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Optimal Brokerage Contracts in Almgren--Chriss Model with Multiple Clients*

Guillermo Alonso Alvarez\dagger , Sergey Nadtochiy\ddagger , and Kevin Webster\dagger 

Abstract. This paper constructs optimal brokerage contracts for multiple (heterogeneous) clients trading a
single asset whose price follows the Almgren--Chriss model. The distinctive features of this work are
as follows: (i) the reservation values of the clients are determined endogenously, and (ii) the broker
is allowed to not offer a contract to some of the potential clients, thus choosing her portfolio of
clients strategically. We find a computationally tractable characterization of the optimal portfolios
of clients (up to a digital optimization problem, which can be solved efficiently if the number of
potential clients is small) and conduct numerical experiments which illustrate how these portfolios,
as well as the equilibrium profits of all market participants, depend on the price impact coefficients.
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1. Introduction. This paper investigates the optimal design of brokerage fees in the
Almgren--Chriss model (see [1]). We consider a population of investors (a.k.a. potential clients
or agents) who can either trade directly in the market (and be subject to trading costs due
to their price impact) or trade via a broker (i.e., become broker's clients) who charges a con-
tingent fee for this service. The main goal of our investigation is a tractable characterization
of the optimal brokerage fees and the optimal choice of a portfolio of clients. This question is
formulated as an optimal contract problem with multiple agents, where the broker plays the
role of a principal who designs the fees.

The problem considered herein formally fits within the optimal contract theory, which is
concerned with the design of compensation (or incentive) schemes, referred to as contracts. In
the classical example of an optimal contract problem (see, among others, [11], [9]), a principal
hires an agent to work on a project in exchange for a payment (contract). The payment
depends on the information available to the principal, which may be affected by the agent's
action. The agent chooses his action to maximize his objective, which depends on the payment
promised by the principal and on the action itself (e.g., the agent may not like to work very
hard). The principal aims to choose the contract so that it maximizes her objective, which
also depends on the payment to the agent and on the agent's action. This leads to a pair of
nested optimization problems, also known as the Stackelberg game.
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856 G. ALONSO ALVAREZ, S. NADTOCHIY, AND K. WEBSTER

As the broker observes the orders that she receives from her client, she knows his trading
strategy precisely, which implies that the first natural model for the interaction between the
broker and her individual client is given by the so-called first-best optimal contact problem
(see, e.g., [9]).1 Such optimal contract problems are known to have simple solutions (especially
in the case of risk-neutral preferences, as herein), and this is confirmed by Proposition 3.1,
which provides the optimal brokerage fees in the present setting. However, our setting im-
plies the following additional challenges. First, the model considered herein includes multiple
agents whose objectives are coupled via their price impact. Thus, a collective response of
the agents to a contract chosen by the principal is given by a collection of strategies that
form a Nash equilibrium among the agents. The principal, then, chooses a contract so as to
maximize her objective that depends on the associated equilibrium strategies of the agents.
The optimal contract problems with multiple agents are considered, for example, in [10], [7],
[12]. It is worth mentioning that we consider heterogeneous agents, as one of our goals is
to study how the characteristics of the agents (i.e., their price impact coefficients) affect the
optimal choice of the portfolio of clients. Another important feature that makes the present
problem non-standard is the fact that the reservation value of each agent (which represents
the minimum objective value that the agent must be able to attain in order to accept a pro-
posed contract) is determined endogenously. Indeed, we naturally assume that the reservation
value of each agent equals his maximum objective value in case he decides to trade directly
in the market. The latter value depends on the equilibrium strategies of other agents, which
in turn depend on the contract chosen by the broker. The third distinctive feature of the
present work is that, unlike the classical optimal contract problems, the broker is not con-
strained to offer a contract to every agent and chooses her portfolio of clients strategically. In
particular, one of our main questions is to determine the optimal portfolio of clients for the
broker.

