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THE INDEX FORMULA FOR FAMILIES OF DIRAC
TYPE OPERATORS ON PSEUDOMANIFOLDS

PIERRE ALBIN & JESSE GELL-REDMAN

Abstract

We study families of Dirac-type operators, with compatible per-
turbations, associated to wedge metrics on stratified spaces. We
define a closed domain and, under an assumption of invertible
boundary families, prove that the operators are self-adjoint and
Fredholm with compact resolvents and trace-class heat kernels.
We establish a formula for the Chern character of their index.
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Introduction

In this article we establish an index formula for families of Dirac-type
operators on stratified spaces endowed with metrics of iterated conic-
type singularities. In the process we construct the resolvent and heat
kernel of these operators by extending the b-calculus of Melrose and the
edge calculus of Mazzeo to manifolds with corners and fibered bound-
aries. We establish refined asymptotic expansions of these operators of
relevance to the study of analytic and spectral constructions and their
connections to topology. In the present paper we use them to carry out
the heat equation proof of the index theorem.

Our index theorem seems to be the first example of an index theo-
rem for singular metrics on stratified spaces of arbitrary depth since the
Gauss-Bonnet and signature theorems for piecewise flat admissible met-
rics established by Cheeger [Che83]. Since this seminal paper there has
been much interest and progress in index theory on spaces with isolated
conic singularities and, more recently, non-isolated conic singularities
which we will review below.

Most singular spaces arising from smooth objects, such as zero sets
of polynomials, orbits of group actions, and many moduli spaces, are
Thom-Mather stratified spaces. They can be written as the union of



FAMILIES DIRAC INDEX ON PSEUDOMANIFOLDS 209

smooth manifolds known as strata. One stratum is dense and referred
to as the regular part, while the others make up the singular part. Each
singular stratum has a tubular neighborhood in the stratified space that
fibers over it, the fiber is itself a stratified space and is known as the
link of that stratum. The depth of a stratified space is the length of
the longest chain of inclusions among the closures of singular strata.
(See, e.g., [Alb17, Klo09] and references therein for more on stratified
spaces.)

Every Thom-Mather stratified space X can be ‘resolved’ to a manifold
with corners X by a procedure that goes back to Thom [Tho69] and
was recently reformulated by Melrose (see [ALMP12, AM11, Alb17]).
The boundary hypersurfaces of X are partitioned into collective (i.e. dis-
joint unions of) boundary hypersurfaces, By, one per singular stratum
of X , which participate in smooth fiber bundles of manifolds with
corners,

o

Z — By ——Y,

in which Y is the resolution of the closure of Y° in X and Z is the
resolution of the link of Y° in X. These fiber bundles satisfy compat-
ibility conditions at intersections of collective boundary hypersurfaces,
see Definition 1.1. We refer to this structure on X as an iterated fibra-
tion structure and emphasize that it is equivalent to the Thom-Mather
structure on X. N

There is a map 8 : X — X relating a stratified space and its resolu-
tion that restricts to a diffeomorphism between the interior of X and the
regular part of X, X™®&. This relation allows us to define the analogues
of smooth objects on X. For example we can define a smooth function
on X to be a continuous function on X whose restriction to X8 = X°
extends to a smooth function on X. We can study these functions on
X without reference to )?

CF(X) = {f €C¥(X): fly, € HYCO(Y) for all Y}.

The differentials of these functions locally span a vector bundle, known
as the wedge cotangent bundle,

YTFX s X,

described in more detail below.

Following the paradigm of [Mel93], we can think of the present paper
as carrying out geometric analysis in the ‘wedge category’ where, e.g.,
the role of the contangent bundle is supplanted by the wedge cotangent
bundle. For example, our metrics will be Riemannian metrics on the
interior that extend to bundle metrics on the wedge (co)tangent bundle,
and our Clifford bundles will have Clifford actions over the interior that
extend to actions of the Clifford algebra of the wedge cotangent bundle.
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In contrast to the situation in [Mel93], the dual bundle Y7T'X, known
as the wedge tangent bundle, does not have a natural Lie bracket; this
leads us to define ‘wedge differential operators’ in terms of ‘edge dif-
ferential operators’. A related issue is that wedge differential operators
generally have multiple extensions from smooth sections of compact
support to closed operators on L?-spaces. Indeed, formally self-adjoint
operators will often have closed extensions that are not self-adjoint.

Thus our first task in studying Dirac-type wedge operators is to
identify a well-behaved closed extension. We carry this out under the
assumption that certain model operators analogous to the ‘boundary
families” in [BC90a, BC90b] are invertible; however as in [MP97a,
MP97b] we include appropriate pseudodifferential perturbations and
we will show in a forthcoming paper that as in loc. cit. this is a ‘mini-
mal’ assumption in that it corresponds to the vanishing of a topological
obstruction (see Remark 4.2).

Theorem 1. Let X be a manifold with corners and an iterated fibra-
tion structure endowed with a totally geodesic wedge metric, let (E, gg,
VE el be a wedge Clifford module with associated Dirac-type operator
Ox (after conjugation, see (1.20)) and let Qx be a compatible pertur-
bation. If Oxqo = Ox + Qx satisfies the Witt assumption (i.e., has
invertible boundary families, see Section 2 below, in particular Defini-
tion 2.4) then Ox g with its vertical APS domain

Dvars(0x,Q)
= graph closure of {u € p;/ZHel(X; E):dxquc L*(X;E)},

is a closed operator on L?(X; E) that is self-adjoint and Fredholm with
compact resolvent.

The heat kernel of 5%{,@ with the induced domain is trace-class and
has a short-time asymptotic expansion of the form

oo depth(X

Tr(e_t?j%ﬂ@) —(dim X) /QZ Z aj kt]/Z logt)
j=0 k=0

We refer the reader to the text for precise definitions and statements.
For example the trace of the heat kernel has fewer powers of logt for
small values of j, see Corollary 5.7. The nomenclature ‘Witt assump-
tion’ stems from the case of the signature operator which satisfies this
assumption if and only if X is a Witt space in the sense of [Sie83,
Che79Db], see, e.g., [ALMP12]. As explained in a forthcoming com-
panion paper, allowing for a compatible perturbation in our theorems
means in particular that they apply to the signature operator on the
more general class of ‘Cheeger spaces’ studied in [ALMP18, ALMP17]
(originally introduced by Banagl [Ban02] and known as L-spaces, see
[ABL"15]). Below we also discuss the ‘geometric Witt assumption’
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assumed in most of these references and analyzed in the recent preprint
[HLV].

There are immediate consequences to the spectral theory of such
Ox,Q, for example:

Corollary 2. The spectrum of (5§(’Q7DVAPS) is a discrete subset of
R* that satisfies Weyl’s law

#{ eigenvalues, with multiplicity, less than A}
Vol(X)
T
(4m)2 9™ X D1 + L dim X)

A%&mX

~

The zeta function of 5%@, ((s) = Tr((ava}ker(éx,Q)i)_25)’ is holomor-

phic on {s € C : Re(s) > 3dim X} and eztends to a meromorphic
function on C with poles of order at most 1 + depth(X).

In light of the theorem above, a family of wedge Dirac-type operators

Op/5 on the fibers of a fiber bundle, X — M — B, of manifolds
with corners and iterated fibration structures determines an index in
K4mX(B). Our second main result is a formula for the Chern character
of this index.

Recall that Bismut and Cheeger, in their study of the families in-
dex theorem for manifolds with boundary [BC90a, BC90b, BC91],
established a formula for the Chern character of the index of a family
of spin Dirac operators on even-dimensional spaces with isolated conic
singularities and invertible boundary families. Namely, if M — B is
the resolution of these spaces to manifolds with boundary,

Cheyen(Ind(dp7/5)) :/ E(M/B) Ch(E)—-J(0M/B) in H"*(B),
M/B

where 7 is a differential form depending globally on the geometry of the

boundary fibration 0M — B. Our theorem involves Bismut-Cheeger

J-forms and n-forms extended to allow for Dirac-type operators on
singular spaces and compatible smoothing perturbations.

Theorem 3. Let M —2— B be a fiber bundle of manifolds with cor-
ners and iterated fibration structures, E — M a wedge Clifford bundle
with associated Dirac-type operator Oy p and Q an admissible pertur-
bation. If D p,q with its vertical APS domain satisfies the Witt as-
sumption, then

Chgim(ny ) (Ind(8r1/5,0), V™)
- /M/BA<M/B>Ch’<E>— > [ AN/BT(By/N)

NeS,(m) Y N/B
+ dnq(M/B),
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where Ch; denotes the even or odd Chern character in accordance with
the parity of j, and dim(M/B) = dim X. The sum is taken over the set
Sy (M) of boundary hypersurfaces of M transverse to the map 1p: M —
B, i.e. those which also fibre over B. (In the even dimensional case,
the left hand side is the Chern character obtained after stabilizing the
null space of Oy/p,g to a bundle over B by compressing the Bismut
superconnection; in the odd case, the left hand side is the differential
form obtained by suspension and integration.)

Bismut and Cheeger obtained the index formula for a family of spin
Dirac operators on manifolds with boundary with invertible boundary
families by deforming a neighborhood of the conic singularities to a
cylindrical end. In the process the J-form was shown to converge to
the Bismut-Cheeger n-form, introduced in [BC89]. Melrose and Piazza
[MP97a, MP97b] used the b-calculus to establish the families index
theorem for arbitrary families of Dirac-type operators by allowing ap-
propriate pseudodifferential perturbations. The boundary contributions
correspondingly depend on the perturbation.

We discuss the definition of the Bismut-Cheeger n and J forms
for families of compatibly perturbed Dirac-type operators on stratified
spaces in §6.2. This extends the definition of n-invariants for spaces with
conic singularities in [Che87, §8] and for spaces with non-isolated conic
singularities (i.e., stratified spaces of depth one) in [PV]. Heuristically,

given a fiber bundle X — M- é,va vertical family of Dirac-type
operators 07 /B and a connection for v, the n-forms and J-forms are
both related to the heat kernel of a family of Dirac-type operators on

M x R*, but with different extensions of 7. Indeed,

X — M xR* X xRt —— M x R+
N i , J +— i
B x Rt B

where in the former case the R™ factor results in an ‘auxiliary Grassman
variable’ but does not change the fiber, while in the latter the fiber
X x R* is endowed with an exact conic metric dr? + T‘QgX

In order to find the relation between the n and J forms associated

to M —» B we attach the cone over M to the boundary of a half-
cylinder over M. That is, we form a ‘b-c¢ suspension’ (where b-c refers
to b-metric and conic-metric) of M of the form

ds® + s 931/ near s =0

M x[0,1]5, 9,57 A 5=
(MX[0,1]s: 837 xf0,11)/5)> I(3Tx(0.11.)/5 {usv+%wB near s = 1
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we extend 057 /B to a family of Dirac-type operators acting on the fibers

of M x [0,1]s — B and then, using an extended families index formula
together with some characteristic form computations, conclude the fol-
lowing in Theorem 7.4. See Section 7 for a detailed description of the
transgression forms herein.

Theorem 4. For a fiber bundle M — B as above, the relation
between the n and J-forms for wedge Dirac-type operators with a com-
patible perturbation @ is

Jo(M/B) —7o(M/B)

_ /M/ETA(M/B) aE -+ Y /N 5 TAGV/B) 0(B /)

NES (M
+ dnb—w,Q7

where, for any family L — B as above, TA(L/B) is the restriction to

Lx {0} of a transgression between the A -forms on LxR* corresponding
to a cylindrical metric and a conic metric, and Ny—w g denotes a ‘b-wedge
n-form’.

To prove Theorem 4 we extend Theorem 3 to manifolds with cor-
ners with metrics that are of ‘wedge-type’ at all collective boundary
hypersurfaces but one, where they are of ‘b-type’ (i.e., asymptotically
cylindrical, albeit with a singular cross-section).

The formula for the exterior derivative of the n-forms is already in
Theorem 3. Together with Theorem 4 this implies a formula for the
exterior derivative of the J-forms, namely

dJo(M/B)

- A.(M/B)CW (E Z / A(N/B)Tq(%B /).

M/B

Here, for any L, A.(L/B) is the restriction to L x {0} of the A-form on
L x R* corresponding to a conic metric.

Previous results. The index theorem of Atiyah-Singer for closed mani-
folds [AS63] was soon generalized to operators on manifolds with bound-
ary admitting local elliptic boundary conditions by Atiyah and Bott
[AB64] and later extended to operators admitting global elliptic bound-
ary conditions by Atiyah, Patodi, and Singer [APS75]. The resulting
formula for a Dirac-type operator d on a Clifford bundle E — M takes
the form

ind(9) = /M A(M) CY'(E) - n(3anr)
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where A is the A-hat genus of M, Ch'(E) the twisting curvature of
the Clifford bundle, and 7(9p,,) the n-invariant of the induced Dirac-
type operator on the boundary. The boundary conditions in this paper
involve the projection onto the sum of the eigenspaces corresponding
to positive eigenvalues of an induced boundary operator and are now
known as Atiyah-Patodi-Singer, or APS, boundary conditions.

Already in [APS75] it was pointed out that the resulting domain
had a natural interpretation as the domain of an operator on a com-
plete non-compact manifold obtained by attaching a cylinder to the
boundary. Melrose [Mel93] showed that in fact one can consider the
APS index theorem as the index theorem in the ‘category’ of manifolds
with asymptotically cylindrical ends. The present project is analogous
to Melrose’s treatment, we obtain the index theorem in the ‘category’ of
manifolds with corners and iterated fibration structures endowed with
wedge metrics.

Cheeger’s proof of the Ray-Singer conjecture connecting analytic and
Reidemeisiter torsion [Che77, Che79a] (established independently by
Miiller [Miil78]), led him to develop analysis on spaces with singu-
larities, particularly what we refer to as stratified spaces with wedge
metrics. Cheeger realized that the Atiyah-Patodi-Singer index formula
can be obtained as the natural index theorem in the context of man-
ifolds with conic singularities, see [Che79b, Che80, Che83] for the
signature and Gauss-Bonnet theorem both for isolated singularities and
for piecewise flat metrics on stratified spaces. Chou [Cho85, Cho89]
showed for isolated conic singularities that the same was true for the
Dirac operator.

For a fiber bundle of closed operators M Y. B , Atiyah and Singer
[AS71] showed that the index theorem generalizes to families of opera-
tors on the fibers of ¢). They showed that such a family has an index in
the form of a virtual bundle over B and, among other things, they com-
puted the Chern character of this index bundle. Bismut [Bis86] used
heat equation methods to establish the formula for the Chern character
of the index bundle.

In [Wit85], Witten derived a formula for the 7 invariant of a manifold
fibering over a circle. This formula was established rigorously by Bis-
mut and Freed [BF86a, BF86b] for spin Dirac operators and Cheeger
[Che87] for the signature operator. This was generalized by Bismut and
Cheeger [BC89] and Dai [Dai91] to fiber bundles of arbitrary closed
manifolds. They considered the behavior of the 7 invariant as the metric
on the total space of the fiber bundle undergoes an ‘adiabatic limit’ in
which the fibers are collapsed to a point. The limit involves a ‘higher’
version of the n-invariant, known as the Bismut-Cheeger n-forms. These
forms are of even degree if the dimension of the fiber is odd and of odd
degree if the dimension of the fiber is even.
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The réle played by the n-invariant in the Atiyah-Patodi-Singer index
theorem for manifolds with boundary is played by the n-forms in the
formula for the Chern character of the index bundle of a family of Dirac-
type operators on a manifold with boundary. This was established by
Bismut and Cheeger for spin Dirac operators on even dimensional mani-
folds with boundary [BC90a, BC90b, BC91] assuming invertibility of
an induced boundary family of Dirac operators (referred to as the ‘Witt
assumption’ below). Melrose and Piazza [MP97a, MP97b| proved a
formula conjectured in [BC91] for the case of odd dimensional mani-
folds with boundary, extended the Bismut-Cheeger result to Dirac-type
operators, and removed the assumption of invertible boundary fami-
lies. They introduced the notion of a ‘spectral section’ of the boundary
family and proved an index theorem for each spectral section.

(In the present paper we make the assumption of invertible boundary
families as in the work of Bismut-Cheeger mentioned above, but we allow
perturbations as in the approach of Melrose-Piazza. In a subsequent
paper we will characterize the existence of these perturbations in terms
of spectral sections.)

The approach adopted by Bismut and Cheeger to establish the fami-
lies index theorem for Dirac operators on manifolds with boundary was
to attach a cone to the boundary and consider a family of metrics,
parametrized by £ € [0, 1], interpolating between the conic singular-
ity and an infinite cylindrical end. An intermediate result is an index
theorem for families of Dirac operators on spaces with isolated conic
singularities. One effect of the ¢ degeneration is to ‘scale away’ the
small eigenvalues of the boundary family of Dirac operators so that the
Dirac operators on the spaces with conical singularities are essentially
self-adjoint and there is no need to choose a domain. The Chern charac-
ter of the index bundle of the family of Dirac operators on spaces with
isolated conic singularities involves another differential form invariant,
the Bismut-Cheeger J-forms. Bismut-Cheeger showed that the e-limit
of the J-form in this case is the n form.

Index theory is now a vast field. Among the many ways in which
singular spaces arise in index theory there are spaces arising from folia-
tions (see, e.g., [CS84, BKR10]) and group actions (see, e.g., [Ati74]).
Index theorems on complete metrics on manifolds with possibly fibered
boundary include [Car01, LMO05, MR04, MR06, Vai0l, MR11,
AMO09a, AM10, AMO09b, AR09a, LMP06, Hun07, Pia93, MN].
Index theory on manifolds with corners endowed with complete metrics
have been studied in, e.g., [MP92, MIN98, LMO02, Loy05, Bun09,
MN12, Ste89, Miil96, HMM97|.

There is a powerful groupoid approach to index problems on the in-
terior of manifolds with corners, see e.g., [ALN07, DLR15, CN14,
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CRLM14, BS] for complete metrics, [DLIN09] for isolated conic sin-
gularities, and [DS] for a Boutet de Monvel type calculus.

An approach of Nazaikinskii, Yu, Savin, Sternin, and Schulze, see
[NkSSS05, NkSSS06, SS10] in the stratified setting proceeds by de-
composing the index of a pseudodifferential operator on a stratified
space into a sum of contributions from each stratum with the property
that each is a homotopy invariant of the symbol. These papers make
use of the analytic tools developed by Schulze and his collaborators, see
e.g., [Sch07, SS95]. Our treatment benefits from recent advances in
parallel analytic tools in, e.g., [ARS, MV14, MV12, KM16, GRS15,
MW17].

Already in [Ati71, Sin71] Atiyah and Singer called for the devel-
opment of index theory on stratified spaces such as algebraic varieties.
Index theory on spaces with isolated conic singularities is now very well
understood see, e.g., [Les97, FH95, BL96, BS88]. However, there are
few explicit index formulee associated to singular metrics on stratified
spaces beyond the case of isolated conic singularities. For a stratified
space with a single singular stratum and a wedge metric there are in-
dex theorems for the signature operator by Chan, Hunsicker-Mazzeo,
Briining, and Cheeger-Dai [Cha97, HMO05, Brii09, CD09]. The 7 and
p invariants have been studied by Piazza and Vertman [PV]. Atiyah
and LeBrun [AL13] obtain an index theorem on a smooth four di-
mensional manifold endowed with a singular wedge metric. Lock and
Viaclovsky [LV13] prove an index theorem for anti-self-dual orbifold-
cone metrics, again in four dimensions. In previous work, the authors
[AGR16] proved an index theorem for spin Dirac operators satisfying
the geometric Witt condition.
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1. Families of Dirac-type wedge operators

1.1. Iterated fibration structures and wedge geometry on man-
ifolds with corners. Let X be an n dimensional manifold with corners,
by which we mean an n dimensional topological manifold with boundary
with a smooth atlas modeled on (R*)"™ whose boundary hypersurfaces
are embedded. We denote the set of boundary hypersurfaces of X by
My (X).
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A collective boundary hypersurface refers to a finite union of
non-intersecting boundary hypersurfaces.

Definition 1.1 (Melrose [AM11, ALMP12, Alb17]). An iterated
fibration structure on a manifold with corners X consists of a collection

of fiber bundles

Zy—%y¢—Y>Y

where By is a collective boundary hypersurface of X with base and
fiber manifolds with corners such that:

i) Each boundary hypersurface of X occurs in exactly one collective
boundary hypersurface By . N
ii) If By and By intersect, then dimY # dim Y, and we write

Y <Y if dimY < dimY.

i) If Y < Y then Y has a collective boundary hypersurface By
participating in a fiber bundle ¢ : B — Y such that the

YY
diagram
by ~
(1.1) %yﬂ%? %Y? cC Y
k A{/
Y
commutes.

Unless stated otherwise, we will assume that X is compact and that
dim Zy > 0 for all Y.

There is no real loss of generality in assuming that the bases are
connected, but the fibers of the boundary fibrations will generally be
disconnected.

There is a functorial equivalence between Thom-Mather stratified
spaces and manifolds with corners and iterated fibration structures see,
e.g., [ALMP12], [Albl17, Theorem 6.3]. Under this equivalence, the
bases of the boundary fibrations correspond to the different strata. We
will denote this set by

S(X) ={Y :Y is the base of a boundary fibration of X}.

Both the bases and fibers of the boundary fiber bundles themselves
are manifolds with corners and iterated fibration structures, see e.g.,
[AM11, Lemma 3.4]. The assumption dimZy > 0 corresponds to
the category of pseudomanifolds within the larger category of stratified
spaces.

The partial order on S(X) gives us a notion of depth

depthy (V) =max{n e Ny :JY; € S(X) st. Y =Yy <Y1 <... <Y, }.
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The depth of X is then the maximum of the integers depthy (Y) over
Y € S(X). Moreover, for each p € 0X, the set {Y € S(X) : p € By}
is totally ordered with respect to < and thus has a unique element of
maximal depth Y (). We denote

depthy (p) = depthy (Y P)).

This stratum Y ®) is the unique element in S(X) for which p € By
and p lies over the interior of Y, i.e. ¢y (p) € Y° =Y \ 9Y. (Indeed, if
peByandY £Y® thenY® <Y andp € By NBy (), so from (1.1),

¢y (p) € Bywy C Y, and if ¢y (p) € IYP) then ¢yt (p) € Byry
for some Y’ < Y®) contradicting the maximality of Y(p).)

If H is a boundary hypersurface then, because it is assumed embed-
ded, there is a non-negative function pp such that

pi;(0) = H and |dpg| # 0 on H,

where | - | denote the norm with respect to some smooth background
metric on M; we call any such function a boundary defining func-
tion, or bdf, for H. It is always possible (see, e.g., [AM11, Proposition
1.2]) to choose: a boundary defining function py for each H € M;(X),
an open neighborhood Uy C X of each H, and a smooth vector field
Vg defined in Uy such that

1in Uy ifK=H
Vapk =4 .. .
OinUg NUx fK#H
[VH, VK} =0in Uy NUK
for all H, K € M1(X). We refer to these choices as a boundary prod-
uct structure, and will always assume that our boundary defining

functions are chosen this way.
For each Y € §(X) we denote a collective boundary defining function

by
pYy = H PH,
HeBy
we also use the notation
pPX = H PH
HeM(X)

for a total boundary defining function.

A boundary product structure allows us to extend an iterated fibra-
tion structure to a collared iterated fibration structure. Indeed,
let us assume for simplicity of notation that the neighborhoods Uy co-
incide with py([0,1)), so that Uy = [0,1),, x H. For each Y € S(X),
we write

%(%Y) = U Uy = [07 1)py x By, Yyt = [07 1)PY XY
HeBy

PH
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and we denote the natural extension of ¢y by
by+ : € (By) — Y.

Choosing compatible boundary product structures on each ¥ € S(X)
(existence is checked by a simple induction on the depth of X), the
extended boundary fibrations participate in commutative diagrams,

P+

(1.2) % (By) N C(Bs) ¢(Byy) C YH

¢Y+ %7)+

Y+

whenever Y < Y.

This structure will be useful when we discuss Getzler rescaling below
(85). In that setting, we will have a filtration of a vector bundle defined
on collective boundary hypersurfaces and we will need to extend it into a
neighborhood of the boundary consistently; a collared iterated fibration
structure makes this easy to do.

Various differential geometric objects have natural analogues that
take the iterated fibration structure into account. For example, we
define

CE(X) = {f €C¥(X): fly, €yCO(Y) forall Y € S(X)}.

(This corresponds to the smooth functions on X that are continuous
on the underlying stratified space. If an open cover of X is the lift of
a cover of the underlying stratified space, then there is a compatible
partition of unity in C3°(X) see, e.g., [ABL"15, Lemma 5.2].)

The edge vector fields on X [Maz91] are

Ve ={V € C®(X;TX):

V‘%Y is tangent to the fibers of ¢y for all Y € S(X)},

or, equivalently, they are the b-vector fields (vector fields tangent to the
boundary) that when applied to C3°(X) yield functions that vanish at
the boundary of X.

There is a vector bundle, the edge tangent bundle, °T X, together with
a natural vector bundle map i, : °T’X — T'X that is an isomorphism
over the interior and satisfies

(ie)LC® (X °TX) = V.

In local coordinates near a point in By, (x,y,2), where = is a bdf, y
denotes coordinates along Y, and 2z denotes coordinates along Z, a local
frame for ®I'X is given by

20z, x0y, O..
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Note that the vector fields x0, and x0, vanish at By as sections of T'X
but not as sections of “T'X. If Y = {pt} then the edge tangent bundle
coincides with the b-tangent bundle discussed in §3.1.

The universal enveloping algebra of V. is the ring Diff}(X) of edge
differential operators [Maz91, §2]. Thus these are the differential op-
erators on X that can be expressed locally as finite sums of products
of elements of V,. They have the usual notion of degree and extension
to sections of vector bundles, as well as an edge symbol map defined on
the edge cotangent bundle, see [Maz91, ALMP12, ALMP18].

Remark 1.2. In [ALMP12, ALMP18, ALMP17]| the edge tan-
gent bundle was referred to as the ‘iterated edge tangent bundle’. We
prefer to think of it as the edge tangent bundle of the iterated fibra-
tion structure. Similarly, the wedge tangent bundle, defined below, was
referred to in loc. cit. as the ‘iterated incomplete edge tangent bundle’.

Among the metrics most closely associated to these spaces are met-
rics that degenerate conically reflecting the conic degeneration of the
space. We will define these formally in Section 1.2, but they include
cones on cones and bundles of cones on bundles of cones, and so on.
Metrics of this form, wedge metrics, are singular at the boundary of
X. However, they can be seen as smooth (or more generally Z-smooth
or polyhomogeneous, see Section 3.1) sections of a rescaled bundle of
symmetric tensors.

Formally, we proceed as follows. Let X be a manifold with corners
and iterated fibration structure. Consider the ‘wedge one-forms’

Vi ={welC®X;T"X):
for each Y € S(X), i, w(V) =0 for all V € ker Doy }.

Just as we have done with the edge tangent bundle, we can identify V;,
with the space of sections of a vector bundle. That is, there exists a
vector bundle YT X, the wedge cotangent bundle of X, together with
a bundle map

(1.3) bw: "T*X — T*X
that is an isomorphism over the interior of X and such that
(1w)C(X5 VT X) =V, CC(X;TX).

In particular, in local coordinates near the collective boundary hyper-
surface By the wedge cotangent bundle is spanned by

dr, zdz, dy

where x is a boundary defining function for By, dz represents covectors
along the fibers and dy covectors along the base.
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The dual bundle to the wedge cotangent bundle is the wedge tangent
bundle, YT X. It is locally spanned by

0y, Lo., 9,

A wedge metric is simply a bundle metric on the wedge tangent bun-
dle. Below we will make further assumptions on the metric, see Sec-
tion 1.2.

Wedge differential operators are defined in terms of edge differential
operators: P is a wedge differential operator of order k acting on sections
of a vector bundle F if p’)f(P is an edge differential operator of order k
acting on sections of F,

(1.4) Diff* (X; E) = p3” Diff%(X; E).

See, e.g., [MV14, GKM13, ALMP12, ALMP18|.
By a smooth family of manifolds with corners and iterated fibration
structures we will mean first of all a fiber bundle

X—M-YyB

where X, M, and B are manifolds with corners. Since M is locally
diffeomorphic to X x U, U C B, every boundary hypersurface of M
corresponds to either a boundary hypersurface of B or a boundary hy-
persurface of X. The latter are the boundary hypersurfaces that are
transverse to ¥. We want the fibers of ¢ to have iterated fibration
structures that themselves vary smoothly. We formalize this as follows.

Definition 1.3. A locally trivial family of manifolds with cor-
ners and iterated fibration structures over B is:

e a fiber bundle of manifolds with corners X — M —2— B )

e a partition of the boundary hypersurfaces of M transverse to v,
which we denote by Sy(M) C S(M), into collective boundary
hypersurfaces {8y : N € Sy(M)}, where each N is a manifold

with corners endowed with a fiber bundle map N v, B ,

e a collection of fiber bundles Zn — By ¢—N> N satisfying Defi-

satisfying that, for all N € Sy (M), the diagram
(1.5) BN—> M

"

N P

N

B

commutes.
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For each b € B the fiber of ¢ : M — B, X = ¢~ 1(b) has a iterated
fibration structure with
S(X) = {Ys =9y (b) : N € Sy(M)}

and boundary fiber bundles determined by the diagrams, one for each
N e Sq/)(M ),

.
g v

In particular, By is the typical fiber of ¢ o 1. We will always use
By to denote collective boundary hypersurfaces of M and By to denote
collective boundary hypersurfaces of X and hope the similar notation
does not cause confusion.

Analogously to what we have done before, the 1-wedge one forms
are the covectors on M that vanish on vertical vectors at all boundary
hypersurfaces transverse to 1,

for each N € Sy (M), i w(V) =0 for all V € ker Doy },

and can be identified with the sections of a vector bundle, ¥ (V) T* M. We
refer to this as the ‘y-wedge cotangent bundle’ and to the dual bundle
w(W)T M, as the “¢-wedge tangent bundle’. The latter has a sub-bundle
determined by its sections,

C®(M;¥TM/B) = {V € C®°(M;"Y ¥ TM) :
(pr)(wa) =0 for all f € C*(B)},

where pxV € C*°(M;TM) acts by differentiation, which we will call the
vertical wedge tangent bundle. The vertical wedge cotangent bundle is

the dual bundle YT*M/B — M. A choice of connection for M Y. B
induces splittings

(1.6) YWTM =“TM/B®¢*TB, “WT*M =YT*M/B & ¢*T*B

1.2. Totally geodesic wedge metrics. Let M L B be a family
of manifolds with corners and iterated fibration structures. A wverti-
cal wedge metric on M will refer to a bundle metric on YT'M/B. For
simplicity we will work with a subset of these metrics which we call
‘totally geodesic vertical wedge metrics’. For simplicity of notation, in
this section we discuss these metrics on a fixed fiber X = 1~1(b) of .
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We define totally geodesic wedge metrics inductively by the depth
of the space. If X has depth zero, so is a smooth manifold, a wedge
metric is simply a Riemannian metric. Assuming we have defined totally
geodesic wedge metrics at spaces of depth less than k, let X have depth
k. A wedge metric gy on X is a totally geodesic wedge metric if, for
every Y € S(X) of depth k there is a collar neighborhood ¥ (By) =
[0,1); x By of By in X, a metric gy pt of the form

(1.7) Gwpt = dz® + 2°gy, 1y + Sy gy

where gy is a totally geodesic wedge metric on Y, gz, + ¢*gy is a

submersion metric for By ¢—Y> Y, and gz, restricts to each fiber of

¢y to be a totally geodesic wedge metric on Zy, and
(1.8) Gw — Gwpt € T2CZ(C(By; S2(VT*X)).

Off of these collar neighborhoods the form of the metric is fixed by the
induction, meaning if depth y(p) = k' < k there is a neighborhood of p
which is isometric, via a stratified diffeomorphism, to an open subset of
a totally geodesic wedge space of depth k’.

(Here “totally geodesic wedge space” means a manifold with corners
with iterated fibration structure equipped with a totally geodesic wedge
metric.)

If at every step gw = gw,pt We say that gy is a rigid or product-type
wedge metric. If at every step gw — gw,pt = O(x) as a symmetric two-
tensor on the wedge tangent bundle, we say that g, is an ezact wedge
metric. We will always work with totally geodesic wedge metrics.

For (X, gw) a totally geodesic wedge space of depth k, if p € X has
depthy (p) = k' < k, then by definition there is an open neighborhood
of p which is isometrically stratified diffeomorphic to an open neighbor-
hood in a totally geodesic wedge space (X', gi,) of depth k’. Identify-
ing this open neighborhood with its image, p then lies over a maximal
depth stratum Y of X', as so the metric form in (1.7) and (1.8) ap-
plies directly to p in X’. By our discussion on local depth above, p lies
over the interior of Y, and therefore there is a contractible open ball
¢y(p) € O C Y° and a corresponding neighborhood [0,1), x Z x O
lying entirely in X, such that z is a boundary defining function of
By and the metric satisfies (1.7) and (1.8) in this neighborhood. Be-
low, our local analysis proceeds in this way; about each point p we
take a neighborhood corresponding to a contractible O in the interior
of the unique stratum Y above whose interior p lies, and use the cor-
responding metric decomposition in (1.7)—(1.8) locally in that neighbor-
hood. B

For points that lie in an intersection By NBy with Y < Y, the metric
decomposition (1.7)—(1.8) does not in general hold on B uniformly up
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to its boundary hypersurface By N By, as a simple example demon-
strates. Consider the “cone on a cone” metric on [0,1)s x [0,1), x X,

ds® + s*(dr* + r%gz).

