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ABSTRACT
Data- and model-driven computer simulations are increas-
ingly critical in many application domains. Yet, several 
critical data challenges remain in obtaining and leverag-
ing simulations in decision making. Simulations may track 
100s of parameters, spanning multiple layers and spatial-
temporal frames, affected by complex inter-dependent dy-
namic processes. Moreover, due to the large numbers of 
unknowns, decision makers usually need to generate ensem-
bles of stochastic realizations, requiring 10s-1000s of indi-
vidual simulation instances. The situation on the ground 
evolves unpredictably, requiring continuously adaptive sim-
ulation ensembles. We introduce the DataStorm framework 
for simulation ensemble management, and demonstrate its 
DataStorm-FE data- and decision-flow and coordination en-
gine for creating and maintaining coupled, multi-model sim-
ulation ensembles. DataStorm-FE enables end-to-end ensem-
ble planning and optimization, including parameter-space 
sampling, output aggregation and alignment, and state and 
provenance data management, to improve the overall simu-
lation process. It also aims to work efficiently, producing re-
sults while working within a limited simulation budget, and 
incorporates a multivariate, spatiotemporal data browser to 
empower decision-making based on these improved results.

PVLDB Reference Format:
H. W. Behrens et al. DataStorm-FE: A Data- and Decision-
Flow and Coordination Engine for Coupled Simulation Ensem-
bles. PVLDB, 11 (12): 1906-1909, 2018.
DOI: https://doi.org/10.14778/3229863.3236221

∗
Authors are listed in alphabetical order. Research is supported by

NSF#1318788 “Data Management for Real-Time Data Driven Epi-
demic Spread Simulations”, NSF#1339835 “E-SDMS: Energy Sim-
ulation Data Management System Software”, NSF#1610282 “Data-
Storm: A Data Enabled System for End-to-End Disaster Planning 
and Response”, NSF#1633381 “BIGDATA: Discovering Context-
Sensitive Impact in Complex Systems”, and “FourCmodeling”: EU-
H2020 Marie Sklodowska-Curie grant agreement No 690817.

!"##$%&'()*+,(-)) !".&')*+/$-$01)*+,(-))

Figure 1: Coupled simulation of a hurricane and
human mobility

1. INTRODUCTION
Data- and model-driven computer simulations are increas-

ingly critical in many application domains [12, 11, 14, 6,
13, 7]. For example, when predicting the evolution of epi-
demics and assessing the impact of interventions, experts
often rely on epidemic models and simulation software, such
as GLEaM [8] and STEM [3], and simulation ensemble tools,
such as EpiDMS [12]. Similarly, data-driven computer simu-
lations for disaster preparedness and response can play a key
role in predicting the evolution of disasters and effectively
managing emergencies through intervention measures [1].

1.1 Data Challenges in Simulation Ensembles
Yet, several critical data challenges remain in obtain-

ing and leveraging simulations in decision making. Disas-
ter simulations, for example, need to track 100s of inter-
dependent parameters, spanning multiple models and geo-
spatial frames, affected by complex inter-dependent dy-
namic processes operating at different resolutions (Figure 1).
This is a major challenge due to overlapping and cascading
processes, especially when involving multi-hazard scenarios
where one hazard (e.g. flooding) is the gateway to the next
(e.g. an epidemic). Yet, today’s silo-based, de-coupled sim-
ulation engines assume that disaster, population dynamics,
transportation, and disease/epidemic simulations are not in-
tegrated, failing to provide an end-to-end view of the disas-
ter and preventing timely and informed decision making.

