (see, e.g., [Mel93, §8.8])

(5.1) g2
M/B

= �M/B + 1

4
scalM + 1

2

X

a,b

K 0

E(ea, eb)cl (ea)cl (eb)

in which �M/B is the Bochner Laplacian of rE and the sum runs over
an orthonormal frame of TM/B, to see that tg2

M/B
acts on sections of

HomG(E).
For vector fields as in (1.11), we can read o↵ from [Mel93, (8.36)]

and Proposition 1.5 the rescaled normal operators, for each N 2 S (M)
we have

NG

B
(H)
��,1(N)

(rE

⌧@x
) = �@s,

NG

B
(H)
��,1(N)

(rE

⌧ f@yi
) = �(@ui

+ 1

4
e
⇣
RN/B(R, @yi)

⌘
),

where R denotes the radial vector field in eTN/B and the appearance
of the curvature RN/B can be traced back to Proposition 1.5 (1), and

NG

B
(H)
��,1(N)

(rE

⌧
1

x
V
) =

�

s
[rE,@M/Y

V
+ 1

4
cl (R(@x, V ))+ 1

2
cl (r@xR(@x, V ))]

=
�

s

⇣
rE,@M/Y

V
+ 1

4

X

eU,V 0

gN/B(S�N (V, V 0), eU)cl (( 1
x
V 0)[)e(eU [)

+ 1

2

X

eU,eU 0

gBN/N (R�N (eU, eU 0), V )e((eU)[ ^ (eU 0)[)
⌘

where the appearance of S�N , R�N traces back to (2)–(3) in Proposi-

tion 1.5 We have similar behavior at B(H)

dd,1
, save that all vector fields

are horizontal.
Combining this with the Lichnerowicz formula we obtain their rescaled

normal operator.

Lemma 5.2. Let gM/B be a family of Dirac-type wedge operators on

the fibers of M
 ��! B. The rescaled normal operators of ⌧2g2

M/B
are

NG

B
(H)
dd,1

(⌧2g2
M/B

) = �
X

h@ji=
eTM/B

(@j +
1

4
e(R(@j ,ReTM/B)))

2

+ e(K 0

E)

NG

B
(H)
��,1(N)

(⌧2g2
M/B

) = ��2
X

h@ji=
eTN/B

(@j +
1

4
e(R(@j ,ReTN/B)))

2

+ �2B2

C(�N )/N

where BC(�N )/N assigns to each b 2 B the Bismut superconnection on
the mapping cylinder of �Nb

(= �N |
�
�1
N

(Nb)
), Z+� C(�Nb

) �! Nb.
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(Note that the rescaled normal operator of ⌧2g2
M/B

corresponding to

N 2 S (M) is a family of superconnections; for the rescaled super-
connection of ⌧2A2

M/B
we will instead obtain the superconnection of a

family.)

Proof. For the rescaled normal operator at B(2)

��,1
(N) for some N 2

S (M), we start by considering ⌧2 times the Bochner Laplacian in (5.1),

⌧2�M/B = �
X

ea

(rE

⌧ea
)⇤(rE

⌧ea
)

where the sum runs over an orthonormal frame of TM/B. We can write
this as a sum over a frame of wTN/B plus a sum over a frame of the
orthogonal complement; the former has rescaled normal operator equal
to the harmonic oscillator ��2

P
h@ji=

eTN/B
(@j +

1

4
e(R(@j ,ReTN/B)))

2,

while the latter has rescaled normal operator equal to �2 times the
Bochner Laplacian term in the Lichnerowicz formula (1.24) for the Bis-
mut superconnection of C(�N )/N . The twisting curvature term in (5.1)
gives rise to the twisting curvature term in (1.24) and similarly for the
scalar curvature terms, since, at each BN ,

scal(X, gw) ⇠ ⇢�2

N
scal(C(Z), d⇢2N + ⇢2NgZ) +O(⇢�1

N
).

The rescaled normal operator at B(2)

dd,1
is similar but simpler. q.e.d.

This same analysis applies to the Bismut superconnection AM/B from
Section 1.4. Indeed, one can either repeat the analysis above or consider
the parameter " from section 1.4 and note that these results for " > 0
imply the analogous results for " = 0. First, if Q is a compatible
perturbation of gM/B then let us define

AM/B,Q = AM/B +QM/B, AC(�N )/N,Q = AC(�N )/N +QBN/N

where QBN/N is the family N 3 y 7! QZy
.

In this case the bundle E is replaced by E =  ⇤⇤⇤T ⇤B ⌦ E, the
connection rE by rE,0 and the Cli↵ord action by cl 0. For the bundle
E, we set

Hom(E) =  ⇤⇤⇤T ⇤B ⌦Hom(E)

and
Cl⇤0(wT ⇤M) = C⌦ Cl( ⇤T ⇤B � wT ⇤M/B, gM,0)

Cl⇤0(wT ⇤N) = C⌦ Cl( ⇤T ⇤B � wT ⇤N/B, gN,0)

so that

Hom(E)
��
B

(H)
dd,1

= Cl⇤0(wT ⇤M)⌦Hom0

Cl(wT ⇤M/B)
(E),

Hom(E)
��
B

(H)
��,1(N)

= Cl⇤0(wT ⇤N)⌦Hom0

Cl(wT ⇤N/B)
(E),

for each N 2 S (M).
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We define a connection on Hom(E) �! H(M/B)w by

rHom(E) = @t dt⌦ �⇤LrE,0 ⌦ �⇤RrE⇤
,0

and the space of rescaled sections of Hom(E) by

D =
n
s 2 C1(H(M/B)w; Hom(E)) : for j 2 {0, . . . , dimM},
⇣
rHom(E)
⌫

⌘
j

s
��
B

(H)
dd,1
2 Clj

0
(wT ⇤M)⌦Hom0

Cl(wT ⇤M/B)
(E),

for each N 2 S (M) and k 2 {0, . . . , dimN},
⇣
rHom(E)
⌫N

⌘
k

s
��
B

(H)
��,1(N)

2 Clk0(wT ⇤N)⌦Hom0

Cl(wT ⇤N/B)
(E)
o
.

The corresponding rescaled bundle is denoted HomG(E).
The rescaled normal operators of A2

M/B
are similar to those of g2

M/B

but valued in di↵erential forms in M instead of di↵erential forms in
M/B. Indeed, the Lichnerowicz formula (1.24) combined with the above
yields the following.

Lemma 5.3. Let gM/B be a family of Dirac-type wedge operators

on the fibers of M
 ��! B, and let AM/B be a Bismut superconnection

extending gM/B. The rescaled normal operators of ⌧2A2

M/B
are

NG

B
(H)
dd,1

(⌧2A2

M/B
) =

�
X

h@ji=
eTM/B

(@j +
1

4
e(R(@j ,ReTM/B)))

2 + e(K 0

E) = HM/B

NG

B
(H)
��,1(N)

(⌧2A2

M/B
) =

� �2
X

h@ji=
eTN/B

(@j +
1

4
e(R(@j ,ReTN/B)))

2 + �2A2

C(�N )/N

= �2(HN/B + A2

C(�N )/N
)

where AC(�N )/N is the induced superconnection for the family of cones
given by the mapping cylinder of �N , C(Z)� C(�N )�!N from (4.16).

Remark 5.4. Note from (1.25) that the unrescaled normal operators
of ⌧2A2

M/B
would involve the tensors of  N but not the tensors of �N .

The rescaling makes explicit the contribution of the tensors of �N to

the expansion at B(H)

��,1
(N).

Theorem 5.5. Let AM/B be the Bismut superconnection associated
to a family of perturbed Dirac-type wedge operators acting on a Cli↵ord
bundle E on a family of manifolds with corners and iterated fibration

structures, M
 ��! B, and let Q be a compatible perturbation. The heat
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kernel of A2

M/B,Q
satisfies

e�tA2
M/B,Q 2 BH/I(H)

phg
A �m�1

�
(H(M/B)w; HomG(E)⌦ ⌦h,R).

where I(H) and H are given by (4.3), (4.4) and ⌦h,R is the density bundle

from (3.22). The leading terms at B(H)

dd,1
and each B(H)

��,1
(N) are given

by

NG

B
(H)
dd,1

(e�tA2
M/B ) = e�H

2
M/B

NG

B
(H)
��,1(N)

(e�tA2
M/B ) = e��

2
H

2
N/Be��

2AC(�N )/N,Q

Proof. We proceed as in [MP97a, §11].
First we recall that there is an explicit formula, Mehler’s formula,

for the heat kernel of a harmonic oscillator such as H2

M/B
or H2

N/B
,

see e.g., [Mel93, §8.9]. Secondly we recall (e.g., [BGV04, Chapter 9
Appendix]) that in a situation like ours where F = H + F[+] with F[+]

nilpotent we have

exp(�tF) = exp(�tH) +
X

(�1)kIk,

Ik =

Z

�k

e�i0tHF[+]e
�i1tHF[+] · · · e�ik�1tHF[+]e

�iktH di0 · · · dik

with the nilpotence of F[+] guaranteeing that the Ik are eventually zero.

We apply this at B(H)

��,1
(N) to see that heat kernel of the rescaled

normal operator is a section with the same asymptotics as those of the
heat kernel of the normal operator. (Since F[+] is a tensor and so its
integral kernel is supported on the diagonal.) Mehler’s formula directly

yields a solution of the model heat problem at B(H)

dd,1
. These models are

compatible at the corner because the restriction to the corner solves the
corresponding model problem.

The rest of the construction proceeds as in §4.4. q.e.d.

5.2. Trace of the heat kernel. We discuss the trace of integral kernels
on the heat space (extending [MV12, Theorem 4.2]) and then specialize
to the case of the heat kernel.

The trace of an operator is intimately related to the integral of its
Schwartz kernel along the diagonal (see [Bri88] for a general discussion).
The interior lift of the diagonal of M from M ⇥ M ⇥R+

t
to H(M/B)w

can be identified with

(5.2) diag(H)

w (M) =
h
M ⇥ R+

⌧ ;BN1 ⇥ {0}; . . . ;BN`
⇥ {0}

i
,

where ⌧ = t1/2 and S (M) = {N1, . . . , N`} is listed in a non-decreasing

order. The fiber bundle X �M
 ��! B induces a fiber bundle

diag(H)

w (X)� diag(H)

w (M)
 ��! B,
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which we continue to denote  .
We will denote the blow-down map by

�(�) : diag
(H)

w (M) �!M ⇥ R+

⌧ ,

and the collective boundary hypersurfaces of diag(H)

w (M) by

M ⇥ {0}$ B(�)

0,1

and, for each N 2 S (M),

BN ⇥ R+

⌧ $ B(�)

1,0
(N), BN ⇥ {0}$ B(�)

1,1
(N).

Assume that the kernel of A has the form KA⇢hµR with h the multi-
weight from (3.23) and KA 2 AEA

phg
(H(M/B)w; Hom(E)). Ultimately we

are interested in kernels that are merely conormal with bounds acting
on sections of a vector bundle, but the corresponding trace result will
follow easily from this one.

For appropriate index sets, this kernel is trace-class and its trace is the
integral of its restriction to the diagonal. In terms of the composition
of the blow-down map with the projection onto B ⇥ R+

⌧ ,

�(�),t : diag
(H)

w (M) �!M ⇥ R+

⌧ �! B ⇥ R+

⌧ ,

this means that

Tr(A) = (�(�),t)⇤
⇣
KA⇢

hµR

��
diag

(H)
w (M)

⌘
.

Theorem 5.6. If A has integral kernel KA⇢hµR with

KA 2 AEA

phg
(H(M/B)w; Hom(E))

and

Re(EA(B(H)

��,0
(N))� dim(N/B) > �1 for all N 2 S (M)

then it is trace-class with trace polyhomogeneous in ⌧ satisfying

TrA 2 AEA,⌧

phg
(R+

⌧ ; C1(B)),

EA,⌧ = (EA(B(H)

diag,1
)� dim(M/B)� 2)[

[
N2S (M)

(EA(B(H)

��,1
(N))� dim(N/B)� 2)

Proof. The operator is trace-class because its integral kernel is a
bounded smooth function times a measure of finite volume.

Next let us discuss the e↵ect of restricting the kernel to the diagonal.
Let µ� = �⇤

(�)
µ(M/B). The restriction of the weight (3.23) to the
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diagonal is

h� : M1(diag
(H)

w ) �! R,

h�(H) =

8
>>>><

>>>>:

�(dim(N/B) + 3) if H ✓ B(�)

1,1
(N) for some N 2 S (M)

�(dim(N/B) + 1) if H ✓ B(�)

1,0
(N) for some N 2 S (M)

�(dim(M/B) + 2) if H = B(�)

0,1
(N)

0 otherwise

Let E�

A
be the index sets given by

E�

A (B(�)

0,1
) = EA(B(H)

dd,1
)

and, for each N 2 S (M),

E�

A (B(�)

1,0
(N)) = EA(B(H)

��,0
(N)), E�

A (B(�)

1,1
(N)) = EA(B(H)

��,1
(N)).

Then we have

KA⇢
hµR

��
diag

(H)
w

= A⇢
h�µ� with A 2 AE

�
A

phg
(diag(H)

w (M)).

Next note that the map �(�),t is a b-fibration which sends {B(�)

1,0
(N) :

N 2 S (M)} to the interior of R+
⌧ and the other boundary hypersurfaces

to {⌧ = 0}, so we can apply the push-forward theorem once we pass to
b-densities. In this setting, we start with

(�(�),t)⇤(A⇢
h�µ�) = (TrA),

and multiply both sides by d⌧

⌧
to obtain

(�(�),t)⇤(A⇢
h�(�⇤

(�),t
( 1
⌧
µ(M/B ⇥ R+))) = (TrA)d⌧

⌧
.

Now,

�⇤
(�),t

µ(M/B ⇥ R+) =
Y

N2S (M)

⇢
B

(�)
1,1 (N)

µ(diag(H)

w (M)/B)

= ⇢
B

(�)
0,1

Y

N2S (M)

⇢
B

(�)
1,0 (N)

⇢2
B

(�)
1,1 (N)

µb(diag
(H)

w (M)/B)

�⇤
(�),t

(⌧�1) = ⇢�1

B
(�)
0,1

Y

N2S (M)

⇢�1

B
(�)
1,1 (N)

,

so that we need to push-forward

A⇢
h�

Y

N2S (M)

⇢
B

(�)
1,0 (N)

⇢
B

(�)
1,1 (N)

µb(diag
(H)

w (M)/B).

This is a polyhomogeneous b-density with index sets

EA(B(H)

dd,1
)� dim(M/B)� 2 at B(�)

0,1
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and, for each N 2 S (M),

EA(B(H)

��,0
(N)) + 1� dim(N/B)� 1 at B(�)

1,0
(N)

EA(B(H)

��,1
(N)) + 1� dim(N/B)� 3 at B(�)

1,1
(N).

Applying the push-forward theorem yields the index sets for (TrA)d⌧
⌧
,

and finally we cancel the factor of d⌧

⌧
. q.e.d.