This is an open subset of a totally geodesic wedge space of depth two.
The corresponding singular space is

X =0(C(2)) = [0,1)s x (10,1), x Z/{r =0} x Z) /{s =0} x C(Z),

the resolved boundary fibrations for which are By = [0,1),xZ — pt =
Y and By = [0,1)sxZ — [0,1)s = Y. Thus r, s are boundary defining
functions and the above metric decomposition is not of the form (1.7)—
(1.8) with respect to r. However, under the coordinate transformation
r = ssinr, y = scosr the metric becomes

da?® + <arcmn22(x/y)(w2 + y2)92> + dy?.
x

In regions with s > ¢ > 0, z is a local boundary defining function for
B and this expression shows that the metric satisfies (1.7) and (1.9),
for points lying above the interior of Y. Note that z is not a valid
boundary defining function on the whole of B as it is O(rs). On the
other hand s is a global bdf of By and the metric decomposition holds
on the whole of By .

Let us describe the asymptotics of the Levi-Civita connection of
a totally geodesic wedge metric at By for ¥ € S(X). First let us
start by recalling the behavior of the Levi-Civita connection of a sub-
mersion metric. Endow By with a submersion metric of the form
98y = 9gmy )y +¢"gy. We denote the associated splitting of the tangent
bundle T0X by

TBy =TBy /Y © ¢3TY
and the orthogonal projections onto each summand by
h: T8y — ¢"TY, v:TBy — TBy/Y.

Given a vector field U on Y, we denote its horizontal lift to By by
U. The Levi-Civita connection of (By, g%, ), VBY | can be written in
terms of the Levi-Civita connections VY on the base and the connections
VB /Y on the fibers using two tensors: 1) the second fundamental form
of the fibers, defined by

SP Ty [Y x TBy /Y — ¢TY, 8 (V1,Va) = (Vi 1)
and, 2) the curvature of the fibration, defined by

R ¢*TY x ¢*TY — TBy )Y, R (Uy,Us) = v([Uy, Us)).
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The behavior of the Levi-Civita connection (cf. [HHMO4, Proposition
13]) is then summed up in the table:

‘ 9By (Va};WmW‘s) H Vo ‘ Uo
ViV goxyy (V" Va, Vo) o gy (87 (V1. V2). o)
V?yv 9By Y ([67 V], Vb) - ¢*Y9Y(S¢Y (V7 V0)7 Ij) _%g‘By/Y(Rd)Y ([77 ﬁ0)7 V)
v U — gy (S (V, Vo), U) 393, /vy (R (U, Up), V)
V?f Us 39y /vy (R (U1, Ua), Vo) 9y (V{;, U2, Uo)

We want a similar description of the Levi-Civita connection of a to-
tally geodesic wedge metric. We define an operator V on sections of the
wedge tangent bundle through the usual Koszul formula

20w (Vwo W1, Wa) = Wogw (W1, Wa) +Wigw (Wo, Wa) — Wagy (Wo, W1)
+ gw([Wo, W], Wa) — gw([Wo, Wa] , W1) — gw([W1, Wa], Wyp).

We will consider wedge metrics gy, and g, that differ by gy — g}, =
Oy (2?), where the Oy (2P) notation reminds the reader that these are
tensors on wedge vector fields. In particular, for any such pair, if W; €
C®(X;%TX),i=0,1,2, then gyw(W;, W;) — gb,(W;, W;) = O(2?), and
by the Koszul formula and the fact, seen below, that xz[W;, W;] is a
smooth wedge vector field,

(1.9) 9w (Ve W1, Wa) — g4 (Viy, W1, Wa) = O(x).

Thus to understand the leading asymptotics of the Levi-Civita connec-
tion of a totally geodesic wedge metric, it suffices to understand the
leading asymptotics of a product-type wedge metric.

Fix a product-type wedge metric gy pt = dz? + ng%y /vy +¢*gy such
that gw—gw,pt = 22g, the splitting of the tangent bundle of X associated
to gm, /v + ¢*gy extends to a splitting of the wedge tangent bundle of
¢ (By) and hence induces a splitting

(1.10) YTE (By) = (02) ® L"TBy /Y @ ¢y TY.
In terms of which a convenient choice of vector fields is
8, v, U

where V' denotes a ¢y-vertical wedge vector field at {x = 0} extended
trivially to %(By) and U denotes a wedge vector field on Y, lifted
horizontally to By and then extended trivially to ¢’ (By). Note that,
with respect to gw pt, these three types of vector fields are orthogonal,
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and that their commutators satisfy
(00, 1V] = =LV € 2710 (6(By), 1 TBy /Y), [ax, ﬁ} —0,
[1vi,in] = & [V, Vo] € 271C™((By), LV T8y /Y),
V.0 = L[v.0] e c®(#(By), 2 TBy /),
[ﬁl, ﬁg} € 2C(%(By), LY TBy /Y) + C(€(By), ¢4 TY).

Remark 1.4. It is important to understand that the inductive defi-
nition of product type and totally geodesic wedge vector fields does not
imply that for a fixed gy, every By has a collar neighborhood with a
metric that of the canonical form above. Indeed, such a decomposition
can only be assumed on the complement of those By, with Y/ < Y.
Here we compute the asymptotics of the connection and curvature on a
neighborhood where the decomposition holds, and when we work at a
corner, i.e. an intersection of By N By, we assume the decomposition
holds only on a neighborhood of the deeper one.

Below we will work with a local frame of wedge vector fields, orthog-
onal with respect to gy pt,
(1.11)

1
Oz, Vo, Uy, a=1,...,0y=dimZy, i=1,...,hy =dimY,
x
where the V,, are a local frame of VT*By /Y, the (7} are the horizontal
lifts of a local frame U; of ¥T'Y. _
If Wy € {0s, Vo, U;} and Wo, W3 € {0, 2V, U;} then we find
Gw,pt (Viw, Wo, W3) =0 if 0, € {W1, Wa, W3}
except for gy pt (Vv O, %VQ) = —Gw,pt(Vva %V% 0z) = g%y/Y(Vla Va)

and otherwise

Gt (Vi Wa, W3) | Iy, \ Us \
Viiile gy v (V0 T2, ) 26y g (5% (V1. V2), U)
Viv 9By /Y ([U7 v, V:z) — Bygy (S (V,V8),U) | —5gm, /v (R (U,Us), V)

vvU —x¢}gy (SP (V, V3),0) 2 gy sy (RO (U, Us), V)
Vi Uz Loy v (R (U1, Us), Vs) gy (V3 Us, Us)

We point out a few consequences of these computations, valid for an
arbitrary totally geodesic wedge metric. First note that the operator

V:C®(X;VTX) — C¥(X; T*X @ YT X)

defines a connection on the wedge tangent bundle. Thus, in particu-
lar, the curvature tensor Ry, of V is a well-defined 2-form on all of X
with values in endomorphisms of WT'X. Also note that this connection
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asymptotically preserves the splitting of YT'¢ (By) into two bundles

(1.12) YTE(By) = [(0:) & 2VTBy /Y] @ ¢y TY
in that if Wy, Wy € V,, are sections of the two different summands then
(1.13) gw(onwl, WQ) = O(.ﬁ) for all Wy € COO(X, TX).

Let us denote by
vy VTE (By) — (0:) & 1V T'By /Y,
b “TE(By) — (0) @ ¢*TY,

the orthogonal projections onto their images, while v and h continue to
denote projection onto VT*By /Y and ¢*VT'Y, and define connections

V' =vioVovy : C¥(E(By); (0) & 2V TBy /Y)
— CX(€(By ); T*C(By) © ((0:) © ;" TBy/Y)),

Vi =¢*VY 1 C®(E(By); ¢y TY) — C(€; T (By) ® ¢3TY).
Denote by jc. : {z = ¢} — €(By) the inclusion, and identify {z = ¢}
with By = {x = 0}, note that the pull-back connections j:V'+ and
jZV" are independent of ¢ and

(1.14) JoV = gV @ g,
Using the above description of the asymptotics of the Levi-Cevita
connection, we can now describe some aspects of the asymptotics of

its curvature tensor. These will be used in particular in the Getzler
rescaling in Section 5 below.

Proposition 1.5. Let (X, gy) be a manifold with corners and an
iterated fibration structure endowed with a totally geodesic wedge metric.
Let Y € S(X) and let x be a bdf for By in which the canonical metric
form decomposition (1.7)—(1.8) holds.

1) If Wy, Wy are vector fields tangent to By then Ry, (W1, Wa) asymp-
totically preserves the splitting
YTE (By) = [(0:) & 2VTBy Y] @ 3 TY
2) For N, Wy € C®(X;TX), with Wy tangent to the fibers of ¢y,
Wi, Wy € COO(X;WTX),
Gw (B (N, Wo)W1, Wa) = gy (Ry (N, vIVo) v Wi, v Wo)

~ N(z) (¢;gy (S?Y (vWo, vWa), W)
~ G gy (8™ (vIVo, W), b)) + O(a).

3) For N and W;, i = 0,1,2 as in part (2), noting that = hWj is
smooth up to {x = 0}, and writing

U=hN|,—0, Up=2z"'hWolomo, U;=hWils—p, i=1,2
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with U, U; the horizontal lifts of U, U; € Cx(Y,TY),i=0,1,2, we

have
9w (VN (Ry (N, Wo))hWy, hWs) = N (z)gy (RY (U, Ug) Uy, Us)
+ (N(2))2gs, /v (R?Y (hWa, hWy), vIVg) + O(x).

Proof. If a connection asymptotically preserves a splitting of the bun-
dle, then its curvature evaluated in vector fields tangent to the boundary
hypersurface will also asymptotically preserve that splitting. By (1.9)
and (1.12), the gy, connection preserves the splitting, so statement (1)
above is correct.

Moving on to the part (2), for any N, Wy € C*(X;TX), Wy,Wy €
C>®(X;VTX), since Ry, is a tensor, its value at 9X only depends on the
values of the vector fields at the boundary, so if N|,—o = N|z—¢ and
Wolz=0 = Wole—=o as elements of C*°(X;TX), and W1, Wy agree with
W1, Wy at © = 0 as elements of C*°(X; VT X), then

Gw(Rw (N, Wo)W1, Wa) = gw(Rw (N, W)W, Ws) + O(z).

The assumption that Wy is tangent to the fibers of ¢y is equivalent
to Wy — vIWy € 2C>*(X;TX). It therefore suffices, by the previous
paragraph, to consider Wy = vy € {V,} and Wy, Wy € {0y, %Va, (71}
extended to €' (By) as above. Note that for the Wy, Wy thus selected,
Vo, Wi € xC®(X;VTX). To see that the second part of the proposition
holds, we will decompose W1 = v Wi + hW, Wy = v Ws + hWWs.

We claim that

(1.15) g (R (N, vIWo)h W1, hiWs) = O(x).

Indeed, for N € {V,,U;}, (1.9) and the connection asymptotics above,
together with the fact that [V,,, U] is vertical, imply Ry (N, vW)hW; €
xC®(X;VTX), while if N = J, then
Ry (N, vWo)hWW; € Vo, Vyw,hWi + 2C>(X; VT X),

and again by (1.9) and the connection asymptotics h(Vg, Vyw,hWi) €
xC®(X;VTX), so (1.15) is true.

Moreover, since N — N(x)0, is tangent to By, by the first part of
the proposition the splitting is preserved, i.e.

Gw (R (N, vWo)h Wy, v Wa) = N () gy (Ry 0z, vIWo)h W1, v Wa)
Gw(Rw (N, vIVp)vi W1, hWs) = N(2)gw(Rw (0, vIWo) v W1, hW3).
It follows that
Gw (R (N, Wo)W1, Wa) = gw(Rw (N, vWo) vy Wi, viWs)
(1.16) + N(z) (gw(Rw(c‘)z,vWO)hwl,uWQ)
RW(

+ 9w (B (02, vW0) v Wi, b)) 4 O(a),



FAMILIES DIRAC INDEX ON PSEUDOMANIFOLDS 229

so to conclude (2) we need only evaluate these two final terms on the
right hand side.
Using [05, Wp] = 0, and that Vo, W; € 2C>°(X,VTX), we have

gW(RW(N(x)Bx, VW())Wl, Wz) = N($)8x(gW(VVWOW1, Wz)) + O(:E)

If Wiy = 0,,Wy = hWy, or Wy = 9,,W; = hIV; then (1.9) and the
asymptotics of the connection above gives gy (Vyw, Wi, Wa) = O(2?).
Thus, the 9, terms from v W; and v W5 drop out below and we obtain

N (2)0:(Vyw, Ve Wi, hWo) = N (2)} gy (SPY (vIWo, v Wi), hIWy),
N (2)0(Vyw,hWi, v Wo) = =N (2) ¢} gy (SPY (vIWy, vIV2), hWy),

which together with (1.16) establishes part (2) of the proposition.
Next consider gy (VN (Rw (N, Wy))hWi, hWs). Here Ry (N, Wp) is a
section of hom(V7T'X) and correspondingly

VN (R (N, Wo))hW; = Vn (R (N, Wo)hW1) — Ry (N, Wo)V y (hWW7).

Since the connection asymptotics imply Vy(hW;) = hVx(hW;) +
xC®(X;VTX), part (2) of the proposition implies that

gw(Rw (N, Wo)Vn(hWy), hVy) = O(z),
so we have
Gw (VN (Ry(N, Wo))hW1, hWs) = N(gw(Rw(N, Wo)hW1, hW2))+O(x).

Since Wy is tangent to the fibers of ¢y, we decompose Wy = W' +
vWWy,, so hWW’' = Uy. For the first summand, we have

N(gw(Rw(N,2W')hWi, hW3)) = N(z)gw(Rw(N, W )hW' hi¥y)
= N(x)gy (RY (U, Uo)Uy, U) + O(x).

For the second summand we have

N(gw(Rw(N,vWWo)h W1, hiVs))
= Ngw(—RW(VWO, th)N — RW(hWI, N)VW(), hWQ)
=N (_gW(RW(N7 hWQ)VWOa th) =+ gW(RW(Nv th)VW07 hWZ))

- N(ac)( — gu(Ru(N, hW2) Ly Wy, hivy)
+ g (Ry (N, W) LvTg, hWQ))
Now

gw (R (N, hW2) LvIWo, hW1) = N (gw(Viw, LvIWo, hity))
= —3(Nz)gas, /v (R (WWa, hW1), vIvy) + O(x)
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and so altogether
gw((VNRy)(N,viWp)h Wi, hyWs)
= §(N2)? (g, v (R (W2, W), vIF)

— gy /v (R (WW1, hWs), VW0)> + O(x)
= (Nz)%gg, v (R?(hWa, hW1), vIVy) + O(z).
q.e.d.

This establishes the asymptotics of the curvature at each boundary
hypersurface. Let us consider the implications at a corner. Suppose
Y)Y € S(X) and Y <Y so that the boundary fiber bundles participate
n (1.1). Near By NBy a ‘boundary product structure’ as in §1.1 yields
a collar neighborhood of the form

[0,1); x [0,1), x (By N ‘Bf,)

with x a boundary defining function for 8y and r a boundary defining
function for B¢ . In this collar, the vector field 9, is ¢g-horizontal, the
vector field %Or is ¢y -vertical, and any wedge vector field that is vertical
with respect to ¢y is also vertical with respect to ¢y . We will eventually
carry out a Getzler rescaling argument where we rescale in the horizontal
directions at each boundary hypersurface, so the interesting expressions
at the corner are the ones of the form

gW(RW(ﬁT, Wo)Vf,Wl, &E), gw(Vaer(ar, Wo)hf/Wl, &E),

with Wy a vector field tangent to the fibers of ¢ and (hence) ¢y and
W1 a wedge vector field. The first expression is equal to

Gw(Rw (vyW1,0:)0r, Wo) = 2gw (Ry (zrvg Wi, Oy) Lo, LWy) = O(x),

T xr

while the second expression has leading term at the corner involving
’R(bf/ (hf,Wl, 830) = V?([hf,Wl, 896]) = 0.

The upshot is the vanishing at the corner of every term in these asymp-
totics in which 9, occurs as a horizontal vector field.

1.3. Dirac-type wedge operators. Let X — M L B be a fiber
bundle of manifolds with corners and iterated fibration structures in the
sense of Definition 1.3 and fix a choice of splitting as in (1.6).

Definition 1.6. Let g5;/p be a totally geodesic vertical wedge metric
on M. A wedge Clifford module along the fibers of 1) consists of

1) a complex vector bundle £ — M
2) a Hermitian bundle metric gg
3) a connection V¥ on E compatible with g
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4) a bundle homomorphism from the ‘vertical wedge Clifford algebra’
into the endomorphism bundle of F,

e : Cly(M/B) = C® Cl1("T*"M/B, g ) — End(E)

compatible with the metric and connection in that, for all 8 €
C*®(M;¥T*M/B),
* gp(cl(0)--) = —gu(:, d(0))
o VE c[(0) = cl(0)VE, + c[(V%/BG) as endomorphisms of E, for
all WeTM.
This information determines a smooth family of wedge Dirac-type
operators by

E
Dyyp : C°(M® E) —— C®(M®; T*M ® E) % C°(M°; E)

where we have used that T*M and YT*M are canonically isomorphic
over the interior of M.

If the fibers of v are even dimensional we will want for £ to admit a
Zo grading
E=EtQoE"
compatible in that it is orthogonal with respect to gg, parallel with
respect to V¥, and odd with respect to cf.
In local coordinates, we can write
n
Dy =) el (0")V (s
i=1
where 6% runs over a gy-orthonormal frame of T*M/B. If we restrict
to a fiber X of i and then further to a collar neighborhood of By,
Y € §(X), this takes the form

(L17)  el(d2)VE + cl(x d=))\VE + cl(dy’)VE,

x %

= c[(dx)Vj, + cl(x dz")IVE + ol (dy)V
g J

plus an element of Diff!(X; E). Here z is a boundary defining function
for By, and we recognize (1.17) as a wedge differential operator of order
one.

We are interested in this operator acting on the natural family of
vertical L? spaces associated to the wedge metric ¢y, and the Hermitian
metric gp, which we denote L2 (M/B; E). However it is convenient to
work with L? spaces with respect to a non-degenerate density, so let us
define a multiweight on M,

(1.18)  b(H) = 3(dimBx/N) for all H C By and N € Sy (M)
so that
(1.19) Ly (M/B; E) = py/ L*(M/B; E).
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(On each fiber X of ¢ we have b(H) = 1(dim By /Y) for all H C By
and Y € S(X).) Define the unitarily equivalent family of operators

Om/B by

(1.20) Onyp = P3rDaysPnf = Days = )
NESw(M)

dlm%N/Nc[

d
Son (dpn)

Then 0,;/p is also a vertical family of wedge differential operators of
order one, and studying 0,7/ p as operators on L?*(M/B; E) is equivalent
to studying Dy /p as a family of operators on L2 (M/B;E).

1.4. Bismut superconnection. We briefly recall the construction of
the Bismut superconnection and refer to [MP97a], [AR09a], [ BGV04,
Chapter 9-10] for more details.

Let M -2~ B be a family of manifolds with corners and iterated
fibration structures as in Definition 1.3, endowed with a splitting

YWOTM =“TM/B & ¢*TB

as in (1.6) and a vertical wedge metric g7/ p. Denote the projections
onto the summand of the splitting by v, (left) and hy (right). These
data determine a connection on the bundle YT'M /B, VM/B a5 follows.
We choose a Riemannian metric gg on B, and obtain

gm = gum/B DV 9B,

a wedge metric on M. As in §1.2 the Koszul formula defines a Levi-
Civita connection on )T M which we denote VM and use to define

vM/IB — vvavw.
Just as for families of closed manifolds, this defines a connection on
WTM /B that is independent of the choice of the metric gp.
We embed g, in a one-parameter family of wedge metrics on M,
gMe = gu/B + 20 gB,

limiting to the degenerate metric on YY) TM,

gm0V, W) = gnyp(vyV, v W),

in that the dual metrics on the wedge cotangent bundle converge.
Consider the connection

V@ = vajwvlpY D hd,thw.

Following Bismut, we can describe the difference between this connec-
tion and VM in terms of the fundamental tensors of 1.
Define

SY e C®(M;“T*M/B @ T*M/B ®*TB),

(1.21) .
RY € C®°(M;*TB®¢*TB ®“T*M/B)



FAMILIES DIRAC INDEX ON PSEUDOMANIFOLDS 233

by the equations
SY(W1, Wa)(A) = gM/B(V%/BWI — [A, W1], Wa)

RY (A1, A2)(W) = gary([Ar, A2), W).
Using the splitting, we extend these trivially to @3 (W(¥)TM), and then
define

w¥ € C®°(M; ¥ T* M @ A2("WT* M),
(XY, 2) = 8Y(X, 2)(Y) - S¥(X,Y)(2)

+3RY(X, 2)(Y) = §RY (X, Y)(Z) + 5RY(Y. 2)(X).
This tensor is isomorphic to VM — V® via gy by [BGV04, Prop 10.6]
and allows us to define

v =v? 4+ %T(ww)

where
7 A2 M) — hom(VWT* M),

T(a A B)6 = 2(gnr0(e, 6)B — gao(B,6)a).

As the notation is meant to indicate, this is the limiting connection of
the Levi-Civita connections of the metrics gy as € — 0.

Given a wedge Clifford module £ — M, we can extend it to the
bundle

E=¢*A"B® E.

This has a natural Clifford action

clo: Clo("WT*M) = C® Cl(*T*B & " T*M/B, grr0) — End(E)

clo(@) = e(hya) + cf(vya) for a € C°(M; VW) T* M)
where ¢ is exterior multiplication, with connection
VRO = VP @ VP 4 Jelo(w?)
that is compatible with V in that
Vilelo(8) = clo(0)Vy + elo(V8), for all W € C®(M; T M).

We will need to know about the curvature of V0. It is easy to see that,
for any U,V € C>®(M;TM),

vy RME(U, Vv, = RYBU, V), hy,RM(U,V)h, = ¢*RE(U, V).
It follows from Proposition 10.9 of [BGV04] that
RMO(Ty, Ty)(T, Ty) = lim RMS(T, T3)(T3, Ta)
e—
as long as hyT; = 0 for some ¢ (which will hold in all cases we need

to consider). In particular, applying Proposition 1.5 to RM/Be lets us
conclude that the corresponding asymptotics hold for RM9.
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The Dirac-type operator corresponding to E with Clifford action ¢/
and connection V0 is known as the Bismut superconnection and
denoted A, /p. As a map C*°(M; E) — C*(M;E) it is given by

Arys = Ay o) + Anysyn) + Avys )

where Aygp;) @ C°(M; E) — C®(M; Y*AVB ® F). Explicitly, in
terms of local orthonormal frames {f,} for TB and {e;} for YT'M/B,
with dual coframes {f%}, {e'}, we have

(1.22)

A 1 ~ ,
Aniyp = d(e)VE+ (VF, + 3k(fa)) =5 D RV (fan fo)(e)ee el (),
a<f
where &y is the trace of SY¥. Note that Ao 18 Dy, the Dirac-type
operator associated to E.
As F is a wedge Clifford bundle, its homomorphism bundle has a
decomposition

(1.23) hom(E) 2 CI(“T* M/ B) ® homigywp- py,/ ) (E)

where homel(wT* M/B) (E) denotes homomorphisms that commute with
CI(YT*M/B), see e.g., [Vai0l, Lemma 5.1]. The curvature of V¥ de-
composes as tc/(RM) + K}, where K}, commutes with the Clifford
action and is known as the ‘twisting curvature’ of V¥, see e.g., [Mel93,

Lemma 8.33]. The square of the wedge Bismut superconnection satisfies
a Lichnerowicz formula [BGV04, Theorem 3.52],

(1.24) A3 p = AMBO 4 Iscal(gy) = 5> Kis(ea, en)clo(e®)elo(e?)
a,b

where the sum is over both horizontal and vertical tangent vectors and
AM/B0 ig the vertical family of operators which at M, is the Bochner
Laplacian corresponding to VE’O| My

For each N € Sy(M), we have three related fiber bundles at the
corresponding collective boundary hypersurface

Zy —— BN

.

Y— N |¥YIsy

.

B

and from the asymptotics of wedge connections we see that
) — Q¥ Y — Y
(1.25) S g, =S, RY|y, =R

We will see that the contribution of ¢y to these tensors can be recovered
by passing to ‘rescaled normal operators’, see Remark 5.4 below.
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2. Witt condition

2.1. Boundary families. Let M %, B be a fiber bundle of mani-
folds with corners and iterated fibration structures and g,/ a totally
geodesic vertical wedge metric on M. Given a ¥-vertical wedge Clifford
module over M, E — M, we will explain how at each N € Sy(M)
there is an induced ¢n-vertical wedge Clifford module on % . This has
a Clifford action not just by Y78y /N but by all of WT*M/B}%N, we
encode this as a CI(F')-wedge Clifford bundle for an appropriate bundle
F — B. We refer to the corresponding family of vertical Dirac-type
operators as the boundary family of Dy /p at N and denote it Dy /n-

Let N € Sy(M) with corresponding collective boundary hypersurface
By and fix a choice of boundary defining function x. Choose a collar
neighborhood € (By) = [0,1), x B and identify

WT*M/B\%(%N) =N By 2"T*By/N O oNT*N,

where N;,B y is the (rank one) conormal bundle of By, and then fur-
ther identify

NyBy = (dz), 2"T"By/N =Z"T*"By/N.
The 1-vertical wedge metrics gps/p on V1™ M /B induce a ¢ y-vertical
wedge metric g, /v on VT*By/N. Choose a metric gg on B and let

gm = gm/B © P*gp, so that VM/B ig given, as above, in terms of the
Levi-Civita connection VM of gjs by

vM/B :vonMovw.

The metric gps is a totally geodesic wedge metric on M and thus in
particular there is a corresponding wedge metric on By, with vertical
connection

VIEN/N = Viy © VEN o V-
In order to relate VBN¥/N with the restriction of VM/B to By, recall
from §1.2 that the restriction of VM to By will respect the splitting
(2.1) YT*E(By) = [(dz) & 2VT* BN /N] & oy T*N

so that jgVM = V;;N o VMo V;N @ hy, o VMo hy, . Let us denote the

fully diagonal connection by
0
V= —drd VINN @ hy VM iy,

The difference between this and a direct sum connection with respect
to the splitting (2.1) comes from the fact that in a frame like (1.11),
letting the connection act on differential forms,

VI (I10)°(8:) = —gm n(V1,V2),  Vitdz = (117)’.
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Thus we have
(22) Vi =jsVito — (g(dz,0)(AvW) — g((LvW),0)dz)

The Clifford connection V¥ which is by definition compatible with VM
can be modified in a standard way to obtain a Clifford connection com-
patible with V&, namely, writing S = VM — V® following [BC90a,
page 375],
1 , ,
E, i
Vi o= Vi = S (W)ei, ) gy el () el (¢)

for orthonormal frame e; and dual frame e’. (Indeed, from the fact that
S(W) is anti-symmetric, it follows that 1 (S(W)e;, €;)g,, cl(e') el (e9) X =
c[(S(X)).) Restricting to By via jo from (1.14), we let VZIN be given
by

(2.3) VN — el — Lel(da) el (RvIV)’)

and this is compatible with the restriction of V¥ to B y.

After identifying a:WT*SBN/N‘xZO with WT*B 5 /N we see that VI~
is a metric connection with respect to the restriction of gg which re-
stricts to the fibers of By /N to be compatible with gy /. Thus alto-
gether we obtain a wedge Clifford module for the induced vertical wedge
metric gg /v on By —> N that moreover is compatible with the Clif-
ford action of the base and normal covectors, i.e., the Clifford action by
sections of the bundle (dz) & ¢}, T*N/B.

As the bundle N;, By = (dr) — By is trivial there is no loss,
and some convenience, in treating it as the pull-back of a trivial bundle
over N. We introduce the notation T*N* /B for the direct sum of
T*N/B and a trivial bundle over N formally generated by dx, so that
N /By ® oNyT*N/B = ¢y T*N*/B.

Definition 2.1. Let X — M L B be a fiber bundle of manifolds
with corners and iterated fibration structures in the sense of Defini-
tion 1.3, with a vertical wedge metric gy;/p. If F' — B is a real vector

bundle with bundle metric gr, a wedge Clifford module (E, gz, VE, ¢f)
is a Cl(F)-wedge Clifford module if there is a bundle homomorphism
(also denoted ¢f)

o :Cl(y*F)=C®ClL(F,gr) — End(FE)
satisfying, for all n € C°(M;¢*F),
ge(cl(n)s1,s2) = —gr(s1, cl(n)sz) for all s; € C°(M; E)
VE(cl(n)s) = cl(n)VEs, for all s € C°(M; E)
cl(n)el(8) + cL(0)cl(n) =0 for all 6 € C°(M;VT*M/B).
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Note that if F' has rank zero, a CI(F)-wedge Clifford module is just
a wedge Clifford module.

Clearly if D is the Dirac-type operator corresponding to (the under-
lying wedge Clifford module (E, gg, V¥, ¢) of) a CI(F)-wedge module,
and 6 € C°(M; F) then Dcl(0) = —c[(0)D.

We have seen that a wedge Clifford bundle (E, gz, VF, /) along the

fibers of M —+ B induces a Cl(T*N™*/B)-wedge Clifford module,

(E|n,g95|n, VEIN ) along the fibers of By PN . N. Let us finally

consider the relation between the corresponding Dirac-type operators.
To each N € Sy (M) we can associate a ¢y-vertical family of opera-
tors

pNDM/B|% v
From the local expression (1.17) we see, letting V; be an orthonormal
frame of vertical vectors and V* the dual frame, that
pNDM/B\%N = (x V)5V,
where V; runs over a local frame for the vertical wedge tangent bundle
associated to By NN Replacing the connection jiVE by VEIN
yields
el (z d=) (VAN + Lel(dx)el (x dz')) = Dag n + Sl (dx)
where we recall that v = dim By /N. Thus we can conclude:

Lemma 2.2. A wedge Clifford module along the fibers of ¥ : M —
B induces, for each N € S(N), a Cl(T*N*/B)-wedge Clifford module
along the fibers of ¢n : By — N. The vertical operator of a family
of wedge Dirac-type operators Dy p defined by the former is equal to
the family of wedge Dirac-type operators defined by the latter, which we
denote Dy, /N, plus a zero-th order term

PNDM/B!%N = Dy /N + el (dz).
We will denote the restriction of Dy, /y to the fiber over y € N by

D%N/N’Zy = DZy

when it is clear from context. Note that Clifford multiplication by the
global section dx of T* N satisfies

D‘BN/N o C[(d.ﬁlf) = —C[(d.%') [¢] D‘BN/N'

Hence for any choice of closed domain for Dz, , invariant under mul-
tiplication by ¢/(dz), we have

s € A-eigenspace of Dz, <= c[(dx)s € (—\)-eigenspace of Dy, .
<= (Id+c/(dz))s € A-eigenspace of c/(dr)Dz,
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and so the eigenvalues of Dz, , —Dz,, and c/(dx)Dg, coincide, including
multiplicity.

Lemma 2.2 highlights one advantage of working with 9,/ from (1.20)
since the induced vertical family is precisely the boundary family of
Dirac operators,

PN5M/B|%N = Dy /N-

Note that since we are interested in dy;/p on the space L*(M/B; E),
we are interested in the boundary family Dy, ,n as an operator on

L*(BN/N; E|N).

2.2. Witt assumption and vertical APS domain. Let¢: M — B
be a fibration of manifolds with corners with iterated fibration structure
as in Definition 1.3 (so B is closed) with typical fiber X, let gm/B be
a vertical wedge metric, and F — M a wedge Clifford module as
in Definition 1.6. Let Dj;/p be the corresponding family of vertical
wedge Dirac-type operators and Dx the restriction of Dy p to a fixed
fiber X. As an unbounded operator on L2 (X;FE), for an arbitrary
totally geodesic wedge metric gy p|x, Dx generally has many closed
extensions. As discussed in, e.g., [ALMP18], the two canonical closed
domains,

Dumin(Dx) = {u € L2(X; E) :
I(up) € C°(X° E) s.t. u, — u and (Dxuy) is L2-Cauchy},
Diax(Dx) = {u € L2(X;E) : Dxu € L%(X; E)},
where in the latter Dxu is computed distributionally, satisfy
pxH(X; E) € Duin(Dx) € Pumax(Dx) € Ho (X5 E).
Here
HYX;E)={uc L2(X;E):Vuec L3(X;FE) for all V € C*(X;°TX)}

is the edge Sobolev space introduced in [Maz91]. We consider the
following domain:

Definition 2.3. The vertical APS domain of Dy is the graph
1/2

closure of py}"H}!(X; E) N Dax(Dx),
Dyvaps(Dx) = {u € L2(X; E) : 3(uy) € pX HL(X; E) N Dypax(Dx)
s.t. u, — uwin L2 and (Dxuy,) is L2 -Cauchy}.
As in [ALMP18], this domain induces a domain for each vertical
family Dgy, /v, namely the corresponding vertical APS domain. Note

that this domain is invariant under multiplication by ¢/(dzx) so that the
spectrum of each Dz, has the symmetries mentioned at the end of §2.1.
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Definition 2.4. The operator (Dx, Dyaps) satisfies the geometric
Witt condition if
Y €8(X),y €Y = Spec(Dz,)N(—3%,1)=0.
If, instead, we only require
Y € S(X),y€Y = Spec(Dg,)N{0} =0

then we say that (Dx,Dyaps) satisfies the Witt condition. (Tacitly,
we take the domain of the links to be the VAPS domains. Thus the
definition could be stated without reference to a domain on the whole
of X, specifically only with reference to the spectrum of Spec(Dz,,
Dy aps(Dz,)). Since this notation is cumbersome we speak only of the
VAPS domain on X and think of the domains on the fibres as induced.)

