
Automatica 159 (2024) 111380

Contents lists available at ScienceDirect

Automatica
journal homepage: www.elsevier.com/locate/automatica

Technical communique

On the convexity of static output feedback control synthesis for
systemswith lossless nonlinearitiesI

Talha Mushtaq a,⇤, Peter Seiler b, Maziar S. Hemati a
a Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
b Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA

a r t i c l e i n f o

Article history:
Received 14 February 2023
Received in revised form 16 August 2023
Accepted 1 October 2023
Available online 31 October 2023

Keywords:
Lyapunov stability
Linear matrix inequality
Static output feedback

a b s t r a c t

Computing a stabilizing static output-feedback (SOF) controller is an NP-hard problem, in general. Yet,
these controllers have amassed popularity in recent years because of their practical use in feedback
control applications, such as fluid flow control and sensor/actuator selection. The inherent difficulty
of synthesizing SOF controllers is rooted in solving a series of non-convex problems that make the
solution computationally intractable. In this note, we show that SOF synthesis is a convex problem for
the specific case of systems with a lossless (i.e., energy-conserving) nonlinearity. Our proposed method
ensures asymptotic stability of an SOF controller by enforcing the lossless behavior of the nonlinearity
using a quadratic constraint approach. In particular, we formulate a bilinear matrix inequality (BMI)
using the approach, then show that the resulting BMI can be recast as a linear matrix inequality (LMI).
The resulting LMI is a convex problem whose feasible solution, if one exists, yields an asymptotically
stabilizing SOF controller.

© 2023 Published by Elsevier Ltd.

1. Introduction

Static-output feedback (SOF) stabilization is an open control
problem (Bernstein, 1992; Blondel & Tsitsiklis, 2000; Syrmos,
Abdallah, Dorato, & Grigoriadis, 1997). The bilinearity of the
SOF problem for linear time-invariant (LTI) systems makes the
problem non-convex, rendering the solution intractable for high-
dimensional LTI systems. Despite the difficulties of SOF control
synthesis, the simple structure of SOF control has made it an
attractive choice in practice. As such, various SOF synthesis al-
gorithms have been developed for LTI systems (Cao, Lam, &
Sun, 1998; Dinh, Gumussoy, Michiels, & Diehl, 2011; El Ghaoui,
Oustry, & AitRami, 1997; Iwasaki & Skelton, 1995; Toivonen &
Mäkilä, 1985). On the contrary, SOF synthesis methods are less
prevalent for nonlinear systems, wherein a similar bilinearity
issue arises. Nonetheless, SOF controllers would be desirable in
many nonlinear applications.
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Computing an SOF gain is NP-hard in general (Blondel & Tsit-
siklis, 1997), i.e., the solution method for the SOF problem has
a time complexity greater than O(nk) for some positive k and
input size n; therefore, exploiting the structure of a given system
is the best approach to obtain a solution in a computationally
tractable manner. No universally applicable algorithm exists for
SOF synthesis of generic nonlinear systems; different systems
possess different underlying structures that can be exploited.
For example, SOF synthesis methods have been developed for
systems for which the nonlinearity is passive (Dalsmo & Egeland,
1995), polynomial (Saat & Nguang, 2015; Zhao & Wang, 2010) or
Lipschitz (Ekramian, 2020). Furthermore, sufficient conditions for
local SOF stabilization have been established for nonlinear (affine)
systems (Astolfi & Colaneri, 2002).

In this note, we will use standard Lyapunov arguments to
establish a special class of system for which the SOF stabiliza-
tion problem is convex: i.e., that of an LTI system in feedback
with a lossless nonlinearity or uncertainty element. Such systems
arise, for example, in the context of fluid dynamics, where it is
well-established that the nonlinear terms in the incompressible
Navier–Stokes equations are lossless and kinetic-energy conserv-
ing (Schmid & Henningson, 2001). In fluid dynamics, the lossless
(or more generally passivity) property of the nonlinearity has
been exploited for stability analysis (Kalur, Mushtaq, Seiler and
Hemati, 2021; Kalur, Seiler, & Hemati, 2020; Kalur, Seiler and
Hemati, 2021; Liu & Gayme, 2020; Mushtaq, Seiler, & Hemati,
2021; Schmid & Henningson, 2001), model reduction (Antoulas,
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2005), and feedback control synthesis (Heins, Jones, & Sharma,
2016; Sharma et al., 2011). Further, the utility of (linear) SOF
strategies for fluid flow control has also been investigated in
recent works (Yao, Sun and Hemati, 2022; Yao, Sun, Mushtaq and
Hemati, 2022)

The work presented in this paper establishes convexity of SOF
control synthesis for an LTI system interacting in feedback with a
lossless uncertainty element. The lossless property is a special case
of passivity; energy is strictly conserved, neither being created
nor dissipated. We first use quadratic constraints (QC) to bound
the lossless behavior of the nonlinearity. The QC allows us to
formulate a bilinear matrix inequality (BMI). We then show that
the particular BMI that arises in this problem has a structure
that reduces it to a linear matrix inequality (LMI). The LMI con-
dition establishes the convexity of the associated SOF synthesis
problem. In addition, we establish necessary and sufficient con-
ditions for feasibility of our synthesis approach through standard
application of the projection lemma.