Corollary 5.7. Let M
 ��! B be a family of even dimensional

manifolds with iterated fibration structures and let E �! M be a Z2-
graded wedge vertical Cli↵ord module. If A has integral kernel satisfying
KA⇢hµR with

KA 2 BH/I(H)

phg
A �m�1

�
(H(M/B)w; HomG(E)⌦ ⌦h,R).

where I(H) and H are given by (4.3), (4.4) and ⌦h,R is the density bundle
from (3.22) then A is trace-class and

Tr(A) 2 AH⌧

phg
(R+

⌧ ; C1(B;⇤⇤T ⇤B)),

H⌧ = (N0 � dimM/B)[
[

N2S (M)
(N0 � dimN/B),

and
Str(A) 2 AN0[...[N0

phg
(R+

⌧ ; C1(B;⇤⇤T ⇤B)),

where N0 is repeated 1 + depth(M) times. That is, the short-time ex-
pansion of Str(A) has the form

Str(A) ⇠
X

j�0

depth(M)X

k=0

↵j,k ⌧
j(log ⌧)k,

where the coe�cients ↵j,k are smooth di↵erential forms on B.

For e�tA2
M/B,Q we have the improvement

Str(e�tA2
M/B,Q) 2 AN0[N[...[N

phg
(R+

⌧ ; C1(B;⇤⇤T ⇤B)),

where the index set is the extended union of one copy of N0 and depth(M)

copies of N. That is, the short-time expansion of Str(e�tA2
M/B,Q) has the

form

(5.3) Str(e�tA2
M/B,Q) ⇠ ↵0,0 +

X

j�1

depth(M)X

k=0

↵j,k ⌧
j(log ⌧)k,

where the coe�cients ↵j,k are smooth di↵erential forms on B.

Proof. The statement about the trace of A follows directly from The-
orem 5.6. For the statement about the supertrace, recall Patodi’s obser-
vation that the supertrace on the Cli↵ord algebra vanishes on homomor-
phisms whose Cli↵ord degree is less than the maximum Cli↵ord degree.
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Thus the index set of KA|
diag

(H)
w (M)

at B(�)

0,1
is shifted by dim(M/B) and

its index set at B(�)

1,1
(N), for each N 2 S (M), is shifted by dim(N/B).

The result is that each of these index sets contributes an N0 to the
asymptotics as ⌧ ! 0.

In principle the index set of Str(A) is then N0[ . . .[N0 with N0 re-
peated as many times as there are boundary hypersurfaces of H(M/B)w
over {⌧ = 0}. However only actual intersections of boundary hyper-
surfaces produce accidental multiplicities and so it su�ces to take the
extended product over 1 + depth(M) copies of N0.

Finally, for A = e�tg2
M/B,Q , the improvement is that ↵0,k = 0 for all

k > 0. To establish this, it su�ces to show that the pointwise supertrace
of the heat kernel vanishes at corners (cf. [Vai01, Lemma 5.27]). The
discussion at the end of §1.2 shows that the supertrace vanishes at any

intersection B(�)

1,1
(N) \B(�)

1,1
( eN) since there can not be a term of full

Cli↵ord degree. Similarly at an intersection of the form B(�)

1,1
(N)\B(�)

0,1

the supertrace vanishes as the can not be a term of full Cli↵ord degree; in
this case this follows from the rescaled normal operator in Lemma 5.3 at

B(2)

dd,1
. Indeed, the curvature of the Levi-Civita connection is evaluated

on edge vector fields, so the vector field ⇢N@⇢N does not occur without

the ⇢N factor, and hence any term with e(d⇢N ) will vanish at B(2)

��,1
(N).
q.e.d.

6. Families index formula

Let M
 ��! B be a fiber bundle of manifolds with corners and iter-

ated fibration structures, let E �! M a wedge Cli↵ord module with
compatibly perturbed Dirac-type operator gM/B,Q equipped with its
vertical APS domain satisfying the Witt condition, and let AM/B,Q be
the perturbed Bismut superconnection.

6.1. The finite time limit. Given an arbitrary superconnection on
M �! B,

A = A[0] + A[1] + . . .+ A[k],

recall that the rescaled superconnection is

At = t1/2
⇣
A[0] + t�1/2A[1] + . . .+ t�k/2A[k]

⌘
= ⌧�Bt A(�Bt )�1

where �Bt multiplies forms on B of degree k by ⌧�k/2.
Let us recall the notion of twisted supertrace. If ↵E is a grading

operator on E, i.e., the operator which is identity on even degree sections
and multiplication by �1 on odd degree sections, so that

strE(·) = trE(↵E ·),
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then since ↵E is a section of

(6.1) hom(E) = Cl(wT ⇤M/B)⌦ hom0

Cl(wT ⇤M/B)
(E),

we have

↵E = ↵M/B ⌦ ↵0

E

where ↵M/B is the grading operator on Cl(wT ⇤M/B) and ↵0

E
commutes

with Cli↵ord multiplication and squares to the identity. The supertrace
functional decomposes with respect to (6.1) into the product of two
supertrace functionals,

str(A⌦A0) = trCl(wT ⇤M/B)(↵M/BA) tr(↵0

EA
0)

= strCl(M/B)(A) str0Cl(M/B)
(A0)

for all A 2 Cl(wT ⇤M/B), A0 2 hom0

Cl(wT ⇤M/B)
(E), and we refer to

str0Cl(M/B)
, defined by this equation, as the twisted supertrace.

We have similar decompositions at each B(H)

��,1
(N) of H(M/B)w; in-

deed, we have seen that

Hom(E)
��
B

(H)
��,1(N)

= Cl(wT ⇤N/B)⌦ hom0

Cl(wT ⇤N/B)
(E)

and consequently the supertrace functional decomposes as

strCl(N/B)⌦ str0Cl(N/B)
.

Let us introduce the notation for the terms appearing in the short-
time limit of the supertrace of the heat kernel. Let

bA(M/B) = det1/2
 

RM/B/4⇡

sinh(RM/B/4⇡)

!
2 C1(M ;⇤⇤T ⇤M)

and similarly for bA(N/B), with N 2 S (M), and denote the twisted
Chern character by

Ch0(E) = str0Cl(M/B)
(exp(�K 0

E/2⇡)) 2 C1(M ;⇤⇤T ⇤M).

where K 0

E
is the twisting curvature from (1.24).

Define, for each N 2 S (M), the Bismut-Cheeger J -form,

JQ(BN/N) 2 C1(N ;⇤⇤T ⇤N),

JQ(BN/N) =
R
Z

1

0

Z

BN/N

str0Cl(N/B)

⇣
exp(�(At

C(�N )/N,Q
)2)
⌘ ��

s=1

dt

2t

where s is the radial variable along the cone. Here
R
Z

1

0

denotes the

renormalized integral (also known as the b-integral see, e.g., [Mel93,
§4.19], [Alb09], [HMM95, §2.3]) we will see below that this integral is
convergent, so that no renormalization is necessary.
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Proposition 6.1. Under the Witt assumption,

lim
t!0

Str(e�(At

M/B,Q
)
2

) =

Z

M/B

bA(M/B) Ch0(E)

�
X

N2S (M)

Z

N/B

bA(N/B)JQ(BN/N)

Proof. We proceed as in [AR09a, BGV04, MP97a].
Let

K = e�tA2
M/B,Q

��
diag

(H)
w (M)

where the lifted diagonal, diag(H)

w (M), is described in (5.2). Corol-
lary 5.7 established the existence of the small time limit of the super-
trace and that it is given by
Z

B
(H)
dd,1\diagM

str(K)
��
B

(H)
dd,1

+
X

N2S (M)

Z

B
(H)
��,1(N)\diag

M

str(K)
��
B

(H)
��,1(N)

.

Recall from, e.g., [BGV04, Lemma 10.22]

str(e�(At

M/B,Q
)
2

) = �Bt

⇣
str(e�tA2

M/B,Q)
⌘

and Patodi’s observation that the supertrace in Cl(V ) only depends on

terms of top Cli↵ord degree. Thus if at B(H)

dd,1
we have an expansion

K
��
diag

M

⇠ t�(dimM/B)/2
X

`2N0

U`t`/2,

with each term U` of Cli↵ord degree at most ` then, just as in [BGV04],
[MP97a], this implies that

str(K|diagw)
��
B

(H)
dd,1

= (�2i)(dimM/B)/2EvM/B

h
strNG

Bdd,1

⇣
e�tA2

M/B,Q

⌘i ��
diag

M

= (�2i)(dimM/B)/2EvM/B

h
str e�HM/B(⇣)

��
⇣=0

i

= EvM/B

⇣
bA(M/B) Ch0(E)

⌘

where EvM/B is the projection of di↵erential forms on M onto those
with top  -vertical degree. Thus the contribution from this face is

Z

B
(H)
dd,1\diagM

str(K)
��
B

(H)
dd,1

=

Z

M/B

bA(M/B) Ch0(E).

We now consider the situation at a face B(H)

��,1
(N) for some N 2

S (M). Let x denote a boundary defining function for this face, � =
⌧

x
a rescaled time parameter, and note that the rescaling operator �t

B

becomes �x
2

B
��

2

B
. Since the Taylor expansion of K at B(H)

��,1
(N) is in
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powers of x, the rescaling operator �x
2

B
plays the same rôle at this face

as �t
B
plays atB(H)

dd,1
, it mediates between the degree in Cl(wT ⇤N/B) and

that in Cl(wT ⇤N/B)b⌦ ⇤⇤⇤B. Proceeding as in [BC89, (1.23),(1.24)],
and momentarily denoting (1 + dimN/B)/2 by ⌫(N)

str(K)
��
B

(H)
��,1(N)

= (�2i)b⌫(N)cEvN/B

h
strNG

B��,1(N)

⇣
e�tA2

M/B,Q

⌘i ��
diag

M

= (�2i)b(⌫(N)cEvN/B

h
��

2

B str e��
2
HN/B(⇣)e

��
2A2

C(�N )/N,Q

��
⇣=0,s=1

i

= EvN/B

h
��

2

B
bA(�2RN/B) str0Cl(N/B)

e
��

2A2
C(�N )/N,Q

��
s=1

i

= EvN/B


bA(N/B) str0Cl(N/B)

e
�(A�2

C(�N )/N,Q
)
2��

s=1

�
.

Thus the contribution from this face is
Z

B
(H)
��,1(N)\diag

M

str(K)
��
B

(H)
��,1(N)

=

Z

N/B

bA(N/B)
R
Z

1

0

Z

BN/N

str0Cl(N/B)

⇣
e
�(At

C(�N )/N,Q
)
2⌘ ��

s=1

d⌧

⌧

=

Z

N/B

bA(N/B)JQ(BN/N)

as required. q.e.d.

6.2. Bismut-Cheeger ⌘ and J forms. Bismut and Cheeger [BC89,
BC90a, BC90b, BC91] defined di↵erential forms on B, ⌘ and J in
the setting of closed manifold fibers. The former were also defined on
spaces of depth one by Cheeger [Che87, §8], for isolated conic singu-
larities, and by Piazza-Vertman [PV] in general. Melrose and Piazza
[MP97a, MP97b] introduced ⌘-forms for perturbed Dirac-type oper-
ators. In this section we generalize their construction to compatibly
perturbed families of wedge Dirac-type operators with vertical APS do-
main satisfying the Witt condition.

We define these forms for a family of manifolds with iterated fibration
structures without assuming that they come from a boundary fibration.
To di↵erentiate the fiber bundle used in this subsection with the one in
the main body of the text, we will adopt the notation

bX � cM
b ��! B.

As we will review, both the ⌘-forms and J -forms can be thought of as
arising from cM⇥R+. In the former case the factor of R+ is added to the
base, in the latter it is added to the fiber. Analogously to Definition 2.1,

we will use the following notation; for a bundle bX � cM
b ��! B with

vertical metric gcM/B
, a Cl(1) bundle is a bundle E �! cM with an
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action of Cl(T ⇤cM/B � R) where the additional R factor is orthogonal.

(In particular the fibre is the complexified Cli↵ord algebra on Rdim bX+1.)
We will denote the additional generator of this Cli↵ord algebra by �.

Definition 6.2. Let E �! cM be a b -vertical wedge Cli↵ord bundle
if dimcM/B is even dimensional and a Cl(1)-bundle if dimcM/B is odd
and Q a compatible perturbation such that the associated family of
Dirac-type operators gcM/B,Q

, endowed with its vertical APS domain,

satisfies the Witt assumption and is such that ker gcM/B,Q
forms a vector

bundle over B.
The Bismut-Cheeger ⌘-form of gcM/B,Q

,

⌘Q(cM/B) = ⌘(gcM/B,Q
) 2 C1(B;⇤⇤T ⇤B)

is given by

1

2
p
⇡

Z
1

0

Str

 
@(At

cM/B,Q
)

@t
e
�(At

cM/B,Q
)
2

!
dt if dim(cM/B) even

and

1

2
p
⇡

Z
1

0

StrCl(1)

 
@(At

cM/B,Q
)

@t
e
�(At

cM/B,Q
)
2

!
dt if dim(cM/B) odd .

The normalized ⌘ form, ⌘Q(cM/B) is obtained from ⌘Q(cM/B) by

multiplying the forms of degree ` by (2⇡i)�b`/2c.

The form ⌘Q(cM/B) has even degree if dim bX is odd, and odd degree

if dim bX is even.
Implicit in this definition is the fact that the integral converges. As

pointed out in, e.g., [BF86b, Theorem 2.10], [BC89, §3], [BGS88,
Theorem 2.11], [BGV04, Proof of Theorem 10.32], this can be estab-
lished by considering the heat kernel of the Bismut superconnection in
one dimension higher. Following [Vai01, (117), Remark A.15], we can
treat the even and odd cases uniformly by extending the fiber bundle b 
to

bX � cM+ = cM ⇥ R+

s

b ⇥id�����! B+ = B ⇥ R+

s ,

and noting that, in terms of A
(cM+)/(B+)

, the extended Bismut supercon-

nection corresponding to the natural extensions of the vertical covariant
derivative and choice of horizontal tangent bundle,

b⌘(gcM/B
) =

Z
1

0

i(@s) Str
0
�
e
�((At

cM+/B+,Q
)
2
)�

dt

where Str0 denotes the appropriate supertrace on ⇤⇤T ⇤(B ⇥ R+) ⌦ E

corresponding to the parity of dimcM/B. The short-time asymptotic ex-
pansion of the supertrace of the heat kernel together with the long-time
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limit implies the convergence of this integral and so the well-definedness
of the ⌘-forms.

Next we define the Bismut-Cheeger J -forms in our context. Sup-
pose E �! cM is a Cl(1)-bundle so we have an action of cl (�) on E

(see above) and that E is Z2-graded if dimcM/B is odd. Consider the
extension of b to

bX+ = bX ⇥ R+� cM+ = cM ⇥ R+
b +

���! B.

and the warped product metric

g+ = gcM+/B
= ds2 + s2gcM/B

.

Recall from (2.2) that the Levi-Civita connection of g+ on the wedge
cotangent bundle di↵ers from the product Levi-Civita connection by

(6.2) rg
+

W
✓ = r�

W
+
⇣
g+(dx, ✓)( 1

x
vW )[ � g+(( 1

x
vW )[, ✓)dx

⌘
.