The analysis in [ALMP18] can be used to show that the geometric
Witt condition
YeSX),yeY = Spec(DZy) N (—%, %) =10
implies Dpin(Dx) = Dmax(Dx) so that Dx is essentially self-adjoint.
Remark 2.5. We use the nomenclature ‘vertical APS domain’ be-

cause the different local ideal boundary conditions for Dx involve the

spectrum of Dy, in the interval (—3, ). The vertical APS domain cor-
responds to projecting off of the negative half of this interval, analogous

to the Atiyah-Patodi-Singer boundary conditions [APS75].

2.3. Normal operator. As in §2.2, let Dx be the restriction of Dy;/p
to a fiber of p : M — B. At every Y € S(X), y € Y°, there is a
normal operator of Dx, modeling its behavior on a model wedge,

RS xR x 7,
where h = dimY, acting on sections of the bundle E ’Z pulled back
Yy
along the natural projection. This operator is given by

Ny(Dx) = cl(dz)ds + (D, + Scl(dx)) + Y c[(H})H,
= c[(dz)0s + 1(Dz, + Lcl(dz)) + Dy

where the sum ranges over an orthonormal frame for 7}Y", and through-
out this section we use the notation
v =dim Z,.
The normal operator of dx is then
Ny(@x) = Ny(Dx) — s ' 8cl(dz).

The vertical APS domain for Dy induces domains for both D z, and
Ny(Dx), which are easily identified as the corresponding vertical APS
domains. The induced domain for the normal operator can be described
in terms of Z-smooth (i.e., polyhomogeneous) asymptotic expansions.
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Indeed, the operator Dz, is independent of s, and so we are in the
‘constant indicial root’ situation studied in, e.g., [ALMP18]. Note that
if f is a section of E|, over the model wedge and is O(s") as s — 0

Yy

then for almost all o € C, sNy(Dx)(s7f) = O(s?). We say that o is
an indicial root if there is an f such that sN,(Dx)(s° f) = O(s7t1).

Let us describe the induced domain for the normal operator in more
detail. Analogously to [ALMP18, §1], we can consider an intermediate
domain where we have imposed the vertical APS ‘boundary condition’
at all of the By with Y <Y,

Diax,y<(0x) = graph closure of Dyax(0x) N ( H 1/2> L*(X;E).
Y <y’

As explained in loc. cit., elements in the induced domain for the nor-
mal operator have a partial asymptotic expansion. (In the setting of
[ALMP18|, under an assumption of constant indicial roots, domains
were defined by an inductive process. Elements of the maximal domain
have partial asymptotic expansions with distributional coefficients at
strata of depth one on which we can impose ideal boundary conditions.
Elements of the resulting domain have partial asymptotic expansions
with distributional coefficients at strata of depth two and so on.)

Lemma 2.6. The indicial roots of Ny(Dx) are the eigenvalues of
Dy, shifted by —5. Every f in

Dmax,y <(Ny(Dx)) = graph closure of

Dmax( ( H ,01/2> L2 R+ X Rh X Z E‘Zy)7
Y <Yy’ '

has a partial asymptotic expansion as s — 0,
Q ~
fro > st

A€Spec(Dz, )
Ne(-53)
in which each f\ is a distributional element of the \ eigenspace of
cl(dx)Dz, and
(24) fea'"H'RE xRE x Z,) = (o' “H, ' (R} x R! x Z,).
e>0
The vertical APS domain of Ny(Dx) consists of those f such that fy =0
whenever A < 0.

Note that the notation c¢— in weights to denote the above
type of intersection is used throughout.
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Proof. Applying N, (Dx) to s? f yields
sNy(Dx)(s°f) = s7((o + 5)cl(dx) + Dz, ) f + O(SUJrl)
so o will be an indicial root when (o + § — c/(dz)Dz,) is not invertible,
ie.,
o € —5 + Spec(c/(dx)Dz,) = —5 + Spec(Dz,).
The existence of the asymptotic expansion is established in [ALMP18,
Lemma 2.2]. q.e.d.

Note that the translation invariance of N, (Dy) in R" allows us to
Fourier transform in v and obtain the family of model operators,
Y xR 3 (y,n) — Ny (Dx) = cl(dz)(0s + ) + 1Dz, + icl(n).

By a standard computation (cf. [AGR16, Lemma 2.10], [ALMP12,
Lemma 5.5], [Les93, Proposition 4.1], [Cho85, Proposition 2.25]) we
can establish injectivity and self-adjointness as follows.

Proposition 2.7. For each (y,n) € Y xR", the operator Ny, ,y(Dx),
together with the corresponding domain Dmaxy <(Nyn(Dx)), is injec-
tive if n = 0 and otherwise has null space spanned by

U {81/2[()\— (sln))ox—el(f)s' 2K | 1 (slnl)el (de)ox
A€Spec(Dz,)N[0,1/2) i

n
[n]

D=

el (dz) Dz, dx = )\@}.

It follows that, if Dx satisfies the Witt condition at Y, N, is injective
and self-adjoint with its vertical APS domain.

Proof. Since L?(s%ds) = s~*/?L?(ds), the operator Ny (Dx) acting
on L2 is equivalent to the operator
Ny (0x) = 82Ny (Dx)s ™% = el (dz)ds + 1Dz, +icl (n)

acting on L?(ds).
First note that, with A, = c/(dx)Dz,, we have

Ny (0x)? =03+ 5(DZ, —cl(dw) Dz, ) +n|* = —03+ 5 (A7 —Ay) +Inl*.
It will be useful to recall that the null space of
— 4+ HEN =N+ 0> =5"2(=02 — L0+ H(A = 1) + [n|P)s T
= —gl/2-2 (5202 + 505 — (A — 3)* + s°[n?)) s1/2

is spanned by s* and s!=* if n = 0, and otherwise by 51/2IA (s|n|) and

1
2
81/2[(/\ 1(s|n]). In view of the asymptotics

[N

I(2) = 0@ as 2 50, 1.(2) = O(
Ko(2) =01 as 2 5 0 ( £0), Kgu(z)

=

e’) as z = 0

O(Le ™) as z — oo,
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none of these are in L?(ds) except for 31/2K)\_ (s|n]) when |A — f| <1

1
) 2
Now since

C[(dx)Dzy = —Dzy c[(da:), C[(T])Dzy:—Dzy C[(n)
= c(dx)Ay = —cl(dx) Dz, cl(dx)=—Aycl(dz), cl(n)Ay=Aycl(n),

the operator N, y(0x) = c/(dx)(9s — 1 A,) +icl(n) preserves the space
F\ = E\(4y) ® E_\(Ay), on which it acts by

_ icl(n) c[(d:n)(as + 1))
Ny = <5[(da:)(8:7 — 1y icl (n) > '

If we further identify
Fy—— E3 = E\(A))?
(a,b) ——— (a, c[(dx)b)
we end up with the map

~ B icl(n) —cl(dx)(0s + < A)cl(dx)
Nymr = <c[(dx)2(az—p) —cl(dx)icl(n)cl (dx) )
)
1

L1y
s

- icl(n Os + 1)\
T\ =(0s — LX) —zc[( )
e (1P =02+ (=) 0
satisfying Nym,/\ = < 0 WQ _ 83 + 8%(/\2 )

Thus any element of the L?-null space of /\~fy2 A has the form

(052K, 3 (slal).bs 2Ky (i),

N[

Recall that [AS64, (9.6.26)]
0.K,(2) = K, 1(z) — %KV(Z) = - V—H(Z) + %KV(Z)
hence applying ./\N/'y% » to the putative element of the null space results

in

((cttma = ol 26,y sl (alnl = ety sl ) =

< d(n)a=|n|b,

1
2

and significantly a = 0 <= b = 0. This means that to get an element
in L? we need both A — 3| < 1 and |A+ %] < 1, i.e, |A| < 1. This
establishes the first part of the proposition.

Recall that, for v € R*, K,(z) ~ C,z~ "l as z — 0. Thus the ele-
ments of the null space of NV, are spanned by elements with non-trivial
asymptotics at both exponents A and —\, for A € Spec(4,) N [0,1/2).
There are no such elements in the vertical APS domain.
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Finally we show that the vertical APS domain is self-adjoint by show-
ing the vanishing of its deficiency indices by a similar argument. Indeed,
the null space of AV, £ is contained in the null space of /\/'y2 + 1. Ana-
lyzing this as above shows that solutions are built up from elements of
the form

(as V2K, 1 (s{n)).bsY2K, 1 (s{n))).

2

where (n) = +/|n|> +1 and solutions coming from the null space of
N, £ further satisfy that a =0 <= b = 0. Since this requires non-
trivial asymptotics at exponents A and —\, there are no such solutions
in the vertical APS domain. q.e.d.

3. Edge calculus with bounds and wedge heat calculus

3.1. Conormal distributions on manifolds with corners. We
briefly recall some of the results of [Mel92] that we will use in our

constructions and refer the reader to loc. cit. for details. (See also, e.g.,
[Gri0l], [Maz91, §2A].)
Recall that we use the notation

pPX = H PH
HEMl(X)
for a ‘total boundary defining function’. A multiweight for X is a map
5: Mi(X) — RU{o0}

and we denote the corresponding product of boundary defining functions

by
=11 m"
HeM,(X)

We write s < &' if s(H) < '(H) for all H € M;(X).

A smooth map between manifolds with corners f : X — Y is a
b-map if, for each H € M;(Y), and some choice of boundary defining
functions, we have

* € H,G
For= 1 pd
HeM;(X)

where ef(H,G) is a non-negative integer. (These are called ‘interior
b-maps’ in [Mel92] because they map the interior of the domain into
the interior of the target.) The map

ef: ./\/ll(X) X Ml(Y) — Ny
is known as the exponent matriz of the b-map f and we write

ker(ep) = {H € My(X) :ef(H,G) =0 for all G € M;(Y)}.
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The vector fields tangent to the boundary hypersurfaces of X are
known as the b-vector fields and are denoted

Vo ={V € C®(X;TX) :V is tangent to each H € M;(X)}.

There is a vector bundle, the b-vector bundle, °TX, together with a
natural vector bundle map i, : °TX — TX that is an isomorphism
over the interior of X and satisfies

(ip)C(X;PTX) = V.

Thus, for example, if x is a boundary defining function for a boundary
hypersurface H of X then, near H, the vector field z0, is non-degenerate
at H as a section of ®TX. Indeed, it does not vanish at H because it
is not an element of ;. We refer to any such vector field as a radial
vector field for H. It is determined up to an element of xV}, and its
restriction to the boundary generates a canonical trivialization of the
null space of i, over H, known as the b-normal bundle, "N H.

The differential of a b-map f : X — Y extends to a bundle map be-
tween b-tangent bundles and b-normal bundles. If both of these induced
maps are surjective, f is a b-fibration.

Conormal functions. Let p denote a positive section of the density
bundle Q(X). Denote

L*(X) = L*(X,p) = {u: X — C measurable : / lul? 4 < o0}
X

and, for n € Ny and s a multiweight, the weighted b-Sobolev spaces
corresponding to u are

px H (X) = pi Hy (X, p)
= {u: X — C measurable : V},(X)"(p°u) C L*(X)}.
The L?-based conormal spaces are
PHE(X) = () PicHp(X)
neNp
though we shall usually use
(X) = () P HE(X).
5/'<s

We refer to these as conormal functions with multiweight s—. We denote
the union over all multiweights by

o*(X) = o B (X).

By Sobolev embedding, any function in «7*(X) is smooth in the in-
terior of X, and indeed the individual p% Hy°(X) are preserved by the
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action of V4(X). They are also C*°(X)-modules, so it makes sense to
talk about conormal sections of a vector bundle £ — X, e.g.,
ME(X, E) = ﬂf(X) ®COQ(X) COO(X; E)

Z-smooth (or polyhomogeneous) expansions. Regularity at the
boundary hypersurfaces is often manifest in an asymptotic expansion
reminiscent of the Taylor series but with exponents that are not neces-
sarily integers and with the presence of powers of logarithms,

U~ Z us; pr* (log z)?
with coefficients us; ;, themselves conormal functions. We keep track of
the allowed exponents in index sets and refer to this class of functions
as Z-smooth (Z for index set) or as polyhomogeneous.
An index set E is a discrete subset of C x Ny such that
{(sj,pj)} € E,|(s5,pj)] = 00 = Res; — oo.
To ensure independence from the choice of bdf z we also require
(p)€EE, p>1 = (2,p—1)€E
(z,p) € E = (2 +k,p) € E for all k € N.

We often denote the index set {(a+n,0) € C x Ny : n € Ny} simply
as «. The extended union of two index sets is

EUF
= EUFU{(z,p) € CxNp:3qg € Ny s.t. (2,9) € E & (2,p—q—1) € F}.
Given an index set E we define
ReE = {Re(2) : (2,0) € £}, inf E=minReFE.

We allow the empty set as an index set and define inf ) = co.
To each index set £ and w € R we assign the polynomial

b(E,wiA) = [[ (A\=2).

(zp)€EE
Re z<w

Note that if rg is a radial vector field for H then the null space of the
differential operator b(E, s;rp) is spanned by

{z*(logz)? : (z,p) € E,Rez < w}.

An indezx family £ on a manifold with corners is an assignment of
an index set £(H) to each boundary hypersurface H. To each index
family £ we associate a multiweight inf £. Given an index family, a
multiweight tv, a choice of radial vector field ry for each boundary
hypersurface, and an ordering of the boundary hypersurfaces we define
the differential operator

bEw) =[] bEH) w(H);rm)
HeM;(X)
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and the spaces of partially Z-smooth conormal functions by
(3.1)

BTt (X) = {u € °(X) : b(E,t)u € #*(X) for all s < v < 1o}

Thus these are conormal functions with multiweight s— that have an
asymptotic expansion at each boundary hypersurface H with exponents
in £(H) with real part less than w(H) and with remainder a conormal
function with multiweight w—. The space of (totally) Z-smooth conor-
mal functions with index family £ is

E/w
phg ﬂ ’@phg 'Q{S

where s is any multiweight satisfying s < inf £.
When the empty set is used as an index set we interpret %’g}/:;szi (X)) =
2/ (X) whenever s < .

Pull back and push forward.If f : X — Y is a b-map, then to
each multiweight t on Y we associate a multiweight on X,

MUX)32 H e fR(H)= > ep(H Gx(G).
GeM(Y)

Note that fft(H) = 0 for any H € ker(es). Let n; be the multiweight
on X,

oo if H € ker(ey)
ny(H) = {0 else !

To an index family F on Y we associate an index family on X,
M1 (X) \ ker(ef) > H
= EF(H) = {(8,P) : H(s6,p6) € F(G) : ¢(H,G) # 0}

st. S= Zef(H,G)SG,P = ZPG}

and f*F(H) = 0 for all H € ker(es). For any multiweights t, v’ and
index family F on Y, pull-back along f gives a map [Mel92, Theorem
3]

£ BT T (V) — BFFIE ) g P (x|
Similarly, if f : X — Y is a b-fibration (defined above) we can
associate to each multiweight s on X a multiweight on Y,
Ml(Y) >5G
— fis(G) = min{s(H)/e;(H,G) : H e M(X),er(H,G) # 0},
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and to each index family £ on X an index family on Y,

MiI(Y)5G LEG)= | {(z/ef(H,G),p): (2,p) € E(H)}.
HeM;(X)
ef (H,G)#0

For any multiweights s, s’ and index family £ on X satisfying
H € ker(ey) = infE(H) >0,
push-forward along f gives a map [Mel92, Theorem 5]
fo: B 5 (X; p' Q) —> BIEE T3 (Y pt Q).

These theorems hold with functions replaced by sections of a vec-
tor bundle with only notational differences. Another useful extension
is to sections that are also conormal with respect to an interior p-
submanifold. A submanifold W C X is a p-submanifold if every point
in W has a neighborhood ¢/ in X such that

XNU=X" xX", where 0X" =10,
WNnU=X"x{p"} for some p” € X".

We will not detail this extension but refer the reader to e.g., [EMM91,
Appendix B].

(3.2)

3.2. Edge double space. Given a manifold with corners and an iter-
ated fibration structure X, we follow [Maz91] and define edge pseudo-
differential operators by describing their integral kernels on a replace-
ment of X2 that takes the iterated fibration structure into account.

Recall that the radial blow-up of a manifold with corners X along
a p-submanifold W (as in (3.2)) is the manifold with corners [X; W]
obtained by replacing W with the inward-pointing part of its spherical
normal bundle, see e.g., [Mel93, §4.2], [MM95, §2.2], [Mel, Chapter
5].
Recall that there is a partial order on S(X), Y < Y’ iff By NBy+ # ()
and dimY < dimY”. The edge double space associated to X is obtained
from X2 by blowing-up certain p-submanifolds. For each Y € S(X) we
denote the fiber diagonal of ¢y in X? by

By Xy By ={(¢,¢) € (By)?: oy (¢) = oy ()}

Definition 3.1. Let X be a manifold with corners and an iterated
fibration structure. Let S(X) = {Y1,Ys,...,Y;} be a listing of S(X)
such that ¥; <Y; == i < j, i.e., such that the list is non-decreasing
in depth. The edge double space of X is

(3.3) Xe2 = [XZ; %yl ><¢,Y1 %yl; ’BYQ ><¢Y2 %YQ; ce ;%Ye X¢Y£ %Yz]'

As in, e.g., [DM12, MP97a], there is an analogous construction for
families of manifolds with corners.
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Definition 3.2. Given a fiber bundle M L B of manifolds with
corners and iterated fibration structures as in Definition 1.3, fix a non-
decreasing list of Sy, (M), {N1, Na, ..., N}, let the families edge dou-
ble space be

(M/B)Z = |M xy M;Bn, Xgy B BN, Xy, BN, |-

The map v induces a fiber bundle

P(2)

X2 — (M/B)?} —- B.

Let us check, as is implicit in Definition 3.1, that after performing
the first &k — 1 blow-ups, the lift of By, X gy, By, to the blown-up space
is a p-submanifold. Local coordinates near By, say x,y, z where z is a
bdf for By, y are coordinates along Y and z coordinates along the fiber
Z of ¢y, induce coordinates z,v, z, 2,9/, 2/ near By x By, in which

%y Xy %y:{x:x'zo,y:y’}

and so this is a p-submanifold whenever Y is a closed manifold, e.g., for
Yi.

If Y <Y, so that Y has a collective boundary hypersurface B, as
n (1.1), let us label the fibers of these fiber bundles,

b5z
(3.4) Z 2 %?Z /W
7z ‘Byﬂ%? Y ‘BY? - Y
N AY
Y

and choose coordinates near By N %}7 of the form

(3.5) T, Yy, w, T, 2,

in which z is a bdf for Y and r is a bdf for }7, y are coordinates along
Y, w coordinates along W and z coordinates along Z, so that (x,y, w)

are coordinates along Y and (w,r,z) are coordinates along Z. In the
induced coordinates x,y,w,r, z,2',y',w’, 7', Z’, we have

By x¢y By ={z=2"=0,y =y},
%)7 ><¢{/ %)7 = {7’ =y = 0, (x7y7w) = (a:’,y’,w’)}

which shows that the latter is not a p-submanifold. After blowing-up
the former, projective coordinates with respect to z’ are given by

—a
(3.6) s=— uy=24"Y z,

/ / ~
17 / z
x x

/
) w, T, 2, xz, y7 w, T,
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and the interior lift of B X4 By is given by
(3.7) {fr=r"=0,s=1,u=0, w=uw'},

which is a p-submanifold.
Thus the manifolds blown-up in (3.3) are p-submanifolds. We denote
the blow-down map by
5(2) : Xg — X2
and the compositions with the projections onto the left and right factors
by
X2

e

if’(z)
Be),L B2),r
2

%A
X X

Since the collective boundary hypersurfaces may contain more that one
connected component, this is an ‘overblown’ version of the double space
in [Maz91, §2] and an edge version of the double space in [MP92,
Appendix].

The edge double space has collective boundary hypersurfaces, for each
Y € S(X),

BYxX o BE(Y), XxBY 0 B (), B xe B o 80)(V),

where the notation indicates that, e.g., the interior lift of %g,l) x X is

the boundary hypersurface %%) (Y) of X2. We denote the family of
collective boundary hypersurfaces produced by the blow-ups by ff(X2)
(the ‘front faces’) and the other collective boundary hypersurfaces by
sf(X2) (the ‘side faces’), thus

f(X2) = {BE(Y): Y € (X)),
st(X2) = (B3P (V), B8P (V) : v € S(X)}.
We use similar notations for the family edge double space (M/B)?, e.g.,
BE)(N).
It will be useful to describe the structure of these collective hyper-

surfaces in more detail. If S(X) = {Y'}, the case treated in [Maz91],
then the restriction of the blow-down map

’B((Z;Z (Y) — By Xy By
is the fiber bundle map of the inward pointing spherlcal normal bundle of
By X g, By in X2, The fiber is a quarter sphere S++ , where h = dimY.
Invariantly the spherical normal bundle at a point ¢ € By X4, By is

(3.8)
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obtained from TqX2 by moding out by tangent vectors to By x4, By,
removing zero, and taking the R*-orbit space of the dilation action,

S(Nx2(By Xgy By)g) = RINNT,X?/Ty(By x4y By)) \ {0}].

and so every vector field on X? transverse to By x éy By (i.e. not in
the image of its tangent space via the inclusion) defines a section of the
spherical normal bundle, and every inward-pointing vector field defines
a section of the fiber bundle %f; (Y) — By x4, By. As pointed out
in [MM87, (3.10)], there is a canonical section: let v/ be any vector
field on X that is inward pointing at By, denote the corresponding
vector fields acting on the left, respectively right, factor of X in X? by
vy, respectively vy, set v = v} + 1/}, and let [V, | be the induced section

2
of BL)(Y) — By x4, By,
2
oy ] = By gy By — BL(Y),

A different choice of v/ would change the value /(y,z) at a point
(y,z) € By by multiplication by a positive constant and addition of
a vector tangent to T{,.)By, and correspondingly change v(y,z,2")
by multiplication by a positive constant and addition of a vector in
Tiy,2,-(By X¢y By), and hence would not change [v](y, z,2"). We de-
note the image of [v] by

Voy (By) = [Ugy |(By gy By) CBL(Y).

For reasons described below, this will be referred to as the identity
section of the Siﬂl—bundle, in analogy to the zero section of a vector
bundle.

A choice of connection for By x4, By — Y lets us identify the
normal bundle to By x4, By in X 2 with the pull-back of TY (as the
normal bundle to the diagonal of Y in Y'2), times two copies of N)Jg%y,
the inward-pointing normal bundle to By in X, one for each factor of
X2,

S(TY x (N$By)?) = BL)(Y) — By x4, By
With this identification, the identity section vy, (By) is the subset
m({0} x {Np} x {Ng}) where 7 is the projection from TY x (N:By)?
minus its zero section onto its sphere bundle, and Ny, Ng, denote the
pull-back along the left and right of an inward-pointing vector field
transverse to By in X. We can compose the blow-down map with the
fiber bundle map By x4, By — Y to obtain a fiber bundle
sl x 22 — 3P(Y) — Y.

Thus near its front face, X2 is locally diffeomorphic to R* x Sfff X Z2 x
Uy with Uy an open set in Y over which ¢y is trivial.
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Finally, in local projective coordinates analogous to (3.6),

/
€z Y=y / ’ ’
E u = ;) 2, z, Y, Z,
X x

S =

X2 is locally diffeomorphic to
R x R % [0,1) x Uy x Z2.

The submanifold v, (By) in these coordinates is {s = 1,u = 0}. Notice
that if we view R x R" as the ‘ax+b’ group, RT x R”, with product
(s,u) - (s',0)) = (55, s'u + ),
then (1,0) is the identity element of the group. This is the reason
why we refer to vy, (By) as the identity section. The action of edge
pseudodifferential operators is by convolution with respect to this group

(see, e.g., [Maz91, (3.5)]).
As we discuss now, this structure persists in a modified way in the
setting of manifolds with iterated fibration structures.

Remark 3.3. It may be useful to consider a ‘toy case’ with under-
lying stratified space

X =Y x Cloy(W x Clopy(2)),
where Cj 1) denotes the truncated cone, so that
X =Y x[0,1),xWx[0,1),xZ, SX)={Y, Y =Yx[0,1),xW}
with collective boundary hypersurfaces
By ={z=0'=Y x W x[0,1), x Z,
%;,z{rzO}:Yx[O,l)xxWxZ
participating in the (trivial) fiber bundles

Z=Wx01),xZ— By 25y, 7B, 0,7

whose compatibility diagram takes the form

Z=Wx[0,1),x Z2By, =W x Z ik 11
~/ \ ; /~
Z By NBy =Y xWxZ—=B,; =Y xWCY
k\ Af’
Y

To construct X2, we start with X2 and blow-up
%y ><¢y %y = {x:a:’ :0,y:y’}
= diag(Y?) x {z =2’ =0} x W? x [0,1)? x Z2.
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Near the resulting front face the blown-up space is locally diffeomorphic
to

Ex S Y x W2 x [0,1)2 x 22
where hy is the dimension of Y and R is a defining function for the
front face. In this local description, the interior lift of the submanifold

By X By = {r=7"=0,(y,z,w) = (y,2,w')}
= diag(Y? x [0,1)2 x W?) x {r =+ = 0} x 2>
is equal to (cf. (3.7))
RE x {[(1,0)]} x YV x diag(W?) x {r =1" =0} x Z?
— R}, x (V¢Y(%y) A (diag(W?2) x {r = ' = 0} x 22)) :

where {[(1,0)]} denotes the identity element of the ‘ax+b group’, as
discussed above, and vy, (By) is the identity section of S(TY x R%).

Blowing-up the interior lift of By X g By produces the manifold
X2. The normal bundle of the interior lift of By Xg, By fibres over
[0,1)r x Y x W with fiber R? *hw+1 where hy, hy are the dimensions
of Y and W, respectively; indeed the normal bundle is exactly Ry X
R xTY x TW. So near the intersection of the front faces this space is
locally diffeomorphic to

Rf, x RE X SR x TY x TW x R}) x 27,

where R, R are defining functions for %5132( Y) and %( )( Y'), respectively.

The third term is a fibre bundle §/ "W+ — S(R x TY x TW xR2) —
0, D)r XY xW ~Y.

With an eye to the case of non-trivial fiber bundles, note that the
normal bundle of By X e By is naturally isomorphic to “T'Y" x R%—?
where °TY is the edge tangent bundle, generated by the vector fields
20z, 0y, Oy, as can be seen by lifting these vector fields to X? from the
left projection and restricting to the interior lift of B X po By. So in
fact this neighborhood can be expressed as

RE x S(TY x R%) x 72,
where SV W2 §(eTY xR%) - Y

In particular, ‘B%(Y) is locally diffeomorphic to

T sy ithwtl oy o Wox 22,
To compare this to
Z? =[7% B

vz Xéy, By,

= [(W x [0,1), x Z)% diag(W?) x {r =+ =0} x Z?]
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note that this space has a similar description near its front face, namely
+ hw+1 ~2
RE X ST X W x Z7.

Thus the local description of %%(Y} fibers over Y and we can think of
the fiber as a ‘suspended’ version of the edge double space of Z,

[Si‘jil X ZQ; Voy (“BY) N (%?Z x¢17z EB?Z)]'

The front faces of the edge double space of X are related to the edge
double spaces of the fibers of its boundary fibrations, but as pointed out
in the remark, they are ‘suspended’ versions. To define this structure in
general we momentarily replace a boundary fiber bundle Z — %y —
Y with an arbitrary fiber bundle of manifolds with corners with iterated
fibration structures:

Definition 3.4. Let X — M —“» B be a fiber bundle of mani-
folds with corners and iterated fibration structures and let S J(M ) =
{N1,...,N;} be a non-decreasing listing of SJ(M) Let m: S44(M X5
M) — M x5 M be the pull-back of the fiber bundle S(°TB x R%)
from B to M x ;M and let I/&(M) denote the identity section. The

suspended edge double space of M//é is

(M/B)gyse) = [S++(M x5 M); vg(M)na (B, Xog, B -
I/J)(M) N Wﬁl(%ﬁg ><¢NZ %Né)].

This fibers over B and we denote the typical fiber by X2

Sus s (e)’

XSusg(e) _ (M/B)Sus(e) — B.
Proposition 3.5 (Structure of the front faces of X2). Let X be
a manifold with corners and an iterated fibration structure. For each

Y € S(X), let
o BR(Y) — Y
denote the composition of By : X2 — X? with the fibration By X gy

By — Y, restricted to %((;dz (Y). This map participates in a fiber
bundle with fiber the suspended edge double space of Z,

(2)
2 2 2
ZSu5y(e) T %((qu (Y) = (%Y/Y)Sus(e) ——Y.
Note that if Y is a maximal element of S(X) (and hence the fiber

Z of By ¢—Y> Y is a closed manifold), then the fiber bundle in the

proposition over Y is

(2)
Y

im 2
SRIMY x R?) x 22 — BP)(Y) Y,
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just as in [Maz91].

Proof. I Y has depthy(Y) = k then the fiber Z of ¢y : By — Y
is a manifold with corners and an iterated fibration structure of depth
equal to k—1. Z has one collective boundary hypersurface for each Y €
S(X) such that Y < Y. Indeed following diagram (3.4), this boundary
hypersurface, which we denote By, is the fiber of the restriction of
¢y to By N By and its boundary fibration is the restriction of ¢y .
Consequently we have

(3.9)
¢~
z? 2 By, X4y, Byy - /W
Z (By NBy) x4, (By NBy) —

\ i

Let X2(k + 1) denote the blow up in X? of all the fibre diagonals
of strata of depth greater than or equal to k + 1. Let A4 (Y) denote
the inward pointing normal bundle of the interior lift of By x4, By to
X2(k +1). Composing the projection down to By X4, By with the
projection of this space down to Y, we see, e.g. by using (3.6) and lifting
vector fields from the left projection and restricting to the interior lift,
that we have a diagram of fiber bundles

z? N4 (Y)
RWY — Ty x R2
Y

where °T'Y is the edge tangent bundle.
Thus when we blow up the interior lift of By x4, By to X2(k + 1),

we produce a boundary hypersurface %fig (Y) = S(A4(Y)) which we

can identify with the pull-back to S(°TY x Ri) — Y of two copies of
the Z bundle over Y. In particular we have a fiber bundle map

Sthl ZQ (2) Y ¢§’2) Y.
T xZt =B Y) —Y.

If Y > Y, the interior lift of By x4 By intersects %% (Y) at the

identity section of S(°TY x R2) over the submamfold By, Xgo, By,
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of Z (e.g., by the computation (3.7)). The restriction of &g) fibers over
Y

(3.10)
S —(2)
2 —f ¢
[(0, 1, 1)] X %Y/Z X¢§7Z %?Z — %EMB(Y) ng (%}7 ><¢)17 %?) Y Y.
Hence blowing these submanifolds up in the appropriate order produces
(%Y/Y)?S'us(e) as required. q.e.d.

We point out that, just as when S(X) = {Y'}, the maps

X?
5<2y \ﬁfw
X X

obtained by blowing-down and then projecting onto the left or right
factor of X, are b-fibrations.

The double edge space has a distinguished submanifold, the interior
lift of the diagonal, which is known as the edge diagonal and denoted
diag,. It is a p-submanifold of X2 and its normal bundle is canonically
identified with the edge tangent bundle.

3.3. Edge pseudodifferential operators. Let X be a manifold with
an iterated fibration structure. We define the edge pseudodifferential
operators as the natural analogue of the operators defined by Mazzeo in
[Maz91] by specifying the structure of their integral kernels. These will
be conormal distributions as in §3.1 on the manifold with corners Xg
defined in §3.2. We will first define the ‘small calculus’ which includes
edge differential operators and then the ‘large calculus’ which can be
shown to include the inverse of invertible edge differential operators
when they have constant indicial roots. Elements in this calculus are
very well behaved but since the hypothesis of constant indicial roots is
very restrictive, we also define a ‘calculus with bounds.’