Moreover, due to the large number of unknowns, deci-
sion makers usually need to generate ensembles of stochastic
scenarios, requiring 10s or 1000s of individual simulation in-
stances, each with different parameter settings correspond-
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Figure 2: An overview of the DataStorm framework

ing to distinct plausible scenarios. Yet, while existing sim-
ulation systems provide decision support for well-specified
scenarios, when decision making and knowledge discovery
in the presence of incomplete information are considered,
there is little support for simulation ensemble planning, op-
timization, and management. In particular, execution of
simulation ensembles can be very costly, which leads to sim-
ulation budget constraints restricting the number of simula-
tions one can include in an ensemble. To support effective
decision making, one must answer the question “Given a pa-
rameter space and a fixed simulation budget, which simula-
tion instances we should the ensemble include in order to ob-
tain models with good fit and low complexity?” In addition,
since simulation context can dynamically and unpredictably
evolve over time (due to for example how a disaster develops
and the preventive and reactive actions taken by individu-
als), continuous adaptation of simulation ensembles is neces-
sary. In particular, as the data arrives in a streaming fash-
ion, simulation ensembles need to be continuously revised
and refined as the situation on the ground changes: (a) re-
visions involve incorporating real-world observations as well
as updated probability densities into existing simulations to
alter their outcomes; (b) refinements include identifying new
simulations to run, incorporating the changing situation on
the ground to support improved decision-making.

1.2 DataStorm and DataStorm-FE
In this demonstration, we introduce the DataStorm (Fig-

ure 2) framework for creation, storage, analysis, and ex-
ploration of coupled, multi-model simulation ensembles.
At the core of DataStorm is the DataStorm-FE data- and
decision-flow engine and coordination engine for creating
and maintaining coupled, multi-model simulation ensem-
bles. DataStorm-FE provides a means for coordinating data-
and decision flows among partially-connected simulation en-
gines, and enables end-to-end ensemble planning and opti-
mization (including parameter-space sampling, output ag-
gregation and alignment, continuous data streaming, and
state and provenance data management) to improve the pre-
dictive accuracy of the overall end-to-end simulation process
within a limited simulation budget.

Additionally, DataStorm provides a decision support in-
frastructure for results obtained by DataStorm-FE, permit-
ting users to query, explore, or visualize relevant data to
facilitate the decision-making process.

2. RELATED WORK
Scientific workflow systems, such as Kepler [2] and Tav-

erna [4], support control- and data- oriented workflows that
process (and integrate) large amounts of scientific data to
support the scientific enterprise. The focus of these scientific
workflow tools is to describe and implement data transfor-
mations and other processing needed to support scientific
analysis. In general, however, these systems do not consider
scenarios requiring continuous execution, nor do they pro-
vide multi-instance execution or simulation sampling. The
CONFLuEnCE system [9] builds upon Kepler to add contin-
uous execution support, but does not consider an extension
to generate and execute simulation ensembles.

The use of simulation ensembles to improve predictive ac-
curacy has been examined in the literature [7], but is usually
restricted to ensembles within a homogeneous domain. The
WIFIRE project [10] couples several heterogeneous models,
but does not provide ensemble support or prioritize extensi-
bility to other domains. The use of heterogeneous simulation
ensembles for epidemics has previously been explored by [12]
and [14]. However, these systems are designed around spe-
cific domain simulators; DataStorm-FE attempts to increase
the generalizability of this approach to any potential sim-
ulation. The analysis of high-dimensional time series data
in the context of heterogeneous ensembles has also been ex-
plored by [15], with emphasis on tensor-based approaches,
but generation of ensembles is not addressed.

3. SYSTEM ARCHITECTURE
In DataStorm-FE, the inputs to a decision-flow are the

data sources, with each step in the decision-flow involving
an analytic function, model, or decision criterion. Inputs to
each step are data and decisions from the previous steps,
plus user-provided decision parameters. The resulting data
and decisions are outputs. The sinks of the flow are the
simulation instances and alternative conclusions based on
the data and decision parameters supplied by the user.