To the best of our knowledge, to date there exist no results on the optimal brokerage fees
in the presence of price impact and multiple agents. The recent paper [3] studies a related
problem in which a single agent hires a financial intermediary to trade a risky asset on his
behalf and pays a fee (chosen by the agent) for this service. This is also related to earlier
literature on delegated portfolio management: see, e.g., [18], [19], [16], [5], [4], [8], [13]. Despite
obvious similarities, the important conceptual differences between the latter works and the
present one are that, herein, (i) the fee is designed by the broker, (ii) multiple agents are
present, and (iii) ex ante the trading strategy is determined by the client as opposed to the
broker, who nevertheless does observe the strategy.

The rest of the paper is organized as follows. Section 2 introduces the model and the main
objectives. Section 3 constructs optimal contracts (Proposition 3.1) given (arbitrary) reser-
vation values of the agents and broker's (arbitrary) choice of clients. Section 4 describes the
unique equilibrium among those agents who are not offered a contract (i.e., among independent
agents). Section 5 defines the reservation values of the agents endogenously (Definition 5.6)
and shows how to compute the maximum objective value of the broker given an arbitrary
portfolio of clients (Theorem 5.5). The latter result allows one to find an optimal portfolio of
clients for the broker by solving a digital optimization problem. Section 6 considers several

1Certain information asymmetry may still be natural for this problem, as discussed in Remark 2.
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BROKERAGE CONTRACTS IN ALMGREN--CHRISS MODEL 857

numerical experiments, where the aforementioned digital optimization problem is solved by
an exhaustive search, and the broker's optimal portfolio of clients, as well as the profits of the
broker and of the agents, are analyzed as functions of the price impact parameters.

2. The setup. We consider N agents, each of whom can trade a single risky asset2 that
follows the Almgren--Chriss model over the time interval [0, T ]. In addition to the agents,
we assume the presence of a single broker. Each agent makes a decision (once, before the
trading starts) on whether he trades the asset directly or via the broker, and these decisions
are represented by the vector \theta \in \{ 0,1\} N : \theta i = 1 if and only if the ith agent trades via the
broker. For convenience, we also denote by \scrN (\theta ) = \{ n1, . . . , nr\} \subset \{ 1, . . . ,N\} , 0< r <N , the
indices of the agents that trade via broker. We refer to the agents who trade via the broker
as clients and to those who trade directly in the market as independent. The trading activity
of an independent agent affects the price of the asset via the impact coefficients of this agent.
The trading of a client is done via the broker and hence affects the price of the asset via
the impact coefficients of the broker. Of course, the broker may be able to offer lower price
impact to her clients, but she also charges each of them a fee for this service. Even though we
introduced \theta as a vector of agents' decisions, it is important to realize that these decisions are
ultimately controlled by the broker, who decides whether to offer a contract to a particular
agent or not (the acceptance of each offered contract is ensured by matching the reservation
value of the associated agent). Therefore, in the remainder of the paper, we refer to \theta as the
choice of clients made by the broker.

We fix a probability space (\Omega ,\scrF ,\BbbP ) and consider a standard Brownian motion B on this
space. Let \BbbF 

B be the filtration generated by the Brownian motion B. We define the set of
admissible controls of a single agent as

\scrU := \{ \nu \in L2([0, T ]\times \Omega ), \nu is \BbbF B-adapted\} .(2.1)

The (controlled) inventory of agent i= 1, . . . ,N , who uses a control \nu i, is given by the process

Xi
t = xi0 +

\int t

0
\nu isds, t\in [0, T ].

Next, we recall the price process for the traded asset in the Almgren--Chriss model:

Pt = \mu t+ \sigma Bt +

N
\sum 

i=1

(1 - \theta i)\kappa i\nu 
i
t + \kappa 0

N
\sum 

i=1

\theta i\nu 
i
t +

N
\sum 

i=1

(1 - \theta i)\lambda iX
i
t + \lambda 0

N
\sum 

i=1

\theta iX
i
t ,(2.2)

where \{ \kappa j\} 
N
j=1, \{ \lambda j\} 

N
j=1 are the coefficients of temporary and permanent price impacts of the

agents, \kappa 0, \lambda 0 are the corresponding coefficients of the broker, \sigma > 0 is the volatility of the
asset price, and \mu \in \BbbR is its drift (i.e., trading signal). For convenience, we assume that \nu iT = 0
for all i, so that the temporary impacts of the agents do not affect the terminal price.3 We
also assume that the agents and the broker have access to the same filtration \BbbF 

B and that the
constants \{ \kappa j , \lambda j , x

j
0\} 

N
j=0, \mu , \sigma are known to all parties.