Our convention is that the integral kernels of operators acting on
functions will be weighted sections of the density bundle of X, pulled
back along the projection onto the second factor of X2. We introduce
the multiweight

0: Ml(Xe2) — Ra
o(H) = —(dim(Y)+1) ifHC %ffdz(Y) for some Y € S(X)
0 otherwise

and the weighted right density bundle over X2,

Qo,r = nggﬁzkz),RQ(X)-



256 P. ALBIN & J. GELL-REDMAN

Following [Maz91, Definition 3.3] in the simple edge case, the small
edge calculus of a manifold with corners and an iterated fibra-
tion structure is the filtered algebra of pseudodifferential operators
consisting of the union, over r € R, of the operators defined by the
integral kernels:

VU(X) = p3xe) " (X2, diage: Qo,r),

where pgr(x2) Is a total boundary defining function for the ‘side faces’
defined in (3.8), i.e.
Pst(X2) = H PH
Hesf(X2)
(We use classical, one-step distributions conormal to the diagonal, see
loc. cit..) Note that our convention is that the integral kernels are
right-densities so that they will map functions to functions.

If £ and F are vector bundles over X, we define the vector bundle
Hom(FE, F) over X2 by

where E’ denotes the dual bundle to E, and then the edge pseudodif-
ferential operators acting between sections of E and F' are given by

V(X5 B, F) = px2)I" (X2, diag,; Hom(E, F) © Qo )

for each r € R. We abbreviate U} (X; FE) = UV (X; E, E).
The edge smoothing operators in the small calculus are

Uo®(X; B, F) = () Wo(X; B, F) = px2)C>(XZ; Hom(E, F) ® (o ).
reR

The integral kernels of edge differential operators lifted to X2 are
supported on the edge diagonal and identifying the operators with their
kernels (and multiplying by a section of the weighted density bundle,
on which the operators act trivially) we have

Diff*(X; E, F) C U¥(X; E, F), for all k € N.

The conormal singularity at the diagonal means [H6r07, Definition
18.2.6] that elements of the small calculus have a symbol map defined
on the conormal bundle to the diagonal, i.e., the edge cotangent bundle,

T UL(X; B, F) — pplC(RC(CT* X)), 7 hom(E, F))

where RC(°T*X) denotes the radial compactification of the edge cotan-
gent bundle, 7 : RC(°T*X) — X denotes the projection, and prc
denotes a boundary defining for the boundary at radial infinity. Define
or € C®(°S* X, 7* hom(E, F')) by multiplying 7, by pl~ and restricting
to the boundary. The symbol fits into a short exact sequence,

U H(X; B, F) = WL(X; B, F) — C*(°S*X, 7* hom(E, F)).
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In Appendix A we construct a triple edge space X2 such that com-
position of edge pseudodifferential operators is given by pull-back, mul-
tiplication, and push-forward along b-fibrations; the behavior of distri-
butions conormal along the lifted diagonal is essentially the same as in,
e.g, [Maz91], and hence, for any r4,rp € R,

AeVA(X;G,F), BeVZF(X;E Q)
= AoB eV AYB(X;E F)and 0y, 4,5(A0 B) = 0,,(A) o0, (B).
If A e V. (X;E,F) has invertible symbol, we say that A is elliptic

(or edge elliptic). If A is elliptic then we can find B € V."(X; F, E)
satisfying

o-+(B) = 0or(A)7
and any such is known as a symbolic parametriz of A. These satisfy
AoB-1de V;Y(X;F), BoA-1dec ¥ YX;E).

The large edge calculus of a manifold with corners and an
iterated fibration structure consists of, for any r € R, and £ an
index family for X2,

(3.11) ¥

g (X B F) = WU(X; B, F) + 45, (X2; Hom(E, F) @ O r).

Definition 3.6. Let &£ be the index set for X2 given by
E(BA W) =Ny, EBR YY) =3P (V) =0, VY e S(X
7By (Y)) =No,  Erp(Big (V) = Erp (B (V) =0, € S(X).

The edge calculus with bounds of a manifold with corners and
an iterated fibration structure consists of, for any r € R, multi-
weight tv for X2,
_ Erp/o
V(X B, F) = #0177~ N (X; Hom(E, F) @ O g),
V(X B F) = V(X3 B, F) + U0 (X; B F).

with notation as in (3.1) and —N < min(0, ).

(We will always implicitly assume that the multiweight used in the
edge calculus with bounds, tv above, is positive on ff(X?) so that one
can restrict to ff(X2).)

Asin [Maz91, §5], for each Y € S(X) we have a restriction map (with
st (‘Bgiz(Y)) the collective boundary hypersurface given by intersections

of %%(Y) with the side faces of X2)

(3.12) Ny : Og™ (X3 B) — U opy+)(By /Y3 E), where
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Uens(ry+) By /Y E)

00 T 2 . 2
B pSf(%gfdf(Y))I (‘3% (Y), diag, ﬁ%é(g (Y); Hom(E) ® Qo.r)
(5ff/m)|%<2)(y) B

+ B, N (BL)(V) Hom(E) @ Qo p).

The notation indicates that the latter space is a ‘non-commutative sus-
pension’ (cf. [AM10, §1], [MM98, §4]) which refers to the following.
We can identify the fibers of the bundle ¢TY ™, over Y, with the Lie
group G =Rt x R, i.e.,

(s,u) - (s',u") = (s8',u+ su'),

and the composition of edge pseudodifferential operators induces convo-
lution with respect to this action for the normal operators. Moreover,
\Il}"\’fgszs(eTyﬂ(‘By /Y; E) is naturally a bundle of operators over Y, and
the normal operators of differential operators form a special sub-bundle,
namely the product lie algebra U(g) x Diff’(Z) where U(g) is the uni-
versal enveloping algebra of g, the Lie algebra of the Lie group G above.
This goes also for zeroeth order operators, including the identity oper-

ator, in particular
(3.13) ‘Ny(Id) = 5,,¢Y(%Y)Idz,

with v4, (By) the identity section.

With px a total boundary defining function for X, for Y € S(X) we
now have a composite map 9 € Diff,(X) to °Ny (pxd), which is related
to the ‘wedge’ normal operator above by

(3.14) Ny (px0) = (px/ 1] pv )Ny (0),

Y'Y

where p}, is the pullback of py: to X2 to the right factor. Ny (d) is
not the normal operator of an edge operator; it is a wedge operator on

B (Y).

Consider the normal operators {*NyA}ycs(x) of an edge pseudo-

differential operator with bounds A € W™ (X; E, F). Since these are
defined by restriction of the integral kernel to the front faces of X2,

they automatically agree on the intersections of the front faces ‘B((;qz (Y),
but it will be useful in the parametrix construction below to have a
concrete understanding of these intersections. Let Y < Y, so we have

a diagram (3.9). The intersection of %S;B (Y') with q[)g): %fdf Y)—Y

takes place ‘in the base’ of gbg), i.e. exactly over B, o € M (Y). Thus

e T >
(3.15) N?(A)‘(dez (Y)NB(;QZO;) S \IINsZs(eT?JF)(%?/Y’ E)‘y,



FAMILIES DIRAC INDEX ON PSEUDOMANIFOLDS 259

where the restriction on the right hand side comes from fibration of

T,mf, _ ’V_ i . . .
Neus(eTF+) (B /Y; E) over Y discussed in the previous paragraph. On

the other hand, the intersection %(ﬁ (Y)n %f;(; (Y) is the front face

obtained from blow up of Bu(%? X4 By) in %gfqz (Y) (see (3.10)), and
is trivially equal to (¢§~/2))_1(%Y}7). Thus restriction of °Ay (A) to this

front face is really taking the normal operator of an (albeit suspended)
edge pseudodifferential operator. This is summarized in the diagram

e

,10 . Y 7,10 B ~‘
(316) \Ilg (X7E) sts(eT?+)(%Y/Y’ E)
Ny lres
1o . res T, o
VN ansery+) By /Y E) ==V O o (By /Y E)ly

where res means ‘restriction’.
To each index family & we assign a multiweight (&) such that

r,E
\Ije,phg

by defining, for each Y € S(X),

(X;E,F) CUE)(X. E,F)

w(€)(BE (V) = mnfEBY(Y)), w(E)BE (V) = infEBE(YV)),
w0(€)(B)(Y)) = inf(Re £(BL)(Y)) \ No)

with the convention that the infimum of the empty set is co.

These operators act on Sobolev sections of vector bundles. In view
of the inclusion of the large calculus into the calculus with bounds, it
suffices to describe the mapping properties of the latter. We prove the
following theorem in Appendix A, where as usual we identify opera-
tors with their integral kernels, so for a multiweight g, p% ¥e®(X; E, F)
is the space of operators with integral kernel in p% (UL(X;E,F) +
U, *"(X; E, F)). Moreover we will use multiweights for the front faces,
specifically multiweights f: ff(X2) — R, notation as in (3.8), and cor-
responding weight functions

f _ f(H)
Pr(x2) = H PH
Heff(X2)

Theorem 3.7 (Action on edge Sobolev spaces). Let f be a multi-
weight for ff(X2). Any A € p;f(XQ)\Ilg’g(X; E, F) defines a bounded map,
for any t € R,

(3.17) P HUX; E) — p* HY (X F)
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as long as t > t' +r and, for each Y € §(X),
a(BGY (V) +5(Y) > —

(3.18) a(BY (1)) > 5(¥) - 4
HBL)(Y)) +5(Y) > ().

1
>3

Essentially by Arzela-Ascoli we can see that the inclusion
P HUX; E) — p* HL (X; B)

is compact if (and only if) s > s’ and ¢ > #'. Combining with the map-
ping properties, we can identify the edge pseudodifferential operators
that act as compact operators.

Corollary 3.8. If A is as in Theorem 3.7 then the operator (3.17)
is compact if t > t' +r and the inequalities in (3.18) are strict.

In Appendix A we study the composition of these pseudodifferential
operators at the level of their integral kernels. One advantage of study-
ing composition at this level is that one can then deduce composition
results for functions spaces (Sobolev spaces, Holder spaces, etc.) see,
e.g., [Maz91].

Theorem 3.9 (Composition of edge pseudodifferential operators).
1) Let ra,75 € R and let 4, Ep be index families for X2 such that
Re(E4(B(Y))) + Re(Ep(BP (Y))) > —1 for all Y € S(X).
If Ae WAS(X2 G, F) and B € W22 (X2 B, G) then
C=AoBe WA (X2 B F)
where Ec is the index family on X2 given by, for each Y € S(X),
E(B (V) = Ea(BR (V) U (EaBEV) +Ex(BT (1)),
Eo(BE (V) = Ep(BE (V) U (Ea(BH () + Ex(BE (1))
2 2 .
Eo(BG)(YV)) = (EaBR (V) + Ep(BE (1)) + dim(Y) +1)
U (&(ngQ(Y)) +Ep(BE) (Y)))
2) Letra,rp € R and let ga, gp be multiweights for X2 such that
0a(B6 (V) +05(B5 (V) > —1 for all Y € S(X).
If A€ U (X2,G,F) and B € WP (X2, E,G) then
C=AoBecUATEIC (X2 E F)
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where gc is the multiweight on X2 given by, for each Y € S(X),

80(B{](1)) = min (ga(B1 (V). ga(BY (1) + 8B (V).
50 (B (V) = min (3(B( (1)), 84(B (V) + 55(BL)(Y)))

80 (B (V) = min (ga(B{E (V) + 55(BE (1)) + dim(Y) +1,
gA(BL) (V) +a(B (1))

Proof. The proof of (1) is carried out, following [Maz91], in Appen-
dix A by constructing a ‘triple edge space’ and analyzing the integral
kernel of the composite geometrically via the push-forward and pull-
back theorems. As explained in §3.1, these same theorems apply to
partially polyhomogenous distributions with conormal errors. Once we
recall that the multiweight go denotes the order of the conormal error,
we can deduce the behavior of the multiweights in (2) from the behavior
of the index sets in (1). q.e.d.

We formalize the notion of smooth family of edge operators using the
space (M/B)2, e.g.,

VO(M/B; B, F) = p3 /syl (M/B)Z, diagy; Hom(E, F) ® Qo,r),
and U;%%(M/B; E,F) = 4!/ A=N (M/B; Hom(E, F) ® Qo ).
The composition results in Appendix A are established in the setting of

families.

3.4. Bi-ideal. As in, e.g., [Mel93, Proposition 5.38], [MM95, §4.12],
we point out a useful bi-ideal property of some edge pseudodifferential
operators.

For each a € RT, define the residual edge pseudodifferential operators
of weight a to be

Vo red (X5 B, F) = pgx2y) Ve ™ (X5 B F).

e,res
Theorem 3.10. For a € RT
W (X G, H) o B(LA(X; F,G)) oW, %X, E, F) C U %% X; E,H),

e,res e,res e,res
where B(L?(X; F,G)) is the space of bounded operators on L*(X; F,G).

Proof. This result is by now standard, see e.g. [Maz91], but we sketch
a proof for the convenience of the reader. For simplicity of notation, let
us assume that E, F, G, H are trivial line bundles. Let A, C' € Wq re3"(X)
and B € B(L*(X)). In terms of their distributional kernels on X2, the
composition is given by

Kasc(C,¢) //&MCWMWNWMWCM¢Mﬂ
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and so smoothness of X 4p¢ in ( is inherited from smoothness of K4 in
¢, while smoothness of K 4p¢ in (' is inherited from the corresponding
smoothness of K¢.

Next we lift this smooth function from X? to X2 and check that it is
conormal to the boundary hypersurfaces. Indeed, the b-vector fields on
X2 are spanned by the lifts of the edge-vector fields on X along B2),L
and fB(z) g. The kernel ,BE*Q)/C Apc has stable regularity with respect to
the left lift of edge-vector fields because K 4 does, and with respect to
the right lift of edge-vector fields because Kp does. q.e.d.

3.5. Wedge heat space. Recall that the edge double space was de-
fined in §3.2 as

X2 = | X358\ x4, BB <, B,

Y, 7Y,
where {Y7,...,Y;} is a non-decreasing listing of S(X), and has collective
boundary hypersurfaces, for each Y € S(X),
B XX o BE (V) XxBY o B (), BY x B o B0)(V).

Now we construct the wedge heat space. Starting with the space
X2 x R} we blow-up {t = 0} parabolically so that 7 = 1/t is a smooth
function. We will not include this blow-up explicitly but simply change
the notation to X2 x R}.

Definition 3.11. Let X be a manifold with corners and an iterated
fibration structure and {Y1,...,Y;} a non-decreasing listing of S(X).
The intermediate wedge heat space of X is

(3.19) HXyo= [XQ x RY; By, Xy, By; x {0);
1By, Xgy, By, x {0}; diagy ><{0}],
and the wedge heat space of X is
(3.20) HXy = [XQ X RY; By, Xy, By, x {0} By, Xgy, By, x RY;
By, Xgy, By, x {0};By, x4y, By, x R diagy x{O}].

Remark 3.12. In order to describe the heat kernel of 3%( as a conor-
mal distribution with bounds the intermediate space H X, o would suf-
fice, see, e.g., [MV12]. However below we will allow for perturbations
of 0x by smoothing edge pseudodifferential operators and this requires
the slightly more complicated space H X,.

To deal smoothly with a family of wedge heat operators we construct
a families wedge heat space to carry their integral kernels.
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Definition 3.13. Given a fiber bundle M —*— B of manifolds with
corners and iterated fibration structures as in Definition 1.3, fix a non-
decreasing list of Sy, (M), {N1, Na, ..., N¢}, and let the families wedge
heat space be

H(M/B)y = [Mxy MXRY; By, Xy, B, < {0} B, Xoy, By ¥RY
';%Nz X‘z’NZ %Nz X {0};53]\71Z ><¢N£ SBNZ X Ri;diagM X{O}].

The map v induces a fiber bundle

V(H)

HX, — H(M/B)y —2 B.

As with the double space, implicit in the definition of H Xy, is the
fact that for Y € S(X) of depth k, the interior lift of By x4 By x {0}
to the space in which the By x4, By x {0} have been blown up for all
Y <Yisa p-submanifold. It is helpful to see this explicitly. If Y < 57,
we have a diagram as in (3.4) and attendant coordinates z,y,w,r,Z,
together with their primed versions on the right factor on X?2. Working
in the interior of Y, after blowing-up By X4, By x {7 = 0}, projective
coordinates with respect to 2’ are given by T' = 7/2' and the other
coordinates in (3.6), in which the interior lift of By x4 By x {7 = 0}
is given by
(3.21) {T=0,r=r"=0,s=1,u=0, w=uw'},

again a p-submanifold.
We denote the blow-down map by

By HXw — X? x RY
and its composition with the projections onto the left or right factor of
X by Bmy,L» Bem),r respectively. There are boundary hypersurfaces
X2 % {0}« B, diagy x{0} > B
and collective boundary hypersurfaces, one for each Y € S(X),
By x X x R* & BUN(Y), X x By x R & BJ(Y),

By x5, By x {0} ¢+ BL (V), By x4, By x R < 8L (V).
We denote the collective boundary hypersurfaces of H(M/B),, analo-

gously to those of H Xy, e.g., %fbdv)l( ).

We introduce the abbreviations

U %Ml 1 U %100

YeS(X) YeS(X

- U s = U ’BM,

YeS(X) Yes(X
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so that, e.g., pir(rx,,) refers to the product of boundary defining func-

tions over all %gg{%(Y) for Y € S(X). The ‘edge faces’ making up
ef(HX,,) do not intersect the lower depth front faces, nor the 7 = 0
diagonal

(H)
é¢,1

" _
), Y <Y.

diagy x{0} Nef(HX,) =@ =B (Y)nB

Also as with the double space, the faces created by the blow ups are
fibre bundles whose fibers are suspended versions of wedge heat spaces.
This will be a wedge heat space where the time [0,00), is compacti-
fied along with other normal directions, and we need analogues of the
identity section above.

Given a fiber bundle M — B and a vector bundle & — é, the
pull-back of S(E x R3) = (E x R})/Ry to M has two subbundles, 7
and 7, given, respectively, by the inclusion of R%r — R%r x Ry into the
right factor and the projection Ri xRy — Ri off the right factor, of
the identity section. Concretely, 7 is given by the lift of the subbundle
[{0} x (1,1,0)] C S(E x R3) to M, and 74 is given by the lift of [{0} x
(x,z,v/1+x?)]. For trivial fibrations M = pt = B with E = R" we
denote these by

;O(Sh+2) = [(O’ 1, 170)] € (Rh X Ri— \ (Oa 0,0, 0))/R+’
7 (S"2) = [(0,z, 2,1+ 22)] € (R" x R\ (0,0,0,0)) /R,

the R acting by dilation.

Definition 3.14. Let X — M L B be a fiber bundle of manifolds
with corners and iterated fibration structures and let {Ny,..., Ny} be a

non-decreasing listing of S QZ(M/ ). Let Syq4 (M/ x5 M ) be the pull-back
of the fiber bundle S(TB x R3) from B to M x5 M and let ﬁlzo(]\\/f)

denote the 7 = 0 identity section. The intermediate suspended
wedge heat space H (M /B)gys(w)0 18

H(M/B)suswy.0 =[S+ (M x g M); vp(M)Na (B, %o B,);

s vg(M) N0 ﬂ_l(%m X, By, ); vy (M) N 7! (diag(M))].
This fibers over B and we denote the typical fiber by H X Sus 5 (w),0 SO
that

~

HXSUSE(W),O — H(M/E)Sus(w),o — B.
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The suspended wedge heat space H (]\\4/ / é) Sus(w) 18

H(M/E)Sus(w) (S 4 (M x M)'
VJ(M)ﬂﬂ'* (’BJ\V, X ¢ % ) 11}7
u(M)Nat (B, ><¢N By, );

- 1 '
(M)ﬂTr (%]\71 ><¢>]vl %Nﬁ)’
M)ﬂﬂ_l(%]\v& X¢N£ SB]\V/g);

vy (M) N7~ (diag(M))].

7yl

and participates in the fiber bundle
HXSusé(w) — H(M/E)Sus(w) — é

As anticipated, the suspended wedge heat spaces describe the struc-
ture of the front faces of the wedge heat space.

Proposition 3.15 (Structure of the front faces of HXy). Let X be
a manifold with corners and an iterated fibration structure.
For each Y € S(X), let
(H)

H
¢§/ ¥ %¢¢,1(Y) — Y
denote the composition of By + HXw — X2 x RE with the fibration
By x4, By x {0} — V. Then B (V) = H(By /Y ) sus(w) and ¢
1s the fiber bundle map
(H) ¢(H)
HZSus(w) — %¢¢71(Y) —> Y.
For the intermediate heat space, HXy o, the corresponding front face is
the total space of the fiber bundle
05"
HZSus(W),O - H(%Y/Y)Sus(w),o —Y.

The edge face corresponding to Y, ‘B(%)O(Y), participates in a fiber

bundle with typical fiber the suspended edge double space of Z,

H
Zg'usy( ) %Ew)o(y) — (Y x R-ﬁ-)res

and base given by
(Y X Ry)res = [Y x Ry; Byry x {0}; ...; Byyy x {0}],
where {Y{,..., Y]} are the strata with Y] <Y indexed in non-increasing
order of depth.
)

Finally, the interior of the boundary hypersurface ‘B(d 1 18 naturally
identified with the edge tangent bundle °T X .

Proof. Let HXy o(k+1) be the intermediate space obtained by blow-
up of all the interior lifts of the By x4 , Bys x {7 = 0} with Y’ of
depth not less than k£ + 1, and let Y € S(X) have depth k. Then the
normal bundle of By x4, By x {0} fibers over °TY x (R4 )3 with fibre
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Z?2. Thus the blow up of the interior lift of By x4, By x {0} gives a
front face ff that fibres
SEExZ? — ff — Y.

The section vy(ff) is the subbundle of ff over Y given by g (S}ﬁrf) x Z2.
From this we see that for Y >V, the interior lift of By x4 By x {0}
intersects ff exactly in the fibres at VO(SZT; ) X By, X By,
the diagonal intersects it at ﬂo(ST:f) x Z2. This yields the structure
of the front faces of the intermediate wedge heat space. For the wedge
heat space it suffices to note that the blow ups of the By, X gy, By, x R
intersect the intermediate front faces exactly at the ;.

To see that the statement for the %Elxb)o( ) holds, note that the lifts
of Bys xg., Byr x {0} — Y’ x {0} for Y’ <Y intersect the blowdown,
By Xy By xRy — Y xR, exactly in the bases over the Byy x {0} C
Y x R+

Finally the boundary hypersurface ‘B&i)l is the inward-pointing part
of the spherical normal bundle to diag, x{0} and, as the normal bundle
to the edge diagonal in the edge double space is the edge tangent bundle,

and

’B&g)l is its radial compactification. q.e.d.
3.6. Wedge heat operators. Let us specify the weighted density bun-

dle we will use for operators. Define a multi-weight for H X, by
h: Mi(HXy) — R,

~(dimY +3) it J C B (V)
by = | ~(dmY +1) i C %%gfo(y)
~(dimX +2) if J C B
0 otherwise
and then
(3.22) .k = 9" Bz, RUX).

We will often denote a nowhere-vanishing section of 5y rSUX) by pg.
By a wedge heat operator we will mean an element of
B o/ "V (H X Hom(E) @ Q. g)
where £ and to are, respectively, an index set and multiweight for H X,.
Recall that, e.g., on a smooth manifold L the composition of two heat
operators is given by the formula

’CAoB C C t / //CA ¢, C” + )/CB(C",C',t') dCH dt.

In Appendix B we define the composition of two wedge heat operators
by a version of this formula and then analyze it using the geometric
microlocal approach of Melrose, cf. [MP97a, Appendix].
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Theorem 3.16 (Composition of wedge heat operators).
1) Let Ea, Ep be index families for H Xy such that

Re(€A(B)1)) > 0, Re(Ep(BY)))) > 0, and

Re(E4(BY0(Y))) + Re(Ep(BYH(Y)) +1> 0 for all Y € S(X),

and let

€ &
A€ o (HXw; Hom(E) @ Oy g), B € o0 (HXyw; Hom(E) @ &y g),

then the composition is defined and satisfies

C = Ao B e 5 (HXy; Hom(E) @ Qy ),

with Sc(’B(H)) = 5,4(%&57)1) + 53(%&2{)1) and, for each’ Y € S(X),

dd,1
Ec(BH(Y)) = Ea(BYH(Y)D(EA(BYL (V) + E5(BLH(Y))
Ec(BEHY)) = Ep(Boro(Y)T(E(BEHY)) + Ep(BYSL (V)
Ec(BU (V) = Ea(BYL (V) + Ep(BYL (V)

Ec(BENY)) = (Ea(BYI, (V) + Ex(BL(Y))

2) Let w4, wop be multiweights for H Xy, such that

{r0.(B5 )} U fro. (B (V) 1 Y € S(X)} € (0,00) U {0},

and let £E4 and Ep be index sets as above. If we have

w0.4(BY (V) +wp(Bl(Y)) +1> 0 for all Y € S(X),

then for any
A€ BN /=Y (H X, Hom(E) @ Q).
B € BL/"" o/ 7" (HXy; Hom(E) ® Oy g),
the composition is defined and satisfies
£ e
C=AoBe B/ o/~ (HXy; Hom(E) ® Qy.g),

where Ec is as above and vo¢ is the multiweight on H Xy, given by

o (BY)) =min(r(€4) (B )+op(BY 1), 04 (B )+ (ER)(BY)),
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and, for each'Y € S(X),

w0 (B(Y)) = min(toa(Blhy(Y)), 0(E4)(B ¢¢1<Y> + (B Y)),

)
w4(B) (V) + w0 (Ep) (B H(Y))),
woc(BY (V) = min(p (B (Y)), m(E4) (B (V) +r5(BY, (V)),
wACBAH(Y)) +w(E8) (Byg) (V)
H)
)

mc(%%,)l(y)) = min(m(gA)(iBé¢?l(Y)) t mB(%W 1Y),
(H)

wA(BY5) (V) +w(Ep)(BLL) (V))),
e (BE(Y) = min (dimY + 1+ wa(BEHY)) + w(E)(BEAY)),
dimY + 1+ w(Ea)(BIGH(Y)) + ws(BiH(Y)),

H H
w(E4)(BUH (V) + w0s(BY(Y)),
H H
wA(B L (Y)) + 10(ER) (B (Y))).
The restriction on the multiweights in the second part of the theorem,

which holds for all of the multiweights that we will make use of, is made
only to simplify the statement of the theorem.

Proof. The proof of (1) is carried out in Appendix B following Mel-
rose’s geometric microlocal approach, see, e.g., [MP97a], [DM12],
[Alb07], [MM95]. As explained in §3.1, the same pull-back and push-
forward theorems used to prove (1) establish (2). q.e.d.

We formalize the notion of smooth family of wedge heat operators
using the space H(M/B)y, as elements of

E —-m—
B /" (H(M/B)y; Hom(E) @ Qy r)
where £ and to are, respectively, an index set and multiweight for
H(M/B)y, and b is the multiweight above extended to H(M/B)y, i.e.,
(3.23)

b: Mi(H(M/B)w) — R,

dim(N/B)+3) it HC SB((W)l( ) for some N € Sy (M)
dim(N/B)+1) it HC SB((W)O( ) for some N € Sy (M)
dim(M/B) +2) if H =%

it H =B,

otherwise

=8 L L1

The composition results in Appendix B are established in the setting of
families of operators.
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4. Resolvent and heat kernel of 0,/

Let us return to our usual setting with M Y, Ba locally trivial
family of manifolds with corners and iterated fibration structures with
a totally geodesic vertical wedge metric gy p, and E — M wedge
Clifford module along the fibers of . Recall that Dj;/p denotes the
associated Dirac-type operator acting on L2 (M/B; E), the wedge L*-
space and 07/p denotes the unitarily equivalent operator acting on
L*(M/B; E), see (1.19). We assigned a ‘vertical APS domain’ to this
operator, Dyaps(0ys/p), and in this section we will describe the struc-
ture of the resolvent and heat kernel of 9/, under the Witt assumption
from Definition 2.4.

4.1. Compatible perturbations. Before carrying out these construc-
tions, we will generalize the operators under consideration by allowing
certain perturbations by smoothing operators. The perturbations we
will use in the main result of this paper will be compactly supported in
the interior of (M/B)?2, but we allow more general perturbations that
share sufficiently many properties of 9;/p so as to not seriously affect
the analysis. In a future publication we will make use of these more
general perturbations.
Let

Qe pf?(l(M/B)e)‘lje_oo(M/B; E)
so that 0p7/p + @ has a model operator at every N € Sy(M), y € N°,

modeling its behavior on the model wedge RY x R x Zy, acting on
sections of the pull-back of E‘ Zy given by

Ny(@np + Q) = cf(dx)0s + 1(Dz, +°Ny(pyQ)) + Dg.
Here °Ny(py@Q) = Qz, is the restriction of the integral kernel of pyQ

to the fiber of %fb%zg,l(N) over y € N°. Thus, as in (3.12), Qz, is a non-

commutative suspension operator, translation invariant with respect to
the Lie group Rt x R”.

Our analysis of N, (0 Mm/B) in §2.3 made use of two convenient facts,
first that Dz, is independent of the variables (s, u), and secondly that it
anti-commutes with Clifford multiplication by covectors in T*(N/B)™.
Our methods are insensitive to perturbations that maintain these two
properties.

Definition 4.1. Let M L B be a family of manifolds with corners
and iterated fibration structures with a vertical wedge metric g5;/p and
FE — M a wedge Clifford module along the fibers of ¢). By a compati-
ble perturbation (of the associated 0,;/5) we will mean a self-adjoint
family of operators Q) = Q/p satisfying two properties:



270 P. ALBIN & J. GELL-REDMAN

i) The integral kernel of Qs p is an element of
Pa((y ) S0 (M .y M; Hom(E)),
ii) At every N € Sy(M), y € N,
d(0)Qz, + Qz,cl(0) =0,

for every covector 6 in T, (N/B)", where Qz, is the operator on Z,
whose integral kernel is the restriction of pyQ s/ p to the fiber of By x4
By C M xy M over y.

Remark 4.2. In a subsequent paper we will study the existence of
compatible perturbations. For the purpose of this paper we restrict
ourselves to an example of how these will arise.

Consider a single manifold with boundary, X, whose boundary By
participates in a fiber bundle of closed manifolds

7 — By 2y,
together with a wedge Clifford module (E, gg, VF, ¢[) and associated
Dirac-type operator 0x. The boundary family Dgy,, /vy is a family of
Dirac-type operators that anti-commute with Clifford multiplication
in the T*Y *-directions and so determine an index class in the C*-K-
theory group K,.(CI(T*Y1)). This index vanishes if and only if there
is a family of smoothing operators Qg /y € ¥~>°(By /Y E) such that
Dy, )y + Qsy /v is a family of invertible operators with the same anti-
commutation property. If ¢ is any smooth function on X? that is equal
to the Schwartz kernel of Qg,, /y on diagy xZ? C{x=212"=0} C X2

and we set Qx = p
of 8)(.

;2)(}/)@"2)(], then QQx is a compatible perturbation
b

We will use the notation

Om/B,Q =Om/B+Qum/B, Dz,0=Dz,+Qz, etc,
with the understanding that @,/ p is a compatible perturbation. We
define the vertical APS domain of 0y;/p o as the graph closure of the
intersection of Diax(0ar/p,0) With p¥2H§ (X; E) and say that the Witt
condition is satisfied if

0 ¢ SpeC(Dzy’Q)7

where the spectrum refers to Dz, +@Qz, with its vertical APS domain in
L?(Zy; E|z,). The compatibility conditions are chosen so that Proposi-
tion 2.7 holds after replacing 0y p with 0p7/p o with the same proof.
From §2.3 we know that the indicial roots of Oyp;/pg at y € N,
N € §;(M) are equal to the positive eigenvalues of the induced Dirac-
type operator Dz, g, acting on L?(Bx/N; E|y) with its vertical APS



FAMILIES DIRAC INDEX ON PSEUDOMANIFOLDS 271

domain. Define an ‘indicial multiweight’, J, for M by
(4.1)
J(Bn) = min{\ € Spec(Dz, ) NRT : y € N} for all N € Sy(M)

and a corresponding multiweight 3 for (M/B)? by
3B (V) = ID(BE (V) = 3(By)
3D (BE)(N)) = 23(By) + dim(N/B) + 1 for all N € Sy(M).

The weight at the front faces %5;52(;2 (N) is explained by the composition
formula for edge pseudodifferential operators: composing an operator
with the given weights at the side faces produces this weight at the
front faces. We use the same notation for the indicial multiweights of
X and X2

Theorem 4.3. Let 0y p g be a family of compatibly perturbed Dirac-
type wedge operators endowed with its vertical APS domain and satis-
fying the Witt assumption. Then (Onr/p,o, Dvaps) is a family of self-
adjoint, Fredholm operators with compact resolvent. The generalized
inverse of Oy p.g s a family valued in pﬁ((M/B)g)\Ifgl’jm(M/B; E).

For each fiber X of 1, the eigenfunctions of Ox o are elements of
px H(X; E), the resolvent is a meromorphic function on C with values
in the edge calculus with bounds,

_ —1.3®2
@Ox.q - N €pax2)¥e 7T (X E),
and the projection onto the A-eigenspace of Ox g satisfies
(4.2) I € pexe) Ug ™7 (X B).