Let E+, denote E pulled-back to cM+ via ⇡ : cM+ �! cM and gE+

the pull-back metric of gE . Over cM+ we have a bundle isomorphism

(6.3)
wTcM+/B ⇠= hdsi � s T ⇤cM/B

⌅��! h�i � T ⇤cM/B,

a0 ds+ ai s✓
i 7! a0� + ai✓

i

which we use to define a Cli↵ord action of wT ⇤cM+/B on E,

cl +(✓) = cl (⌅(✓)).

This Cli↵ord action is compatible with the metric gE+ . We modify the
connection on E to get a connection on E+ following (2.3),

(6.4) rE
+

W = ⇡⇤rE

W + 1

2
cl +(dx)cl +(( 1

x
vW )[).

This is a gE+ metric connection compatible with the extended Cli↵ord
action cl + and the Levi-Civita connection of g+. Hence E+ is a b +-
vertical wedge Cli↵ord module.

The families of Dirac operators on cM+/B produced by the preceding
construction do not constitute arbitrary families; indeed, those pro-
duced here have in some sense s-independent twisting bundle (though
the twisting bundle is only defined globally in the spin case). In fact
the twisting curvature of the connection rE

+
is s and ds-independent:

(6.5) K 0

E(@s, ·) ⌘ 0 ⌘ @sK 0

E

Indeed, locally in the bulk of cM , the Cli↵ord action induces a splitting
E ' S(T ⇤cM+/B) ⌦W with S(T ⇤cM+/B) the (locally defined) bundle
of spinors, with Cli↵ord multiplication acting on the left and the con-
nection decomposing as a tensor product connection Sr⌦ id+ id⌦Wr.
The pullback construction above changes the connection only by adding
a zeroeth order Cli↵ord multiplication term, i.e. only by modifying the
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connection on the spinor bundle part. The twisting curvature depends
only on Wr and is therefore (6.5) holds.

A choice of connection for b ,
wTcM ⇠= wTcM/B � b ⇤TB,

readily extends to a choice of connection for b +,

wTcM+ ⇠= wTcM+/B � ( b +)⇤TB.

The fundamental tensors (1.21) of b and b + are essentially unchanged,

S b +
(W1,W2)(A) = S b (W1,W2)(A),

bR b +
(A1, A2)(W ) = bR b (A1, A2)(W ),

where the latter tensors are understood to vanish if any of the vertical
vector fields is @s. Thus the Bismut superconnection on cM+ is given by
(cf. Lemma 2.2 and [AGR16, Lemma 1.2])

AcM+/B
=
⇣
1

s
gcM/B

+ cl (ds)@s +
dim cM/B

2
cl (ds)

⌘
+(AcM/B

)[1]+(AcM/B
)[2]

and the square of the rescaled Bismut superconnection satisfies [BC90b,
(6.37)]

(At

cM+/B
)2 = �t(@s + dim cM/B

2s
)2 + (At/s

2

cM/B
)2

+ t

s2
cl (ds)AcM/B,[0]

+ 1

4
cl (ds)AcM/B,[2]

.

Definition 6.3. With notation as above, the Bismut-Cheeger J -
form of gcM/B,Q

,

JQ(cM/B) = J (gcM/B,Q
) 2 C1(B;⇤⇤T ⇤B)

is given by

�
Z

1

0

Z

cM/B

str

✓
e
�(At

cM+/B
)
2��

diagcM+ ,s=1

◆
dt

2t
if dim(cM+/B) even

and

�
Z

1

0

Z

cM/B

strCl(1)

✓
e
�(At

cM+/B
)
2��

diagcM+ ,s=1

◆
dt

2t
if dim(cM+/B) odd .

The convergence of the integral follows as in [BC90b, §VI(a)] from
the dilation invariance property (4.11). Indeed, the short time asymp-
totic expansion of the supertrace from (5.3) and Proposition 6.1 guar-
antees the convergence as t ! 0, and the vanishing of the null space
established in Proposition 2.7 together with the resulting decay of the
heat kernel, establishes the convergence as t!1.
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6.3. Even dimensional fibers. Let M
 ��! B be a fiber bundle

of manifolds with corners and iterated fibration structures such that
dim(M/B) is even. Let E �! M be a wedge Cli↵ord bundle, with
associated Dirac-type operator gM/B and Q a compatible perturbation
such that gM/B,Q with its vertical APS domain satisfies the Witt as-
sumption.

We may, as in [MR06, Lemma 1.1], perturb gM/B,Q by smoothing
operators compactly supported in the interior of M without changing
the families index in K-theory and so that the null spaces form a vector
bundle over B. Since this perturbation is supported in the interior it
will not change the boundary families of gM/B,Q and the arguments in
[BGV04, Proposition 9.46] apply to show that the e↵ect on the short-
time asymptotic expansion of the trace of the heat kernel is O(t). By
incorporating this perturbation into Q, we will assume that ker gM/B,Q

forms a smooth vector bundle over B.
Given an arbitrary superconnection on M �! B, A, the Chern

character of A is

Ch(A) = Str(e�A2
).

For the Bismut superconnection combined with a compatible pertur-
bation, AM/B,Q, the arguments in [BGV04, §9.3] apply directly and
show that

@

@t
Ch(At

M/B,Q
) = �dB Str

 
@At

M/B,Q

@t
e�(At

M/B,Q
)
2

!

and

lim
t!1

Ch(At

M/B,Q
) = Ch(Ind(gM/B,Q),rInd)

where Ind(gM/B,Q) is the virtual index bundle of gM/B,Q and rInd is
the contraction,

rInd = PInd(AM/B,Q)[1]PInd.

Proposition 6.1 and integration in t yield the families index formula.

Theorem 6.4. Let M
 ��! B be a fiber bundle of manifolds with

corners and iterated fibration structures with even-dimensional fibers,
E �! M a Z2-graded wedge Cli↵ord bundle with associated Dirac-type
operator gM/B and let Q be a compatible perturbation. If gM/B,Q with
its vertical APS domain satisfies the Witt assumption, then

Cheven(Ind(gM/B),rInd) =

Z

M/B

bA(M/B) Ch0(E)

�
X

N2S (M)

Z

N/B

bA(N/B)JQ(BN/N) + d⌘Q(M/B)
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6.4. Odd dimensional fibers. A standard argument going back to
[AS69] reduces the families index for odd dimensional fibers to the
families index for even dimensional fibers by suspension. This was car-
ried out for Dirac operators on closed manifolds in [BF86b]. We will
follow the treatment of Melrose and Piazza [MP97b], though note that
our Cli↵ord multiplication conventions di↵er by a factor of i.

Lemma 2 of [MP97b, §5] says that: If L1 and L2 are Cli↵ord mod-
ules, with Cli↵ord actions cl 1 and cl 2, over Riemannian manifolds X1,
X2, respectively, then the bundle

L = L1 ⌦ L2 ⌦ C2 �! X1 ⇥X2

has a Cli↵ord action compatible with the product metric on X = X1 ⇥
X2 given by

cl (↵) = cl 1(↵)⌦ Id⌦�1 for all ↵ 2 C1(X1;T
⇤X1)

cl (�) = Id⌦cl 2(�)⌦ �2 for all � 2 C1(X2;T
⇤X2)

for any choice of �i 2M2(C) satisfying
�1�2 + �2�1 = 0, �21 = �

2

2 = �1.
For example we can take

�1 =

✓
0 i
i 0

◆
, �2 =

✓
0 �1
1 0

◆
.

If X1 ⇥ X2 is even-dimensional then L can be taken to be Z2-graded
as follows: If X1 and X2 are both even-dimensional, so that L1 and L2

are Z2-graded, then we take the product grading of L1 ⌦ L2 and then
tensor with C2. If X1 and X2 are both odd-dimensional, so that L1 and
L2 are ungraded, then we put a grading on C2 by

(C2)+ = C� {0}, (C2)� = {0}� C,
and then tensor with L1⌦L2. Endowing C2 with the trivial metric and
connection, L has the structure of a Cli↵ord module over X1 ⇥X2.

Set T = S1
✓
⇥ S1

⇠
, where we parametrize the first circle by ✓ 2 [0, 2⇡]

and the second by ⇠ 2 [0,⇡], and let LT be the Hermitian line bundle
over T given by identifying the points (✓, 0, v) with (✓,⇡, e�i✓v) endowed
with the Hermitian connection

rLT = d� 2⇠�1

2⇡i
d✓.

These data define a family of Dirac operators on the fibers of

T  T���! S1
⇠

given by gT/S1 = 1

i
@✓ +

2⇠�1

2⇡
with spectral flow equal to one.

We replace the original fiber bundle M
 ��! B with

X ⇥ S1
✓
� S2M = M ⇥ T  ⇥ T�����! SB = B ⇥ S1

⇠
,
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and each boundary fiber bundle BN

�N���! N with

S2BN = BN ⇥ T �N⇥ T������! SN = N ⇥ S1t ,
replace E �! M with F = E ⌦ L⌦ C2, and then the extension of the
Cli↵ord structure described above yields the family of Dirac-type wedge
operators

gS2M/SB =

✓
0 gM/B ⌦ Id+ Id⌦gT/S1

gM/B ⌦ Id� Id⌦gT/S1 0

◆
.

The invertibility of gT/S1 on each fiber of  T, together with the in-
vertibility of the boundary families of gM/B,Q easily yields the invert-
ibility of the boundary families of gS2M/SB,Q, as well as the invertibility
of gS2M/SB,Q on the fibers lying over some neighborhood of the point
{t = 0} 2 S1

⇠
, as in [MP97b, Lemma 3].

This implies that the index class of gM/B,Q in the odd K-theory of
B is mapped by suspension into the index class of gS2M/SB,Q [MP97b,
Proposition 6]. Thus the odd Chern character of the index class of
gM/B,Q satisfies

Chodd(Ind(gM/B,Q)) =
i

2⇡

Z

S1
⇠

Cheven(Ind(gS2M/SB,Q))

and we obtain a formula for the odd Chern character by integrating our
formula for the even dimensional Chern character over the circle.

This leaves us to consider the e↵ect of suspension on the JQ-forms.
Let us start by recalling [MP97b, §8] the e↵ect of suspension on the
Bismut superconnection. The Bismut superconnection depends on the
choice of a vertical metric and connection, in this case we take

T (S2M/SB) = TM/B � TS1
✓
, gS2M/SB = gM/B � d✓2,

where we leave implicit the pull-back maps. The corresponding Bismut
superconnection satisfies

AS2M/SB,Q =
�
gM/B,Q ⌦ �2 + gT/S1 ⌦ �1

�

+
�
A[1] + e(d⇠)@⇠

�
+ A[2] ⌦ �2

A2

S2M/SB,Q
= A2

M/B,Q
+ g2T/S1 +

1

⇡i
e(d⇠)(cl (d✓)⌦ �1)

Let us describe the J -forms occurring in the index theorem over
S2M/SM . Let N 2 S (M) so that S2M has the boundary fiber bundle
S2BN �! SN . The Bismut superconnection on S2B+

N
/SN is given by

A
S2B+

N
/SN,Q

=
⇣
1

s
gS2BN/SN,Q + cl (ds)@s +

dim bS2BN/SN

2
cl (ds)

⌘

+ (AS2BN/SN )[1] + (AS2BN/SN )[2]

= 1

s

�
gM/B,Q ⌦ �2 + gT/S1 ⌦ �1

�
+ cl (ds)@s +

1+dimBN/N

2
cl (ds)

+
�
A[1] + e(d⇠)@⇠

�
+ A[2] ⌦ �2
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and hence its square can be written

(At

S2B+
N
/SN,Q

)2 = �t(@s + dimS
2BN/SN

2s
)2 + (At/s

2

S2BN/SN,Q
)2

+ t

s2
cl (ds)AS2BN/SN,Q,[0] +

1

4
cl (ds)AS2BN/SN,[2]

= �t(@s + 1+dimBN/N

2s
)2 + (At/s

2

M/B,Q
)2 + t

s2
g2T/S1

+
p
t

s⇡i
e(d⇠)(cl (d✓)⌦ �1) + t

s2
cl (ds)

�
gM/B,Q ⌦ �2 + gT/S1 ⌦ �1

�

+ 1

4
cl (ds)A[2] ⌦ �2

=
p
t

s⇡i
e(d⇠)(cl (d✓)⌦ �1) + t

s2
(g2T/S1 + cl (ds)(gT/S1 ⌦ �1))

+ s1/2(At

B+
N
/N,Q

)2s�1/2.

Note that in the final formula the three summands commute, and so we
have

exp(�(At

S2B+
N
/SN,Q

)2) =
⇣
1 +

p
t

s⇡i
e(d⇠)(cl (d✓)⌦ �1)

⌘

exp
⇣
� t

s2
(g2T/S1 + cl (ds)(gT/S1 ⌦ �1))

⌘
exp

⇣
�s1/2(At

B+
N
/N,Q

)2s�1/2

⌘
.

Now, from the odd families index theorem of Bismut-Freed, we have

i

2⇡

Z

S1
⇠

Tr
⇣⇣

1 +
p
t

s⇡i
e(d⇠)(cl (d✓)⌦ �1)

⌘

exp
⇣
� t

s2
(g2T/S1 + cl (ds)(gT/S1 ⌦ �1))

⌘⌘

=
i

2⇡

Z

S1
⇠

Tr
⇣p

t

s⇡i
cl (d✓) exp

�
� t

s2
((cl (ds)gT/S1 + 1

2
)2)
�⌘

= spectral flow(cl (ds)gT/S1 + 1/2) = 1

and hence the J -forms satisfy

i

2⇡

Z

S1
⇠

JQ(S
2BN/SN) = JQ(BN/N).

Theorem 6.5. Let M
 ��! B be a fiber bundle of manifolds with

corners and iterated fibration structures with odd-dimensional fibers,
E �! M a wedge Cli↵ord bundle with associated Dirac-type operator
gM/B and compatible perturbation Q. If gM/B,Q with its vertical APS
domain satisfies the Witt assumption, then

Chodd(Ind(gM/B,Q),rInd) =

Z

M/B

bA(M/B) Ch0(E)

�
X

N2S (M)

Z

N/B

bA(N/B)JQ(BN/N) + d⌘Q(M/B).
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7. An extended index formula and the relation between J
and ⌘

In §6, we have found a formula for the Chern character of the index of
a family of wedge Dirac-type operators in terms of the Bismut-Cheeger
J -forms. In this section we establish the relation between the J -forms
and the ⌘ forms. In the process we establish a families index theorem
on manifolds with corners and an iterated fibration structure endowed
with a metric that is of wedge ‘type’ at all boundary hypersurfaces save
one, where it is of ‘b’ or asymptotically cylindrical type.

Before we start, we give an example to show that J and b⌘ do not
coincide in general. Consider an embedded surface, Y , in a closed spin
4-manifold L and let X = [L;Y ], endowed with a wedge metric with
constant cone angle 2⇡�,

dx2 + x2�2d✓2 + �⇤Y gY ,

where �Y is the boundary fiber bundle S1 � @X
�Y���! Y . It follows

from [AGR16, Corollary 1.2, §6.1] that, if �  1,
Z

Y

bA(Y )J (@X/Y ) =
1

24
(�2 � 1)[Y ]2,

Z

Y

bA(Y )⌘(@X/Y ) =
1

24
[Y ]2,

where [Y ]2 denotes the self-intersection number of Y in L.