3.1 Overview
At its lowest level, DataStorm-FE extends the Kepler sci-

entific workflow system [2], designed to integrate disparate
models into a unified whole; in particular, as in Kepler, ac-
tors provide code modules that execute a particular task,
with the data flow between these actors being controlled
by a single global director. While Kepler provides a flexi-
ble framework to create executable scientific workflows, in-
cluding an actor-oriented modeling paradigm, tools for data
transformation and access, and a GUI for the design of sci-
entific workflows, it has significant limitations: (a) Kepler
is not designed for ensemble executions; it can only take a
fully-instantiated model and execute a specified workflow;
(b) Kepler does not provide stateful actors, and is not de-
signed for continuous workflow executions; and (c) while Ke-
pler’s Web and Grid service actors allow scientists to utilize
computational resources on the net in a distributed scientific
workflow, it does not provide native support for parameter
space sampling, distributed instantiation, and parallel exe-
cution of simulation instances in an ensemble.
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Fi g u r e 3: A D a t a S t o r m - F E a c t o r ( D S - a c t o r ), wi t h i n -
di vi d u al s u b - m o d ul e s.

3. 2 D S- A ct o rs a n d D S- Fl o ws
T h e d a t a- a n d d e ci si o n- fl o w s (i. e., D S- fl o w s ) s u p p o r t e d b y

D a t a S t o r m - F E a r e i n h e r e ntl y t e m p o r al. T h e r ef o r e, r a t h e r
t h a n r e q ui ri n g a si n gl e- s h o t e x e c u ti o n, w h e r e i n p u t s f o r t h e
w o r k fl o w a r e c o n s u m e d a n d a c t o r s a r e i n v o k e d o nl y o n c e,
D S- fl o w s b e n e fi t f r o m c o nti n u o u s e x e c u ti o n, w h e r e d a t a i s
c o n s u m e d c o nti n u o u sl y a n d e a c h a c t o r i s i n v o k e d r e p e a t e dl y,
a s u p- s t r e a m a c t o r s p r o d u c e n e w r e s ul t s f o r a n al y si s.

T h e c o r e c o m p o n e nt of t h e D a t a S t o r m - F E s y s t e m i s t h e
D a t a S t o r m - A c t o r o r D S- a c t o r, c o n si s ti n g of s e v e r al m o r e
s p e ci ali z e d s u b- m o d ul e s w hi c h a d a p t t h e d o m ai n si m ul a t o r
t o i nt e rf a c e wi t h t h e wi d e r s y s t e m ( Fi g u r e 3 ). E a c h D S-
a c t o r i s st at ef ul , i n t h e s e n s e t h a t, t h e a c t o r r e c o r d s i t s o w n
s t a t e v a ri a bl e s a n d o u t p u t s, a n d i s a bl e t o r e c all i t s p r e vi-
o u s s t a t e b ef o r e e a c h e x e c u ti o n c y cl e. A s d a t a ( r e p r e s e nt e d
a s m ul ti- v a ri a t e ti m e s e ri e s ) fl o w s t h r o u g h t h e s y s t e m, i t i s
e n c o d e d a s s t r u c t u r e d B S O N i n cl u di n g d a t a a n d m e t a d a t a,
t h e p r o v e n a n c e of w hi c h i s a u t o m a ti c all y r e c o r d e d b y t h e
s y s t e m, f o r l a t e r u s e a n d a n al y si s.