Remark 1. Equation (2.2) implies that, in the model proposed herein, the instantaneous
impact is viewed as the actual price impact and, hence, affects the dynamics of the commonly

2A riskless asset is implicitly available but yields zero return.
3This is needed to simplify the notation in (2.3)--(2.4), as the agents in our setting interact through both

the permanent and the temporary impacts.
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858 G. ALONSO ALVAREZ, S. NADTOCHIY, AND K. WEBSTER

observed price. There exists an alternative point view (cf. [6], [7], [12], [14], [20]), according
to which the instantaneous impact represents additional execution cost, as opposed to being
the actual price impact. The latter approach leads to a price model that is similar to (2.2) but
has only permanent impact in the right-hand side, and where the effect of temporary impact
appears in each individual optimization objective (in particular, the agents' problems are not
coupled via temporary impact coefficients). We believe that the results of the present paper
can be easily re-derived in such a setting. However, we choose to stick to the model given by
(2.2) for two reasons. First, we prefer to not view the temporary impact as the additional
execution cost, in particular, because of its superlinearity, i.e., the total sum of such execution
costs of several agents trading in the same direction would be smaller than the execution cost
of a strategy given by a sum of the strategies of these agents. The latter phenomenon does not
have any convincing logical explanation, nor is there any clear evidence of it in practice. On
the other hand, such a phenomenon would provide a strong negative incentive for the agents
against trading via a broker, and hence would have a strong impact on the numerical results of
this paper. Second, we view the Almgren--Chriss model as a mathematical abstraction that is
meant to approximate the more realistic (but less tractable) Obizhaeva--Wang model [15], in
which the price impact has exponential resilience and is captured by two parameters; hence,
we view the temporary impact as the actual price impact.

Remark 2. As mentioned in the introduction, the broker clearly observes the trading
strategy of her client, which eliminates the moral hazard phenomenon (appearing when the
principal does not directly observe her agent's action) and, hence, makes it natural to model
the interaction between the broker and her client as the first-best optimal contract prob-
lem. However, the absence of moral hazard does not exclude other forms of information
asymmetry that could be natural for this interaction. For example, one could (naturally)
assume that the broker does not know the constants \{ \kappa j , \lambda j , x

j
0\} 

N
j=1, \mu , \sigma , and only knows

their prior distribution, which would lead to the so-called third-best optimal contract prob-
lem (see, e.g., [9]). A slightly different version of such a model would prescribe the dynamics
of (some of) these parameters (e.g., of \mu which represents the trading signal) and would
assume that these dynamic processes are observed by the agent (e.g., because the agent is
a professional investor who can obtain a good estimate of \mu ) but not by the broker (who,
ideally, is not supposed to be in the business of estimating trading signals). The latter
extension of the model (with dynamic partially observed \mu ) is the subject of our ongoing
investigation [2]. The other natural extensions (e.g., with partially observed \{ \kappa j , \lambda j , x

j
0\} 

N
j=1)

are left for future research. It is worth mentioning that all aforementioned extensions are
significantly more challenging on the mathematical level than the first- or second-best prob-
lems, due to the absence of a sufficiently general characterization of the associated optimal
contracts.

Let \xi n1 , . . . , \xi nr be the fees that the broker charges to her clients. We assume that the fees
are of the form \xi i = F i(Xi, P ), with measurable F i : H1([0, T ],\BbbR )\times C([0, T ],\BbbR ) \rightarrow \BbbR , where
H1 is the Sobolev space of order one, equipped with the natural norm. This definition of
broker's fee implies that it is paid at the terminal time horizon T . However, as follows from
Remark 4, the optimal fee constructed herein can be expressed as an integral of an adapted
process (w.r.t. dt and dPt) and, hence, can be paid as a continuous cash flow.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
2
/2

8
/2

3
 t

o
 7

6
.1

3
6
.9

5
.2

0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



BROKERAGE CONTRACTS IN ALMGREN--CHRISS MODEL 859

We assume that the time horizon T of the model is not too short, so that multiple child
orders can be sent to the broker within this time horizon, allowing the agent to adjust his
strategy dynamically. Even though the execution of each child order is controlled by the
broker, the agent has full control of the types (buy or sell) and the sizes of these child orders.
In the continuous-time approximation, we view a sequence of such child orders as the trading
strategy (i.e., trading rate) \nu that is fully controlled by the agent.