7.1. b-c suspension. The ultimate aim of this section is to determine
the relation between the J and ⌘ forms. We do not assume that the fiber
bundles treated here arise as boundary fiber bundle so to distinguish this
setting from that above we will use |M instead of M or BN . Starting
with a fiber bundle

qX � |M
q ��! qB,

we consider R+
s ⇥ |M together with a vertical metric that is of wedge

type near {s = 0} and cylindrical away from {s = 0}, which we refer to
as a ‘b,wedge metric’. In this subsection we show that a wedge Cli↵ord
bundle on |M with a compatible perturbation induces a b,wedge Cli↵ord
bundle on R+ ⇥ |M with vanishing index. In the following subsection
we will find an explicit formula for the Chern character of this index
involving both ⌘(|M/ qB) and J (|M/ qB).

Let

R+

s ⇥ qX| {z }
qX+

� R+

s ⇥ |M| {z }
|M+

q +

���! qB

be the extended fiber bundle. Given a q -vertical wedge metric g|M/ qB,

let

(7.1) g+
h
= ds2 + h(s)2g|M/ qB
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where h is a smooth function satisfying

(7.2) h(s) =

(
s for s < 1

1 for s > 2
, h(s) > 0 for s > 0.

Just as in §6.2, given a Cl(1)-wedge Cli↵ord bundle E �! |M , we can

endow the pull-back bundle E �! |M+ with an action of Cl(wT ⇤ |M+/ qB),
a compatible Hermitian metric gE and connection rE . In particular the
connection rE

+
in (6.4) and the Cli↵ord action (6.3) have obvious ana-

logues when the warping factor s2 is replaced by an arbitrary warping
factor k(s)2.

Given a compatible perturbation Q over |M , let us also use Q to
denote the trivial extension of Q to |M+.

Consider a fiber qX of q . Given a frame {V1, . . . , Vm} for qX over
U ✓ qX, consider the frame {@s, eVi} with eVi =

1

h
Vi, over R+ ⇥ U . Using

the Koszul formula we can express the Levi-Civita connection of g+qX in
terms of h and the Levi-Civita connection of g qX ,

g+
h
(r+

W0
W1,W2) @s eV2

r+

@s
@s 0 0

r+

@s

eV0 0 0

r+

eV0
@s 0 h

0

h
g qX(V0, V2)

r+

eV0

eV1 �h
0

h
g qX(V0, V1)

1

h
g qX(rV0V1, V2)

Thus we have

r+

@s
= 0, r+

eV0
@s =

h
0

h
eV0, r+

eV0

eV1 = �h
0

h
g qX(V0, V1)@s +

1

h
r̂V0V1

or, equivalently,

r+

@s
= 0, r+

V0
@s = h0 eV0, r+

V0
eV1 = �h0g qX(V0, V1)@s + r̂V0V1.

This can be interpreted as saying that the Levi-Civita connection in-
duces a connection on the ‘rescaled tangent bundle’, locally spanned by
{@s, eVi}.

Let {✓i} be the dual coframe to {Vi} on qX, so that {ds, h ✓i} is an
orthonormal coframe on qX+, and the Dirac-type operator on E is

D qX+ = cl (ds)rE

@s
+
X

cl (h ✓i)rE

eVi

= cl (ds)@s +
X

cl (h ✓i)rE

eVi

.

We can use cl (ds) to split E,

E = Ei � E�i, cl (ds)
��
E±i

= ±i,

and we have natural projections onto each summand,

1

2
(1± 1

i
cl (ds)) : E �! E±i.
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Since rE is a Cli↵ord connection we have, for " 2 {±1}, any � 2
C1( qX+;E), and W a vector field satisfying ds(W ) = 0,

rE

W (1
2
(1 + "

i
cl (ds))�) = 1

2
(1 + "

i
cl (ds))rE

W� + "

2i
cl (rWds)�

= 1

2
(1 + "

i
cl (ds))rE

W� + "

2i

h
0

h
cl (W [)�,

or, in terms of the splitting of E,

rE

W =

✓
rE

W
� 1

2i

h
0

h
cl (W [)

1

2i

h
0

h
cl (W [) rE

W

◆
.

Hence the associated Dirac-type operator satisfies

D qX+ = cl (ds)@s

+
X✓

0 cl (h ✓i)
cl (h ✓i) 0

◆ rE

eVi

� 1

2i

h
0

h
cl (eV [

i
)

1

2i

h
0

h
cl (eV [

i
) rE

eVi

!

=

 
i(@s +

m

2

h
0

h
) 1

h
qg qX

1

h
qg qX �i(@s + m

2

h
0

h
)

!

with qg qX =
P

cl (✓i)rE

Vi
. Thus

hg qX+,Q
= hm/2(h(D qX+ +Q))h�m/2 =

 
ih@s qg qX,Q

qg qX,Q
�ih@s

!

=
M

µ2Spec(qg|X,Q
)

✓
ih@s µ
µ �ih@s

◆
,

where we have used that @s and qg qX,Q
commute. Define

R(s) =

Z
s

1

dt

h(t)

so that @R = h(s)@s. If

✓
a
b

◆
is in the null space of D qX+ +Q and the µ

eigenspace of qg qX,Q
, µ 6= 0, we have

a00(R) = µ2a(R), b00(R) = µ2b(R)

=)
✓
a(R,µ)
b(R,µ)

◆
= a1(µ)

✓
1
�i

◆
eµR + a2(µ)

✓
1
i

◆
e�µR

while if µ = 0, the solution consists of arbitrary constant vectors

✓
a0
b0

◆
.

Lemma 7.1. If DVAPS(g qX+,Q
) is the graph closure of Dmax(g qX+,Q

)\
(h(s)1/2H1

e ( qX+;E)) then

(g qX+,Q
,DVAPS)
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is self-adjoint and invertible with bounded inverse.

Proof. The conditions (7.2) on h imply that R(s) = log s for all s < 1
and R(s) = s + C for some constant C and s � 0. Since R(s) = log s
for all s < 1, the elements of the null space of g qX+,Q

that are in the

µ-eigenspace of qg qX,Q
are of the form

a1(µ)

✓
1
�i

◆
sµ + a2(µ)

✓
1
i

◆
s�µ

Now Z
1

0

sk ds <1 () k > �1

shows that for a solution to be in L2 for s < 1 it must be of the form
eµR for µ > �1

2
.

On the other hand, since R(s) = C + s for s� 0 and
Z

1

1

eks ds <1 () k < 0

shows that for a solution to be in L2 for s > 1 it must be of the form
eµR for µ < 0.

In particular there are no elements in the null space of g qX+ with the
domain DVAPS(g qX+).

Consider the operator Ib(g qX+,Q
) = cl (ds)@s+qg qX,Q

over Rs⇥ qX. Since
qg qX,Q

is self-adjoint on qX, Ib(g qX+,Q
) is self-adjoint on R⇥ qX. Note that

the square of Ib(g qX+,Q
) is �@2s + (qg qX,Q

)2 and is bounded below by the

smallest eigenvalue of (qg qX)2, which is positive by the Witt assumption.
Let v 2 Dmax(g qX+) be such that

hg qX+u, vi = hu, g qX+vi

for all u 2 DVAPS(g qX+). By choosing u with support in {s  C}, and us-
ing the self-adjointness of wedge Dirac-type operators with compatible
perturbations on manifolds with corners and iterated fibration struc-
tures, we see that v is in the vertical APS domain of g qX+ at any bound-

ary hypersurface of qX. By choosing u with support in {s � C > 1},
and using the self-adjointness of Ib(g qX+), we see that v 2 DVAPS(g qX+)
and hence this is a self-adjoint domain.

Similarly, the fact that wedge Dirac-type operators with compatible
perturbations on manifolds with corners and iterated fibration struc-
tures have closed range and the lower bound for Ib(g qX+) combine to
show that (g qX+ ,DVAPS) has closed range. As we have already shown
that this operator is injective, it follows that it has a bounded inverse.

q.e.d.
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Since we have shown that the individual operators in the family
g|M+/ qB,Q

are invertible, its families index is identically zero.

7.2. Extended families index formula. To exploit the vanishing of
the families index of g|M+/ qB,Q

we will work out an extension of the dis-

cussion of the families index above. To distinguish this setting from that
above we will use M 0 instead of M , etc. For simplicity we only consider
the case of even dimensional fibers; the odd dimensional case can be es-
tablished by suspension as above. For the most part the constructions
above extend easily to the case we will consider here, in which case we
will simply indicate the changes necessary.

Let M 0 �! B0 be a locally trivial family of manifolds with corners
and iterated fibration structures over B0 as in Definition 1.3. Assume
that a minimal element N 0

0
2 S(M 0) is such that dimN 0

0
/B0 = 0 and let

⇢N 0
0
be a boundary defining function for BN

0
0
. By a b-wedge metric

on M 0 (with respect to N 0

0
) we mean a metric conformally related to a

totally geodesic wedge metric on M 0,

gM 0/B0,b�w = ⇢�2

N
0
0
gM 0/B0 .

In particular this is a metric on TM�/B that near BN
0
0
takes the form

d⇢2
N

0
0

⇢2
N

0
0

+ gB
N

0
0
/N

0
0

with gB
N

0
0
/N

0
0
a vertical family of wedge metrics, and, for any other

N 0 2 S(M 0), near BN takes the form

dx2 + x2gB
N0/N 0 + �⇤

N 0gN 0/B0

with gB
N0/N 0 a vertical wedge metric, while gN 0/B0 is a family of b-wedge

metrics if N 0

0
< N 0 and a family of wedge metrics ifBN

0
0
\BN 0 = ;. This

is best understood as a non-degenerate bundle metric on the bundle

b,wTM 0/B0 = ⇢2
N

0
0

wTM 0/B0.

A Cli↵ord b-wedge bundle (with respect to N 0

0
) is defined just as in

Definition 1.6 but with an action of C ⌦ Cl
�
b,wT ⇤M 0/B0, gM 0/B0,b�w

�
.

We denote the corresponding Dirac-type operator by DM 0/B0 and, if Q
is a compatible perturbation, DM 0/B0 + Q will be denoted DM 0/B0,Q.
We assume that the perturbation has stabilized the index, so that
kerDM 0/B0,Q is a vector bundle over B0.

Define a multiweight on M 0 by b0(H) = 0 if H ✓ N 0

0
and b0(H) =

b(H) otherwise (where b is defined in (1.18)). Let

L2(M 0/B0;E) = ⇢b
0

ML2

b,w
(M 0/B0;E)
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where the latter is defined using the b-wedge metric on M 0/B0 and the
Hermitian metric on E. Define gM 0/B0,Q to be the operator

⇢bMDM 0/B0,Q⇢
�b
M

,

so that it acting on L2(M 0/B0;E) is unitarily equivalent to DM 0/B0,Q

acting on L2

b,w
(M 0/B0;E). We define the vertical APS domain to be the

graph closure of

Dmax(gM 0/B0,Q) \

0

@
Y

N 02S (M)\{N
0
0}

⇢1/2
N 0 H

1

e (M
0/B0;E)

1

A .

For each N 0 2 S(M 0), there is a boundary operator of gM 0/B0,Q given
by

DN
0
0/B

0,Q = gN 0
0/B

0,Q

��
B

N
0
0

, DN 0/B0 = ⇢N 0gN 0/B0,Q

��
B

N0
if N 0 6= N 0

0,

all of which are families of wedge Dirac-type operators. The Witt as-
sumption in this case is that each of these boundary operators are in-
vertible. Just as in §4.3, under the Witt condition we can construct
a generalized inverse of gM 0/B0,Q with compact errors within the edge
calculus. However in this case, the proof of Proposition 4.8 should be

modified at B(2)

��
(N 0

0
) because DN

0
0/B

0,Q is simply the restriction to BN
0
0

without having to multiply by the boundary defining function. For this

reason the generalized inverse has order zero at B(2)

��
(N 0

0
) while having

order one at B(2)

��
(N 0) for N 0 6= N 0

0
. The upshot is that the generalized

inverse is not compact and so does not guarantee discrete spectrum.
Indeed, one can argue as in [Mel93] and see that the spectrum will
not be discrete. Nevertheless, the Witt assumption does guarantee that
gM 0/B0,Q is a smooth family of self-adjoint Fredholm operators.

The heat kernel construction is, as we now briefly describe, an easy
amalgamation of the heat kernel construction in [Mel93, Chapter 7] for
the ‘b’-face corresponding to BN

0
0
and the heat kernel construction of

§3.5 at the other boundary hypersurfaces.
The b-wedge heat space is given by

H(M 0/B0)b,w =
h
M 0 ⇥ 0 M 0 ⇥ R+

⌧ ;BN
0
0
⇥�

N
0
0
BN

0
0
⇥ R+

⌧ ;

BN
0
1
⇥�

N
0
1
BN

0
1
⇥ {0}; BN

0
1
⇥�

N
0
1
BN

0
1
⇥ R+

⌧ ;

. . . ;BN
0
`

⇥�
N

0
`

BN
0
`

⇥ {0}; BN
0
`

⇥�
N

0
`

BN
0
`

⇥ R+

⌧

i
,

where {N 0

0
, N 0

1
. . . . , N 0

`
} is a non-decreasing list of S(M 0). (The di↵er-

ence between this heat space and the wedge heat space in §3.5 is that
there is no boundary hypersurface corresponding to BN

0
0
at time zero,

as is to be expected from [Mel93, Chapter 7].) The composition heat
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space is described in Appendix C below, where a composition result is
established.

Blowing-up BN
0
0
⇥�

N
0
0
BN

0
0
⇥R+

⌧ results in a collective boundary hy-

persurface B(H)

11,0
(N 0

0
) which we can identify with R+

s ⇥H(BN
0
0
/B)w and

at which the model heat operator is

@t + (�@2s +D2

N
0
0/B

0,Q).

Hence the model heat kernel at this face is e�t(�@
2
s )e

�tD
2
N

0
0/B

0,Q . The
other blow-ups produce model problems that are identical to the ones
in §4.4. Once the model problems are solved we can solve away the
expansion at each face using the composition result from Appendix C
and obtain the heat kernel as an element of

e
�tg2

M0/B0,Q 2 BH/I(H)

phg
A �m�1

�
(H(M 0/B0)b,w; Hom(E)⌦ ⌦h,R)

where the index set H and multiweights I(H), h, are defined as before

for B(H)

10,0
(N 0),B(H)

01,0
(N 0) with N 0 6= N 0

0
, and are given by

H(B(H)

11,0
(N 0

0)) = N0, H(B(H)

10,0
(N 0

0)) = H(B(H)

01,0
(N 0

0)) = ;,

I(H)(B(H)

11,0
(N 0

0)) = I(H)(B(H)

10,0
(N 0

0)) = I(H)(B(H)

01,0
(N 0

0)) =1,

h(B(H)

11,0
(N 0

0)) = �1, h(B(H)

10,0
(N 0

0)) = h(B(H)

01,0
(N 0

0)) = 0,

at the collective boundary hypersurfaces associated to N 0

0
.