T h e s e r e s ul t s m a y b e g e n e r a t e d i n di vi d u all y b y a si n-
gl e m o d el i n s t a n c e, o r i n a g g r e g a t e b y t h e e n s e m bl e c ol-
l e c ti v el y. T o di ff e r e nti a t e t h e s e t y p e s, w e r ef e r t o t h e f o r m e r
a s D S-I n di vi d u al R e s ul t s ( D S-I R ), a n d t o t h e l a t t e r a s D S-
A g g r e g a t e d R e s ul t s ( D S- A R ). D S-I R s c o nt ai n r ef e r e n c e s t o
r a w o u t p u t d a t a, s p a ti al a n d t e m p o r al c o nt e x t f o r t h a t d a t a,
a n d o t h e r m e t a d a t a r e q ui r e d f o r r e pli c a ti o n. A D S- A R i s a
c oll e c ti o n of o n e o r m o r e D S-I R s, wi t h a s p a ti o t e m p o r al c o n-
t e x t e q u al t o t h e u ni o n of i t s c o n s ti t u e nt D SI R s. N o t e t h a t,
if r e al- w o rl d c o n di ti o n s c h a n g e a n d n e w o b s e r v a ti o n s o r i n-
p u t s a r e p r o d u c e d, a s c e n a ri o m a y n e e d t o b e r e- si m ul a t e d.
I n a n e n s e m bl e, h o w e v e r, a n y c h a n g e s will c a s c a d e t h r o u g h
t h e s y s t e m, p o t e nti all y r e q ui ri n g a r e- c o m p u t a ti o n of e v e r y
d o w n s t r e a m si m ul a ti o n. D a t a p r o v e n a n c e al s o h el p s i d e n-
tif y w hi c h s u b s e t s of d a t a a r e a ff e c t e d b y a gi v e n c h a n g e,
t h e r e b y h el pi n g r e d u c e r e d u n d a nt w o r k: si m ul a ti o n pl a n s
c a n b e c r e a t e d t o r e- r u n o nl y t h e a ff e c t e d d a t a, r e d u ci n g
e x e c u ti o n ti m e. S t a t ef ul m o d ul e s m a y l e v e r a g e t h e s e a d-
v a nt a g e s f u r t h e r, b y a dj u s ti n g p a r a m e t e r s mi d- e x e c u ti o n o r
a b o r ti n g r e d u n d a nt e x e c u ti o n s.

3. 2. 1 D at a Pr e- Pr o c essi n g
Fi g u r e 3 p r e s e nt s t h e i nt e r n al s t r u c t u r e of a D S- a c t o r. T h e

r el e v a nt d a t a f r o m u p s t r e a m D S- a c t o r s a n d e x t e r n al s o u r c e s
a r e i n g e s t e d a n d ali g n e d b ef o r e u s e d f o r si m ul a ti o n s. T h e
Wi n d o w M a n a g e r h a n dl e s t e m p o r al wi n d o w ali g n m e nt b e-
t w e e n m o d el s, e n s u ri n g s u ffi ci e nt d a t a e xi s t f o r d o w n s t r e a m
e x e c u ti o n, r e p a c k a gi n g u p s t r e a m r e s ul t s i nt o t e m p o r all y-
ali g n e d s u b s e t s. T h e Ali g n m e nt M a n a g e r r e c ei v e s t h e s e s u b-
s e t s, c o n v e r t s t h e r a w r e s ul t s i nt o a f o r m a t t h e r u n ni n g

m o d el c a n p r o c e s s, a n d h a n dl e s s p a ti al r e ali g n m e nt. I t t h e n
s t o r e s t h e s e t r a n sf o r m e d r e s ul t s i n t h e p r o v e n a n c e d a t a b a s e
f o r l a t e r u s e d u ri n g s a m pli n g.

3. 2. 2 E ns e m bl e Cr e ati o n
I n t h e n e x t s t e p, t h e S a m pli n g M a n a g e r s a m pl e s t h e p o s si-

bl e si m ul a ti o n s p a c e, b al a n ci n g c o m p u t a ti o n b u d g e t a g ai n s t
p o t e nti al s c e n a ri o f a n- o u t, t o d e ci d e w hi c h si m ul a ti o n s c e-
n a ri o s t o e x e c u t e. A s u n c e r t ai nt y wi t hi n c o u pl e d si m ul a-
ti o n s will r e s ul t i n a n e x p o n e nti al i n c r e a s e i n p o s si bili ti e s,
t h e s e m u s t b e p r u n e d p ri o r t o e x e c u ti o n t o p r e v e nt a n u n-
s c al a bl e e x pl o si o n of si m ul a t e d s c e n a ri o s. A d di ti o n all y, t h e
si m ul a ti o n b u d g e t m a y t a k e i nt o a c c o u nt m e t a d a t a a s s o ci-
a t e d wi t h t h e c o m p u t a ti o n al c o s t s of e a c h m o d el, p r o vi di n g
a wi d e r f a n- o u t f o r c h e a p e r si m ul a ti o n s a n d m o r e a g g r e s si v e
p r u ni n g f o r e x p e n si v e o n e s.