Define the indicial multiweight for the heat space, in terms of (4.1),

3 (BLTHN)) = 3T (BE(N)) = (B,
ws) I (BL) (V) = 23(By) + dim(N/B) + 1,
‘ 3 (8D (V) = 00 ¥N € Sy(M),

and 3 (B = 3<H>(%g§{ )) = o

We also define an index set for the heat space by

H H
H(%Eld,)l) =2, H(%((]O,)l) =0, and

(44)  H(BEHN)) = HBEHN)) = H(BL, (V) =0,
H(BUL (N)) =2 VN € Sy(M).
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Theorem 4.4. Let 0y p g be a compatibly perturbed family of Dirac-
type wedge operators endowed with its vertical APS domain and satis-
fying the Witt assumption. The heat kernel of 6?\/[/B,Q satisfies

432 H/IH)
e e € 2" o/~ (H(M/ B): Hom(E) @ Oy )

where 3 and H are given by (4.3), (4.4) and Q g is the density bundle
from (3.22).

The rest of this section consists of a proof of Theorems 4.3 and 4.4
by induction on the depth of M. Our base case consists of closed man-
ifolds, for which these theorems are well-known, even with a smoothing
perturbation (e.g., [BGV04, Proposition 9.46], [MP97a, Appendix],
[AR09a, AR09b, AR13]). Thus we now assume that these theorems
are known for all spaces of depth less than k, and that X has depth k.

4.2. The model wedge. In the situation above, choose N € Sy (M),
y € N° let Z = <;3]_Vl(y) and let

Ny(ESM/B,Q) = c[(da;)é)s + %DZQ + DRh = Ny(DM/B,Q) — C[(dﬂ?) di;r;Z

be the normal operator of 9,7, ¢ on the model wedge at y, RY x Rhx Z,
from §2.3. In this section, we make use of the inductive hypothesis that
Theorems 4.3 and 4.4 hold for Dz ¢ to describe the Green’s function
and heat kernel of Ny,(dpr/p,0)-

Our assumptions on the perturbation and inductive hypothesis on
the link invite us to analyze N, (0 p,g) by using the Fourier trans-

form on R” and the Hankel transform on each eigenspace in a spectral
decomposition on Z (as is done in, e.g., [Che79b], [CT82], [Che83],
[Cho85], [Les97, §2.3], [Tay11, §3.8], [MV12, §3.2]).

Thus we consider

(Ny(Or/B,Q))° = =07 + 5((cf(dx)Dzg — 5)° — 1) + Agn

as an operator on L?(ds dn dz) and using the inductive hypothesis of
discrete spectrum of Dy with its vertical APS domain, denote the
eigenvalues of the self-adjoint operator (c/(dz)Dz ¢ — 1/2)? by {£;}2,
and the corresponding eigensections by {¢;}. As in [Tayl1, §8.8], by
writing

F(s,2) = fi(s)$i(2)

for appropriate coefficients f;, we have
(=02 + 5 ((el(d2) Dz —5)° = })F(s,2) = Y (=02 +

and this will equal p?F (s, z) if we take

fi(s) = Vs Ty, (us)

£;

_1
4
32

)(fi(8)¢i(2))

with 1/2-2 =Y;.
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Note that there is a potential sign ambiguity in v;. As s — 0T,

fi(s) = O(s%+”i) will be in L2 _(ds) for v; > —1, so the ambiguity is only
for the small eigenvalues ¢; < 1. The choice of square root corresponds
to different domains for Ny (9y/5,¢)?. In terms of the eigenvalues {\;}
of c/(dx)Dz,q, we have {; = (X\; — 3)? so this ambiguity corresponds
to A in (—3,3). If we restrict attention to domains of Ny (3 p0)?
induced from domains of N, (3/p,g) then, arguing as in the proof of
Proposition 2.7, the ambiguity corresponds to A in (—3,3)N (-3, 3) =
(—=3,3). (Thus, as is well-known, these are the small eigenvalues that
distinguish domains, see for example the discussion in [Cho85, top of
page 37] in terms of which we are taking Ay.)

In particular, as we are interested in the vertical APS domain for

Ny(Onr/B,g), which induces

Dyaps(Ny(Ony/p,g)?) = {F € Dvaps(Ny(Or/B,0)) :
Ny(@nr/B,Q)(F) € Dvaps(Ny(Or/8,0))}

we define v4pg by

—A=3 ifxe(0,d)
4.5 A) = 2 120
(4:5) vaps(3) {])\ -1 if otherwise
Then we can, as in [Tay11, Sec. 8.8], diagonalize ./\fy((y)]\z[/BQ)2 by com-
bining first the map

H(g) = @ (HVAPs(A)(S_l/ng))v

)\GSPGC(DZy’Q)

where H, denotes the Hankel transform, gy denotes the projec-

aps(X)
tion of g onto the corresponding (i.e., (A — 3)? — 1) eigenspace of
(ef(dx)Dz g —1/2)% — 1/4, and then the Fourier transform in R”. This
yields a unitary map onto L2(\ d\ dn,£?) which replaces ./\/'y(fi?\/[/B’Q)
with multiplication by A? + |n|%.

The operator N, (95, Q)? is injective on its vertical APS domain
and has an (unbounded) inverse G, determined by multiplication by

H(Gg) = (N2 + [n|>) "' H(g), and satisfying
(4.6) (Ny(Ony5,Q))°G =1d.

Below we will analyze the integral kernels of the heat kernel and of G,
in particular we will use the integral kernel of the unbounded operator

(4.7) G = Ny(Omyp, Q)9

the Green’s function for Ny (0r/p,g), to construct a parametrix for
OM/B.Q-
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The heat kernel on the model wedge. The heat kernel of a product
is the product of the heat kernels, so to begin with let us disregard the
factor of R” and focus instead on the exact Riemannian cone

ZT =R xZ, gz =ds*+s%gz.
We denote E pulled-back to R x Z by the same symbol, and the
corresponding Dirac-type operator by

(4.8) 6z+7Q = C[(dx)as + %DZ,Q'

It follows from Proposition 2.7 that 04+ ¢ is injective and self-adjoint
with its vertical APS domain. Thus the corresponding domain for

522+’Q — —83 + s%((C[(dx)DZ,Q — %)2 — %)7
namely

,DVAPS(622+7Q) = {U € DVAPS(8Z+,Q) : 5Z+7Qu € DAPS(6Z+,Q)},
is also a self-adjoint domain.

=2
Let ¢ "7+.¢ be the heat kernel of (02, Q,DAPS(6QZ+ o)) considered
as a density,

—td
e

2
(49) zt.@ = K ug.

From the spectral theorem we know that K is a distribution on the space
(21 xR}
such that:
. —t02 |
e lim; .ge 2T.@ =1d,
e For every ¢t > 0, the map
)
Dyaps (054 Q)ds—e Wztes e L*(ZT,E)

is valued in DVAPS(5OZO+,Q) = ﬂDVAPS(ééZﬂQ)- In particular the
section KC(r, z, 7/, 2/, t) is smooth in all of its variables in the interior
of (Z+)? x R},
=2
e For each t, e 2+ is a self-adjoint operator, and hence we have
the symmetry K(r, z,7/, 2/, t) = K(r', 2/, 7, 2, ).

We will improve these properties by showing that e_tézzﬂc?, viewed as a
distribution on a different compactification of the interior of (Z+)2 xR},
extends nicely to the boundary.

Recall, e.g., from [Les97, Proposition 2.3.9], that given a > —1 and
f € C°(RT), the solution to

(0 + (=02 + s72(a® — 1)))u(s,t) =0
lim u(s,t) = f(s)
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is given by

*Vss S5 52432 _
u(s,t) —/0 TIP(GQ) <2t> exp <— pm > f(s) ds

where I),,2) denotes the modified Bessel function of the first kind,

p(a?) = a if @ > 1 and otherwise satisfies p(a?) € {+a} with differ-

ent choices corresponding to different domains of (=02 +s72(a?— 1)) as

an unbounded operator on L?(R™T). In projective coordinates as above,
this shows that this heat kernel is a right density times the function

NG s s+
3o et (52) e (- )

Hence we can write the heat kernel on the exact cone as
ss! ss' s+ ()?
(4.10) Z 7—71/,4,35()\) (W) exp <—40_2 Py (2, 2)
AeSpec(Dz,,q)

where v4pg is given by (4.5) and ®,(z,z) is the projection onto the
A-eigenspace of c/(dx)Dz, . Convergence of this sum in the space of
polyhomogeneous conormal distributions is used in [M'V12, Proposition
3.2]. See also [Che83, Example 3.1].

To establish the asymptotics of this kernel our strategy, following
Mooers [Mo0099] and others, e.g., [Che83, §2], [Les97, §2.2], is to
exploit the homogeneity of the cone. For each ¢ > 0, we set
T.: (Z7)?x Rf — (Z1)% x Rf, Ye(s,2,8,2,t) = (cs,z,c5', 2, ct);

we use the same symbol to denote the corresponding scalings on (Z1)2
and ZT and trust that this will not lead to confusion.

As F is pulled-back from Z, it makes sense to pull-back a section of
E over Z7 along Y. and it is easy to see that

T2 CE((27)%5 B) — C2((Z4)°: E)
extends to a bounded map on L?(Z7; E) and satisfies
Yiord, =ro,oX,, Y.00,=0,07;.
It follows that Y} preserves DVAPS(?)ZZJF’Q) for any ¢ € N and satisfies
Y00z q=c "0z qoXs,  Tio(td +10%: o) = (t0+10%: )oY
In particular, if w is a solution of the heat equation with initial data f,
then T}u solves the heat equation with initial data Y7 f. However,

t
Tiu(C,t) = / K(cs, 2,8, 2 c2t)f(s',2) ds' d2 dt
0 Jz+

t
/__ /
==, c/ K(es,z,er', 2, 2t) f(er', 2') d' d2 dt,
0 JZz+
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so uniqueness for the heat equation shows that YK = ¢~ 1K and hence,
as a right density, the heat kernel is invariant under this dilation,

_152 152
Wzt = e 7+ q.

(4.11) Tre
This is the dilation invariance that we will exploit.

To do so, we first blow-up {¢ = 0} parabolically so that 7 = /t  is
a generator of the smooth structure. Secondly we blow-up the cone-tip
at time zero, to obtain the space
Hi1Zt =R xZxRExZ'xRE;{s=5'=7=0}] 2 ZxZ' xS%L xRE
where §2 = {(ws,wy,w;) € [0,00)% : w24w? +w? = 1}. The blow-down
map is

B

H\Z* Zt x Zt xR
(Z7 zl7 (w37w8/7w7'>? R) — ((RwS, Z)? (RwS/? ZI)? R2T2)

and we note that Y. lifts to be simply R +— cR. We denote {R = 0} by

Br(H1Z7T).
Instead of using polar coordinates, we can use projective coordinates
S , , T
r= ?7 2, S, 2z, g = ?7

valid away from wy = 0, in which s’ is a boundary defining function for
Br(H1ZT) and Y. is s’ — cs'.

Let 77, : Z+ x Z+ xR — Z* be the projection onto the left factor
of Z*, and let B, = 7, o 3. We have

Bi D% o= ()2 (~02 + L((cl(d2)Dzq — $)* — 1)).

The plan is to identify the heat kernel at ' = 1 and then use dilation
invariance.
To this end, let x : R — R™ satisfy

1 ifjr—1|<1/4
x(r) = flr - <1/,
0 if|jr—1/>1/2

and define the operator

(4.12) D = cl(dx)ds + (1 — x(s)) + X2)Dy o,

S

which we can interpret as an operator on S' x Z where S! = [0,2]/0 ~ 2
and coincides (thought of as an operator on Ry x Z) with D+ o on
3/4<r<5/4

Let e~tP” denote the heat kernel of D? on S! x Z endowed with its
vertical APS domain and note that the inductive hypothesis applies to
it. We consider e~ tP* as a right density and denote it as IEM R.

We will multiply the model wedge heat kernel K by cut-off functions

to obtain a kernel on S! x Z that we can compare to etD* = IE;LR. Let
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X: R — Ry satisfy xx = x and x(r) = 1 for [r— 1] < ¢ for some § > 0.
Set
Fi(r,z,7" 2 1) = X(r)X(r"K(r, 2,7, 2, 7)
so that
(8 + D) Fy(r, 2,7, 7', 7) = E(r, 2,7, 2, 7)
Note that £ =0 for |r — 1| < 0, indeed

E(r,z,r", 2, 1)
= (=X"("K(r,z,7", 2", ) = 2X' (r)0.(K(r, 2,7, 2/, 7)) X ().

Let Fy(r,z,r',2,7) = K o E, so (8; + D?)(Fy — F») = 0. Note that
Fy(r,z,1,2, 7') O(7°). Indeed,

1 " " " / " "
/ / rz,r,z,s)oE(r,z,l,z,T—s)dsdr dz",
SixZz

and the right factor is supported away from 7’ = 1, hence rapidly
decaying. Also, the restriction of Fy — Fy to v’ = 1 satisfies

lim(Fy — Fp)(r, 2,1, 2, 7) = X(r,2)00,(1,2') = 8,y (1,2'),
By uniqueness, it follows that
Iz(r, 2,1, 7)) = (Fy — F»)(r,2,1,2',7),
K(r,z,s,2,7)=(s)"(FL = F)(r,21,2,7),
in particular
(4.13) K—K=0r>®) forr' =1, re[l—01+4,

and this goes most of the way toward proving the required regularity of

the heat kernal of the normal operator e —tNy @5 @) Note that we are
interested in the dimensionally reduced heat kernel which arises in the
model problem, namely, whereas in general ¢ NvO/5.0) (s,z,u,8, 2 u)
is a function on (Ry x Z x R")2, our heat kernel is a function on
Ry x R" x Z? obtained, in vulgar terms, by setting s’ = 1,4 = 0.
This is essentially the effect of the fact that on the resolved heat dou-
ble space the ¢ = 0 diagonal intersects the front face on the fiber di-
agonal, so really the heat kernel we are interested in is the one with
lim;_sg e_tNy(a?W B.q) — 0s=10u=0ldz. Due to its equivariant nature with
respect to the ax + b group, the heat kernel can be described in full as
a function of s/s" and u — u/.

Proposition 4.5. The heat kernel of the mnormal operator,

—Ny @5, Q), s a conormal distribution in the space

(14) BN

I Lot (s (N); Hom(E) @ py' 2Bty g M/ B))

¢9,1
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where 35\?) is the restriction of 3H) to %r(bqb)l( ), and

H H H
Rv(BiG N %; ¢,)1) = R (BN BU)

H H H
= R (B N ) = Ry (B Bl = 0,
H
RN(%EId,)l n %g(bd),)l) =2,
that inverts the vertical heat operator 560, + o*(Ny(Opr/p,0))*

Proof of Proposition 4.5 under inductive hypothesis. Without loss of
generality we assume that B = pt, so X = M is a manifold with corners
with iterated fibration structure of depth k carrying a single wedge Dirac
type operator; thus the base of a boundary hypersurface By corresponds

to a heat front face %fﬁ ¢)1(Y) that is a bundle with fibre H Zg,s(y) with

Z of depth less than k, and again without loss of generality we assume
that Y is a point since the heat kernel is product type, so %; ¢)1( ) =

HZgys(w)- By our inductive hypothesis, Theorem 4.4 applies to K above,
and thus K lies in 27" /=™ (H(S! x Z),; Hom(E) ® Q ). The
lift of the set s’ = 1 to H(S! x Z)y, is a suspended heat space itself, and
a neighborhood of its diagonal, say s € [1 — 0,1 + J], may be identified
with the same neighborhood in HZg,(y)-

From the expression for the heat kernel in (4.10), the high order
asymptotics of the modified Bessel functions, and the inductive hypoth-
esis, we see that for any ¢ > 0, with s € [0,1 — ), s = 1, the heat
kernel has the appropriate asymptotics at the side faces. This together
with (4.13) gives the proposition. q.e.d.

Green’s function on the model wedge. We now prove the analogous
statement above for the right inverse G(N) = G(N), of N,(0r/B,0)
constructed in (4.7). As in the case of the model heat kernel above, we
are interested in the dimensionally reduced problem, i.e. the solution
o Ny(Or/B,@)G(N)y = 6s=10u=0ldz which is the restriction to s’ —
1 =« = 0. There are several available approaches to this, including
pushforward of the model heat operator. We will use induction to obtain
the structure of G(IN) near the conormal singularity at the diagonal and
direct analysis at the boundary of the front face.

Note that the computation of the null space of the normal operator
in Proposition 2.7 (see the notation introduced there) can be used to
write down integral kernels of the inverses of these operators as in, e.g.,
[DS88, §XIII.3, Theorem 16]. For the vertical APS domain we have,
see e.g., [BS88, Lemma 4.1]

(=02 + (el (dx)Dzq — 3)* — 3) +29) 7' (5,9)

= @ V881, ps(0)(82) Ky ps () (82)ILy,  for s <8
AE€Spec(Ay)
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(and interchanging s with s for 5 < s) where v4pg is defined in (4.5) and
Im(2?) # 0. For n € R", denoting the above distrubution with z = |z

~

by g(s,g,n,z,z’) we have that G(s,5,u,z,2') = (F1.,6)(s,5,u,2,2),

n—u
An explicit decomposition for G(N) is then obtained as

G(N)y(s,u,2,2") = Ny@r o) (FrtuG) (5,5, u, 2, 2 ) 51

Proposition 4.6. Let N € Sy,(M) and denote the Green’s function
of Ny(On1/B,q) constructed above by G(N). The integral kernel of G(N)
s an element of

-1,5)

Nsus(T(N/B)+) (BN/N E)

defined in (3.12), where 35\2,) denotes the restriction of the indicial mul-
tiweight to ‘B((;qz (N) defined in (4.1).

Proof of Proposition 4.6 under inductive hypothesis. Fixing a base point
y € Y, from Proposition 3.5, the factors Ry x R" x (Z,)? on which
G(N)y is initially defined are not identical to the interiors of the fibers

of ’B%(Y), since blowups of lower depth strata intersect these fibers
above (s = 1,u = 0) in the first two factors. Thus we consider two
regions separately, fixing C' > 0; first SB((;B (Y)y Nmax(|s — 1|, |ul) < C
and then its complement.

In the first region, which is a neighborhood of the intersection of the
lifted diagonal in X2 with %5152(;2 (Y)y, the operator Ny (95/,g) is equal
to a normal operator on a lower depth space and the claimed structure of
the Green’s function follows by induction. (Indeed, take D as in (4.12)
in let g = be the flat Laplacian on a R"™ descended to a flat torus, then
D+ Jo,T» is a normal operator on a family over St x T™ with typical
fiber Z.)

Finally, we consider the region

BE) (), N {max(|s — 1], |u]) > C}

= S(RI™Y Ri) x Z2 N {max(|s — 1|, |u]) > C}.
By induction, mapping properties of wedge operators and Theorem 4.3,
(2)

the projections have integral kernel in %If{lé/ ’ o "N (72 Hom(E) @
(h.r) (as it has no conormal singularity on the diagonal), and the ex-
pression above in the eigenfunctions on the link can be used directly to
show that G(NN), admits an asymptotic expansion with coefficients in
this space of distributions on Z2.

We treat the interiors of the boundary hypersurfaces of S(R4™ Y xRi)
and their intersection (a codimension two corner) separately. The region

s < 1 and s > 1 are analogous so we treat only the s < 1 case. The
interior of the corresponding boundary hypersurface has a neighborhood
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of the form {|u| < C,s < 1} x Z2 with s a (local) bdf, and here we have

an expansion
Z Z s' N Fa, (u)g, o (2)du (7)),

AESpec(Ay) i€Np

with a,; € C*(|u| < C) and ¢,y the eigenfunctions of A,. Near the

corner of S(RYI™Y x R?), one can proceed as Section 5 of in [Maz91].
Smooth parametric dependence on Y completes the proof. q.e.d.

Remark 4.7. Recall from our discussion of the normal operators
above that %(2)( )ﬂ‘B( )( Y') is a front face of the resolved (suspended)
double space on which the normal operators’ Schwartz kernels live. It
follows from the proof and the inductive hypothesis that for N’ < N,
G(N)’%fﬂfv)m%fg(ﬁ) is equal to the Green’s function for the normal
operator on that face.

4.3. Resolvent of 0);/p . We have described, for each N € S, (M),
y € N°, the inverse of the normal operator Ny, (95;/p,q). Putting these
together, we specified the integral kernel

G(N)={Gy(N): N € Sy(M), y € N}.
In fact this also determines the integral kernel over the boundary of each
N € §;(M). Indeed, recall that the structure of ‘B((;Z(N ) is described in

Proposition 3.5. At a boundary hypersurface B y:n of IV, fibering over

N’ < N, the fibers of ‘B((;(g (N) comprise one of the front faces of (Z’)2.
Namely, they comprise the front face corresponding to the boundary
hypersurface Bz of Z' in the notation of (3.4). Since the integral
kernel G(N') has been specified over N’, taking its normal operator
over the front face corresponding to B yz, yields the extension of G(N)
to points over the boundary hypersurface B 'y of N. By Remark 4.7,
these normal operators fit together smoothly since at each intersection

EBE;Z(N )N %% (N') the restriction of the integral kernel is the Green’s
function of the model operator induced by 0,/ p o with its vertical APS
domain.

We now proceed as in [ALMP18, §4] and obtain a parametrix for

Ony/B,q from the integral kernels G(IV).

Proposition 4.8. Let O);/pq be a Dirac-type wedge operator en-
dowed with its vertical APS domain and satisfying the Witt assumption.
There is an edge pseudodifferential operator in the calculus with bounds

—152)
G(M) € pam/pyy Ve (M/B;E)
such that Nyy(G(M)0y;/p,q) = Id for each N € Sy(M), y € N°, and
(4.15)
—~13®
G(M)Byr/po—1d, OnypG(M) —1d € paa/py2) e (M/B; E).
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Proof. At each N € Sy (M), recall that N, (0y;/p,0) is not the re-

striction to %(ﬁ(N) of the lift of 8y 5, to (M/B)Z, because this lift
is not tangent to that boundary hypersurface. Instead we have

Ny@unryp,g) = 2N y(pnOn/Bq)

(recall that ®A,, the edge normal operator, corresponds to restriction of
the integral kernel to the front face over y while NV, the wedge normal
operator, is obtained by this equality and uses our fixed choice of bound-
ary product structure). Thus in order to have N, (G(N)dy/pg) =

‘Ny(G(N)0y/B,g) = Id, we see that near ‘B((;Z(N) we should first ex-

tend G(N)? off of %gg (N), then multiply on the right by px and denote
the resulting distribution by G(IN), we obtain

Ny (G(N)Ba/p.o) = G(N) LN (pnBar o) = 1d.

. : . 2 ~
As mentioned above, since the restriction to ’B‘(MZ(N) ofNG(N)(V)M/B’Q

is the kernel of the identity, we can patch together the G(N) for each

‘BE;Z(N ) as they will match at corners. We proceed as in [Mel93, Proof
of Proposition 5.43] to choose an extension of these kernels to obtain

G(M). Note that without this extension we would expect 0,7/5,0G(M)

to be (’)(p;é%)(]v)) at each %g%) (N), but by extending carefully off of the
front face this singularity is avoided. This deals with the first operator
in (4.15), for the second we point out that

°Ny(©Onp,0G(M)) = Ny(pnOu/5,0) Ny(Goy')
= SNy(ﬁM/B,Q)Gy(N)l = SId% =1Id.

S

By construction, G(M) has weight min{Spec;(I,(0r/5,0)) "RT : y €

N} at each of %%) (N), %(()21) (N) for each N € §y(M). It has a smooth

expansion at each EBE;Z(N ), where it also vanishes to first order. q.e.d.
We now have all the tools we need to proof Theorem 4.3.

Proof of Theorem 4.3. To simplify notation we assume that B = pt, M =
X.
The equation (0x q¢,¥)r2 = (¢,0x,qQ¥)r2 holds for C2° sections

and both sides define continuous bilinear forms on pé(mHg(X s E) N
Diax(0x,g). Thus this is a symmetric domain for 9y g in L2.
Next note that the mapping properties in Theorem 3.7 show that

G(X), R=0x,00G(X) ~1d: L% = H)(X; E) — p{ HL(X; E),

are bounded operators, as are G(X)* and R* (since as is well-known
their integral kernels are obtained from those of G(X) and R by inter-
changing the two factors of X?). Taking adjoints and specifying domains
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when necessary for clarity,
(0x,Q0,Dvaps) c G(X) =1d—R = (OxoG(X))" =1d—R",
and since G(X)* o (0x,0, Dvars)* C (0x,g o G(X))*, we have that

u € D((0x,Q, Dvars)™)
— = G(X)" Dy ot + Rt € Dunax(9x,0) N py " HL(X; E)
C Dyars(0x,0)

SO

Dyaps(9x.0)* C Pamax(Ox.0) N p Y HL(X; E) C Dyaps(@x.0),

forcing equality of these three spaces.

Since pi(/QHe1 (X; E) is compactly contained in L2, the resolvent and
the errors G(X)dx ¢ — Id and 9x,oG(X) — Id are compact on L2, so
the Fredholm and discrete spectrum properties follow.

Now note that, since G(X) is a compact operator, it is simultaneously

a parametrix for (Ox g — A) for all A. It follows that the space of
eigensections of a given eigenvalue is an element of pg(x2)We 13 (X3 E),

and hence eigensections are in p3 H®(X; E).
For A € C define R;(\) by

G(X)@xg -\ =Id—Ri()), (Oxo— NG(X)=1d—Ry()\)

and note that R;(\) € pﬁ(Xez)\Ile_l’j@) (X; E). These errors can be im-

proved to R;(\) € pff(Xez)\IJe_oo’j(Z) (X; E) by the standard symbolic con-
struction. For each A € C\ Spec(dx,Dyaps) we have (cf. [Maz91,
(4.25)])

(Oxq =N = G(X) + Ri(N)(0x.0 = N Ra(V) + Ri(N)G(X)
which, by virtue of Theorems 3.9 and 3.10, is an element of the resid-
ual space pg(xez)\lle_l’j@) (X; E). (As in the proof of [Maz91, Theorem
4.20], the weights at the various faces of X2 follow from the fact that this
inverts (0x,9 — A).) This formula also shows that the resolvent is holo-
morphic as a map from C\ Spec(dx g, Dvaps) into pﬂr(Xg)\llgl’j(2> (X3 E)
and analytic Fredholm theory shows that it extends to a meromorphic
function on C.

Writing the projection onto the A-eigenspace as a contour integral,

together with elliptic regularity, then proves (4.2) and completes the
induction and the proof of Theorem 4.3. q.e.d.

Remark 4.9. It is easy to see from this construction that every
family of wedge Dirac-type operators whose vertical APS domain sat-
isfies the Witt condition can be connected smoothly through wedge
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Dirac-type operators to a family whose vertical APS domains satisfy
the geometric Witt condition.

Indeed recall, e.g., from [Hit74, §1.4], [VaiOl, §A.2|, that for a con-
formal change of metric g, = w?g there is a Clifford bundle adapted to
this metric with Dirac-type operator D, = w™!(w™("=1)/2Dy(n=1)/2),
Thus if we scale each of the metrics gz we can vary the operators,
through Dirac-type operators, and push away any small indicial roots
while maintaining the Witt condition. We lose special structures, e.g.,
this variation will take the signature operator through Dirac-type oper-
ators not equal to the signature operators of the varying metrics. This
yields a family over B x [0, 1] with the original family at B x {0}, and
such that the family over B x {1} satisfies the geometric Witt condition.
The wedge Dirac-type operators over B x [0, 1] with their vertical APS
domains form a smooth family of Fredholm operators. (For a discussion
of smoothness of this family of operators, see [MP97a]; the vertical
APS domain corresponds to the spectral section coming from a spectral
gap at zero.)

4.4. Heat kernel of 5?\/1 /B,Q" The construction of the heat kernel pro-

ceeds by solving model problems at the critical boundary hypersurfaces
of the wedge heat space. In Proposition 4.5 we have described the so-
lution of the model problem at each %55];)1 (N), N € §(M).

We can similarly solve the model problem at %Elg)l. This proceeds

exactly as in, e.g., [Mel93, Chapter 7], [AM]. The result is naturally
2
compatible with ¢ N Ohp.q) 44 ‘Bgﬁ)l(]\f ) O‘B((jg)l and combining these

we find a conormal density H;; with Schwartz kernel
H/IH)
Hiye B ="\ (H(M/B)y; Hom(E) @ Q r)

with H the index set from (4.4) and

* 2 —1 -1
Bry,L(t(0: + 001/ 8.0)) H11 € Pig(pr(a1/B)w) Pef (1 (M) B)o) PECH(M/B))
N
pas By "V (H(M/B)y; Hom(E) @ Q g).

Indeed, the vanishing at ff(H (M/B)y) and ’Bfig)l comes from solving the

model problems at these faces, while the singular power of pit((a/B),,)
comes from the singularity of 0,7/ ¢ in x as z — 0, at each boundary
hypersurface. This singular term would a priori be of order —2, but
proceeding as in [Mel93, Proof of Proposition 5.43] the extension can
be carried out so that the leading term vanishes.



284 P. ALBIN & J. GELL-REDMAN

We can improve this parametrix by removing the Taylor expansion
at %25)1 exactly as in [Mel93, Chapter 7]. This results in
7 /3(H) m—
Hioo € Byl =" (H(M/B)y; Hom(E) & Qi p).
-1 -1
By, (0 + 0%/ 5,0) Hioo € Prgrr(ar/B)) Pot (2 B))

H/3H) m—
P By P By @~V (H(M/B)y; Hom(E) @ O g).

Similarly, we can solve away the expansion at ff(H(M/B)y) by pro-

ceeding as in Proposition 7.28 of [Mel93] which in this context takes
the following form.

Proposition 4.10. For each N € Sy(M), let pggeny = 1 if N is
minimal in Sy (M) and otherwise

pﬂ(H<N) = H p%f;;)l(N/)
N'e€Sy (M) '
N'<N

Given

CTOINT. o
f € p?l?l,lp?fO(H<N)‘@phg o ‘Q{_m (%¢¢1<N)

Hom(E) ® pgi'y B nUM/ B))
the equation
By, (0 + 5?\4/3,@))\%;?1(N)U =f
has a unique solution

I .
o0 o0 1 m—
U € Pag 1 PR H<N)Pphg s AT (B (N);

Hom(E) @ pgs *Bm) x(M/B)).

Proof. As usual, the solution to the equation is given by

—tN @3 5,0)
t , G, C / / ( )(N /B,Q (L‘—S,C,C”)f(S,C”,C,) deCH

but in order to understand the structure of w it is best to express this
in terms of pull-back and push-forward. The asymptotics of the first
factor are given by Proposition 4.5 and the composition is a particu-
lar case of Proposition B.2 (e.g., by extending off of ’Bgz’)l (N), com-
posing, and then restricting back), which gives the asymptotics of the

result. q.e.d.

We can use this proposition to solve away the expansion at the front
faces, fi(H(M/B)y,), one face at a time. Let {Nq,..., Ny} be the list of
Sy (M) used in the construction of the heat space. Using this proposition
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to solve away successive terms at %fbg)l (N1) we can construct, for any
£ > 1, an improved parametrix

Y e 2" o~V (H(M/B)y: Hom(E) @ Q).
* 2 N —1 -1
Bery, (M0 +0%/8.0) Hi oo € i (ar/ B ) Pet(H (M B)w) PEH(M/B)y)*

14 oo ’H/fT(H)Mfmfl ) 0
' p%¢¢,1(N1)pdd71‘93phg - (H(M/B)vw HOHl(E) & th).

Asymptotically summing successive differences we can remove the error

H
at %Sﬁqb,)l (N) altogether,

HY, € B /= (H(M) B).y; Hom(E) © Qg ),

x N -1 -1
By, (0% + 5%4/B,Q))Hoofoo € Pl (H(M/B)w)Pef (H(M/B)y)PEH(M/B)w)"

00 00 H/IE) 1 ' 0
’ p%éqb,l(Nl)pdd,l'%phg e (H(M/B)W7 Hom(E) ® 573).

Relabeling HOAQOO = vago, we now proceed in the same way at ‘B%) (N2).

1
After carrying this out at %%7)1 (N2), ..., %((;;7)1(]\74), we end up with

Heooo € B /==Y (H(M B).; Hom(E) @ Qy ),

* —~ -1
B(H),L(t(at - 6?\4/3,62))17[00700 < plf(lH(M/B)W)pef(H(M/B)W)

0 00 H/ﬁ(H) —-m—1 .
PR (M/B))Pad1 Py P (H(M/B)w; Hom(E) ® Qp ).

Note that the error now vanishes to infinite order at all boundary
hypersurfaces lying over {t = 0}, so we can just as well view it as a
distribution on a simpler space, Rt x (M/B)2,

* -1 -1
77 (t0; + 1073/ 5.0) Hoooo € Pit(H (M) B)w)Pet (H(M/B)w)

1227 7oL (RE x (M/B)?; Hom(E) © M/ B)).