Just as in [Mel93, Chapter 7], the heat kernel is not trace-class be-

cause atB(H)

11,0
(N 0

0
) it isO(⇢�1

N
0
0
) times a non-degenerate density. However

the renormalized (fibrewise) trace of the heat kernel,

R Tr
⇣
e�tg

M0/B0,Q
⌘
=

R
Z

M 0/B0

tr(e�tg
M0/B0,Q)

��
diag

M0

= FP
z=0

Z

M 0/B0
⇢z
N

0
0
tr(e�tg

M0/B0,Q)
��
diag

M0
,

will stand in for the trace as it does in, e.g., [Mel93, MP97a]. (For
more on these renormalizations, see [Alb09] and [Alb07] for another
application to an index theorem.) In particular, the renormalized trace
converges as t ! 1 to the dimensions of the null spaces of gM 0/B0,Q,
and the corresponding renormalized supertrace converges to the index,
while as t ! 0, the renormalized trace has short-time asymptotics as
before.

Thus the renormalized supertrace mediates between the index and
the short-time asymptotic expansion of the heat kernel but crucially
the renormalized supertrace does depend on t. This dependence can be
computed via the trace-defect formula,



FAMILIES DIRAC INDEX ON PSEUDOMANIFOLDS 315

R Tr ([A,B]) = FP
z=0

Tr(⇢z
N

0
0
[A,B]) = FP

z=0

Tr([⇢z
N

0
0
A,B]�A[⇢z

N
0
0
, B])

= FP
z=0

Tr(A(B⇢z
N

0
0
� ⇢z

N
0
0
B)) = FP

z=0

h
zTr

 
A⇢z

N
0
0

⇢�z

N
0
0
B⇢z

N
0
0
�B

z

!i

=
1

2⇡i

Z

R
Tr(IN 0

0
(A;�)@�IN 0

0
(B;�)) d�

where, e.g., IN 0
0
(A;�) is the restriction of ⇢�z

N
0
0
A⇢z

N
0
0
to ⇢N 0

0
= 0, and gives

rise to the ⌘ invariant.
The next step in obtaining the families index theorem is to fix a

connection for  0, and define the Bismut superconnection just as in
§1.4, AM 0/B0,Q. The construction of the heat kernel of AM 0/B0,Q follows
quickly from that of gM 0/B0,Q and the composition results from Appen-
dix C as in Theorem 5.5. (The rescaling only takes place at collective

boundary hypersurfaces B(H)

��,1
(N 0) with N 0 6= N 0

0
, and so proceeds ex-

actly as before.) If the null spaces of gM 0/B0,Q do not form a vector
bundle over B we find a smoothing perturbation as in [MR06, Lemma
1.1] that is compactly supported in the interior of M 0 (and hence does
not a↵ect any of our other arguments) and incorporate this perturbation
into Q without further comment.

Theorem 7.2. Let M 0
 
0

���! B0 be a fiber bundle of manifolds with
corners and iterated fibration structures, such that dimM 0/B0 is even,
with a minimal element N 0

0
such that dimN 0

0
/B0 = 0, E �! M 0 a

Z2-graded b,wedge Cli↵ord bundle with associated Dirac-type operator
gM 0/B0,Q. If gM 0/B0,Q with its vertical APS domain satisfies the Witt
assumption, then

Cheven(Ind(gM 0/B0,Q),rInd) =

Z

M 0/B0
bA(M 0/B0) Ch0(E)

+ ⌘Q(gB
N

0
0
/B0)�

X

N 02S
 0 (M 0)\{N 0

0}

Z

N 0/B0
bA(N 0/B0)JQ(BN 0/N 0)

+ d

Z
1

0

R Str

 
@At

M 0/B0

@t
e
�(At

M0/B0 )
2

!
dt

where ⌘Q(gB
N

0
0
/B0) is the normalized Bismut-Cheeger ⌘-form.

7.3. b-c suspension families index formula. Let us return to the
context of the family g|M+/ qB,Q

from §7.1, where we showed that this

operator’s familes index vanishes.
We compactify |M+ = R+

s ⇥ |M to

[0, 1]� ⇥ |M
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using the logarithm so that the warped product metric g+ from (7.1) is

a b-metric near {1} ⇥ |M . We continue to denote [0, 1]� ⇥ |M by |M+.

Note that |M+ is naturally a locally trivial fiber bundle of manifolds
with corners and iterated fibration structures, with each of {0} ⇥ |M ,

{1}⇥ |M a collective boundary hypersurface over qB, and in sum

S(|M+) = { qB} [ {[0, 1]� ⇥ qN = qN+ : qN 2 S q (
|M)}.

Applying Theorem 7.2 in this setting, the term corresponding to the
boundary hypersurface {0}⇥ |M is

Z

qB/ qB
bA( qB/ qB)JQ(B qB/

qB) = JQ(|M/ qB)

and the formula yields

(7.3) JQ(|M/ qB)� ⌘Q(|M/ qB) =

Z

|M+/ qB
bA(|M+/ qB) Ch0(E)

+
X

qN2S q (
|M)

Z

qN+/ eB
bA( qN+/ eB)JQ(B

+

qN
/ qN+) + d⌘b�w,Q.

We will simplify this formula by carrying out the integrals over [0, 1]�.

More generally for any connection on T |M+/ qB, r, and any polyno-
mial f , let

Af (r) = Tr(f(r2)) 2 ⌦⇤(|M+)

where r2 denotes the curvature of r. Following, e.g., [BGV04, Propo-
sition 1.41], given two connections r, r0, we fix a transgression form
TAf (r,r0) satisfying dTAf (r,r0) = Af (r0)�Af (r) by the formula

TAf (r,r0) =

Z
1

0

Tr(
@rt

@t
f 0(r2

t )) dt

where rt = (1� t)r+ tr0.

As we have fixed a connection for |M+ �! qB, we get a connection
on T |M+/ qB, for each choice of vertical metric. We are particularly
interested in the connections

rh $ ds2 + h(s)2g|M/ qB, rcon $ ds2 + s2g|M/ qB, r $ ds2 + g|M/ qB.

Let ⇡ : |M+ �! |M be the natural projection and j : |M �! |M+ the
inclusion of the left endpoint,.

Proposition 7.3. For any polynomial f , we have

⇡⇤(Af (r)) = j⇤(TAf (r,rh)) = TAf (r,rh)
��
s=0

= TAf (r,rcon)
��
s=0

.

Proof. The middle equality holds by definition and the final holds
because h ⌘ s near s = 0, so we focus on the first equality.
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Let {ei, f↵} be a local frame for T |M , in which {ei} constitute an

orthonormal frame for T |M/ qB, and let {ei, f↵} be the dual coframe.

Denote their lifts/pull-backs to |M+ by the same symbols. Let

{Va} = {@s, 1

h
ei}, {V a} = {ds, h ei}

be the corresponding frames for T |M+/ qB on |M+. (We will use a, b, c for

indices that begin at 0 and i, j, ` for indices corresponding to T |M/ qB.)
Let ! and ! denote the one-form matrices corresponding to these

frames and the connections r, r, by
rVa = !b

aVb, rVa = !b

aVb.

Let d|M+ denote the exterior derivative on |M+, d|M+/ qB the part of the

exterior derivative that raises the q +-vertical degree by one, and bd|M
the di↵erence between these two, so that

d|M+ = d|M+/ qB + bd|M .

(See, e.g., [BGV04, Proposition 10.1], [HHM04, Proposition 14], for
descriptions of bd|M .) It is easy to see that the forms !b

a satisfy

d|M+/ qBV
a = V b ^ !a

b

and hence
!j

0
= �!0

j = h0(s) ej , !j

i
= !j

i

Then ✓ = ! � ! satisfies

✓j
0
= �✓0j = h0(s) ej , ✓j

i
= 0 otherwise .

Let r(t) = (1 � t)r + tr = r + t(r � r) so that its connection
one-form is !(t) = ! + t✓ and its curvature ⌦(t) = d!(t) � !(t) ^ !(t)
is given by

⌦j

0
(t) = �⌦0

j (t) = d(th0(s) ej)� (th0(s) e`) ^ (!j

`
)

= th00(s) ds ^ ej + th0(s) bdW ej

⌦j

i
(t) = ⌦

j

i + t2(h0(s))2 ei ^ ej

where ⌦ denotes the curvature of r.
We can write these expressions succinctly in terms of the one-form

valued matrix given by

�j
0
= ��0j = ej , �j

i
= 0 for all i, j.

Indeed,

(�2)j
i
= �0i ^ �

j

0
= �ei ^ ej , (�2)ba = 0 otherwise

and hence

✓ = h0(s)�, ⌦(t) = ⌦+ th00(s) ds ^ � + th0(s) bdW� � t2(h0(s))2 �2.
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Now let f be as in the statement of the proposition and note that,
since h0(0) = 1,

j⇤(TAf ) = j⇤
✓Z

1

0

h0(t) Tr(�f 0(⌦(t))) dt

◆

=

Z
1

0

Tr(�f 0(⌦+ t bdW� � t2 �2)) dt.

On the other hand, if we denote ⌦ = e⌦ + h00(s) ds ^ �, then as in
[BGV04, pg.48-49] we have

Tr(f(⌦)) = Tr(f(e⌦)) + h00(s) ds ^ Tr(�f 0(e⌦)),

and so

⇡⇤(Af ) =

Z
1

0

h00(s) Tr(�f 0(e⌦)) ds

=

Z
1

0

h00(s) Tr(�f 0(⌦+ h0(s) bdW� � (h0(s))2 �2)) ds

t=h
0
(s)������!

Z
1

0

Tr(�f 0(⌦+ t bdW� � t2 �2)) dt

which coincides with j⇤(TAf ) as required. q.e.d.

To apply this to simplify formula (7.3), note that

@s(JQ(B
+

N 0/N
0+)) = 0 and @sCh

0(E) = 0 = ◆@s Ch
0(E).

For the twisted Chern character this follows from the fact that the
twisted curvature is independent of s. On the other hand, the J forms
only depend on the vertical metric, and are unchanged by rescaling the
metric. The warping factor h, as it only depends on s, has the e↵ect of
rescaling the vertical metric at each s.

Applying the proposition to simplify the index formula (7.3) yields
the first part of the following theorem. Taking the exterior derivative
and applying the expression for d⌘ yields the second part. We introduce
the abbreviations

bAc(|M/ qB) = bA(rcon)
��
s=0

, T bA(|M/ qB) = TAf (rcyl,rcon)
��
s=0

.

and similarly for qN/ qB.

Theorem 7.4.

JQ(|M/ qB)� ⌘Q(|M/ qB) =

Z

|M/ qB
T bA(|M/ qB) Ch0(E)

+
X

qN2S q (
|M)

Z

qN/ qB
T bA( qN/ qB)JQ(B qN/ qN) + d⌘b�w,Q.
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Moreover

dJQ(|M/ qB) =

Z

|M/ qB
bAc(|M/ qB) Ch0(E)

+
X

qN2S q (
|M)

Z

qN/ qB
bAc( qN/ qB)JQ(B qN/ qN).

Remark 7.5. In the case qB is a point, the deduction of the first
part of Theorem 7.4 from (7.3) follows from [AGR16, Section 5]. Since
this follows from the preceeding proof also we only briefly sketch the
argument. To evaluate the term

R
qX+
bA( qX+) Ch0(E) in (7.3), using

that Ch0(E) is closed and that bA(rh) � bA(rcyl) = dT bA(rh,rcyl).
Since both A(rcyl) and Ch0(E) have no ds component, the integral isR

qX+ dT bA(rh,rcyl) Ch0(E). From loc. cit., at the interior of each bound-
ary hypersurface, the transgression splits into according to whether the
base or vertical connections change; at s = 0 only the vertical met-
ric changes and there T bA(rh,rcyl)|s=0 = T bA(rcon,rcyl) while at the
other boundary faces (the bY +) the base metric changes from ds2+gY to
ds2 + h(s)2gY and as discussed the transgression of bA for such metrics
is zero.

When the fibers of |M �! B are closed manifolds this reads

JQ(|M/ qB)� ⌘Q(|M/ qB) =

Z

|M/ qB
T bA(|M/ qB) Ch0(E) + d⌘b�w,Q

which is consistent with [AGR16, Main Theorem]. Note that if qB is

a point then by conformal invariance T bA(rcon,rcyl) = 0, so JQ(|M) =

⌘Q(|M) However as noted above this is generally not the case.

Appendix A. Composition of edge pseudodi↵erential
operators

Let M
 ��! B be a family of manifolds with corners and iterated

fibration structures as in Definition 1.3. In this section we prove the
composition formula for families of edge pseudodi↵erential operators
acting on the fibers of  .

Edge triple space. Our construction of the triple space is the natural
combination of [MP92, Appendix] and [Maz91, §3]. Let

M2

 
= M ⇥ M = {(⇣, ⇣ 0) 2M2 :  (⇣) =  (⇣ 0)},

M3

 
= {(⇣, ⇣ 0, ⇣ 00) 2M3 :  (⇣) =  (⇣ 0) =  (⇣ 00)}.
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We start with the three natural projections,

M3

 

⇡LC~~
⇡LR

✏✏

⇡CR

  

M2

 
M2

 
M2

 

(⇣, ⇣ 0, ⇣ 00)3

⇡LCyy

_

⇡LR

✏✏

↵
⇡CR

%%
(⇣, ⇣ 0) (⇣, ⇣ 00) (⇣ 0, ⇣ 00)

and we will modify M3

 
so as to end up with b-fibrations down to

(M/B)2e .
For each N 2 S (M), let

(A.1)
T (N) = {(⇣, ⇣ 0, ⇣ 00) 2 B3

N : �N (⇣) = �N (⇣ 0) = �N (⇣ 00)},
SLC(N) = ⇡�1

LC
(BN ⇥�N BN ),

SLR(N) = ⇡�1

LR
(BN ⇥�N BN ), SCR(N) = ⇡�1

CR
(BN ⇥�N BN ).

Let S (M) = {N1, N2, . . . , N`} be a listing of the elements of S (M)
with non-decreasing depth. We construct (M/B)2e by iterating the con-
struction of the edge double space in [Maz91]
h
M3

 
;T (N1); (SLC(N1) [ SLR(N1) [ SCR(N1));

. . . ;T (N`); (SLC(N`) [ SLR(N`) [ SCR(N`))
i
.

We denote the blow-down map by �(3) : (M/B)3e �!M3

 
.

We denote the collective boundary hypersurfaces obtained from these
blow-ups by

T (N)$ B(3)

���
(N), SLC(N)$ B(3)

��0
(N),

SLR(N)$ B(3)

�0�
(N), SCR(N)$ B(3)

0��
(N).

We denote the other collective boundary hypersurfaces by

B(1)

N
⇥ M2

 
$ B(3)

100
(N), M ⇥ B(1)

N
⇥ M $ B(3)

010
(N),

M2

 
⇥ B(1)

N
$ B(3)

001
(N).

Proposition A.1. The projections ⇡•, • 2 {LC,LR,CR} lift to b-
fibrations �• : (M/B)3e �! (M/B)2e

(M/B)3e
�LC

yy
�LR

✏✏

�CR

%%

(M/B)2e (M/B)2e (M/B)2e

.

Proof. We start by recalling some foundational results of Hassell-
Mazzeo-Melrose [HMM95]. First, Lemma 2.1 of op. cit. says that if
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S, T are p-submanifolds of a manifold with corners qX and S and T are
transverse or one is contained in the other then [ qX;S;T ] = [ qX;T ;S].