The paper is organized as follows. Section 2 defines the QC
approach, which is later used in Section 3 to establish the main
result of this paper, i.e., explicit conditions for SOF synthesis.
Section 4 contains an example problem and Section 5 is the
conclusion.

2. Formulating the framework

Consider a state–space system of the following form:

ẋ(t) = Ax(t) + Bu(t) + z(t)
y(t) = Cx(t)
z(t) = N(x(t))x(t),

(1)

where the vectors x(t) 2 Rn, u(t) 2 Rq, and y(t) 2 Rp

are the states, control inputs, and system outputs, respectively.
Moreover, A 2 Rn⇥n, B 2 Rn⇥q and C 2 Rp⇥n are the system,
control, and output matrices, respectively. Also, N : Rn ! Rn⇥n

is a continuous function such that N(0) = 0 and each entry
of z(t) = N(x(t))x(t) is a continuous function in x(t). Here, we
only consider lossless nonlinearities for which hx(t), z(t)i = 0
for all x(t), where h·, ·i is the inner-product of signals. Note that
hx(t), z(t)i = x(t)TN(x(t))x(t) = 0 is a nonlinear constraint in N .
This constraint can be satisfied by any linear or nonlinear con-
tinuous function N such that N(x(t)) is a skew-symmetric matrix
for all x(t).1 However, other continuous functions are possible
as long as hx(t), z(t)i = 0 for all x(t). Lossless nonlinearities
are a special case of passive nonlinearities for which energy is
conserved (i.e., energy is neither created nor dissipated) (Khalil,
2002).

As shown in Kalur, Seiler et al. (2021), we can derive a matrix
inequality condition using the Lyapunov stability theorem to
capture the lossless property. Consider one such matrix inequality
for the uncontrolled (open-loop) system studied in Kalur, Seiler
et al. (2021), i.e., set u(t) = 0 in (1):

ATP + PA P

P 0

�
+ ⇠o


0 I
I 0

�
 �


✏P 0
0 0

�
. (2)

Here ⇠o 2 R70 is the Lagrange multiplier and P 2 S
n
++, where S

n
++

is the set of n⇥n symmetric, positive definite matrices. Feasibility
of the matrix inequality (2) implies that V (x(t)) = x(t)TPx(t)
is a Lyapunov function. This can be verified by multiplying (2)

1 One example is N(x(t)) =

0 �x1
x1 0

�
for n = 2. This nonlinearity

appears in the example system in Section 4. Another example is N(x) =2

4
0 �x1 ex2
x1 0 sin(x3)

�ex2 � sin(x3) 0

3

5 for n = 3.

on the left and right by
⇥
x(t)T z(t)T

⇤
and

⇥
x(t)T z(t)T

⇤T,
respectively. This gives the following constraint along trajectories
of the system (1):

V̇ (x(t)) + ⇠ox(t)Tz(t)  �✏V (x(t)) (3)

Apply the lossless constraint to show that V̇ (x(t))  �✏V (x(t)),
i.e., V (x(t)) decays with rate ✏ 2 R>0 along trajectories. Further
details about the derivation are given in Kalur, Seiler et al. (2021).

The dynamics in (1) are open-loop stable for u(t) = 0 if there
exists a P > 0 satisfying (2). Thus, by extension, (1) is closed-loop
stable for u(t) = Ky(t) = KCx(t) if there exists a P > 0 satisfying
the following:

(A + BKC)TP + P(A + BKC) P

P 0

�
+ ⇠o


0 I
I 0

�
(4)

 �

✏P 0
0 0

�
,

where K 2 Rq⇥p is the SOF controller gain. However, the solution
is difficult to compute because the inequality in is bilinear in the
variables P and K . To remedy the bilinearity issue, we show in
Section 3 that the BMI in can be easily reduced to an equivalent
LMI, which is convex and easily solvable.

3. Output feedback controller (main result)

This section establishes conditions to solve for an asymptot-
ically stabilizing K . Specifically, we show—using standard techn-
iques—that can be formulated as a convex problem in variable
K and that P is a solution with a fixed structure. Furthermore,
we provide explicit feasibility conditions on the existence of a
stabilizing K .