O n c e t h e si m ul a ti o n s c e n a ri o s t o b e e x e c u t e d h a v e b e e n
i d e nti fi e d, t h e E x e c uti o n M a n a g e r e x e c u t e s t h e s e c o n fi g u r a-
ti o n s wi t hi n t h e cl u s t e r, all o c a ti n g a n d l o a d b al a n ci n g i n-
s t a n c e s a s n e c e s s a r y. E a c h s c e n a ri o s el e c t e d b y t h e s a m-
pl e r f o r si m ul a ti o n m u s t b e i n s t a nti a t e d a n d m o d el e d o n
a cl o u d- b a s e d i n s t a n c e, i n o r d e r t o p r e s e r v e t h e p e r- m o d el
s c al a bili t y a n d e x t e n si bili t y of t h e s y s t e m, a n d t o p e r mi t
p a r all el p r o c e s si n g of m a n y di ff e r e nt si m ul a ti o n s si m ul t a n e-
o u sl y. H o w e v e r, cl o u d r e s o u r c e s g e n e r all y c a r r y hi g h o p e r a-
ti o n al c o s t s. T h e r ef o r e, D a t a S t o r m - F E p r o vi d e s a n a d a p ti v e
o r c h e s t r a ti o n l a y e r ( u si n g A n si bl e t o a u t o m a t e c o n fi g u r a ti o n
m a n a g e m e nt, a n d V a g r a nt f o r p r o vi si o ni n g a n d d e pl o y m e nt )
c a p a bl e of c r e a ti n g, c o n fi g u ri n g, a n d d e s t r o yi n g i n s t a n c e s a s
n e e d e d t o b al a n c e p e rf o r m a n c e a n d b u d g e t r e q ui r e m e nt s.

3. 2. 3 D at a P ost- pr o c essi n g
O n c e t h e si m ul a ti o n i n s t a n c e s h a v e b e e n e x e c u t e d, t h e

r e s ul ti n g d a t a h a s t o b e c oll e c t e d, a g g r e g a t e d, a n d t r a n s-
f o r m e d b ef o r e b ei n g p a s s e d t o t h e d o w n s t r e a m D S- a c t o r s.
T h e S y n c M a n a g e r p e r mi t s u s e r s a n o p p o r t u ni t y t o s y n c h r o-
ni z e, a g g r e g a t e, a n d t r a n sf o r m t h e o u t p u t s of i nt ri n si c all y-
a s y n c h r o n o u s m o d el s. Fi n all y, t h e O ut p ut M a n a g e r r e c ei v e s
t h e r e s ul t s f r o m t h e m o d el, t h e n p a c k a g e s a n d s t o r e s t h e
r e s ul t s i n t h e p r o v e n a n c e d a t a b a s e b ef o r e p a s si n g c o nt r ol t o
t h e n e x t d o w n s t r e a m D S- a c t o r.

4. D E M O N S T R A TI O N S C E N A RI O
I n t hi s d e m o n s t r a ti o n, w e u s e a h u r ri c a n e- b a s e d di s a s-