Secondly, Lemma 2.5 of op. cit. says that if f : qX �! qY is a simple
(i.e., with exponent matrix made up of 0’s and 1’s) b-fibration between
compact manifolds with corners, T ✓ qY is a closed p-submanifold, and
S is the minimal collection of p-submanifolds of qX into which the lift of
T under f decomposes, then f extends from the complement of f�1(T )
to a simple b-fibration [ qX;S] �! [qY ;T ].

Finally, Lemma 2.7 of loc. cit. says that if f : qX �! qY is a b-fibration
of compact manifolds with corners, S ✓ qX is a closed p-submanifold
such that f(S) is not contained in a boundary face of codimension 2,
and f restricts to S to a b-fibration onto f(S), then the composition

[ qX;S] �! qX f��! qY is a b-fibration.
Using these results the proposition will follow by induction. For sim-

plicity, since B only enters parametrically, let us assume that B = pt,
so X = M and all of the strata N are the strata Y of X. By symmetry
it su�ces to prove the proposition for • = LR.

For each j 2 {1, . . . , `} let

X3

e (j) = [X3;T (Y1); (SLC(Y1) [ SLR(Y1) [ SCR(Y1));

. . . ;T (Yj); (SLC(Yj) [ SLR(Yj) [ SCR(Yj))]

X2

e (j) = [X2;BY1 ⇥�Y1 BY1 ; . . . ;BYj
⇥�Yj BYj

].

From [Maz91, Lemma 3.14] we know that ⇡LR lifts to a simple b-
fibration

X3

e (1) �! X2

e (1).

Let k < ` and assume that ⇡LR lifts to a simple b-fibration

X3

e (k) �! X2

e (k),

we will show that it lifts to a simple b-fibration

X3

e (k + 1) �! X2

e (k + 1).

Indeed, using the results cited above, Lemma 2.5 guarantees that the
lift of ⇡LR to

[X3

e (k);SLR(Yk+1)] �! [X2

e (k);BYk+1 ⇥�Y
k+1

BYk+1 ] = X2

e (k + 1)

is a b-fibration, Lemma 2.7 guarantees that the further lift

[X3

e (k);SLR(Yk+1);T (Yk+1); (SLC(Yk+1) [ SCR(Yk+1))] �! X2

e (k + 1)

is a b-fibration, and finally Lemma 2.1 identifies the domain of this lift
with X3

e (k + 1). q.e.d.

Inspection of the proof above shows that the exponent matrices have
only zeros and ones, so we specify them by listing the preimages of
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the collective boundary hypersurfaces. Recall that the boundary hy-

persurfaces of (M/B)2e are collective boundary hypersurfaces B(2)

10
(N),

B(2)

01
(N), and the front face over Y , B(2)

��
(N). We have, for each {N 2

S (M)},
�⇤LCB

(2)

10
(N) = {B(3)

100
(N),B(3)

�0�
(N)},

�⇤LCB
(2)

01
(N) = {B(3)

010
(N),B(3)

0��
(N)},

�⇤LCB
(2)

��
(N) = {B(3)

��0
(N),B(3)

���
(N)},

�⇤LRB
(2)

10
(N) = {B(3)

100
(N),B(3)

��0
(N)},

�⇤LRB
(2)

01
(N) = {B(3)

001
(N),B(3)

0��
(N)},

�⇤LRB
(2)

��
(N) = {B(3)

�0�
(N),B(3)

���
(N)},

�⇤CRB
(2)

10
(N) = {B(3)

010
(N),B(3)

��0
(N)},

�⇤CRB
(2)

01
(N) = {B(3)

001
(N),B(3)

�0�
(N)},

�⇤CRB
(2)

��
(N) = {B(3)

0��
(N),B(3)

���
(N)}.

Applying Melrose’s push-forward and pull-back theorems this leads
to a composition result for the large edge calculus. The behavior with
respect to the conormal singularity at the diagonal is standard, so we
will focus on operators of order �1. We will also simplify notation by
not including vector bundles.

Thus, from (3.11) and Definition 3.6, we will establish composition
results for conormal distributions in

A E

phg
((M/B)2e ;⌦d,R)

where we recall that

⌦d,R = ⇢d
(M/B)2e

�⇤
(2),R

⌦(M/B), with d : M1((M/B)2e) �! R,

d(H) =

(
�(dim(N/B) + 1) if H ✓ B(2)

��
(N) for some N 2 S (M)

0 otherwise

For an operator A, let us write its integral kernel as

KA⇢
d
(M/B)2e

µR.

Then if the composition C = A�B is defined, its integral kernel is given
by

KC ⇢dµR = (�LR)⇤(�
⇤

LC(KA ⇢
dµR) · �⇤CR(KB ⇢dµR)).

Theorem A.2. If KA 2 A EA

phg
((M/B)2e) and KB 2 A EB

phg
((M/B)2e)

where the index sets satisfy

Re(EA(B(2)

01
(N))) + Re(EB(B(2)

10
(N))) > �1 for all N 2 S (M)
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then KC 2 A EC

phg
((M/B)2e) with, for each N 2 S (M),

EC(B(2)

10
(N)) = EA(B(2)

10
(N))[

⇣
EA(B(2)

��
(N)) + EB(B(2)

10
(N))

⌘
,

EC(B(2)

01
(N)) = EB(B(2)

01
(N))[

⇣
EA(B(2)

01
(N)) + EB(B(2)

��
(N))

⌘
,

EC(B(2)

��
(N)) =

⇣
EA(B(2)

��
(N)) + EB(B(2)

��
(N))

⌘

[
⇣
EA(B(2)

10
(N)) + EB(B(2)

01
(N)) + dim(N/B) + 1

⌘

Proof. Let µ(W ) denote a nowhere vanishing section of ⌦(W ) and
µb(W ) a nowhere vanishing section of ⌦b(W ).

The behavior of the densities under pull-back is given by

(�(2))⇤(µ(M2

 
/B)) =

Y

N2S (M)

⇢dim(N/B)+1

B
(2)
��

(N)
µ((M/B)2e/B)

(�(3))⇤(µ(M3

 
/B)) =

Y

N2S (M)

(⇢
B

(3)
��0(N)

⇢
B

(3)
�0�(N)

⇢
B

(3)
0��(N)

)dim(M/B)+1

⇢2 dim(M/B)+2

B
(3)
���

(N)
µ((M/B)3e/B).

Multiplying the integral kernel of C by µL = (�(2)
L

)⇤µ yields

KC ⇢d(�(2))⇤µ(M2

 
/B)

= (�LR)⇤(�
⇤

LC(KA⇢
d) · �⇤CR(KB⇢

d) · �⇤LRµL · �⇤LCµR · �⇤CRµR)

= (�LR)⇤(�
⇤

LC(KA⇢
d) · �⇤CR(KB⇢

d) · (�(3))⇤µ(M3

 
/B)),

hence

KCµ((M/B)2e/B) = (�LR)⇤
⇣
�⇤LC(KA) · �⇤CR(KB)

Y

N2S (M)

⇢dim(N/B)+1

B
(2)
�0�(N)

µ((M/B)3e/B)
⌘
.

Now we write this in terms of b-densities

KCµb((M/B)2e/B) = (�LR)⇤
⇣
�⇤LC(KA) · �⇤CR(KB)

Y

N2S (M)

⇢dim(N/B)+1

B
(2)
�0�(N)

⇢
B

(2)
010(N)

µb((M/B)3e/B)
⌘

and we can apply the pull-back and push-forward theorems. q.e.d.

The action on polyhomogeneous functions is also easy to write down.
Given A as above and f 2 A F

phg
(X) we define

Af = (�L)⇤(KA ⇢
dµR · �⇤Rf).
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Proposition A.3. With Af as above, if KA 2 A EA

phg
((M/B)2e) and

f 2 A
Gf

phg
(M/B) where the index sets satisfy

Re(EA(B(2)

01
(N))) + Re(Gf (B

(1)

N
)) > �1 for all N 2 S (M)

then Af 2 A
GAf

phg
(N) with, for each N 2 S (M),

GAf (B
(1)

N
) = EA(B(2)

10
(N))[

⇣
EA(B(2)

��
(N)) + Gf (B

(1)

N
)
⌘

Proof. Multiplying Af by µ(M/B) yields

Afµ(M/B) = (�L)⇤
⇣
KA⇢

d · �⇤Rf · (�(2))⇤µ(M2

 
)
⌘

= (�L)⇤
⇣
KA · �⇤Rfµ((M/B)2e/B)

⌘
.

and passing to b-densities

Afµb(M/B) = (�L)⇤
⇣
KA · �⇤Rf

Y

N2S (M)

⇢
B

(2)
01 (N)

µb((M/B)2e/B)
⌘
.

and we can apply the pull-back and push-forward theorems. q.e.d.

Corollary A.4. If the integral kernel of A satisfies
KA 2 A EA

phg
((M/B)2e) then A defines a bounded map, for any t 2 R,

⇢sHt

e(M/B) �! ⇢s
0
H1

e (M/B)

as long as

Re(EA(B(2)

01
(N))) + s(N) > �1

2

Re(EA(B(2)

10
(N))) > s0(N)� 1

2

Re(EA(B(2)

��
(N))) + s(N) � s0(N)

Appendix B. Composition of wedge heat operators

The wedge heat composition space. Composition is through con-
volution in time,

f(t) dt =

Z
t

0

g(t� t0)h(t0) dt0dt =

Z

t00+t0=t

(g(t00) dt00)(h(t0) dt0).

We prefer to work with ⌧ =
p
t instead of t, so this becomes

f(⌧) d⌧ =
2

⌧

Z
p
s2+es2 =⌧

(ses)(g(s) ds)(h(es) des).

In terms of the maps

R+
s ⇥ R+

es

⇡L
zz

⇡C

✏✏

⇡R

$$
R+ R+ R+

(s, es)7

⇡L

{{

_

⇡C

✏✏

⌥
⇡R

##
s

p
s2 + es2 es
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the composition is given by

f(⌧) d⌧ =
2

⌧
(⇡C)⇤ (⇡

⇤

L(⌧g(⌧) d⌧)⇡
⇤

R(⌧h(⌧) d⌧)) .

This push-forward is not well-behaved because ⇡C is not a b-fibration
but we can fix this by replacing (R+)2 with

T 2

0 = [R+

s ⇥ R+

es ; {(0, 0)}]

and then the composition formula is well-behaved. We denote the
boundary hypersurfaces of this space by

{0}⇥ R+ $ B(T )

10
, R+ ⇥ {0}$ B(T )

01
, {0}⇥ {0}$ B(T )

11
.

Now bringing in the spatial variables, we want to construct a space
H(M/B)3w so that the maps

M3

 
⇥ (R+)2

⇡LC,Lxx

⇡LR,C

✏✏

⇡CR,R

&&

M2

 
⇥ R+ M2

 
⇥ R+ M2

 
⇥ R+

(⇣, ⇣ 0, ⇣ 00, s, es).

⇡LC,Lww

_

⇡LR,C

✏✏

⇣
⇡CR,R

((
(⇣, ⇣ 0, s) (⇣, ⇣ 00,

p
s2 + es2 ) (⇣ 0, ⇣ 00, es)

(where we are using the notation M2

 
, M3

 
from Appendix A) lift to

b-maps.
We construct the space H(M/B)3w in steps starting from

H0(M/B)3w = M3

 
⇥T 2

0 .

Let S (M) = {N1, . . . , N`} be a non-decreasing list and recall the no-
tation T (N), SLC(N), etc. from (A.1). Inductively, for 1  i  `,
let

Hi(M/B)3w =
h
Hi�1(M/B)3w;T (Ni)⇥B(T )

11
;

(SLC(Ni) [ SLR(Ni) [ SCR(Ni))⇥B(T )

11
;SLC(Ni)⇥B(T )

10
;

SCR(Ni)⇥B(T )

01
;T (Ni); (SLC(Ni) [ SLR(Ni) [ SCR(Ni))

i
.

Finally, we need to blow-up the (interior) lifts of the partial diagonals.
So let

diagLC = ⇡�1

LC
(diagM ), diagLR = ⇡�1

LR
(diagM ),

diagCR = ⇡�1

CR
(diagM ),

and let diagLCR be their intersection and then define

H(M/B)3w =
h
H`(M/B)3w; diagLCR⇥B

(T )

11
;

(diagLC [ diagLR [ diagCR)⇥B(T )

11
; diagLC ⇥B

(T )

10
; diagCR⇥B

(T )

01

i
.
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Our notation for the (collective) boundary hypersurfaces ofH(M/B)3w
is as follows. First we have,

M3

 
⇥B(T )

10
$ B(C)

000,10
, M3

 
⇥B(T )

01
$ B(C)

000,01
,

M3

 
⇥B(T )

11
$ B(C)

000,11
, diagLCR⇥B

(T )

11
$ B(C)

ddd,11
,

diagLC ⇥B
(T )

11
$ B(C)

dd0,11
, diagLR⇥B

(T )

11
$ B(C)

d0d,11
,

diagCR⇥B
(T )

11
$ B(C)

0dd,11
, diagLC ⇥B

(T )

10
$ B(C)

dd0,10
,

diagCR⇥B
(T )

01
$ B(C)

0dd,01
,

and then, for each N 2 S (M),

B(1)

N
⇥ M2

 
⇥T 2

0 $ B(C)

100,00
(N),

M ⇥ B(1)

N
⇥ M ⇥T 2

0 $ B(C)

010,00
(N),

M2

 
⇥ B(1)

N
⇥T 2

0 $ B(C)

001,00
(N), T (N)⇥B(T )

11
$ B(C)

���,11
(N),

SLC(N)⇥B(T )

11
$ B(C)

��0,11
(N), SLR(N)⇥B(T )

11
$ B(C)

�0�,11
(N),

SCR(N)⇥B(T )

11
$ B(C)

0��,11
(N), SLC(N)⇥B(T )

10
$ B(C)

��0,10
(N),

SCR(N)⇥B(T )

01
$ B(C)

0��,01
(N) T (N)⇥T 2

0 $ B(C)

���,00
(N),

SLC(N)⇥T 2

0 $ B(C)

��0,00
(N), SLR(N)⇥T 2

0 $ B(C)

�0�,00
(N),

SCR(N)⇥T 2

0 $ B(C)

0��,00
(N).

Proposition B.1. Each of the projections ⇡•,•, • 2 {(LC,L),
(LR,C), (CR,R)} lift to b-submersions �• : H(M/B)3w�!H(M/B)w

H(M/B)3w

�LC,Lww
�LR,C

✏✏

�CR,R

''
H(M/B)w H(M/B)w H(M/B)w

.

The proof of this proposition is similar to that of Proposition A.1.
The reason that the maps are not b-fibrations is that they are not b-
normal as will be clear from the exponent matrices.

The exponent matrices. We specify the exponent matrix of the maps
�·,·,· by specifying the pull-back of the collective boundary hypersurfaces.