A natural next step (as in [Mel93, Proposition 7.17]) is to interpret
the heat kernel as an operator with respect to convolution in ¢, so that
the error term satisfies

71 (0s + 034/ 5.g) Hoooo = Id —A

. —1 -1

12227 7o RE X (M) B)?; Hom(E) @ QM) B))

and use a Volterra series to invert (Id —A).
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Proposition 4.11. Let A be the operator above, then

(Id—A)"' =1d +8,

1 —1
(H(M/B)w)Pet(H(M/B)w)

toor%;-}tl/gj(f[)%_—m—l(R+ % (M/B)g,Hom(E) ®7T*RQ(M/B))

with S € py;

Proof. Fix tg > 0. Let us write the Schwartz kernel of A as

)—1+a

K a(pis 0/ B)y) Pet (H(M/B)) LR

for any fixed

0 in J(B
# €00y 25t YB):

and point out that VCAHKtO is uniformly bounded on (M/B)?, say by

C, and that
V.= max/ pap TEp < oo
B Jm/B
During this proof, let us write pit(r(a/B)y)Pet(H(M/B)y) S T-

If we similarly write the Schwartz kernel of A* as KC ez 1+¢
assuming that [/ 4x is bounded by Cjtk/k! we see from

pr then

‘ ‘tﬁto

t
’CA’“+1 (t7C7C”)x_l+€MC” = / / (ICAk (8,(, CI)ZL‘_I—F&;LC/)
0 J¢eyp(w(Q)

(Kalt—s,¢,¢") (") pen) ds
that

to
Karsl] oy, < / / (Crs®/KNC (') e per ds
- 0 'edp=1(¥(¢))
< CORVAtE™ (k +1)!

Hence we see that the Volterra series > A* converges uniformly for
t < to and arbitrary %g.

We may run the same argument after differentiating by any vector
field on (M/B)? x R* that is tangent to the boundary hypersurfaces,
and so we can conclude that the Volterra series converges in the space
of conormal sections of Hom(F). q.e.d.

Theorem 4.12. Let 0/ g be a family of compatibly perturbed Dirac-
type wedge operators acting on a Clifford bundle EE on a family of man-

ifolds with corners and iterated fibration structures, M i) B. The
heat kernel of 3?\/[/3762 satisfies

—td2 H/OH)
e Pwne e BN /TN (H (M) B)y; Hom(E) ® Oy )
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where 31 and H are given by (4.3), (4.4) and Qy g is the density bundle
from (3.22). The leading terms at ‘B((js[)l and each ‘bez)l(N) are given
by

452
_/\/’ (H) (6 ta]\/I/B,Q) — e_AT(]vI/B)/JW
B a1

2 22
M/, = ¢~ Ar(v/ByN 7 Pe@n/ne

N. (H)

300, (@

where e~ AT1/B)/M  denotes the Euclidean heat kernel on the fibers of
T(M/B) (at time one) and similarly e~ AT/ B)/N C(¢n) denotes the
mapping cylinder of ¢,

SN

(4.16) 7t — C(¢pny) —— N
and Dc gy /N, 18 the family of operators N 5 y DZJ 0 from (4.8).

Proof. The operator Hy oo(Id —S5) satisfies the wedge surgery heat
equation with initial condition given by the (lift of the) identity since

Br,1(0r + 03y 5.0) (Goo(Id=5)) = (Id—A)(Id =) = Id .

The composition result, Proposition B.2, yields the asymptotics of this
composition. The leading terms are immediate from the construction
above. q.e.d.

5. Getzler rescaling and the trace of the heat kernel

5.1. Getzler rescaling. The heat kernel construction above did not
significantly use that 5%/[ /B is the square of a Dirac-type operator rather
than an arbitrary Laplace-type operator. We now refine the construc-
tion to take advantage of the Clifford action on F and its compatibility
with 0,7/ - Specifically, we proceed as in [Mel93, Chapter 8] to carry
out Getzler rescaling geometrically (see also [DM12, VaiOl, AR09a])
by constructing ‘rescaled homomorphism bundles’ on the resolved heat
space which capture the relationship between the heat kernel and the
Clifford action. The second property in Definition 4.1 ensures that com-
patible perturbations will not affect the discussion. After carrying out
the rescaling for the family of Dirac-type operators we carry out the
analogous rescaling for the Bismut superconnection.

Recall the decomposition of the homomorphism bundle of £ from
(1.23),

hom(E) = CI("T*M/B) ® hom(’Cl(wT*M/B)(E).
The heat kernel is a section of Hom(E) — H (M /B), the lift of 7] E*®

mRE from M xy M to H(M/B)y. The restriction of this bundle to
diag,,; is (canonically isomorphic to) hom(E) and hence inherits the
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decomposition above. In this way we see that Hom(FE) — H(M/B)y,

has compatible filtrations at %[(12[)1 and each %%)1 (N),

Hom(E)\%g;)1 = CI*("T" M/ B) ® Homgywppr/ ) (B),

Hom(E)| )

an = (Cl*(WT*N/B) & Homgcl(wT*N/B)(E)v

(V)
where Homel*(wT* myp)(E) denotes the elements of Hom(E) that com-
mute with CI(WT*M/B), and similarly Hom:Cl(WT*N/B)(E)' In fact we

can extend the filtration of Hom even further by including

(E)|ss,., ()
Clifford multiplication by dpsg, , but it will be convenient not to do so.
It is easy to see from (1.1) that these filtrations are compatible.

We define a connection on Hom(E) — H(M/B)y, by
vHom(E) =0, dt® BEVE* ® B}k{vE

and then choose vector fields v and, for each N € Sy,(M), vy transverse
to %&g)l and %g;)l(N ), respectively, and tangent to all other boundary
hypersurfaces (e.g., by modifying the vector fields in a boundary product
structure as in §1.1). We define the space of rescaled sections of Hom(E')

by
r— {3 € C®(H(M/B)y; Hom(E)) : for j € {0,...,dim M/B},

om J ) (W
for each N € Sy(M) and k € {0,...,dim N/B},
k
Hom(FE)
(Vhom) sly,

As in [Mel93, Chapter 8], there is a ‘rescaled’ vector bundle denoted
Homg(F) — H(M/B)y, with a bundle map ¢ : Homg(F) — Hom(FE)
such that

() € CIE("T* N/ B) & Homiyur B)(E)}.

LtoC®(H(M/B)w;Homg(E)) =T C Hom(E).
We will refine the heat kernel construction to show that exp (—tc’)?\/l /B, Q>
is a section of Homg(FE).
Given a vector field W on H(M/B)y, it will be useful to know when

VIV{VOm(E) preserves I'. As shown in [Mel93, Proposition 8.12] directly
from the definition of I, this requires VI;II;)m(E) to preserve the filtrations

at each boundary hypersurface, for the curvature KHmE)(Z W) to
increase filtration degree by at most one (where v is the appropriate
transverse vector field), and for (Vgom(E))j (KHom(E) (57 W) to increase
filtration degree by at most two for all j > 1.
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Lemma 5.1. If W € C*(H(M/B)w;T(H(M/B)y)) is tangent to
the fibers of the fiber bundles
B, — diagy and B (N) — N for all N € Sy(M),

Hom(E)

then Vy, acts on sections of Homeg(E).

Proof. Since V¥ is a Clifford connection, it satisfies
[VE, cl(0)] = cf(V).
Hence it is immediate that VHo™(E) pregerves the filtration at %Elg)l,

while checking that it preserves the filtration at %fﬁ ¢)1( ) comes down

to checking that in a local frame as in (1.11)
9(VW1W2,(7) = O(z) for all Wy € V, Wy € {0, %V}H

which follows from (1.14). (Incidentally, this is why we do not rescale

at %qub)l( ) by CI(T*(N/B)%), as the connection would not preserve

this filtration.)
Next recall that
KHom(E') (Wl) Wg)
= K"((BL)«W1, (BL)sW2) 0 - — - o K¥((BR)« W1, (Br)«W2)

and that, since V¥ is a Clifford connection,

KE(S1,82) = Lel(R(S1, S2)) + K (81, 82),
with K7'(Sy, S2) € C*°(M, homeywr- /5y (E)).-

Thus the covariant derivatives of the curvature of Hom(FE) involve at
most two Clifford multiplications and hence can move the filtrations at

%&g)l and each %((;;{)1( ) by at most two.

It follows that VHom( ) will act on D whenever

R((B-)*V‘%;Ii)lv (5')*W|%ZZI,)1) =0, and

R((ﬁ-)*VN|%5g)1(N), (ﬁ~)*W\%£>1(N))\%N
€ C®(Bn, A\Y(T*N/B) A A*({dz) @ xT*B N /N))

where 3. can be either 5, or Bgr. If W’ (H) is tangent to the fibers of

’Bfig)l — diag,, then ( WLB(H) = 0, so the first condition holds.

From Proposmon 1.5 we know that the second condition will hold as
long as (. W‘ (H) is tangent to the fibers over N°. q.e.d.
By (V)
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Now that we know that the connection acts on D, we can use the
Lichnerowicz formula (see, e.g., [Mel93, §8.8])

(5.1) 5M/B = AM/B 4 scalys + %ZKE(@G, ep)cl () el (eb)
a,b

in which AM/B is the Bochner Laplacian of V¥ and the sum runs over
an orthonormal frame of TM/B, to see that td3, /p acts on sections of
Homg(FE).

For vector fields as in (1.11), we can read off from [Mel93, (8.36)]
and Proposition 1.5 the rescaled normal operators, for each N € Sy, (M)
we have

NE VE ) =00,
B (N )( 9,)
N‘Bgfi)l N)(vfa’;i) = 0(0y; + %e (RN/B(R7 ayi)))v

where R denotes the radial vector field in °T'N/B and the appearance
of the curvature RN/B can be traced back to Proposition 1.5 (1), and

e E EOM/Y
Mt o0 Vot

=2 (v@vaM/ T anm(E V), D)l (RV))e(0?)
uv’

) = [V + 3¢ (R(0, V) + 3¢l (Vo, R(0a, V)]

33 gy (RON(D,T7), V)e((DY A (D))
U0’
where the appearance of S?N, R®N traces back to (2)-(3) in Proposi-

tion 1.5 We have similar behavior at %&5)1, save that all vector fields
are horizontal. 7

Combining this with the Lichnerowicz formula we obtain their rescaled
normal operator.

Lemma 5.2. Let Oy p be a family of Dirac-type wedge operators on

the fibers of M Y, B. The rescaled normal operators of 725?\4/3 are

Ng(m (726?\4/3) = Z (81' + %Q(R(aj»ReTM/B)))Q
e (0;)="TM/B
+e(K)
N oo (T0%yp) = =0 3 (9 + 5e(R(9), Rernyp)))’
ool (8;)=°TN/B

22
o Bogn v
where Bo(gy) /N assigns to each b € B the Bismut superconnection on
the mapping cylinder of ¢n, (= ¢N|¢;{1(Nb))’ Zt — C(¢n,) — Np.
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(Note that the rescaled normal operator of 725?\/] /B corresponding to
N € Sy(M) is a family of superconnections; for the rescaled super-
connection of TzA?W /B We will instead obtain the superconnection of a
family.)

Proof. For the rescaled normal operator at %2)2(12 L(IV) for some N €
Sy (M), we start by considering 72 times the Bochner Laplacian in (5.1),

P2AMIB = _N(VE )H(VE,)

T€a
€a

where the sum runs over an orthonormal frame of TM/B. We can write
this as a sum over a frame of YT'N/B plus a sum over a frame of the
orthogonal complement; the former has rescaled normal operator equal
to the harmonic oscillator —o? > 0,)=ern/B(05 + 1¢(R(9;, Rern/B)))?,
while the latter has rescaled normal operator equal to o? times the
Bochner Laplacian term in the Lichnerowicz formula (1.24) for the Bis-
mut superconnection of C(¢x)/N. The twisting curvature term in (5.1)
gives rise to the twisting curvature term in (1.24) and similarly for the
scalar curvature terms, since, at each By,

scal(X, gw) ~ pp’scal(C(Z), dpy + pkgz) + O(py')-

The rescaled normal operator at %55,21 is similar but simpler. q.e.d.

This same analysis applies to the Bismut superconnection A/ g from
Section 1.4. Indeed, one can either repeat the analysis above or consider
the parameter ¢ from section 1.4 and note that these results for ¢ > 0
imply the analogous results for ¢ = 0. First, if @) is a compatible
perturbation of 0y;/p then let us define

Avypo = Am/p+ Qs Acion)/vg = Acen)/N + Quy/N
where Qg /n is the family N 5y — Qz,.

In this case the bundle F is replaced by E = ¢*A*T*B ® FE, the
connection V¥ by V&9 and the Clifford action by c/y. For the bundle
E, we set

Hom(E) = ¢*A*T*B ® Hom(E)
and
Clo("T"M) =Co ClW*T*"Ba&“T*M/B, gm,)
Clo("T*"N) =Co Cl(y*T*B@& “T*N/B, gn )
so that
Hom(E)| i = Clg("T* M) @ Homgy ey /) (E),
dd,1

Hom(E)| 30D, () = Clg("T*N) @ Homgywp /) (E),

(N)

for each N € Sy (M).
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We define a connection on Hom(E) — H(M/B)y, by
vHom(]E) =0, dt® IBEVE,O ® /BEVE*’O

and the space of rescaled sections of Hom(E) by
D= {s € C°(H(M/B)yw; Hom(E)) : for j € {0,...,dim M},

om J | (W
for each N € Sy,(M) and k € {0,...,dim N},

<V£€$m(E)> g S‘%(H)

(v € CI5("T*N) @ HoméCl(WT*N/B)(E)}'

(N)

The corresponding rescaled bundle is denoted Homg (E).
The rescaled normal operators of A?M p are similar to those of 5%4 /B

but valued in differential forms in M instead of differential forms in
M/B. Indeed, the Lichnerowicz formula (1.24) combined with the above
yields the following.

Lemma 5.3. Let 0y;/p be a family of Dirac-type wedge operators
on the fibers of M L) B, and let Apr/p be a Bismut superconnection
extending Oy p- The rescaled normal operators of T2A?\/I/B are

N (T*AY ) =

%dd,l
— > (O + SRy Repayp))? + oK) = Moy
(0j)=°TM/B
NG
Bogh
—a® Y (95 + 1e(R(95, Rernvyp)))? + 0 A% o)/
(0;)=°TN/B

(N) (TQA?\/[/B) =

where Acgy)/N s the induced superconnection for the family of cones
given by the mapping cylinder of pn, C(Z) — C(¢pn) —> N from (4.16).

Remark 5.4. Note from (1.25) that the unrescaled normal operators
of TQA?\/[ /B would involve the tensors of 1 but not the tensors of ¢y.
The rescaling makes explicit the contribution of the tensors of ¢y to

: (H)
the expansion at B, (N).

Theorem 5.5. Let Ayy/p be the Bismut superconnection associated
to a family of perturbed Dirac-type wedge operators acting on a Clifford
bundle E on a family of manifolds with corners and iterated fibration

structures, M L B, and let Q) be a compatible perturbation. The heat
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kernel of A?\J/B 0 satisfies

e e ¢ B o/ (H(M/B)y: Homg (E) © Q ).

where 1) and H are given by (4.3), (4.4) and Qy g is the density bundle
from (3.22). The leading terms at ‘B((j[;)l and each ‘Bég)l(N) are given
by

_ 242
N (H) ( AM/B) —e H]W/B
%dd 1
24,2
_/\/G " (e~ AM/B) — o T MY B Ac(on) /NG
N)
d>¢ 1

Proof. We proceed as in [MP97a, §11].

First we recall that there is an explicit formula, Mehler’s formula,
for the heat kernel of a harmonic oscillator such as H?2 M/B OF H?2 N/B>
see e.g., [Mel93, §8.9]. Secondly we recall (e.g., [BGV04, Chapter 9
Appendix]) that in a situation like ours where F = H + F;) with F
nilpotent we have

exp(—tF) = exp(—tH) + Y (~1)'T;,
Ik = /A e_iotHf[+]€_i1tHf[+] cee €_i'“_1tH./r[H€_iktH dio cee d’ik
k

with the nilpotence of 77, guaranteeing that the Zj are eventually zero.

We apply this at ’B((w)l (N) to see that heat kernel of the rescaled
normal operator is a section with the same asymptotics as those of the
heat kernel of the normal operator. (Since F1) is a tensor and so its
integral kernel is supported on the diagonal.) Mehler’s formula directly
yields a solution of the model heat problem at %&Z)l. These models are
compatible at the corner because the restriction to the corner solves the
corresponding model problem.

The rest of the construction proceeds as in §4.4. q.e.d.

5.2. Trace of the heat kernel. We discuss the trace of integral kernels
on the heat space (extending [M'V12, Theorem 4.2]) and then specialize
to the case of the heat kernel.

The trace of an operator is intimately related to the integral of its
Schwartz kernel along the diagonal (see [Bri88] for a general discussion).
The interior lift of the diagonal of M from M x, M x R} to H(M/B)y,
can be identified with

(5:2)  diag{D(M) = [M x RE; By, x {0} By, x {0}],

where 7 = t!/2 and Sy (M) = {N1,..., Ny} is listed in a non-decreasing

order. The fiber bundle X — M —Y~+ B induces a fiber bundle
diag®) (X) — diagi®) (M) -2 B,
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which we continue to denote 1.
We will denote the blow-down map by

B(a) : diagl (M) — M x R,

W

and the collective boundary hypersurfaces of diag‘(NH) (M) by

M x {0} » B

and, for each N € Sy (M),

By x RE < BE(N), By x {0} & BE (V).

Assume that the kernel of A has the form K4p" g with b the multi-
weight from (3.23) and K4 € Agﬁg(H(M/B)W; Hom(E)). Ultimately we
are interested in kernels that are merely conormal with bounds acting
on sections of a vector bundle, but the corresponding trace result will
follow easily from this one.

For appropriate index sets, this kernel is trace-class and its trace is the
integral of its restriction to the diagonal. In terms of the composition
of the blow-down map with the projection onto B x R},

Biay : diagl® (M) — M x Rf — B x R},
this means that
Tr(A) = (Ba),)« <ICAphMR‘diag£VH)(M)) :
Theorem 5.6. If A has integral kernel K p?ugr with
Ka € AL (H(M/B)y; Hom(E))
and

Re(Ea(BU1,(N)) — dim(N/B) > —1 for all N € Sy(M)

then it is trace-class with trace polyhomogeneous in T satisfying

TrA € ASM7(RE;C(B)),

phg
Ear = (Ea(BE) )~ dim(M/B) - 2)0
UN63¢(M) (‘SA(g‘B%,)l(N)) — dim(N/B) - 2)

Proof. The operator is trace-class because its integral kernel is a
bounded smooth function times a measure of finite volume.

Next let us discuss the effect of restricting the kernel to the diagonal.
Let ua = ﬁZ‘A)u(M/B). The restriction of the weight (3.23) to the
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diagonal is

b2 : M, (diag\) — R,

W

—(dim(N/B) +3) it H C B{Y(N) for some N € S,(M)
b5 (m) = 4 ~(AmON/B)+1) i H C B (V) for some N € S,(M)
| —(dim(M/B) +2) if H =3 (N)

0 otherwise
Let 51% be the index sets given by
A
E2(B5Y) = £a(3Y)
and, for each N € Sy (M),
A H A H
EX (B (V) = £a(BYI (), €38 (V) = £a(BL (V).

Then we have

Kap ,LLR’d ) = kap” ,uA with k4 € Apﬁg(diag‘(}vH)(M)).

Next note that the map () is a b-fibration which sends {‘B%)(N ) :

N € S8y(M)} to the interior of R} and the other boundary hypersurfaces
to {7 = 0}, so we can apply the push-forward theorem once we pass to
b-densities. In this setting, we start with

(Biays)s(kap?” pa) = (Tr A),

and multiply both sides by to obtain

(Bay)=(5ap"" (Biny (2i(M/B x RY))) = (Tr A) &

Now,
Biayt(M/BxRY) = ] p%m)(mu(dlagw( )/B)
NGSw(M)
= oy TI Pue P v poldiagl (M)/B)
" ONeSy(M) ’

BZ‘A),t(T_l) :P;%A) H 2 (A)

0,1 NeS, (M) %11( )

so that we need to push-forward

A
v |l | P ()Pl (v )Mb(dlagw )(M)/B).
NeSy(M) ’

This is a polyhomogeneous b-density with index sets

EA(BY)) — dim(M/B) — 2 at B
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and, for each N € Sy (M),

H) A
gA(sB;M(N)) +1—dim(N/B) — 1 at B (V)
£ (V) + 1 - dim(N/B) — 3 at BE (W)
Applying the push-forward theorem yields the index sets for (Tr A)d{
and finally we cancel the factor of d%. q.e.d.
P

Corollary 5.7. Let M —— B be a family of even dimensional
manifolds with iterated fibration structures and let E — M be a Zo-
graded wedge vertical Clifford module. If A has integral kernel satisfying
Kap®pr with

KA 693%‘ ' =Y (H (M B)y; Homg(E) @ Q4 5).
where I and H are given by (4.3), (4.4) and Q g is the density bundle
from (3.22) then A is trace-class and

Tr(A) € Allr (RF;C(B; A*T* B)),

H, = (Ng — dim M/B)UUNGS ( (No — dim N/B),

M)
and

Str(A) € Ajp UM (RF; (B; AT B)),

where Ny is repeated 1 + depth(M) times. That is, the short-time ex-
pansion of Str(A) has the form

depth(M)

Str(A Z Z ajr, ™ (log ),

j>0 =
where the coefficients o, are smooth differential forms on B.

A2
For e "M/B.@ we have the improvement
2
Str(e “M/8.0) ¢ ANOONU-UN(Rt. coo( B A*T* BY),

phg
where the indez set is the extended union of one copy of Ng and depth(M)

a2
copies of N. That is, the short-time expansion of Str(e tAM/BvQ) has the
form

—tA

depth(M)
(5.3) Str(e Aa/m, Q) ~app+ Z Z ajr, m (log ),
7>1 k=0

where the coefficients oy, are smooth differential forms on B.

Proof. The statement about the trace of A follows directly from The-
orem 5.6. For the statement about the supertrace, recall Patodi’s obser-
vation that the supertrace on the Clifford algebra vanishes on homomor-
phisms whose Clifford degree is less than the maximum Clifford degree.
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Thus the index set of K 4| ding!™ (A1) at %((ﬁ) is shifted by dim(M/B) and

its index set at BIY(IV), for each N € Sy(M), is shifted by dim(N/B).
The result is that each of these index sets contributes an Ny to the
asymptotics as 7 — 0.

In principle the index set of Str(A) is then NoU...UNy with Ny re-
peated as many times as there are boundary hypersurfaces of H(M/B)y
over {T = 0}. However only actual intersections of boundary hyper-
surfaces produce accidental multiplicities and so it suffices to take the

extended product over 1 + depth(M) copies of Np.

)
Finally, for A = e Oy 5@ the improvement is that og = 0 for all

k > 0. To establish this, it suffices to show that the pointwise supertrace
of the heat kernel vanishes at corners (cf. [VaiOl, Lemma 5.27]). The
discussion at the end of §1.2 shows that the supertrace vanishes at any

intersection %gﬁ)(N )N ’Bﬁ)(ﬁ ) since there can not be a term of full

Clifford degree. Similarly at an intersection of the form %gﬁ) (N) ﬂ‘B((ﬁ)

the supertrace vanishes as the can not be a term of full Clifford degree; in
this case this follows from the rescaled normal operator in Lemma 5.3 at
%&21. Indeed, the curvature of the Levi-Civita connection is evaluated
on edge vector fields, so the vector field pn0,, does not occur without

the px factor, and hence any term with e(dpy) will vanish at %gg (V).
q.e.d.

6. Families index formula

Let M L B be a fiber bundle of manifolds with corners and iter-
ated fibration structures, let £ — M a wedge Clifford module with
compatibly perturbed Dirac-type operator 0);/p g equipped with its
vertical APS domain satisfying the Witt condition, and let A;/p o be
the perturbed Bismut superconnection.

6.1. The finite time limit. Given an arbitrary superconnection on
M — B,

AZA[O] +Am +...+A[k],

recall that the rescaled superconnection is
Al =1/ (A[O} + A L+ t*’“/%\xm) =70 A(6P) !

where 67 multiplies forms on B of degree k by k2,
Let us recall the notion of twisted supertrace. If ag is a grading
operator on F, i.e., the operator which is identity on even degree sections

and multiplication by —1 on odd degree sections, so that

stre(s) = trg(ag),
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then since ag is a section of
(6.1) hom(F) =CI("T*M/B) ® hom{Cl(wT*M/B) (E),
we have

ag = ay/p®ag

where v/ is the grading operator on CI(WT*M/B) and o commutes
with Clifford multiplication and squares to the identity. The supertrace
functional decomposes with respect to (6.1) into the product of two
supertrace functionals,

StI‘(A & A/) = tr@l(wT*M/B) (aM/BA) tr(a%A’)
= strcy(uy/B) (A) strgyar y(4)
for all A € CI(T*M/B), A" € homg;upyy/py(E), and we refer to

strfCl( M/B)’ defined by this equation, as the twisted supertrace.

We have similar decompositions at each %g;?l (N) of H(M/B)y; in-

deed, we have seen that

HOIH(E) ‘%2}1;)1 = CZ(WT*N/B) X hom(/Cl(WT*N/B) (E)

(N)
and consequently the supertrace functional decomposes as
strey(nv/B) @ Sty vy gy -

Let us introduce the notation for the terms appearing in the short-
time limit of the supertrace of the heat kernel. Let

RM/B /4r
sinh(RM/B /47

A(M/B) = det'/? ( ) € C(M; N*T* M)

and similarly for A(N/B), with N € Sy(M), and denote the twisted
Chern character by

Ch'(E) = StréCl(M/B) (exp(—Kp/2m)) € C°(M; A" T*M).

where K, is the twisting curvature from (1.24).
Define, for each N € §y,(M), the Bismut-Cheeger J-form,

Jo(Bn/N) e C®(N;A*T*N),

R poo
dt
Jo(BN/N) = / / strg exp(— (AL 2 1
Q( N/ ) 0 By /N cz(N/B)( ( ( C(¢>N)/N,Q) ))‘571 o
R poo
where s is the radial variable along the cone. Here denotes the

0
renormalized integral (also known as the b-integral see, e.g., [Mel93,
§4.19], [A1b09], [HMM95, §2.3]) we will see below that this integral is
convergent, so that no renormalization is necessary.
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Proposition 6.1. Under the Witt assumption,

lim Str(e”®h/p.0)%) = A(M/B) CY (E)
- Z A(N/B)T(BN/N)
NeSy N/B

Proof. We proceed as in [AR09a, BGV04, MP97a].
Let

—tAZ
= M/B,Q
K=e | diagl™) (M)

where the lifted diagonal, diag\(NH) (M), is described in (5.2). Corol-
lary 5.7 established the existence of the small time limit of the super-
trace and that it is given by

str(KC (H) + / str(K | (H)
/Bg,)lﬂdiagM NESX: B, (N)Ndiag By (V)
Recall from, e.g., [BGV04, Lemma 10.22]

_ 2 A2
str(e B1/5.0) ) =o6P (str(e tAM/BvQ))

and Patodi’s observation that the supertrace in CI(V') only depends on
terms of top Clifford degree. Thus if at %L(ﬁ)l we have an expansion

¢~ (dim M/B)/2 Z Upt'2,
£eNg

with each term U, of Clifford degree at most ¢ then, just as in [BGV04],
[MP97a], this implies that

}diag M

Stlf(’Cldiagw)\%g)1

= (_%)(dimM/B)/ZEVM/B [StrN‘gdd1 <eitA?WB’Q)] ‘diagM

= (—2¢)(dim M/B)/QEVM/B [Str e Muy(Q) ‘g:o}

— Evyp <E(M/B) Ch’(E))

where Ev,//p is the projection of differential forms on M onto those
with top y-vertical degree. Thus the contribution from this face is

/%< o str(lC)‘%;Z;)l :/M/BE(M/B) Ch' (E).

ad 1 Ndiag s

We now consider the situation at a face sB((;;pl(N ) for some N €
Sy(M). Let = denote a boundary defining function for this face, o =

= a rescaled time parameter, and note that the rescaling operator 8t

becomes 5%25%2. Since the Taylor expansion of K at SB%,)1(N ) is in
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powers of x, the rescaling operator (57”92 plays the same role at this face
as 0% plays at %515)17 it mediates between the degree in CI(WT*N/B) and

that in CI(WT*N/B)®y*A* B. Proceeding as in [BC89, (1.23),(1.24)],
and momentarily denoting (1 4+ dim N/B)/2 by v(N)

NP —tA2
Str(/C)‘%;z)l(N) = (—27,)\- (N)JEVN/B [StrN§¢¢,1(N) (e M/B,Q)} ‘diagM

2,2
o AcwaN)/N,c:)‘
¢=0,s=1

= (=20)C By |37 strem e Oc
=Evy/p [5%22(0231\7/3) Strey vy B) e 7 Ao ‘szJ
n ~(ag ?
=Evn/p [A(N/B) Str(/Cl(N/B) e T C@n/N.Q ’321:| .

Thus the contribution from this face is

str(/C
/%(H) (N)ndiag,s ( ”%%L(N)

$,1
R R poo ot 5 dr
= A(N/B / / str! e Ac@n/ne) s
B e ( ) ot 5
= A(N/B)Jo(Bn/N)
N/B
as required. q.e.d.

6.2. Bismut-Cheeger n and J forms. Bismut and Cheeger [BC89,
BC90a, BC90b, BC91]| defined differential forms on B, n and J in
the setting of closed manifold fibers. The former were also defined on
spaces of depth one by Cheeger [Che87, §8], for isolated conic singu-
larities, and by Piazza-Vertman [PV] in general. Melrose and Piazza
[MP97a, MP97b] introduced n-forms for perturbed Dirac-type oper-
ators. In this section we generalize their construction to compatibly
perturbed families of wedge Dirac-type operators with vertical APS do-
main satisfying the Witt condition.

We define these forms for a family of manifolds with iterated fibration
structures without assuming that they come from a boundary fibration.
To differentiate the fiber bundle used in this subsection with the one in
the main body of the text, we will adopt the notation

X-—M-%B

As we will review, both the n-forms and J-forms can be thought of as
arising from M x R*. In the former case the factor of RT is added to the
base, in the latter it is added to the fiber. Analogously to Definition 2.1,

we will use the following notation; for a bundle X — M %> B with

vertical metric gg7 /B @ Ci(1) bundle is a bundle £ — M with an
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action of Cl (T*]\/Z /B @ R) where the additional R factor is orthogonal.
(In particular the fibre is the complexified Clifford algebra on Rdim X+1 )

We will denote the additional generator of this Clifford algebra by ~.

Definition 6.2. Let & — M be a @—Vertical wedge Clifford bundle
if dim M /B is even dimensional and a CI(1)-bundle if dim M /B is odd
and () a compatible perturbation such that the associated family of

Dirac-type operators 057 /B.Q endowed with its vertical APS domain,
satisfies the Witt assumption and is such that ker 977 1B.Q forms a vector

bundle over B.

The Bismut-Cheeger n-form of 5]\7/3 o

1Q(M/B) =105, o) € C(B; A'T"B)

is given by
oo OAL )y, 2 e
1/ Str [ —M/BQ” ol ) gy it dim(M /B) even
2v7 Jo ot
and
oo O(AL )
W/(; StrCl(l) (ate M/B,Q ) dt if dlm(M/B) odd.

The normalized 7 form, ﬁQ(]/W\/B) is obtained from nQ(]/W\/B) by
multiplying the forms of degree ¢ by (2mi)~L¢/2],

The form ﬁQ(]\/ZT /B) has even degree if dim X is odd, and odd degree

if dim X is even.

Implicit in this definition is the fact that the integral converges. As
pointed out in, e.g., [BF86b, Theorem 2.10], [BC89, §3], [BGS8S,
Theorem 2.11], [BGV04, Proof of Theorem 10.32], this can be estab-
lished by considering the heat kernel of the Bismut superconnection in
one dimension higher. Following [Vai0O1, (117), Remark A.15], we can
treat the even and odd cases uniformly by extending the fiber bundle 12
to

X — Mt=MxRf 2%, g+ — Bx R,
and noting that, in terms of A(M (B’ the extended Bismut supercon-
nection corresponding to the natural extensions of the vertical covariant
derivative and choice of horizontal tangent bundle,

> - 2
10xz,5) = / i(05) Str’ (e (At gt o) Y at
0

where Str’ denotes the appropriate supertrace on A*T*(B x RT) @ E

corresponding to the parity of dim M /B. The short-time asymptotic ex-
pansion of the supertrace of the heat kernel together with the long-time
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limit implies the convergence of this integral and so the well-definedness
of the n-forms.

Next we define the Bismut-Cheeger [J-forms in our context. Sup-
pose E —s M is a CI(1)-bundle so we have an action of ¢/(v) on E
(see above) and that E is Zo-graded if dim M /B is odd. Consider the

extension of ¥ to

~ ~ —~ o~ I+
Xt=XxRt — Mt=MxRt Y B.

and the warped product metric
2, .2
9" = 955 = 45" + 957

Recall from (2.2) that the Levi-Civita connection of g% on the wedge
cotangent bundle differs from the product Levi-Civita connection by

62)  VIo=vVE 4+ <g+(dm, 0)(Lviv)? — gt ((Lvw), G)dx) .

Let E+, denote E pulled-back to M~* via 7 : M+ — M and g+
the pull-back metric of gg. Over M T we have a bundle isomorphism

YTM*Y/B = (ds) @ s T*M/B —= (v) & T*M/B,

(6.3) . .
ag ds + a; s0' — agy + a;0°

which we use to define a Clifford action of YT*M+ /B on E,
o T(0) = cL(Z(0)).

This Clifford action is compatible with the metric gp+. We modify the
connection on E to get a connection on ET following (2.3),

(6.4) VE = mVE 4 Lt (da) el (2vv)P).