Lemma 1. There exists P 2 S
n
++, ⇠o 2 R70, and K 2 Rq⇥p satisfying

if and only if there exists K satisfying the following:

(A + BKC) + (A + BKC)T + ✏I  0. (5)

Proof. Notice that the lower right block of is zero. Thus, the off-
diagonal terms must be zero in order for to be feasible. Therefore,
P = �⇠oI and ⇠o < 0. Hence, reduces to the following form:

(A + BKC)T(�⇠oI) + (�⇠oI)(A + BKC) � ⇠o✏I  0. (6)

Since ⇠o is a negative scaling factor, we can eliminate it without
affecting the solution to (6). Thus, the following LMI in K results:

(A + BKC)T + (A + BKC) + ✏I  0. (7)

Notice that any choice of ⇠o < 0 will satisfy the solution in since
the resulting P can always be re-scaled to an identity and the
same argument used for deriving will follow. Therefore, the
solution to can be generalized to P = I and ⇠o = �1. The
controller gain (if one exists) can be obtained by solving the
feasibility problem in , which is now convex and is an equivalent
condition to . Therefore, the solution K from is a solution of and
vice versa. ⇤

Remark 1. Note that we have not yet established the explicit
conditions that guarantee the existence of K as a feasible solution
of (5).

Lemma 2. There exists an ✏ 2 R>0 and an output-feedback gain
K 2 Rq⇥p satisfying (5) if and only if the following set of conditions
are satisfied:

UT
B (A

T + A)UB < 0
UT
C (A

T + A)UC < 0,
(8)
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where UB = null(BT) and UC = null(C) are the null-spaces of BT and
C, respectively.

Proof. We showed in Lemma 1 that the following LMI results
from the optimal solution P = I and ⇠o = �1:

(A + BKC) + (A + BKC)T + ✏I  0 (9)

which is equivalent to . Furthermore, the LMI in (9) implies the
following LMI for an arbitrarily chosen ✏ 2 R>0:

(A + BKC) + (A + BKC)T < 0. (10)

Then, the LMI in (10) can be written in an equivalent projec-
tion lemma form (see section 2.6.2 in Boyd, El Ghaoui, Feron, &
Balakrishnan, 1994):

AT + A + BKC + CTK TBT < 0. (11)

This is a particularly useful result as we can use the properties
of the projection lemma to create two equivalent LMIs of the
following form to solve for K :

UT
B UB < 0

UT
C UC < 0

(12)

where  = AT + A, and UB and UC are the null-spaces of BT and
C , respectively. ⇤

Remark 2. If B and C are full-rank, then the associated null spaces
UB and UC will only contain the trivial zero vector, respectively.
In any of these cases, we can simply use a congruence transfor-
mation followed by a change of variables (i.e., Y = PBK or Y =
KCP�1) to solve for the variables P and K (Boyd & Vandenberghe,
2004).

Remark 3. In cases where the lossless nonlinearity defines the
global behavior of the system, the LMI (5) gives a sufficient
condition for global asymptotic stability.

An SOF gain K can be obtained simply by solving (5) using an
LMI solver, such as sdpt3 or mosek.

4. Example problem

Consider the system in (1) with the following matrices for
x =

⇥
x1 x2

⇤T 2 R2 :

A =

�0.1 1
0 �0.1

�
, B =


1
1

�
,N(x) =


0 �x1
x1 0

�

C =
⇥
1 2

⇤
.

(13)

Then, K 2 R is the SOF gain to compute. We choose ✏ = 10�6 and
obtain K = �3.6231 by solving using the parser cvx and the LMI
solver sdpt3 (Grant, Boyd, & Ye, 2008). Fig. 1 shows the phase
portrait of the controlled (closed-loop) system. We can see that
kx(t)k converges to the origin for all trajectories of the controlled
(closed-loop) system. On the contrary, Fig. 2 shows that some
of the trajectories diverge from the origin for the uncontrolled
(open-loop) system. Note the difference in scales between Figs. 1
and 2: relatively small magnitudes kx(0)k result in divergent
trajectories for the uncontrolled (open-loop) system, whereas no
divergent trajectories exist for the controlled system even for
relatively large magnitudes kx(0)k. This further confirms that the
designed controller successfully provides asymptotic stability to
the system in (13).

Fig. 1. The phase portrait shows that the origin of the controlled system is
asymptotically stable.

Fig. 2. The phase portrait shows that the origin of the uncontrolled system is
unstable, since some trajectories diverge.

5. Conclusion

We provide explicit conditions under which an SOF gain can
be obtained using the lossless behavior of the nonlinearity. Thus,
an SOF gain for any nonlinear system with a lossless nonlinearity
can be solved using the framework in this paper. Note that the
convexity of the problem was established as an LMI feasibility
problem, which in general corresponds to a family of stabilizing
SOF gains when the problem is feasible. This non-uniqueness of
stabilizing SOF gains opens additional avenues for optimal control
using convex optimization methods. Furthermore, the conditions
established for feasibility of the LMI provide requirements on the
set of sensors and actuators needed for synthesis. In conjunction
with convexity of the problem, these requirements can poten-
tially be exploited to perform optimal sensor/actuator selection
using established methods based on convex optimization (Dhin-
gra, Jovanovi¢, & Luo, 2014; Polyak, Khlebnikov, & Shcherbakov,
2014; Zare & Jovanovi¢, 2018).
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