Thus �LC,L mapsB(C)

0dd,01
,B(C)

000,01
and, for eachN 2 S (M),B(C)

001,00
(N),
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into the interior of H(M/B)w; otherwise

�⇤LC,LB
(H)

00,1
= {B(C)

000,10
,B(C)

000,11
,B(C)

d0d,11
,B(C)

0dd,11
}[

[

N2S (M)

{B(C)

�0�,11
(N),B(C)

0��,11
(N)},

�⇤LC,LB
(H)

dd,1
= {B(C)

ddd,11
,B(C)

dd0,11
,B(C)

dd0,10
}

and, for each N 2 S (M),

�⇤LC,LB
(H)

10,0
(N) = {B(C)

100,00
(N),B(C)

�0�,11
(N),B(C)

�0�,00
(N)}

�⇤LC,LB
(H)

01,0
(N) = {B(C)

010,00
(N),B(C)

0��,11
(N),B(C)

0��,01
(N),B(C)

0��,00
(N)}

�⇤LC,LB
(H)

��,1
(N) = {B(C)

���,11
(N),B(C)

��0,11
(N),B(C)

��0,10
(N)},

�⇤LC,LB
(H)

��,0
(N) = {B(C)

���,00
(N),B(C)

��0,00
(N)},

where we note that B(C)

�0�,11
(N) and B(C)

0��,11
(N) are repeated.

Similarly, the map �LR,C maps B(C)

000,10
, B(C)

000,01
, B(C)

dd0,10
, B(C)

0dd,01
and,

for each N 2 S (M), B(C)

010,00
(N), into the interior of H(M/B)w; other-

wise

�⇤LR,CB
(H)

00,1
= {B(C)

000,11
,B(C)

dd0,11
,B(C)

0dd,11
}

[
[

N2S (M)

{B(C)

��0,11
(N),B(C)

0��,11
(N)}

�⇤LR,CB
(H)

dd,1
= {B(C)

ddd,11
,B(C)

d0d,11
}

and, for each N 2 S (M),

�⇤LR,CB
(H)

10,0
(N) = {B(C)

100,00
(N),B(C)

��0,11
(N),B(C)

��0,10
(N),B(C)

��0,00
(N)}

�⇤LR,CB
(H)

01,0
(N) = {B(C)

001,00
(N),B(C)

0��,11
(N),B(C)

0��,01
(N),B(C)

0��,00
(N)}

�⇤LR,CB
(H)

��,1
(N) = {B(C)

���,11
(N),B(C)

�0�,11
(N)}

�⇤LR,CB
(H)

��,0
(N) = {B(C)

���,00
(N),B(C)

�0�,00
(N)}

where we note that B(C)

��0,11
(N) and B(C)

0��,11
(N) are repeated.

Finally, the map �CR,R maps B(C)

000,10
, B(C)

dd0,10
and, for each N 2

S (M), B(C)

100,00
(N), into the interior of H(M/B)w; otherwise

�⇤CR,RB
(H)

00,1
= {B(C)

000,01
,B(C)

000,11
,B(C)

dd0,11
,B(C)

d0d,11
}

[
[

N2S (M)

{B(C)

��0,11
(N),B(C)

�0�,11
(N)}

�⇤CR,RB
(H)

dd,1
= {B(C)

ddd,11
,B(C)

0dd,11
,B(C)

0dd,01
}
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and, for each N 2 S (M),

�⇤CR,RB
(H)

10,0
(N) = {B(C)

010,00
(N),B(C)

��0,11
(N),B(C)

��0,10
(N),B(C)

��0,00
(N)}

�⇤CR,RB
(H)

01,0
(N) = {B(C)

001,00
(N),B(C)

�0�,11
(N),B(C)

�0�,00
(N)}

�⇤CR,RB
(H)

��,1
(N) = {B(C)

���,11
(N),B(C)

0��,11
(N),B(C)

0��,01
(N)}

�⇤CR,RB
(H)

��,0
(N) = {B(C)

���,00
(N),B(C)

0��,00
(N)}

where we note that B(C)

��0,11
(N) and B(C)

�0�,11
(N) are repeated.

Composition. Now let us discuss the composition law. As before we
are interested in integral kernels that are sections of a weighted density
bundle. Let us start by recalling the weight from (3.23), namely

h : M1(H(M/B)w) �! R,

h(H) =

8
>>>>>><

>>>>>>:

�(dim(N/B) + 3) if H ✓ B(H)

��,1
(N) for some N 2 S (M)

�(dim(N/B) + 1) if H ✓ B(H)

��,0
(N) for some N 2 S (M)

�(dim(M/B) + 2) if H = B(H)

dd,1

1 if H = B(H)

00,1

0 otherwise

and let µR = �⇤
(H),R

µ(M/B). We will determine the behavior under

composition for integral kernels of the form KA⇢hµR with coe�cient
KA 2 AEA

phg
(H(M/B)w). Ultimately we are interested in kernels that

are merely conormal with bounds acting on sections of a vector bundle,
but the corresponding composition result follows easily from this one.

Proposition B.2. Suppose that the integral kernel of A has the
form KA⇢hµR with KA 2 AEA

phg
(H(M/B)w) and that of B has the form

KB⇢hµR with KB 2 AEB

phg
(H(M/B)w). If

Re(EA(B(H)

dd,1
)) > 0, Re(EB(B(H)

dd,1
)) > 0, and

Re(EA(B(H)

01,0
(N))) + Re(EB(B(H)

10,0
(N))) + 1 > 0 for all N 2 S (M),

then we may define their composition A �B by the formula

eKA�BµR�
⇤

(H)
(⌧ d⌧)

= (�LR,C)⇤(�
⇤

LC,L(KA⇢
hµR �⇤

(H)
(⌧d⌧)) · �⇤CR,R(KB⇢

hµR �⇤
(H)

(⌧d⌧)))

and we have eKA�B 2 ⇢hAEC

phg
(H(M/B)w) with

EA�B(B
(H)

dd,1
) = EA(B(H)

dd,1
) + EB(B(H)

dd,1
)

and, for each N 2 S (M),

EA�B(B
(H)

10,0
(N)) = EA(B(H)

10,0
(N))[

�
EA(B(H)

��,1
(N)) + EB(B(H)

10,0
(N))

�
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EA�B(B
(H)

01,0
(N)) = EB(B01,0(N))[

�
EA(B(H)

01,0
(N)) + EB(B(H)

��,1
(N))

�

EA�B(B
(H)

��,1
(N)) = EA(B(H)

��,1
(N)) + EB(B(H)

��,1
(N))

EA�B(B
(H)

��,0
(N)) = (EA(B(H)

��,0
(N)) + EB(B(H)

��,0
(N)))

[
�
EA(B(H)

10,0
(N)) + EB(B(H)

01,0
(N)) + dim(N/B) + 1

�

Proof. Let us write, during the proof,

h : M1(H(M/B)w) �! R,

h(H) =

8
>>>>>><

>>>>>>:

�(dim(N/B) + a) if H ✓ B(H)

��,1
(N) for some N 2 S (M)

�(dim(N/B) + a0) if H ✓ B(H)

��,0
(N) for some N 2 S (M)

�(dim(M/B) + b) if H = B(H)

dd,1

1 if H = B(H)

00,1

0 otherwise

to motivate the choice (a = 3, a0 = 1, b = 2) made above.
Note that �LR,C is not a b-fibration so that push-forward along it

does not preserve polyhomogeneous functions. However, the weight h is
such that the polyhomogeneous functions to be push-ed forward vanish
to infinite order at of all boundary hypersurfaces where �LR,C fails to be
b-normal and so we end up with a polyhomogeneous function. Indeed,
the product �⇤

LC,L
(⇢h)�⇤

CR,R
(⇢h) vanishes to infinite order at every face

in
�⇤LC,LB

(H)

00,1
[ �⇤CR,RB

(H)

00,1

= {B(C)

000,10
,B(C)

000,01
,B(C)

000,11
,B(C)

dd0,11
,B(C)

d0d,11
,B(C)

0dd,11
}

[
[

N2S (M)

{B(C)

��0,11
(N),B(C)

�0�,11
(N),B(C)

0��,11
(N)},

so we see that the push-forward along �LR,C will be polyhomogeneous
and will vanish at B00,1 to infinite order.

Thus let us write eKA�B = KA�B⇢h for some KA�B polyhomogeneous,
which after multiplying both sides of the formula for A � B by µL =
�⇤
(H),L

µ(M/B), satisfies

KA�B⇢
h�⇤

(H)
(⌧ µ(M2

 
/B ⇥ R+)) = (�LR,C)⇤(�

⇤

LC,L(KA⇢
h�⇤

(H)
(⌧))

· �⇤CR,R(KB⇢
h�⇤

(H)
(⌧)) · �⇤

(C)
(µ(M3

 
/B ⇥ (R+)2))).

We need to work out the density weight factors. Start by noting that

�⇤
(H)

⌧ = ⇢
B

(H)
00,1

⇢
B

(H)
dd,1

Y

N2S (M)

⇢
B

(H)
��,1(N)

and then, ignoring the faces where we have seen infinite order decay,

�⇤LR,C(⇢
h�⇤

(H)
⌧)�1�⇤LC,L(⇢

h�⇤
(H)

⌧)�⇤CR,R(⇢
h�⇤

(H)
⌧)
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= (⇢
B

(C)
ddd,11

⇢
B

(C)
dd0,10

⇢
B

(C)
0dd,01

)� dim(M/B)�b+1

Y

N2S (M)

(⇢
B

(C)
���,11(N)

⇢
B

(C)
��0,10(N)

⇢
B

(C)
0��,01(N)

)� dim(N/B)�a+1

Y

N2S (M)

(⇢
B

(C)
���,00(N)

⇢
B

(C)
��0,00(N)

⇢
B

(C)
0��,00(N)

⇢�1

B
(C)
�0�,00(N)

)� dim(N/B)�a
0

Next, the lifts of the densities (continuing to ignore faces where we
have infinite decay) are

�⇤
(H)

µ(M2

 
/B ⇥ R+)

=
h
⇢dim(M/B)

B
(H)
dd,1

Y

N2S (M)

⇢dim(N/B)+2

B
(H)
��,1(N)

⇢dim(N/B)+1

B
(H)
��,0(N)

i
µ(H(M/B)w)

= ⇢j1
(H)

µb(H(M/B)w/B)

�⇤
(C)

µ(M3

 
/B ⇥ (R+)2) =

h
⇢2 dim(M/B)+1

B
(C)
ddd,11

(⇢
B

(C)
dd0,10

⇢
B

(C)
0dd,01

)dim(M/B)

Y

N2S (M)

(⇢2
B

(C)
���,11(N)

⇢
B

(C)
��0,10(N)

⇢
B

(C)
0��,01(N)

)dim(N/B)+2

(⇢2
B

(C)
���,00(N)

⇢
B

(C)
��0,00(N)

⇢
B

(C)
0��,00(N)

⇢
B

(C)
�0�,00(N)

)dim(N/B)+1

i
µ(H(M/B)3w)

= ⇢j2
(C)

µb(H(M/B)3w/B)

where ⇢(H) and ⇢(C) are, respectively, total boundary defining functions
for H(M/B)w and H(M/B)3w. From the exponent matrices of �LR,C

we have

(�⇤LR,C⇢
j1
(H)

)�1⇢j2
(C)

= (⇢
B

(C)
ddd,11

⇢
B

(C)
dd0,10

⇢
B

(C)
0dd,01

)dim(M/B)+1

Y

N2S (M)

(⇢
B

(C)
���,11(N)

⇢
B

(C)
��0,10(N)

⇢
B

(C)
0��,01(N)

)dim(N/B)+2

(⇢
B

(C)
���,00(N)

⇢
B

(C)
��0,00(N)

⇢
B

(C)
0��,00(N)

)dim(N/B)+1⇢
B

(C)
010,00(N)

So altogether

KA�Bµb(H(M/B)3w/B) = (�LR,C)⇤(�
⇤

LC,L(KA) · �⇤CR,R(KB)

⇢j3µb(H(M/B)3w/B)).

where, ignoring faces with infinite decay, ⇢j3
(C)

is equal to

(⇢
B

(C)
ddd,11

⇢
B

(C)
dd0,10

⇢
B

(C)
0dd,01

)�b+2

Y

N2S (M)

(⇢
B

(C)
���,11(N)

⇢
B

(C)
��0,10(N)

⇢
B

(C)
0��,01(N)

)�a+3
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(⇢
B

(C)
���,00(N)

⇢
B

(C)
��0,00(N)

⇢
B

(C)
0��,00(N)

)�a
0
+1⇢a

0
+dim(N/B)

B
(C)
�0�,00(N)

⇢
B

(C)
010,00(N)

.

Now we can apply the pull-back and push-forward theorems to get the
result. q.e.d.

Appendix C. Composition of b, wedge heat kernels

In section 7.2, we prove a families index theorem on manifolds with
iterated fibration structures endowed with b-wedge metrics. The locally
trivial family is denoted

X 0�M 0  
0

���! B0

in order to distinguish it from the fiber bundle used in the bulk of the
text. There is a minimal N 0

0
2 S(M 0) such that dim(N 0

0
/B0) = 0,

and the metric is of b-type near BN
0
0
and of wedge type at all other

N 0 2 S(M 0).
In this section we establish a composition result for b-wedge heat

operators.

The b, wedge heat composition space. Recall that the b,wedge
heat space is given by

H(M 0/B0)b,w =
h
M 0 ⇥ 0 M 0 ⇥ R+

⌧ ;BN
0
0
⇥�

N
0
0
BN

0
0
⇥ R+

⌧ ;

BN
0
1
⇥�

N
0
1
BN

0
1
⇥ {0}; BN

0
1
⇥�

N
0
1
BN

0
1
⇥ R+

⌧ ;

. . . ;BN
0
`

⇥�
N

0
`

BN
0
`

⇥ {0}; BN
0
`

⇥�
N

0
`

BN
0
`

⇥ R+

⌧

i
,

where {N 0

0
, N 0

1
. . . . , N 0

`
} is a non-decreasing list of S(M 0). Thus this

space is constructed by treating N 0

0
as in the construction of the b-

heat space [Mel93, Chapter 7], and treating the other N 0 as in the
construction of the wedge heat space in §3.5. We will follow the same
pattern below.

We use the space T 2

0
defined in Appendix B as

T 2

0 = [R+

s ⇥ R+

es ; {(0, 0)}]

together with the notation for its boundary hypersurfaces B(T )

10
, B(T )

01
,

B(T )

11
. We define the b, wedge composition space using the notation

from (A.1) starting from

H0(M
0/B0)3

b,w
= [(M 0)3

 0⇥T 2

0 ;T (N 0

0); (SLC(N
0

0)[SLR(N
0

0)[SCR(N
0

0))].

Inductively, for 1  i  `, let

Hi(M
0/B0)3

b,w
=
h
Hi�1(M

0/B0)3
b,w

;T (N 0

i)⇥B(T )

11
;

(SLC(N
0

i) [ SLR(N
0

i) [ SCR(N
0

i))⇥B(T )

11
;
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SLC(N
0

i)⇥B(T )

10
;SCR(N

0

i)⇥B(T )

01
;T (Ni);

(SLC(N
0

i) [ SLR(N
0

i) [ SCR(N
0

i))
i
.