This is a gp+ metric connection compatible with the extended Clifford
action ¢/t and the Levi-Civita connection of g*. Hence E* is a ¢+-
vertical wedge Clifford module.

The families of Dirac operators on M+ /B produced by the preceding
construction do not constitute arbitrary families; indeed, those pro-
duced here have in some sense s-independent twisting bundle (though
the twisting bundle is only defined globally in the spin case). In fact
the twisting curvature of the connection VE' is s and ds-independent:

(6.5) K5(0s,)) =0=0:Kp

Indeed, loc/a\lly in the bulk of M , tlle\ Clifford action induces a splitting
E~S(T*M*/B) @ W with S(T*M™*/B) the (locally defined) bundle
of spinors, with Clifford multiplication acting on the left and the con-
nection decomposing as a tensor product connection °V ®id +id @' V.
The pullback construction above changes the connection only by adding
a zeroeth order Clifford multiplication term, i.e. only by modifying the
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connection on the spinor bundle part. The twisting curvature depends
only on WV and is therefore (6.5) holds.

A choice of connection for 1,
WM = YTM/B & ¢*TB,
readily extends to a choice of connection for 12*,
WTMT 2YTM*/B& (¢+)*TB.
The fundamental tensors (1.21) of 1Z and z/p\+ are essentially unchanged,
87T (W1, W2)(A4) = S¥ (W1, Wa)(4),
R (A1, Ag) (W) = RY (A1, A2) (W),

where the latter tensors are understood to vanish if any of the vertical

vector fields is 0s. Thus the Bismut superconnection on M is given by
(cf. Lemma 2.2 and [AGR16, Lemma 1.2])

Agre/p = (%8]\7/3 + ol (ds)0, 4 SmM/B c[(dS)) +(Agr )+ Az e

and the square of the rescaled Bismut superconnection satisfies [BC90b,
(6.37)]

t _ dim M/B\2 t/s? \2
(Bl ) = —t(0, + S2JLEY2 o (a2 )

+ S%C[(dS)A]T/[\/B,[O] + %c[(ds)Aﬁ/B’[z].

Definition 6.3. With notation as above, the Bismut-Cheeger J-
form of 6M/BQ’

jQ(M/B) = \7(5]\7/3@) € C™®(B;A*T*B)

is given by

)? dt .~
1+/B ) i d M+ B
/ /M/B < ‘dlag]m,s:l) 2t if dim( /B) even

— (AL, dt =
/ /M/B Str(Cl < M+/B ‘dlag]\/[‘f’ 5= 1) E if dlm(M /B) odd.

The convergence of the integral follows as in [BC90b, §VI(a)] from
the dilation invariance property (4.11). Indeed, the short time asymp-
totic expansion of the supertrace from (5.3) and Proposition 6.1 guar-
antees the convergence as t — 0, and the vanishing of the null space
established in Proposition 2.7 together with the resulting decay of the
heat kernel, establishes the convergence as t — oo.
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6.3. Even dimensional fibers. Let M L) B be a fiber bundle

of manifolds with corners and iterated fibration structures such that
dim(M/B) is even. Let E — M be a wedge Clifford bundle, with
associated Dirac-type operator 0,5 and () a compatible perturbation
such that 07/, with its vertical APS domain satisfies the Witt as-
sumption.

We may, as in [MIR06, Lemma 1.1], perturb 0,//p ¢ by smoothing
operators compactly supported in the interior of M without changing
the families index in K-theory and so that the null spaces form a vector
bundle over B. Since this perturbation is supported in the interior it
will not change the boundary families of 8,/ ¢ and the arguments in
[BGV04, Proposition 9.46] apply to show that the effect on the short-
time asymptotic expansion of the trace of the heat kernel is O(¢). By
incorporating this perturbation into @, we will assume that ker d1/p o
forms a smooth vector bundle over B.

Given an arbitrary superconnection on M — B, A, the Chern
character of A is

Ch(A) = Str(e ™).
For the Bismut superconnection combined with a compatible pertur-

bation, Ay p g, the arguments in [BGV04, §9.3] apply directly and
show that

9 aA}t\J/BQ o (A 0)?

and
Jim Ch(AYy/p o) = Ch(Ind(0ay5,q), V™)

where Ind(0ys/p,g) is the virtual index bundle of 0,7/, and vind g
the contraction,

V™ = Praa(Anr/5,0) 1) Pind-

Proposition 6.1 and integration in t yield the families index formula.

Theorem 6.4. Let M —Y— B be a fiber bundle of manifolds with
corners and iterated fibration structures with even-dimensional fibers,
E — M a Zs-graded wedge Clifford bundle with associated Dirac-type
operator Oy p and let Q be a compatible perturbation. If Oy p g with
its vertical APS domain satisfies the Witt assumption, then

Cheven(lnd(aM/B),vInd) == A\(M/B) Ch/(E)
M/B

_ Z A (N/B)J(BN/N) + dng(M/B)
NeSy(
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6.4. Odd dimensional fibers. A standard argument going back to
[AS69] reduces the families index for odd dimensional fibers to the
families index for even dimensional fibers by suspension. This was car-
ried out for Dirac operators on closed manifolds in [BF86b]. We will
follow the treatment of Melrose and Piazza [MP97b], though note that
our Clifford multiplication conventions differ by a factor of i.

Lemma 2 of [MP97b, §5] says that: If L; and Lo are Clifford mod-
ules, with Clifford actions ¢/; and c/s, over Riemannian manifolds Xi,
Xo, respectively, then the bundle

L=L1®Ly®C*— X; x X3
has a Clifford action compatible with the product metric on X = X x
X given by
(o) = cl1(a) @ Id @I for all a € C*°(X1; T X))
C[(ﬁ) =1Id ®C[2(ﬂ) ® Iy for all g € COO(XQ; T*XQ)
for any choice of I'; € My (C) satisfying
Iy 4Tl =0, Tfi=TI3=-

For example we can take

0 i 0 —1
Fl_(i 0>’ F2_<1 0)'

If X7 x X5 is even-dimensional then L can be taken to be Zo-graded
as follows: If X7 and X, are both even-dimensional, so that Li and Lo
are Zs-graded, then we take the product grading of Ly ® Lo and then
tensor with C2. If X; and X5 are both odd-dimensional, so that L; and
Ly are ungraded, then we put a grading on C? by

€t =ce{o}, (€ ={0}aC,

and then tensor with L; ® Lo. Endowing C2 with the trivial metric and
connection, L has the structure of a Clifford module over X; x Xo.

Set T = S} x S%, where we parametrize the first circle by 6 € [0, 27]
and the second by ¢ € [0,7], and let Lt be the Hermitian line bundle
over T given by identifying the points (8,0, v) with (6, 7, e"*v) endowed
with the Hermitian connection

vit=aq - 21 q.

21

These data define a family of Dirac operators on the fibers of
P S%
given by Op /g1 = 189 + 25 L with spectral ﬂow equal to one.

We replace the original ﬁber bundle M —> B with

X xSp—S*M=MxT Y $B— B xS,



306 P. ALBIN & J. GELL-REDMAN

and each boundary fiber bundle By ¢—N> N with

S2By = By x T -2V GN = N x S,

replace E — M with F = E ® L ® C?, and then the extension of the
Clifford structure described above yields the family of Dirac-type wedge
operators
6S2M/SB _ <6 0 6M/B ®Id+1d®6ﬂ~/§1> '
M/B ®Id_1d®6T/Sl 0

The invertibility of Op/g1 on each fiber of i1, together with the in-
vertibility of the boundary families of 0y//p g easily yields the invert-
ibility of the boundary families of 0g2,7/55,g, as well as the invertibility
of Og2p1/5B,0 on the fibers lying over some neighborhood of the point
{t =0} € S, as in [MP97b, Lemma 3].

This implies that the index class of 0,/ in the odd K-theory of
B is mapped by suspension into the index class of 0g2,//58,0 [MP97D,
Proposition 6]. Thus the odd Chern character of the index class of
Oum/ B, satisfies

Chodd (Ind(ﬁM/B Q / Cheven(Ind(ﬁszM/SB Q))

and we obtain a formula for the odd Chern character by integrating our
formula for the even dimensional Chern character over the circle.

This leaves us to consider the effect of suspension on the Jg-forms.
Let us start by recalling [MP97b, §8] the effect of suspension on the
Bismut superconnection. The Bismut superconnection depends on the
choice of a vertical metric and connection, in this case we take

T(S?M/SB) =TM/B& TSy, gs2nyse = 9uyp ® db?,

where we leave implicit the pull-back maps. The corresponding Bismut
superconnection satisfies

Ag2pnsp.0 = (Om/B,o ® T2 4 051 ®I'1)
+ (AD] + e(df)ag) + A[Q] ® Iy
A%QM/SB,Q = A?\/]/B,Q + 5%/81 + L e(d€)(cl(df) @ T)

Let us describe the J-forms occurring in the index theorem over
S2M/SM. Let N € Sy(M) so that S>M has the boundary fiber bundle
528y — SN. The Bismut superconnection on SQ%E /SN is given by

ASQSBﬁ/SN,Q = (%552%1\;/51\7@ + ¢/(ds)0s + Glim§2+/SNC[(dS))
+ (Ag2a /s )] + (Ag2my /s8)[2)

=1 (®mpo®l2+ Opjst @ I'1) + ¢l (ds)0s + wcf(ds)
(A[l (dﬁ)@g) + Ap @Iy
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and hence its square can be written

—t(@s + dimS?SN/SN)g + (At/SQ )2

(A 528 5 /SN,Q

5281 /SN, Q) -
im 52
(a + M) + (AYE\C[/B,Q> + 5 6’[/81
+ ;{; (df)(d(de) ® Fl) + S%C[(ds) (5M/B,Q & PQ + 6T/S1 & Pl)
+ ic[(dS)A[Q] ®I'y
- 37\{5 2<d§)<6[(d0) ® Fl) <8T/Sl + C[(dS)(ES'H‘/Sl (024 F1>)
+sU2(A 2,-1/2

%"’/NQ) s

Note that in the final formula the three summands commute, and so we
have

xD(— (Ao ron0)) = (143 e(d€)(el(d0) @ 1))

exXp (_8%(5%/81 + C[(ds)(a'ﬂ‘/gl ® Fl))) exp ( 1/2(A%_}\}/NQ)28_1/2) .

Now, from the odd families index theorem of Bismut-Freed, we have

oy ((1 + YL o(de) (el (d0) ® 1“1))

27T Sl ST
exp (=5 (0351 + cf(ds)(Byyer @ T1)) ) )

(O e (s + 1)

27T ST

= spectral flow(e/(ds)Op/s1 +1/2) =1

and hence the J-forms satisfy

% /sg Jo(S*BN/SN) = Jo(Bn/N).

Theorem 6.5. Let M~ B be a fiber bundle of manifolds with
corners and iterated fibration structures with odd-dimensional fibers,
E — M a wedge Clifford bundle with associated Dirac-type operator
Oum/p and compatible perturbation Q. If Oy p g with its vertical APS
domain satisfies the Witt assumption, then

Choaa(Ind(@rryp.0), V) = | A(M/B)CN(E)
M/B

> A (N/B)Jo(Bn/N) + dng(M/B).
NeSy (M)
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7. An extended index formula and the relation between J
and 7

In §6, we have found a formula for the Chern character of the index of
a family of wedge Dirac-type operators in terms of the Bismut-Cheeger
J-forms. In this section we establish the relation between the [J-forms
and the n forms. In the process we establish a families index theorem
on manifolds with corners and an iterated fibration structure endowed
with a metric that is of wedge ‘type’ at all boundary hypersurfaces save
one, where it is of ‘b’ or asymptotically cylindrical type.

Before we start, we give an example to show that J and 7 do not
coincide in general. Consider an embedded surface, Y, in a closed spin
4-manifold L and let X = [L;Y], endowed with a wedge metric with
constant cone angle 27j3,

dz? + 22 B%d0* + ¢% gy,

where ¢y is the boundary fiber bundle S' — 90X YL Tt follows
from [AGR16, Corollary 1.2, §6.1] that, if 8 < 1,

~ 1 ~ 1
| Ang0x/v) = 3.6 - 0P [ A ym@x/v) = VP,

where [Y]? denotes the self-intersection number of Y in L.

7.1. b-c suspension. The ultimate aim of this section is to determine
the relation between the J and 7 forms. We do not assume that the fiber
bundles treated here arise as boundary\fiber bundle so to distinguish this
setting from that above we will use M instead of M or By. Starting
with a fiber bundle
X — M- B,
we consider R x M together with a vertical metric that is of wedge
type near {s = 0} and cylindrical away from {s = 0}, which we refer to
as a ‘b,wedge metric’. In this subsection we show that a wedge Clifford
bundle on M with 1 & compatible perturbation induces a b,wedge Clifford
bundle on R™ x M with vanishing index. In the following subsection
we will find an explicit formula for the Chern character of this index
involving both n(M//é) and j(]\\/j/é)
Let
¥ + 37 B
R xX — Rf xM ——B
Hv/—/ A\/f—/
X+ M+
be the extended fiber bundle. Given a J—Vertical wedge metric g7 /B
let

(7.1) g =ds® + h(s)2gM/B
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where h is a smooth function satisfying

s fors<1
7.2 h(s) = h(s) > 0 f 0.
(7.2) () {1 for s > 2’ (5) ors =

Just as in §6.2, given a Cl(1)-wedge Clifford bundle £ — M , We can
endow the pull-back bundle E —+ M with an action of CI(YT*M*/B),
a compatible Hermitian metric ¢¥ and connection V. In particular the
connection VF" in (6.4) and the Clifford action (6.3) have obvious ana-
logues when the warping factor s? is replaced by an arbitrary warping
factor k(s)2.

Given a compatible perturbation () over M , let us also use @) to
denote the trivial extension of @) to M.

Consider a fiber X of 1; Given a frame {Vj,...,V,,} for X over
U C X, consider the frame {0, 172} with V; = %Vi, over RT x Y. Using
the Koszul formula we can express the Levi-Civita connection of g; in
terms of h and the Levi-Civita connection of g,

PRSI R
V30, 0 0
Vi Vo 0 0
Vi o, 0 Y5 (Vo, V)
ViV —Hox(%. V) | 19z (V1. Vo)

Thus we have

Vi =0, v;oas = vy, vgovl = —1g:(Vo,V1)0s + + Vi, Vi
or, equivalently,

Vi =0, Vi, =0V, ViVi=—hgg(Vo,V1)ds+ Vi, Wi.
This can be interpreted as saying that the Levi-Civita connection in-
duces a connection on the ‘rescaled tangent bundle’, locally spanned by
{0, V). v |

Let {6} be the dual coframe to {V;} on X, so that {ds,h 6'} is an
orthonormal coframe on X, and the Dirac-type operator on F is
Dy, = cl(ds)VE + Y cl(h 0")VE = cl(ds)0s + > cl(n V.
We can use c/(ds) to split F,
E=E;®E_;, c[(ds)|Eh = +i,
and we have natural projections onto each summand,

(1 +1cl(ds)) : E — Ey.
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Since V¥ is a Clifford connection we have, for ¢ € {£1}, any o €

C®(X*;E), and W a vector field satisfying ds(W) = 0,
Vi (3(1L+ Sel(ds))o) = 2 (1 + Scl(ds))Viyo + & (Vwds)o
= 11+ 2el(ds)) Vo + EL (W0,

or, in terms of the splitting of F,

\%) — LD (W)
VE — < , w 2i h .
VS Eaw) Vir
Hence the associated Dirac-type operator satisfies
Dy, = cl(ds)0s

h o VE L Ed(V))
+Z< [(h 0") (o )><1fv’ . )

with 5;( =) c[(@i)V‘%. Thus
hds O
_ m/2 - -m/2 __ tNn0s X,Q
Mgy g =h"?(M(Dg. + QN0 = (5V —ma)
. @ ih&s %
N / o —ihds )’
uESpec(BxQ)

where we have used that ds and ) .0 commute. Define
S dt
R(s) = / —
(#) 1 h(t)
so that Og = h(s)0s. If (Z) is in the null space of D, + @ and the p

eigenspace of Dy . M # 0, we have
a"(R) = p*a(R), V'(R) = p*b(R)
)\ _ L'\ ur 1\ _ur
) =) (L) e aate ()
while if ;1 = 0, the solution consists of arbitrary constant vectors <ZO>.
0

Lemma 7.1. If Dyaps(0 . Q) is the graph closure of Dimax (0 5+ Q)ﬂ
(h(s)Y2HY(X*: E)) then
(O%+ g Dvaps)
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1s self-adjoint and invertible with bounded inverse.

Proof. The conditions (7.2) on h imply that R(s) = log s for all s < 1
and R(s) = s+ C for some constant C' and s > 0. Since R(s) = logs

for all s < 1, the elements of the null space of 0%, 0 that are in the

u-eigenspace of 9 X are of the form
1 1\ _
ay(p) (—z) st +as(p) (z) s

1
/skds<oo <— k> -1
0

Now

shows that for a solution to be in L? for s < 1 it must be of the form
et for p > —%.
On the other hand, since R(s) = C + s for s > 0 and

/ e ds < oo = k<0
1

shows that for a solution to be in L? for s > 1 it must be of the form
et’ for 1 < 0.

In particular there are no elements in the null space of 0 ¢, with the
domain DVAPS(6X+)'

Consider the operator Iy(0 5. ) = c[(ds)@s—ké)v( o over Ry x X. Since
5)}@ is self-adjoint on X, Ib(5)2+7Q) is self-adjoint on R x X. Note that
the square of I (05, Q) is —02 + (0% Q)2 and is bounded below by the

smallest eigenvalue of (5 X)Q, which is positive by the Witt assumption.
Let v € Dimax(0 54 ) be such that

<6)?+u’ v) = (u, 6X+U>

for all u € Dyaps(054 ). By choosing u with support in {s < C}, and us-
ing the self-adjointness of wedge Dirac-type operators with compatible
perturbations on manifolds with corners and iterated fibration struc-
tures, we see that v is in the vertical APS domain of 0, at any bound-

ary hypersurface of X. By choosing v with support in {s > C' > 1},
and using the self-adjointness of I;(0 . ), we see that v € Dyaps(0x.)
and hence this is a self-adjoint domain.

Similarly, the fact that wedge Dirac-type operators with compatible
perturbations on manifolds with corners and iterated fibration struc-
tures have closed range and the lower bound for /(0% ) combine to
show that (0y,,Dvaps) has closed range. As we have already shown
that this operator is injective, it follows that it has a bounded inverse.

q.e.d.
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Since we have shown that the individual operators in the family
are invertible, its families index is identically zero.

O37+/5.Q
7.2. Extended families index formula. To exploit the vanishing of
the families index of 057, /B We will work out an extension of the dis-
cussion of the families index above. To distinguish this setting from that
above we will use M’ instead of M, etc. For simplicity we only consider
the case of even dimensional fibers; the odd dimensional case can be es-
tablished by suspension as above. For the most part the constructions
above extend easily to the case we will consider here, in which case we
will simply indicate the changes necessary.

Let M’ — B’ be a locally trivial family of manifolds with corners
and iterated fibration structures over B’ as in Definition 1.3. Assume
that a minimal element N € S(M’) is such that dim N}/B’ = 0 and let
pny be a boundary defining function for 8B ~;- By a b-wedge metric
on M’ (with respect to N{j) we mean a metric conformally related to a
totally geodesic wedge metric on M,

-2
9M' /B b—w = pN(/)gM’/B’-

In particular this is a metric on TM°/B that near B Ny takes the form

with gy, /vy a vertical family of wedge metrics, and, for any other
N’ € §(M'), near By takes the form

da® + 2*gy , Nt + ONigN B

with gg ., /v & vertical wedge metric, while gyv/p/ Is a family of b-wedge
metrics if Nj < N’ and a family of wedge metrics if By, N8y = 0. This
is best understood as a non-degenerate bundle metric on the bundle

b,WTM//B/ — p?véwTM//B/

A Clifford b-wedge bundle (with respect to Nj) is defined just as in
Definition 1.6 but with an action of C ® Cl (b’WT*M’/B’,gM//B%,W).
We denote the corresponding Dirac-type operator by Dy p and, if Q
is a compatible perturbation, Dy p + Q will be denoted Dy pr -
We assume that the perturbation has stabilized the index, so that
ker Dy pr g 1s a vector bundle over B’

Define a multiweight on M’ by b'(H) = 0 if H C Nj and b'(H) =
b(H) otherwise (where b is defined in (1.18)). Let

L*(M'/B'; E) = p§,L}  (M'/B'; E)
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where the latter is defined using the b-wedge metric on M’/B’ and the
Hermitian metric on E. Define 8,7/ ¢ to be the operator

P?wDM//B/,QPXf,

so that it acting on L?(M’/B'; E) is unitarily equivalent to Dyyprg
acting on Liw(M’/B’; E). We define the vertical APS domain to be the
graph closure of

Donax (a1 0) N [ o¥H:M/B;E)
N'eSy (M)\{N{}

For each N' € S(M'), there is a boundary operator of 3,/ ¢ given
by

. ! !/
DN(/)/B’,Q = 8N6/BI’Q’%N6’ DN’/B’ = pN/?jN//B/’Q’?BN/ lf N # N07

all of which are families of wedge Dirac-type operators. The Witt as-
sumption in this case is that each of these boundary operators are in-
vertible. Just as in §4.3, under the Witt condition we can construct
a generalized inverse of 0y p o with compact errors within the edge
calculus. However in this case, the proof of Proposition 4.8 should be
modified at %gdz (N{) because D Ny/Br,@ is simply the restriction to By,
without having to multiply by the boundary defining function. For this
reason the generalized inverse has order zero at ‘B((;(]Z(Né) while having

order one at Q%q(fdz (N') for N” # N{. The upshot is that the generalized
inverse is not compact and so does not guarantee discrete spectrum.
Indeed, one can argue as in [Mel93] and see that the spectrum will
not be discrete. Nevertheless, the Witt assumption does guarantee that
Om /B, is a smooth family of self-adjoint Fredholm operators.

The heat kernel construction is, as we now briefly describe, an easy
amalgamation of the heat kernel construction in [Mel93, Chapter 7] for
the ‘b’-face corresponding to B N and the heat kernel construction of
§3.5 at the other boundary hypersurfaces.

The b-wedge heat space is given by

H(M'/B o = M xy M" x RT; B ¥, By x RE;
0
By Xy, By X {03 By X,y By X RY;
"';%Né Xd’Né %Né X {0}; ‘BNé X¢N2 ‘BN(Q X Ri_],

where {Ny, N{....,N;} is a non-decreasing list of S(M’). (The differ-
ence between this heat space and the wedge heat space in §3.5 is that
there is no boundary hypersurface corresponding to B Ny at time zero,
as is to be expected from [Mel93, Chapter 7].) The composition heat
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space is described in Appendix C below, where a composition result is
established.
Blowing-up B Ni X B N % R results in a collective boundary hy-
0

persurface %g{%(Né) which we can identify with R} x H (8 Ny /B)w and
at which the model heat operator is
2 2
815 + (_88 + DNé/B',Q)

2
Hence the model heat kernel at this face is e_t(_ag)e_tDNé/B"Q. The
other blow-ups produce model problems that are identical to the ones
in §4.4. Once the model problems are solved we can solve away the
expansion at each face using the composition result from Appendix C
and obtain the heat kernel as an element of

—t52 o H j(H) —m—
e “M//B'.Q ¢ ‘%)phé] o™ 1(H(M//B/)b,w§ Hom(E) ® Q‘):R)

where the index set H and multiweights 3UH) g are defined as before
for %%’%(N’) 01 o(N") with N” # Ny, and are given by

J(N
HBUEN(NG) = No,  H(BIUNG) = H(BGH(NG) =0,

3B (NG)) = 3D (B () = 3D (B (NG)) = oo,
BB (NG = —1,  B(BENIVG) = h(BEHNG) =0,

at the collective boundary hypersurfaces associated to V).
Just as in [Mel93, Chapter 7], the heat kernel is not trace-class be-

cause at ‘Bglf%(N(’]) it is (’)(p;]z) times a non-degenerate density. However
the renormalized (fibrewise) trace of the heat kernel,

R
By (e*tSM’/B’,Q> = / tr(eftaM//B’,Q)‘diag ,
M
M'/B

=FP 2, tr(e”OwmsQ)|
2=0 MY/ B pNé ( )‘dlagMﬂ

will stand in for the trace as it does in, e.g., [Mel93, MP97a]. (For
more on these renormalizations, see [Alb09] and [Alb07] for another
application to an index theorem.) In particular, the renormalized trace
converges as t — oo to the dimensions of the null spaces of 0y /p g,
and the corresponding renormalized supertrace converges to the index,
while as ¢ — 0, the renormalized trace has short-time asymptotics as
before.

Thus the renormalized supertrace mediates between the index and
the short-time asymptotic expansion of the heat kernel but crucially
the renormalized supertrace does depend on t. This dependence can be
computed via the trace-defect formula,
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"Tx ([A, B) = FP Te(pjy[A, B]) = EP Te([piy, A, B] — Alpk;, B])

PN/BPN/ - B) ]

= z:l?) Tr(A(Bpf\,é - pfv(,)B)) = ZF:P(’) {z Tr (A,oN/

= L [ Tt (43 0)00 Ly (B 0)) do
T 2 R
where, e.g., Iy (A; o) is the restriction of pN, ApN, to pn; = 0, and gives
rise to the n invariant.

The next step in obtaining the families index theorem is to fix a
connection for 1)/, and define the Bismut superconnection just as in
§1.4, Apprpr - The construction of the heat kernel of Ay pr g follows
quickly from that of 0ys//p/ ¢ and the composition results from Appen-
dix C as in Theorem 5.5. (The rescaling only takes place at collective
boundary hypersurfaces %5{;}1(1\7 ") with N" # N{, and so proceeds ex-
actly as before.) If the null spaces of 0)s//p o do not form a vector
bundle over B we find a smoothing perturbation as in [MR06, Lemma
1.1] that is compactly supported in the interior of M’ (and hence does
not affect any of our other arguments) and incorporate this perturbation
into @ without further comment.

Theorem 7.2. Let M' —Y— B’ be a fiber bundle of manifolds with
corners and iterated fibration structures, such that dim M'/B’ is even,
with a minimal element N{ such that dim N)/B' = 0, E — M’ a
Zo-graded b,wedge Clifford bundle with associated Dirac-type operator
Omr/pq- If Onryprg with its vertical APS domain satisfies the Witt
assumption, then

Cheven(Ind(817/ 5. ), V') = / A(M'/B') CY (E)
M'/B'

by )= > [ ANB)To( B /N)
NreS, (N I N/ B

t
+d/ Ry (aAM//B' ‘(ARI'/B'V) dt
; ot

where ﬁQ(E‘i%N, /B) is the normalized Bismut-Cheeger n-form.
0

7.3. b-c suspension families index formula. Let us return to the
context of the family 057, /5.0 from §7.1, where we showed that this
operator’s familes index vanishes.

We compactify M+ =R} x M to

~

[0,1], x M
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using the logarithm so that the warped product metric g™ from (7.1) is
a b-metric near {1} x M. We continue to denote 0,1], x M by M.
Note that M+ is naturally a locally trivial fiber bundle of manifolds
with corners and iterated fibration structures, with each of {0} x M,
{1} x M a collective boundary hypersurface over B, and in sum

S(MT) ={ByU{[0,1], x N = N*: N € S;(M)}.

Applying Theorem 7.2 in this setting, the term corresponding to the
boundary hypersurface {0} x M is

__A(B/B)Jo(B5/B) = Jo(M/B)
B/B

and the formula yields
(7:3) Ja(N/B) —7g(M/B) = /Mw§ A(M* /B) CH (E)

"X / AN/ B) (8% /N*) + iy
NGS +/B

We will simplify this formula by carrying out the integrals over [0, 1],.

More generally for any connection on TM* / B , V, and any polyno-
mial f, let

Ap(V) = Te(f(V?) € Q1 (M)
where V2 denotes the curvature of V. Following, e.g., [BGV04, Propo-

sition 1.41], given two connections V, V', we fix a transgression form
TA¢(V, V') satistying dTA¢(V,V') = Ap(V') — A¢(V) by the formula

TAH(V, V') = / (O (92 i
where V; = (1 — )V 4+ tV'.

As we have fixed a connection for M+ — B, we get a connection

on TM* /E, for each choice of vertical metric. We are particularly
interested in the connections

V' e ds? + h(s)gip i VU e ds’ + 57955, Ve ds” g
Let 7 : M+ — M be the natural projection and j : M — M+ the
inclusion of the left endpoint,.

Proposition 7.3. For any polynomial f, we have
T(Af(V)) = 55 (TAp(V, V") = TA(V,V")| _, = TA;(V, V)| -

Proof. The middle equality holds by definition and the final holds
because h = s near s = (, so we focus on the first equality.
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Let {&;, f,} be a local frame for TM, in which {€;} constitute an
orthonormal frame for TM/B, and let {¢’, "} be the dual coframe.
Denote their lifts/pull-backs to Mt by the same symbols. Let

{(Vo} = {05, 3e}, {V*}={ds,he'}

be the corresponding frames for TM*+ /B on M*. (We will use a, b, ¢ for

indices that begin at 0 and ¢, j, £ for indices corresponding to TM / B )
Let w and w denote the one-form matrices corresponding to these
frames and the connections V, V, by

VVy=wVy, VV,=@V,.

Let dj;, denote the exterior derivative on ]\\J/+, dM+/1§ the part of the

exterior derivative that raises the J*—Vertical degree by one, and C/Z\M
the difference between these two, so that

d]\\//[+ = d]\\//ﬁ_/é + d]\\//[.
(See, e.g., [BGV04, Proposition 10.1], [HHMO04, Proposition 14|, for
descriptions of dj7.) It is easy to see that the forms wl satisfy

b
dM+/éVa =V’ Awyp
and hence ' ‘ '
w) = fw? =nW(s)¥, w =w
Then # = w — @ satisfies
0% = —9? = h'(s)e, 6 =0 otherwise .

Let V(t) = (1 =)V +tV = V + t(V — V) so that its connection
one-form is w(t) = W+ tf and its curvature Q(t) = dw(t) — w(t) A w(t)
is given by

Q1) = —Q(t) = d(th'(s) &) — (th'(s) &) A @)
= th"(s) ds A& + th'(s) dwe
Q1) = +2(W(s))2 @ A
where Q denotes the curvature of V.

We can write these expressions succinctly in terms of the one-form
valued matrix given by

'yg = —’yjo- :Ej, ’yg =0 for all 4, j.
Indeed,
() =2 A=~ A&, (4);, = 0 otherwise
and hence
0 =0 (s)y, Qt)=Q+th"(s)dsAvy+th'(s) dwy—t2(h(s))* 2.
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Now let f be as in the statement of the proposition and note that,
since h'(0) = 1,

rap =5 ([ Homesam) )

1
= / Tr(yf (4t dwy — t2 ~?)) dt.
0

On the other hand, if we denote Q = Q + h”(s) ds A v, then as in
[BGV04, pg.48-49] we have

Tr(f£()) = Te(f(Q)) + 1(s) ds A Tr(vf'(Q),

and so
1 ~
ma(Ag) = /0 WY () Te(yf () ds

1 ~
= / R'(s) Te(vf/(Q + B (s) dwry — (K(s))* 7)) ds

0
t:h’(s) 1 Vray - 2 2
——= | Tr(vf(Q+tdwy—t*v7)) dt
0
which coincides with j*(T'Ay) as required. q.e.d.

To apply this to simplify formula (7.3), note that
ds(To(BY//N'1)) = 0 and 9, Ch'(E) = 0 = 19, Ch'(E).

For the twisted Chern character this follows from the fact that the
twisted curvature is independent of s. On the other hand, the J forms
only depend on the vertical metric, and are unchanged by rescaling the
metric. The warping factor h, as it only depends on s, has the effect of
rescaling the vertical metric at each s.

Applying the proposition to simplify the index formula (7.3) yields
the first part of the following theorem. Taking the exterior derivative
and applying the expression for d7 yields the second part. We introduce
the abbreviations

Ac(M/B) = A(V*™)]
and similarly for N/B.
Theorem 7.4.

o TAM/B) =TAp VY, V)| ..

To(3)B) — (3 /B) = /M TA(V/B) i ()

b [ A /B)Io(By/N) + dmwo
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Moreover

dJo(M/B) = /M/E A.(M/B)CH(E)

~

Y AN B) T/,
NesS; (M) N/B
Remark 7.5. In the case B is a point, the deduction of the first
part of Theorem 7.4 from (7.3) follows from [AGR16, Section 5]. Since
this follows from the preceeding proof also we only briefly sketch the
argument. To evaluate the term f)vﬁ A\(JV(JF) Ch'(E) in (7.3), using
that Ch/(E) is closed and that A(V") — A(VY) = dTA(Vh, vevl),
Since both A(V%!) and Ch’(E) have no ds component, the integral is
S+ dTA(Vh, V) Ch (E). From loc. cit., at the interior of each bound-
ary hypersurface, the transgression splits into according to whether the
base or vertical connections change; at s = 0 only the vertical met-
ric changes and there TA(V", V)| _g = TA(V®", V') while at the
other boundary faces (the }Aﬂr) the base metric changes from ds?+ gy to
ds? + h(s)?gy and as discussed the transgression of A for such metrics
is zero.