t e r a s a s a m pl e s c e n a ri o f o r D a t a S t o r m - F E . Di s a s t e r s p o s e
si g ni fi c a nt c h all e n g e s f o r e m e r g e n c y pl a n ni n g a n d m a n a g e-
m e nt a s e ff e c ti v e di s a s t e r r e s p o n s e r e q ui r e s m a t c hi n g a v ail-
a bl e r e s o u r c e s t o s hif ti n g d e m a n d s o n a n u m b e r of f r o nt s.
T h e r e c e nt h u r ri c a n e s i n t h e U S hi g hli g ht t h e i m p o r t a n c e of
p r e di c ti v e a n d r e al- ti m e r e s p o n s e a n d d e ci si o n m a ki n g. Ef-
f e c ti v el y m a n a gi n g c u r r e nt a n d f u t u r e e m e r g e n ci e s t h r o u g h
r e al- ti m e a n d c o nti n u o u s d e ci si o n m a ki n g r e q ui r e s d a t a- a n d
m o d el- d ri v e n c o m p u t e r si m ul a ti o n s f o r p r e di c ti n g t h e e v ol u-
ti o n of di s a s t e r s a n d r el a t e d h a z a r d s. H o w e v e r, d a t a u n c e r-
t ai nt y, i nt e r a c ti o n c o m pl e xi t y, a n d r e s o u r c e c o n s t r ai nt s h a v e
t h u s f a r p r o v e d t o b e si g ni fi c a nt r o a d bl o c k s t o wi d e s p r e a d
a d o p ti o n of t h e s e t e c h ni q u e s. Si m ul a ti o n m o d el s f r e q u e ntl y
p r e di c t o nl y a f e w r e s ul t s, wi t h o u t r e g a r d f o r t h e 1 0 0 0 s of
i nt e r d e p e n d e nt v a ri a bl e s i n a n e m e r g e nt di s a s t e r a r e a, w hil e
s p e ci ali z e d d o m ai n k n o wl e d g e r e q ui r e m e nt s c o m pli c a t e t h e
d e v el o p m e nt of i nt e g r a t e d si m ul a t o r s. T h e s h e e r q u a nti t y of
si m ul a ti o n r e s ul t s, c o u pl e d wi t h r e al- w o rl d ti m e a n d c o m p u-
t a ti o n al c o n s t r ai nt s, p o s e f u r t h e r c h all e n g e s.



4.1 Simulated Models
The three disaster-related simulation models selected

cover hurricanes, flooding, and human mobility. These mod-
els were selected for both their relative frequency and their
semi-dependent nature. With the Weather Research and
Forecasting (WRF) hurricane model [6], we are able to pre-
dict the track of a hurricane, as well as associated wind
speeds and rainfall. Since this model does not attempt to
predict flooding related to these events, we couple the out-
put with Itz̈ı [13], a hydrological simulator which models
the flow of flood-waters over the landscape. Additionally,
the hurricane and floods have behavioral impacts on the af-
fected population; therefore, the corresponding DS-actors
are coupled with the Opportunistic Network Environment
simulator [5], which is used to track population movement
through transport networks within the affected area.

4.2 Data Flow
For our demonstrated simulation, the user selects several

possible hurricane scenarios, which correspond to distinct
inputs to the hurricane DS-actor. Multiple simulator in-
stances spin up and evaluate the proposed scenarios, pro-
ducing different rainfall maps, wind speeds, and hurricane
tracks, for a given spatio-temporal frame. These outputs are
aggregated and passed to the downstream actors. These are
spatiotemporally aligned, then converted to match the ex-
pected inputs to the flooding and mobility models. For the
flood DS-actor, the sampler chooses a subset of the flood
scenarios to be executed and these scenarios are pushed to
the executor to generate the corresponding flood simulation
instances. The mobility DS-actor waits until the outputs
from both hurricane and flood DS-actors are ready. Once
the data are pre-processed, the sampling, alignment, and
conversion processes repeat again for the mobility DS-actor
to generate the corresponding simulation ensemble. In the
continuous execution, this process continues with DS-actors
producing new simulation ensembles based on new or revised
data from upstream DS-actors.

4.3 Visualization
At any time, the visualization tool may be used to

view the currently-available results from the provenance
database, if any. Spatial adjustments, such as zooming or
panning, can be accomplished on the map; temporal adjust-
ments are available through the timeline scrubber. Addi-
tionally, different simulations may produce variable outputs,
which manifest as distinct visualization layers which can be
grouped or hidden. This permits domain experts to narrow
their evaluation to relevant data, simplifying analysis, while
still permitting administrative staff a higher-level strategic
evaluation of the situation as it evolves.

5. CONCLUSIONS
Simulation-based decision making requires the ability to

acquire, integrate, model, analyze, index, and search, in
a scalable manner, large volumes of multi-variate, multi-
layer, multi-resolution, interconnected, and inter-dependent
spatio-temporal data produced by simulations. In this
demonstration, we introduce the DataStorm framework
for coupled, multi-model simulation ensembles and the
DataStorm-FE data- and decision-flow and coordination en-
gine for creating and maintaining coupled, multi-model sim-
ulation ensembles.
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