Finally, we need to blow-up the (interior) lifts of the partial diagonals.
So let

diagLC = ⇡�1

LC
(diagM ), diagLR = ⇡�1

LR
(diagM ),

diagCR = ⇡�1

CR
(diagM ),

and let diagLCR be their intersection and then define

H(M 0/B0)3
b,w

=
h
H`(M

0/B0)3
b,w

; diagLCR⇥B
(T )

11
;

(diagLC [ diagLR [ diagCR)⇥B(T )

11
; diagLC ⇥B

(T )

10
; diagCR⇥B

(T )

01

i
.

As anticipated, N 0

0
gives rise to the same blow-ups as in the compo-

sition space for the b-calculus [Alb07] and the other N 0 give rise to the
same blow-ups as in the wedge heat composition space in Appendix B.

Our notation for the (collective) boundary hypersurfaces of the space
H(M 0/B0)3

b,w
is as follows. First we have,

(M 0)3
 0 ⇥B(T )

10
$ B(C)

000,10
, (M 0)3

 0 ⇥B(T )

01
$ B(C)

000,01
,

(M 0)3
 0 ⇥B(T )

11
$ B(C)

000,11
, diagLCR⇥B

(T )

11
$ B(C)

ddd,11
,

diagLC ⇥B
(T )

11
$ B(C)

dd0,11
, diagLR⇥B

(T )

11
$ B(C)

d0d,11
,

diagCR⇥B
(T )

11
$ B(C)

0dd,11
, diagLC ⇥B

(T )

10
$ B(C)

dd0,10
,

diagCR⇥B
(T )

01
$ B(C)

0dd,01
,

and then, for each N 0 2 S(M 0),

B(1)

N 0 ⇥ M2

 
⇥T 2

0 $ B(C)

100,00
(N 0),

M ⇥ B(1)

N 0 ⇥ M ⇥T 2

0 $ B(C)

010,00
(N 0),

M2

 
⇥ B(1)

N 0 ⇥T 2

0 $ B(C)

001,00
(N 0), T (N 0)⇥T 2

0 $ B(C)

���,00
(N 0),

SLC(N
0)⇥T 2

0 $ B(C)

��0,00
(N 0), SLR(N

0)⇥T 2

0 $ B(C)

�0�,00
(N 0),

SCR(N
0)⇥T 2

0 $ B(C)

0��,00
(N 0),

and, for each N 0 2 S(M 0) \ {N 0

0
},

T (N 0)⇥B(T )

11
$ B(C)

���,11
(N 0), SLC(N

0)⇥B(T )

11
$ B(C)

��0,11
(N 0),

SLR(N
0)⇥B(T )

11
$ B(C)

�0�,11
(N 0), SCR(N

0)⇥B(T )

11
$ B(C)

0��,11
(N 0),

SLC(N
0)⇥B(T )

10
$ B(C)

��0,10
(N 0), SCR(N

0)⇥B(T )

01
$ B(C)

0��,01
(N 0).
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The exponent matrices. As in Appendix B, we have b-maps

H(M 0/B0)3
b,w

�LC,Lvv
�LR,C

✏✏

�CR,R

((
H(M 0/B0)b,w H(M 0/B0)b,w H(M 0/B0)b,w

and we now specify their behavior with respect to the boundary hyper-
surfaces.

First, �LC,L maps B(C)

0dd,01
, B(C)

000,01
and B(C)

001,00
(N 0), for each N 0 2

S(M 0), into the interior of H(M 0/B0)b,w; otherwise

�⇤LC,LB
(H)

00,1
= {B(C)

000,10
,B(C)

000,11
,B(C)

d0d,11
,B(C)

0dd,11
}

[
[

N 02S(M 0)\{N 0
0}

{B(C)

�0�,11
(N 0),B(C)

0��,11
(N 0)},

�⇤LC,LB
(H)

dd,1
= {B(C)

ddd,11
,B(C)

dd0,10
,B(C)

dd0,11
},

for N 0

0
,

�⇤LC,LB
(H)

10,0
(N 0

0) = {B(C)

100,00
(N 0

0),B
(C)

�0�,00
(N 0

0)}

�⇤LC,LB
(H)

01,0
(N 0

0) = {B(C)

010,00
(N 0

0),B
(C)

0��,00
(N 0

0)}

�⇤LC,LB
(H)

��,0
(N 0

0) = {B(C)

���,00
(N 0

0),B
(C)

��0,00
(N 0

0)},

and, for each N 0 2 S(M 0) \ {N 0

0
},

�⇤LC,LB
(H)

10,0
(N 0) = {B(C)

100,00
(N 0),B(C)

�0�,11
(N 0),B(C)

�0�,00
(N 0)}

�⇤LC,LB
(H)

01,0
(N 0) = {B(C)

010,00
(N 0),B(C)

0��,11
(N 0),B(C)

0��,01
(N 0),B(C)

0��,00
(N 0)}

�⇤LC,LB
(H)

��,1
(N 0) = {B(C)

���,11
(N 0),B(C)

��0,11
(N 0),B(C)

��0,10
(N 0)},

�⇤LC,LB
(H)

��,0
(N 0) = {B(C)

���,00
(N 0),B(C)

��0,00
(N 0)}.

We note that B(C)

�0�,11
(N 0) and B(C)

0��,11
(N 0) are repeated, for N 0 2

S(M 0) \ {N 0

0
}.

Similarly, the map �LR,C maps B(C)

000,10
, B(C)

000,01
, B(C)

dd0,10
, B(C)

0dd,01
and,

for each N 0 2 S(M 0), B(C)

010,00
(N 0), into the interior of H(M 0/B0)b,w;

otherwise

�⇤LR,CB
(H)

00,1
= {B(C)

000,11
,B(C)

dd0,11
,B(C)

0dd,11
}

[
[

N 02S(M 0)\{N 0
0}

{B(C)

��0,11
(N 0),B(C)

0��,11
(N 0)}

�⇤LR,CB
(H)

dd,1
= {B(C)

ddd,11
,B(C)

d0d,11
}
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for N 0

0
,

�⇤LR,CB
(H)

10,0
(N 0

0) = {B(C)

100,00
(N 0

0),B
(C)

��0,00
(N 0

0)}

�⇤LR,CB
(H)

01,0
(N 0

0) = {B(C)

001,00
(N 0

0),B
(C)

0��,00
(N 0

0)}

�⇤LR,CB
(H)

��,0
(N 0

0) = {B(C)

���,00
(N 0

0),B
(C)

�0�,00
(N 0

0)}

and, for each N 0 2 S(M 0) \ {N 0

0
},

�⇤LR,CB
(H)

10,0
(N 0) = {B(C)

100,00
(N 0),B(C)

��0,11
(N 0),B(C)

��0,10
(N 0),B(C)

��0,00
(N 0)}

�⇤LR,CB
(H)

01,0
(N 0) = {B(C)

001,00
(N 0),B(C)

0��,11
(N 0),B(C)

0��,01
(N 0),B(C)

0��,00
(N 0)}

�⇤LR,CB
(H)

��,1
(N 0) = {B(C)

���,11
(N 0),B(C)

�0�,11
(N 0)}

�⇤LR,CB
(H)

��,0
(N 0) = {B(C)

���,00
(N 0),B(C)

�0�,00
(N 0)}.

We note thatB(C)

��0,11
(N 0) andB(C)

0��,11
(N 0) are repeated forN 0 2 S(M 0)\

{N 0

0
}.

Finally, the map �CR,R maps B(C)

000,10
, B(C)

dd0,10
and, for each N 0 2

S(M 0), B(C)

100,00
(N 0), into the interior of H(M 0/B0)b,w; otherwise

�⇤CR,RB
(H)

00,1
= {B(C)

000,01
,B(C)

000,11
,B(C)

dd0,11
,B(C)

d0d,11
}

[
[

N 02S(M 0)\{N 0
0}

{B(C)

��0,11
(N 0),B(C)

�0�,11
(N 0)}

�⇤CR,RB
(H)

dd,1
= {B(C)

ddd,11
,B(C)

0dd,11
,B(C)

0dd,01
}

for N 0

0
,

�⇤CR,RB
(H)

10,0
(N 0

0) = {B(C)

010,00
(N 0

0),B
(C)

��0,00
(N 0

0)}

�⇤CR,RB
(H)

01,0
(N 0

0) = {B(C)

001,00
(N 0

0),B
(C)

�0�,00
(N 0

0)}

�⇤CR,RB
(H)

��,0
(N 0

0) = {B(C)

���,00
(N 0

0),B
(C)

0��,00
(N 0

0)}.

and, for each N 0 2 S(M 0) \ {N 0

0
},

�⇤CR,RB
(H)

10,0
(N 0) = {B(C)

010,00
(N 0),B(C)

��0,11
(N 0),B(C)

��0,10
(N 0),B(C)

��0,00
(N 0)}

�⇤CR,RB
(H)

01,0
(N 0) = {B(C)

001,00
(N 0),B(C)

�0�,11
(N 0),B(C)

�0�,00
(N 0)}

�⇤CR,RB
(H)

��,1
(N 0) = {B(C)

���,11
(N 0),B(C)

0��,11
(N 0),B(C)

0��,01
(N 0)}

�⇤CR,RB
(H)

��,0
(N 0) = {B(C)

���,00
(N 0),B(C)

0��,00
(N 0)}.

We note that B(C)

��0,11
(N 0) and B(C)

�0�,11
(N 0) are repeated, for N 0 2

S(M 0) \ {N 0

0
}.
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Composition. Now let us discuss the composition law. As before we
are interested in integral kernels that are sections of a weighted density
bundle. Let us start by recalling the weight from §7.2, namely

h : M1(H(M 0/B0)b,w) �! R,

h(H) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

�(dim(N 0/B0) + 3)
if H ✓ B(H)

��,1
(N 0)

for some N 0 2 S(M 0) \ {N 0

0}

�(dim(N 0/B0) + 1)
if H ✓ B(H)

��,0
(N 0)

for some N 0 2 S(M 0)

�(dim(M 0/B0) + 2) if H = B(H)

dd,1

1 if H = B(H)

00,1

0 otherwise

and let µR = �⇤
(H),R

µ(M 0/B0). We will determine the behavior un-

der composition for integral kernels of the form KA⇢hµR with KA 2
AEA

phg
(H(M 0/B0)b,w). Ultimately we are interested in kernels that are

merely conormal with bounds acting on sections of a vector bundle, but
the corresponding composition result follows easily from this one.

Proposition C.1. Let A have integral kernel KA⇢hµR satisfying
KA 2 AEA

phg
(H(M 0/B0)b,w) and B have integral kernel KB⇢hµR satis-

fying KB 2 AEB

phg
(H(M 0/B0)b,w). If

Re(EA(B(H)

dd,1
)) > 0, Re(EB(B(H)

dd,1
)) > 0, and

Re(EA(B(H)

01,0
(N 0))) + Re(EB(B(H)

10,0
(N 0))) + 1 > 0 for all N 0 2 S(M 0),

then we may define their composition C = A �B by the formula

eKA�BµR�
⇤

(H)
(⌧ d⌧)

= (�LR,C)⇤(�
⇤

LC,L(KA⇢
hµR �⇤

(H)
(⌧d⌧)) · �⇤CR,R(KB⇢

hµR �⇤
(H)

(⌧d⌧)))

and we have eKA�B 2 ⇢hAEA�B
phg

(H(M 0/B0)b,w) with

EA�B(B
(H)

dd,1
) = EA(B(H)

dd,1
) + EB(B(H)

dd,1
)

and, for N 0

0
,

EA�B(B
(H)

10,0
(N 0

0)) = EA(B(H)

10,0
(N 0

0))[EB(B
(H)

10,0
(N 0

0))

EA�B(B
(H)

01,0
(N 0

0)) = EB(B01,0(N
0

0))[EA(B
(H)

01,0
(N 0

0))

EA�B(B
(H)

��,0
(N 0

0)) = (EA(B(H)

��,0
(N 0

0)) + EB(B(H)

��,0
(N 0

0)))

[
�
EA(B(H)

10,0
(N 0

0)) + EB(B(H)

01,0
(N 0

0)) + dim(N 0

0/B) + 1
�
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and, for each N 0 2 S(M 0) \ {N 0

0
},

EA�B(B
(H)

10,0
(N 0)) = EA(B(H)

10,0
(N 0))[

�
EA(B(H)

��,1
(N 0)) + EB(B(H)

10,0
(N 0))

�

EA�B(B
(H)

01,0
(N 0)) = EB(B01,0(N

0))[
�
EA(B(H)

01,0
(N 0)) + EB(B(H)

��,1
(N 0))

�

EA�B(B
(H)

��,1
(N 0)) = EA(B(H)

��,1
(N 0)) + EB(B(H)

��,1
(N 0))

EA�B(B
(H)

��,0
(N 0)) = (EA(B(H)

��,0
(N 0)) + EB(B(H)

��,0
(N 0)))

[
�
EA(B(H)

10,0
(N 0)) + EB(B(H)

01,0
(N 0)) + dim(N 0/B0) + 1

�
.

Proof. The proof is essentially the same as that of Proposition B.2,
using the exponent matrices computed above. q.e.d.
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[NkSSS06] Vladimir E. Nazăı kinskĭı, Anton Yu. Savin, Bert-Wolfgang Schulze, and
Boris Yu. Sternin. Elliptic theory on singular manifolds, volume 7 of
Di↵erential and Integral Equations and Their Applications. Chapman &
Hall/CRC, Boca Raton, FL, 2006.

[Pia93] Paolo Piazza. On the index of elliptic operators on manifolds with bound-
ary. J. Funct. Anal., 117(2):308–359, 1993.

[PV] Paolo Piazza and Boris Vertman. Eta and rho invariants on manifolds
with edges. available online at arXiv:1604.07420.

[Sch07] Bert-Wolfgang Schulze. Pseudo-di↵erential calculus on manifolds with
geometric singularities. In Pseudo-di↵erential operators: partial di↵er-
ential equations and time-frequency analysis, volume 52 of Fields Inst.
Commun., pages 37–83. Amer. Math. Soc., Providence, RI, 2007.

[Sie83] Paul Siegel. Witt spaces: A geometric cycle theory for KO-homology
theory at odd primes. Amer. J. Math., 105:1067–1105, 1983.

[Sin71] Isadore Singer. Future extensions of index theory and elliptic operators.
In Prospects in Mathematics, volume 70 of Annals of Mathematics Studies
in Mathematics, pages 171–185. 1971.

[SS95] Elmar Schrohe and Bert-Wolfgang Schulze. Boundary Value Problems
in Boutet de Monvel’s Algebra for Manifolds with Conical Singularities
II. In Boundary Value Problems, Schrödinger Operators, Deformation
Quantization, volume 2 of Advances in Partial Di↵erential Equations,
pages 70–205. Akademie Verlag, Berlin, 1995.



FAMILIES DIRAC INDEX ON PSEUDOMANIFOLDS 343

[SS10] Anton Yu. Savin and Boris Yu. Sternin. Index formulas for stratified
manifolds. Di↵er. Uravn., 46(8):1135–1146, 2010.

[Ste89] Mark Stern. L2-index theorems on locally symmetric spaces. Invent.
Math., 96(2):231–282, 1989.

[Tay11] Michael E. Taylor. Partial di↵erential equations II. Qualitative studies of
linear equations, volume 116 of Applied Mathematical Sciences. Springer,
New York, second edition, 2011.
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