When the fibers of M —s B are closed manifolds this reads

Jo(M/B) —T7jo(M/B) = /M/é TA(M/B) CY (E) + dny—w.0

which is consistent with [AGR16, Main Theorem]. Note that if B is
a point then by conformal invariance TA(Ve™, V) = 0, so Jo(M) =

~

nq(M) However as noted above this is generally not the case.

Appendix A. Composition of edge pseudodifferential
operators

Let M -2~ B be a family of manifolds with corners and iterated
fibration structures as in Definition 1.3. In this section we prove the
composition formula for families of edge pseudodifferential operators
acting on the fibers of .

Edge triple space. Our construction of the triple space is the natural
combination of [MP92, Appendix| and [Maz91, §3|. Let

M2 =M xy M ={(,¢) e M :y(¢) =v(()}
M3 ={(¢,¢,¢") e M :9(¢) = v(¢) = (")}
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We start with the three natural projections,
M3 (¢,¢¢")

TCR TCR
TLR TLR
TLC TLC

Y I VB (ST B (SO I ()

2
M, b

(]

and we will modify Mfz so as to end up with b-fibrations down to
(M/B).
For each N € Sy,(M), let
(A1)
T(N) = {(¢,¢,¢") € BY : on(¢) = on(¢) = on (¢},
S1o(N) = m76(By Xy BN),
SLr(N) = 7 p(BN Xgy By),  Sor(N) = mop(B Xgy Bw)-

Let Sy(M) = {N1,Na,..., Ny} be a listing of the elements of Sy (M)
with non-decreasing depth. We construct (M/B)? by iterating the con-
struction of the edge double space in [Maz91]

Mfz; T(N1); (Spe(N1) U Spr(N1) U Scr(Ny));

3 T(Ne); (Spo(Ne) U SLr(Ne) U SCR(Ne))] :

We denote the blow-down map by ) : (M/B)3 — M3
We denote the collective boundary hypersurfaces obtamed from these
blow-ups by

T(N) & BL,(N),  Sie(N) & BEN),
Sta(N) ¢ B, (N), Sor(N) ¢ By, (V).
We denote the other collective boundary hypersurfaces by
B xy M 9350’0< N), M xy By xy M o B (N),
% BY & B (N).

Proposition A.1. The projections me, ® € {LC,LR,CR} lift to b-
fibrations Be: (M/B)3 — (M/B)?

(M/B);
frc lﬁL&
(M/B)z (M/B)? (M/B);

Proof. We start by recalling some foundational results of Hassell-
Mazzeo-Melrose [HMM95]. First, Lemma 2.1 of op. cit. says that if
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S, T are p-submanifolds of a manifold with corners X and S and T are
transverse or one is contained in the other then [X;8;T] = [X; T} S].

Secondly, Lemma 2.5 of op. cit. says that if f : X —VYisa simple
(i.e., with exponent matrix made up of 0’s and 1’s) b-fibration between
compact manifolds with corners, T' C Y is a closed p-submanifold, and
S'is the minimal collection of p-submanifolds of X into which the lift of
T under f decomposes, then f extends from the complement of f~1(T)
to a simple b-fibration [X; S] — [V T].

Finally, Lemma 2.7 of loc. cit. says that if f : X — Y is a b-fibration
of compact manifolds with corners, S C X is a closed p-submanifold
such that f(S) is not contained in a boundary face of codimension 2,
and f restricts to S to a b-fibration onto f(S), then the composition
[X;8] — X 4 ¥ is a b-fibration.

Using these results the proposition will follow by induction. For sim-
plicity, since B only enters parametrically, let us assume that B = pt,
so X = M and all of the strata N are the strata Y of X. By symmetry
it suffices to prove the proposition for ¢ = LR.

For each j € {1,..., ¢} let

X2(4) = [X*T(1); (Spe(Y1) U Spr(Yr) U Sor(Y1));
3 T(Y5); (Spe(Yy) U SLr(Y;) U Scr(Y)))]
Xg(j) = [XQ; %yl ><¢,Y1 %yl; cees %yj Xd)Yj %yj]

From [Maz91, Lemma 3.14] we know that 7 lifts to a simple b-
fibration

XJ(1) — XZ(1).
Let k < £ and assume that 7y g lifts to a simple b-fibration
XJ(k) — X2(k),
we will show that it lifts to a simple b-fibration
X3(k+1) — X2(k+1).

Indeed, using the results cited above, Lemma 2.5 guarantees that the
lift of mrp to

[Xg(k); SLR(Y/H—l)] — [XeQ(k)v %Yk+1 X¢Yk+1 %Yk+1] = Xe2(k + 1)
is a b-fibration, Lemma 2.7 guarantees that the further lift
(X3 (K); SLr(Yi41); T(Yi1); (Spe(Yir1) U Ser(Yir))) — XS (k + 1)

is a b-fibration, and finally Lemma 2.1 identifies the domain of this lift
with X2(k + 1). q.e.d.

Inspection of the proof above shows that the exponent matrices have
only zeros and ones, so we specify them by listing the preimages of
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the collective boundary hypersurfaces. Recall that the boundary hy-
persurfaces of (M/B)? are collective boundary hypersurfaces ‘B%)(N ),
’3821)(]\7), and the front face over Y, %((;qz (N). We have, for each {N €

Sy (M)},

Bi Bl (N) = {B{o (), Bl (N)},
BBy (V) = {B1(N), B, (N)},
BieBL(N) = {BE)(N), B, (N},
Bi B (N) = {BEH(N), B (N)},
Bi By (N) = {B{L(N), B, (N)},
Bi B (N) = (B, (N), BE) (N)},
BorBiY (V) = {B(N), BE) (V)
BERBG (N) = {Bgh (N), BG, ()},

BERB i (N) = {B0y(N). By, (N)).

Applying Melrose’s push-forward and pull-back theorems this leads
to a composition result for the large edge calculus. The behavior with
respect to the conormal singularity at the diagonal is standard, so we
will focus on operators of order —oo. We will also simplify notation by
not including vector bundles.

Thus, from (3.11) and Definition 3.6, we will establish composition
results for conormal distributions in

%hg((M/B)g; QD,R)

where we recall that
Do.r = P/ py2Bay RUM/B), with 0 : My((M/B)7) — R,

A(H) = —(dim(N/B) +1) if H C %%(N) for some N € Sy,(M)
0 otherwise

For an operator A, let us write its integral kernel as

ICAP?M/B)gMR-
Then if the composition C' = Ao B is defined, its integral kernel is given
by
Ke p’ur = (BLr)«(Bio(Ka pur) - Bor(Kp P 1))
Theorem A.2. If K4 € «/54((M/B)2) and Kp € /52 ((M/B)?)
where the index sets satisfy

Re(E4(BE (V) + Re(E5(B (V) > —1 for all N € Sy(M)
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then K¢ € %ghi]((M/B)g) with, for each N € Sy (M),

Ec (B (V) = Ea(BI (V)T (£a(BE)(V) + Ex(BE (V) ) |
Eo(BG (N)) = Ep(BE (V)T (£4(BE (V) + E5(BE(N))) |
Eo(BG)(N)) = (Ea(BE(N)) + Ex(BE)(V)))

O(eamF (v ))+5B(%g2>( N)) + dim(N/B) +1)

Proof. Let u(W) denote a nowhere vanishing section of Q(W) and
(W) a nowhere vanishing section of Q,(W).
The behavior of the densities under pull-back is given by

BOyug/B) =TI ey ul(M/B)2/B)

NES, (M) oo ()

(3)1s 5 _ , dim(M/B)+1
B /B = 11 (P )P ), () P, ()
NeSy (M)

2dim(M/B)+2 M/B 3 B).
O 01/ 332 B)

Multiplying the integral kernel of C by py = (B 5 ))*  yields
Ko (B®) u(M3/B)
= (Bur)s(Bic(Kap®) - Bor(Kpo®) - Bimits - Bicnn - Benmn)
= (Bur)-(Bic(Kap®) - Bon(Kp®) - (B9) u(MS/B)),
hence
Kon((M/B)2/B) = (BLr)+ (Bic(Ca) - Bon(Kn)
[T Pla™™ " u(a/B)/B)).

NeS,(M) B oo (V)

Now we write this in terms of b-densities
Keus((M/B)2/B) = (BLr)« (ﬁZc(’CA) Ber(KB)

dim(N/B)+1 3
[T A P /Y B))
NeSy, (M)

and we can apply the pull-back and push-forward theorems. q.e.d.

The action on polyhomogeneous functions is also easy to write down.
Given A as above and f € %],zg(X) we define

Af = (Br)«(Ka p°ur - BRS).
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Proposition A.3. With Af as above, if K4 € %S}L‘;((M/B)g) and
fe d o(M/B) where the index sets satisfy
Re(€4(B) (N))) + Re(G(BY)) > —1 for all N € S,,(M)
then Af € szgAf( N) with, for each N € Sy,(M),
Gag(BY) = Ea(B (V)T (£4BEN)) +4(BY))
Proof. Multiplying Af by u(M/B) yields

Afp(M/B) = (). (Kag® - B - (82 u(M2))
= (B0 (Ka - Brfu((M/B)}/B)).

and passing to b-densities
Afu(M/B) = (Bu)(Ka - Bif  TI ooy ym((M/B)2/B)).
NGSw(M)
and we can apply the pull-back and push-forward theorems. q.e.d.
Corollary A.4. If the integral kernel of A satisfies
Ka€ %%;((M/B)g) then A defines a bounded map, for anyt € R,
o HY(M/B) — ¥ HE(M]/B)
as long as
Re(£a(Byy (V) +5(N) > —3
Re(£A(B (N))) > &' (N) - 4
Re(€4(BE)(N))) +s(N) > §'(N)

Appendix B. Composition of wedge heat operators

The wedge heat composition space. Composition is through con-
volution in time,

f(t) dt = /O gt — () dt'dt = /Mtl:t(g(t”) dt")(h(t') dt’).

We prefer to work with 7 = v/t instead of ¢, so this becomes
2
fear=2 [ (99l ds)hE) @),
§4+8% =T

T

In terms of the maps



FAMILIES DIRAC INDEX ON PSEUDOMANIFOLDS 325

the composition is given by

F(r) dr = 2 (m0). (w(rg(r) dr)mi(rh(r) dr))

T

This push-forward is not well-behaved because m¢ is not a b-fibration
but we can fix this by replacing (R*)? with

Ty = [RY xR {(0,0)}]

and then the composition formula is well-behaved. We denote the
boundary hypersurfaces of this space by

{0} x BT & B, R x {0} & B, {0} x {0} & B,

Now bringing in the spatial variables, we want to construct a space
H(M/B)3, so that the maps

M3 x (R*)? (¢, ¢",5,3)

TCR,R TCR,R
TLR,C TLR,C
TLC,L TLC,L

M2 x R* M2 x R* M2 xRT(GCs) (¢, ¢", V5?2 +3%) (¢, ¢",%)

(where we are using the notation Mi, Mi from Appendix A) lift to
b-maps.
We construct the space H(M/B)3, in steps starting from

Ho(M/B)3, = M} x Ty

Let Sy (M) = {N1,..., N¢} be a non-decreasing list and recall the no-
tation T'(N), Spc(N), etc. from (A.1). Inductively, for 1 < i < ¢,
let

H;(M/B)%, = |H;—1(M/B)%; T(N;) x B{7;
(Src(N;) USLr(N:) U Scr(V;)) x ’Bﬁ‘f); Sro(N;) % %5‘5);
Ser(N;) x B T(N); (Spe(Ni) U Spa(N;) U SCR(Ni))] .

Finally, we need to blow-up the (interior) lifts of the partial diagonals.
So let

diagc = 7 o(diagy),  diagyp = 7 p(diagyy),
diagep = mop(diagy),
and let diag;~p be their intersection and then define

H(M/B)}, = |H{(M/B); diag o xB\7 s

. . . T . T . T
(diag; o Udiag; p Udiagqg) X %gl ); diag; x%§0 ); diagop X’B((n )].
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Our notation for the (collective) boundary hypersurfaces of H(M/B)3,
is as follows. First we have,

M x B\ & %(()g&m, M x 8] ¢ %(()83,017
M x 87 & ’B(()(()’B 1, diagrop xB{) ’B((igc)z,nv
diag; x%§1 ) ‘ng 1y diagpp X%gi Vo %Elgg,ll’
diagop xB17) & %(()dé e diagge x B 5351%,107

() (, (C)

diagop XB 0dd,01°

and then, for each N € Sy, (M),

B xy M3 x T BIG o0 (N),
M xy BY xy M x T e B 00(N),

Mi Xy %(1) X %2 e %égl),OO(N)’ T(N) x ’Bg) ¢¢¢ 11(N)
Src(N) x %11 = “B(¢>2) 1nV),  Sr(N) x %( ) gﬁg; 1(N),
Scr(N) x 9311 e B L(N),  Spe(N) x B ¢ B0) (V)

Scr(N) x B & %8%01( ) T(N)x Jg < %E;Ss?;soo( ),

Sre(N) x % & B (V). Spr(N) x T2+ B (V)

Scr(N) x T & B o (N).

Proposition B.1. Each of the projections me o, ® € {(LC’ L),
(LR,C), (CR, R)} lift to b-submersions B : (M/B) — H(M/B)y

H(M/BY);,
Bcr,R
% lBLR\
H(M/B)w H(M/B)y H(M/B)w

The proof of this proposition is similar to that of Proposition A.1.
The reason that the maps are not b-fibrations is that they are not b-
normal as will be clear from the exponent matrices.

The exponent matrices. We specify the exponent matrix of the maps
B..... by specifying the pull-back of the collective boundary hypersurfaces.

Thus Brc,r, maps %((3%701, ’B(()ggm and, for each N € Sy, (M), ‘ngl),OO(N),
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into the interior of H(M/B)y,; otherwise

* H C C
ﬁLC,L%éO,)l = {%000,10’ %(()08 11 %203 110 Odd 11}U

C
U {%¢O¢>11( )%é@)pn( )},
NeSy (M)

. H c c c
ﬂLC,L‘B&d,)l = {%t(id;,ll? %t(id(%,lv %Ezd()),m

and, for each N € Sy,(M),

c c c
BLCL%N)%(N) = {%gog,oo(N) ‘3;035 11 (V), %éozs,oo(N)}
c c
Bre L%ou))(N) = {%(()10) OO(N) %(()d)g)bll(N) 0¢¢ 01(N)7 0¢¢,00( )}
c c
Bro B (V) = {BY) (V). BY0 11 (V) B (V)
. c
Brc L%ég)o(N) = {%qsngb 00(V), sBE;ﬁqﬁ)O 00(V) 1

where we note that %((;S; 11(IV) and ’Bé% 11(IN) are repeated.

Similarly, the map Brr,c maps ‘3608710, %683701, %((133,107 %‘8%101 and,
for each N € Sy, (M), %8?8700(]\7), into the interior of H(M/B)y; other-
wise

C
BLr C’B(()o 1= {%008 115 %Eld(% 117 %(()dd 11
U U 85 (V) B ()}
NESw(M)

* H) _ (
Prr,cBaa) = {Bada11 Bacan
and, for each N € Sy,(M),
(H)

BireBlop(N) = {B15 00 (V), BUL 11 (N), BY 10(N), B 00 (V)
ﬁLRc%é?%w) {B51 00 (), W11<N>,%0¢¢01<N>,%éi;,oouv)}
BLRC’ ¢¢ 1(N) = {%W(gb 11(N) ¢>o¢ 11(N)}
BLr C%¢¢ O(N) = {%¢¢¢700(N) ¢o¢700(N)}

where we note that %(ié 11(N) and SB(()@)# 11(IN) are repeated.

Finally, the map Bcr r maps %608710, %El%,lo and, for each N €

Sy(M), ’ng&OO(N), into the interior of H(M/B)y,; otherwise

* H C C C C
5C'R,RSB(()O,)1 = {%808 01> 53(()03 11> %Sd(% 11 %205711}
C
v U {’Baﬁaso (), B0 1 (N)}
NeS, (M

* H e} C
Ber R%Eld)l = {%ddd 117 %éd; 117 %(()dc)l 01
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and, for each N € Sy (M),
Ber, R‘Blo o(N) {%gg 00(N), B ¢¢0 11(N) ¢¢0 10(N) ¢¢o OO(N)}
Ber R%Ol 0<N) = {%001 ,00 (N), %E;gqs 11(N) %fzgqs,oo(N)}
Ber R%M) 1(N) = {SB¢¢¢ 1

(

(N), Bl 11 (N), B, o (N)}
Ber R%qg(bo N) = {%qﬁ(b(b OO(N) 0¢¢,00(N)}
where we note that ‘Bé?o 11(N) and %Epoé 11(IV) are repeated.

Composition. Now let us discuss the composition law. As before we
are interested in integral kernels that are sections of a weighted density
bundle. Let us start by recalling the weight from (3.23), namely

b: Mi(H(M/B)w) — R,

—(dim(N/B)+3) if HC %gw)l(N) for some N € Sy, (M)
—(dim(N/B)+1) if HC %gw)o(N) for some N € Sy,(M)
h(H) = —(dim(M/B) +2) if H =8}
% it H =B
0 otherwise

and let pup = By, ri(M/B). We will determine the behavior under

comp031t1on for integral kernels of the form Kap"ugr with coefficient
Kaq € Aphg( (M/B)y,). Ultimately we are interested in kernels that
are merely conormal with bounds acting on sections of a vector bundle,
but the corresponding composition result follows easily from this one.

Prop051t10n B.2. Suppose that the integral kernel of A has the
form KapPug with K4 € Aphg( (M/B)y) and that of B has the form

Kpp'pur with K € ASE (H(M/B)y,). If
Re(€4(B)1)) > 0, Re(Ep(BY)1)) > 0, and

Re(E4(BY; o(IV))) + Re(Ep(Bigo(N))) +1 > 0 for all N € Sy(M),
then we may define their composition Ao B by the formula

K aosirB (T dr)

= (BLr,c)«(Brc, L(’CAPhMR ﬁZ‘H) (rdr)) - BER,R(’CBPhMR 5?1{) (rd7)))
and we have K 405 € phAphg( (M/B)y) with

Enon(By)) = Ea(By)) + E5(Bj))

and, for each N € Sy,(M),

Eaon(BYH(N)) = Ea(BH(N)T(EA(BLY (N)) + Ep(Bl (V)

A0B( 10,0 ) =¢&a 10, o(IV) Al o,1 ) B( 10,0 )



FAMILIES DIRAC INDEX ON PSEUDOMANIFOLDS 329

Eaon (B HN)) = E5(Boro(N)T(Ea(B (V) + Es(BLL (N)))

Eaon(Big) (N)) = Ea(BUL (V) + E5(BL) (V)

Eaon(BUIL(N)) = (Ea(BYL (V) + E5(BUIL(N))
U(Ea(BY0(N)) + E5(BYH(N)) + dim(N/B) + 1)

Proof. Let us write, during the proof,
b: Mi(H(M/B)w) — R,

—(dim(N/B)+a) it HC %fbé)l(N) for some N € Sy (M)
—(dim(N/B)+4d') it HC %fbé)O(N) for some N € Sy, (M)
B(H) = § —(dim(M/B) +8) it H = By,
% it H =B
L0 otherwise

to motivate the choice (a = 3, ' =1, b = 2) made above.

Note that Brrc is not a b-fibration so that push-forward along it
does not preserve polyhomogeneous functions. However, the weight b is
such that the polyhomogeneous functions to be push-ed forward vanish
to infinite order at of all boundary hypersurfaces where 31 ¢ fails to be
b-normal and so we end up with a polyhomogeneous function. Indeed,
the product B%q 1 (0°)B5k p(P?) vanishes to infinite order at every face
in

(H) (H)
Bre,.Boos Y BERRBo0a
_ rn(O) (©) (©) (&) (@ (@)
= {%000 10 B000,01> B000,11 Bado,11> Baod,11> %Odd,ll}

@) 1) (©)
U U {%wo 11 (V), B 306, 1 (V) DBoge, 1 (N}
NESU,
so we see that the push forward along 31 g c will be polyhomogeneous
and will vanish at B 1 to infinite order.

Thus let us write 40B = K 40 pr for some K 405 polyhomogeneous,
which after multiplying both sides of the formula for A o B by u; =
Bm (M /B), satisfies

K a0B0" By (T (M3 /B x RY)) = (BLr0)« (8o, (Kap®Big (7))

BEr,RKB" By (7)) - Bioy (WM /B x (RY)?))).
We need to work out the density weight factors. Start by noting that

Bl = pugn puen, 11 pyon )
NES, (M)

and then, ignoring the faces where we have seen infinite order decay,

BER,C(phIB?H)T)_IBZC,L(pbﬁ(*H)T)ﬁé‘R,R(phﬁzkH)T)
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_ —dim(M/B)—b+1
= (©) (©) (©)
(p%ddd,ll p%ddo,lop%Odd,Ol)

II (g

PP9,11
NES, (M)

— dim(N/B)—a+1

W)PBE) L )PBE) | (v))

)— dim(N/B)—a’

II (g Pu© A PR© Pl
NeS, (M) Bioo,00 ) B0,00(N) " Bag,00 (N 78 55 00 (N)

Next, the lifts of the densities (continuing to ignore faces where we
have infinite decay) are

Blmmn(M/B x RY)

= g TL o i e | u(H (M /B))
dd,1 NES, (M) ¢P,1 6,0

= Pj(lH) po(H(M/B)w/B)

* dim(M/B im
Bioy(M3 /B x (RT)?) = {p2 (M/ )H(p%@ pcy ) AmO/E)

%&3;711 dd0,10 ~0dd,01
2 dim(N/B)+2
NesHW)(p%i;,u(N)p B0 10 B, u ()
W
2 dim(N/B)+1 3
(p%ﬁl PR )P )P ™)) u(H(M/B)y)

0¢¢,00 04,00

— Pl iy (H(M/B)},/B)
where p(p7) and p(cy are, respectively, total boundary defining functions

for H(M/B)y, and H(M/B)3,. From the exponent matrices of SLg c
we have

dim(M/B)+1
© Py(©) Py )IMM/B)
ddd, 11 Pddo,10° 20dd,01

(ﬁZR,CPj(lH) ) 71/71.(20) = (P%

II (go

11
Nesy(m)  7?

)dim(N/B)+2

)P0 P8 ()

dim(N/B)+1

C C C C
(@) NPBE), o0 PBE), o) Ps(C) (V)

So altogether

Kaopus(H(M/B)3 /B) = (BLr,c)«(Bre,.(Ka) - Bor,r(KB)
P up(H(M/B),/B)).
where, ignoring faces with infinite decay, pj(3c) is equal to

—b+2
(©) ©) (©)
(p%ddd,ll p%ddo,lop%odd,m )

II (g

PP9,1
NES, (M)

©) )Tots

$¢0,1

()

0,01 (V)

L(WNPBO) (NP
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—a’+1 a’+dim(N/B)

PR (PR () 2O ) PBE) o (N’

(p%(C)
$¢0,00 0¢¢,00 $0,00 010,00

$¢,00

Now we can apply the pull-back and push-forward theorems to get the
result. q.e.d.

Appendix C. Composition of b, wedge heat kernels

In section 7.2, we prove a families index theorem on manifolds with
iterated fibration structures endowed with b-wedge metrics. The locally
trivial family is denoted

X —m 2B
in order to distinguish it from the fiber bundle used in the bulk of the
text. There is a minimal Ny € S(M’) such that dim(Ny/B') = 0,
and the metric is of b-type near B N} and of wedge type at all other
N' e S(M').

In this section we establish a composition result for b-wedge heat
operators.

The b, wedge heat composition space. Recall that the b,wedge
heat space is given by

H(M//B/)b’w = M/ X! MI X Ri;%N{) ><¢N, %N() X ]R;r;
0
By %oy, By x {0} By X, By X R
---;%Né ><¢Né %Né X {0}; %Né X‘bNé %Né X Rj],

where {Ng, N{...., N/} is a non-decreasing list of S(M’). Thus this
space is constructed by treating N as in the construction of the b-
heat space [Mel93, Chapter 7], and treating the other N’ as in the
construction of the wedge heat space in §3.5. We will follow the same
pattern below.

We use the space 2 defined in Appendix B as

72 = [RF x RE; {(0,0)}]

together with the notation for its boundary hypersurfaces SB%’O%, %é?),
’35‘17). We define the b, wedge composition space using the notation

from (A.1) starting from
Ho(M'/B")j, = (M)}, x F5; T(Np); (St (Ng)USLr(Np) UScr(Ng))]-
Inductively, for 1 <1 < /¢, let

Hy(M' /B,y = [Hiea (M /B T(N]) x B

bw?

(Sc(NY) U Spr(N)) U Scr(N))) x B,
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Spe(N]) x B0 s Sor(N]) x B T(N:);
(S1e(N{) U SLa(N) U Scr(N)]-

Finally, we need to blow-up the (interior) lifts of the partial diagonals.
So let
diagc = 7 & (diagy,), diagy g = 7y f(diagyy),
diagor = e p(diagyy),

and let diag; - be their intersection and then define
H(M'|B')},, = |Hy(M'[B')},; diag o x B}
(diagy o Udiagyp Udiagog) X %gf); diag; o x%g?; diagqp x%g‘?)].

As anticipated, N/ gives rise to the same blow-ups as in the compo-
sition space for the b-calculus [Alb07] and the other N’ give rise to the
same blow-ups as in the wedge heat composition space in Appendix B.

Our notation for the (collective) boundary hypersurfaces of the space
H(M'/B' )2,w is as follows. First we have,

T C T C
(M/)qp' X %( = %803,107 (M/)?y X %81 )& %808,017

T c . T c

(M’ )1// X ‘B( )& %(()03 11> diagreor X%gl = %Ezdé,n?
c c

diagy ¢ X’B§1 ) & %Ezdg 11 diagrp X%( ) & "Bglo(%,n’
c c

diage x B ’Bédc)z s diag o xBl) o ‘Bédc)),1o>

. c
diagop x B, ¢ sB(()dc)z,op

and then, for each N’ € S(M’),
c
%g\lf2 X sz X Ty %gog,oo(N/)a
M xy sB5\/2 Xy M x T SB(()(lj(%,OO(N/)>
c
%g\lf’) X T sB(()01) 00V ), T(N') x T ’Bé¢)¢ 0oV,
c
ch<N’> x T2 e B o (N'), Sea(N') x 6 B (V).
Ser(N') x 75 < B, ('),
and, for each N € S(M') \ {N}},

T(N') x By & 80 (N'),  Spe(N') x 8] « 8} (V)

¢Ppp,11
7 c T c
SLr(N') x %51 Ve %5503;5 1 (N, Scr(N') x 5351 Ve %éqbzb 1 (),

Sro(N') x ’Bgo Ve %sz) 10N, Scr(N') x %(()1 V& %(()@)za o1(N).
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The exponent matrices. As in Appendix B, we have b-maps

H(M'/B');
BCcR,R
BLR,C
H(M'/B')pw H(M'/B')p,w H(M'/B')p,w

and we now specify their behavior with respect to the boundary hyper-
surfaces.

First, frc,r maps %832701, %éggm and %(()gl),OO(N/)7 for each N’ €
S(M"), into the interior of H(M'/B’)p; otherwise

C C C
6LC L%OO 1= {%000 10° %(()03,11’ %ElOc)l 11> %(()d;,ll

U s ()35 (N,
N'eS(M")\{Ng}
BZCL%EII;)I - {%ddd 11° %1(123,10’ %Elgg,ll )
for N,
B B0V NG) = {B100,00(ND) Bos 00(N)}
B B b(NG) = {3050 .00(ND) Bl 00 (NG)}
B BYn(NG) = {B 00 (), B 00 (NG},

and, for each N € S(M') \ { Ny},

B BN = {8150 00 ('), B, 11 (N'), B 10 (V)

B BEVN') = {B0 00 (V') BE) 11 (N'), B, 0y (N), BEC) 10 (N')}
Bron B (N = {840 (V)84 1 (V). B (N},

B BYsn(N') = {BY.) 0(N'), Bl oo (N')}-

We note that %Eﬁ(h)b 11(N') and ’Béi; 11(N') are repeated, for N’ €
S(M')\ {Ng}-
(@) <)

.. C C
Similarly, the map Brr,c maps %(()08710, B00,01+ %Eld(),l(w %((]dc)wl and,
for each N' € S(M'), %(()?8700(N’), into the interior of H(M'/B')pw;
otherwise
C C
BLr, 0%00 1= {%000 11 %((id(% 11 %(()dc)l 1)

Y U {%M)O 11( ,) f‘BE)@)z; 11(N/)}
N'eS(M")\{N{}

* H
/BLR,C%z(id,)l = {%ddd,lv %51011,11



334 P. ALBIN & J. GELL-REDMAN

for N,
B r e B0 (NG) = {B50 00 (N0), Bl 00 (VD) }
BB b(NG) = {B60) 00 (NG), B 00 (N)}
BB (NG) = {BL) 10 (N6), B 00 (NO)}
and, for each N’ € S(M’) \ {Vg}

C C
Bi By (V') = {81 00< .84 (), B (), B (N}
C C
B reB (') = {BUG] 0o (N'), B, 1 (N'), B 0 (N), B0 o0 (N')}
H C
Bi B (N') = (B ¢¢¢n< "), B0 11 (N)}
C
B oBU (N = {8 0 (N), B 1o (N')}.
};Ve r;ote that %((;:;2) 11(N') and %éd); 11(N') are repeated for N' € S(M')\
Ny}

Finally, the map Scpr g maps %ég&m, %Elflg 10 and, for each N' €
S(M"), %ggg,oo(N/)’ into the interior of H(M'/B')p; otherwise

* c C c
BCR,R%éo,l = {%000,017 %803 11» %l(id(% 11° 5351021,11

C
v U e sl L)
N'eS(M")\{N{}

BCR R%dd 1= {‘ded 111 ‘Bt()gd,w sB0dd,01}
for N,
Ber B0 (NG) = {%é?o 00 (VD) B0, 00 (NG)}
B kB4 b (NG) = {Bi01 00(ND), Bl 00(ND)}
B r, B 0(NG) = {B), 00 (NG), B 00 (NG}
and, for each N € S(M') \ {Ny},
(H

BerBlop(N') = {B0,00(N), BYo) 11 (N'), BYL (V) B 10 (N')}
5?:3,}2%(()]1{,())(]\7,):{‘B(()gl),oo(N') ¢0¢11(N’) ¢0¢,00( )}
BorpBUh (V') = {BY) || (N'), B W L1 (), B o (N)}
BenrBYsy(N') = {BL) (o (N'), Bi) 1o(N)}.

We note that %éig),n(N’) and ’Bé%; 11(N') are repeated, for N’ €
S(M')\ {Ng}-
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Composition. Now let us discuss the composition law. As before we
are interested in integral kernels that are sections of a weighted density
bundle. Let us start by recalling the weight from §7.2, namely

b : Ml(H(M//B,)bW) — R

it # <Y (V)

for some N’ € S(M/) \ {N(I)}

(H)
if HC B, (N 9

~(dim(N’/B') + 3)

h(H) = { —(dim(N'/B") +1)
for some N’ € S(M")
~(dim(M'/B') +2) it H =984,

00 if H= %(()I(i)l

0 otherwise

and let ur = By, ri(M'/B'). We will determine the behavior un-

der composition for integral kernels of the form Kap"up with K4 €

Aphg (M'/B')pw). Ultimately we are interested in kernels that are

merely conormal with bounds acting on sections of a vector bundle, but
the corresponding composition result follows easily from this one.

Proposition C.1. Let A have integral kernel Kapdur satisfying

Ka € Aiﬁg( (M'/B')p) and B have integral kernel Kpp'ug satis-

fying K € Aphg( (M'/B"pw). If
Re(€4(B)))) > 0, Re(Ep(BY)))) > 0, and
Re(E4(BSH(N')) + Re(Ep(Blap(N)) + 1> 0 for all N' € S(M’),
then we may define their composition C' = Ao B by the formula
K aosirB (T dr)
= (Brr,0)«(Bro,L (Kap g Bigy(Tdr)) - BEr r(KBp" R Bg) (TdT)))
and we have Kaop € pP AL2P (H(M' /B )y ) with
Eaon(B)) = E(BY) + En(BY))
and, for N{,
Eaon(BINNG)) = Ea(BIH(NG)DER(B w%(No))
Eaon (B V(NG)) = E(Boro(N))IEA(BHLH(NG))
Eaon(Blyy(NG)) = (Ea (%;¢>O<Na>> + 53<%;’;>0<Na>>>
O(E(BIGH(NG)) + En(BEH(NG)) + dim(Ng/B) + 1)
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and, for each N' € S(M') \ {Né}

Eaon(BIGH(N')) = Ea(BIGH(N)T(Ea(BY (V) + En(BGH(N'))
Eaon(Bos o(N')) = E5(Bo10(N")T(Ea OION’» En(BUL (V)
Eaon(BUL (N')) = £a(B Efiﬁ( >> Ep(Big) (V)
Enon(BYS (V') = (Ea(BLIL (V') + Ep(BL L (N))

U(Ea(B0H(N')) + Ep(BEH(N') + dim(N'/B) + 1).

Proof. The proof is essentially the same as that of Proposition B.2,
using the exponent matrices computed above. q.e.d.
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