Every client i\in \scrN (\theta ) aims to choose his strategy \nu i to maximize his expected profit:

J i,\theta (\nu i, \nu  - i, \xi i) =\BbbE 

\biggl( 

PTX
i
T  - 

\lambda i

2
(Xi

T )
2  - 

\int T

0
\nu itPtdt - \xi i

\biggr) 

=\BbbE 

\left( 

 

\int T

0
Xi

t

\left[ 

 \mu +

N
\sum 

j=1

(1 - \theta j)\lambda j\nu 
j
t + \lambda 0

N
\sum 

j=1

\theta j\nu 
j
t

\right] 

 dt

 - 

\int T

0
\nu it

\left[ 

 

N
\sum 

j=1

(1 - \theta j)\kappa j\nu 
j
t + \kappa 0

N
\sum 

j=1

\theta j\nu 
j
t

\right] 

 dt - 
\lambda i

2
(Xi

T )
2  - \xi i

\right) 

 ,

(2.3)

where \nu  - i \in \scrU N - 1 denotes the trading rate of the rest of the agents. Similarly, an independent
agent i /\in \scrN (\theta ) maximizes his expected profit:

J i,\theta (\nu i, \nu  - i, \xi i) =\BbbE 

\biggl( 

PTX
i
T  - 

\lambda i

2
(Xi

T )
2  - 

\int T

0
\nu itPtdt

\biggr) 

=\BbbE 

\left( 

 

\int T

0
Xi

t

\left[ 

 \mu +

N
\sum 

j=1

(1 - \theta j)\lambda j\nu 
j
t + \lambda 0

N
\sum 

j=1

\theta j\nu 
j
t

\right] 

 dt

 - 

\int T

0
\nu it

\left[ 

 

N
\sum 

j=1

(1 - \theta j)\kappa j\nu 
j
t + \kappa 0

N
\sum 

j=1

\theta j\nu 
j
t

\right] 

 dt - 
\lambda i

2
(Xi

T )
2

\right) 

 .

(2.4)

Remark 3. In the above objectives, the penalty  - \lambda i(X
i
T )

2/2 corresponds to the cost of
liquidation of the inventory Xi

T by agent i, over a long time period after time T . Even if the
agent plans to liquidate his terminal position Xi

T with the broker, in the resulting extended
game the broker will charge the agent more by increasing the deterministic component of
\xi i. Due to the optimality of the contract, this additional charge should be equal to the
liquidation cost of the agent. Assuming that the agent does not know the inventories, and
hence the execution plans, of the other agents, he computes his execution cost assuming that
the additional drift in the asset price during his liquidation is only due to his permanent
impact (the temporary impact can be ignored if the liquidation period is large). This can be
interpreted as the agent being naive, in the sense that he does not take into account that other
agents will be liquidating their positions at the same time, hence, he only includes his own
impact in the execution cost. Under such an assumption it is well known that the expected
execution cost of the agent is equal to \lambda i(X

i
T )

2/2, which is added to the fees that the agent
pays to the broker.
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860 G. ALONSO ALVAREZ, S. NADTOCHIY, AND K. WEBSTER

For a given combination of the strategies of other agents, we define the control problem
of a client i\in \scrN (\theta ) and of an independent agent i /\in \scrN (\theta ), respectively, as

V i,\theta := sup
\nu i\in \scrU 

J i,\theta (\nu i, \nu  - i, \xi i), i\in \scrN (\theta ),(2.5)

V i,\theta := sup
\nu i\in \scrU 

J i,\theta (\nu i, \nu  - i), i /\in \scrN (\theta ).(2.6)

Definition 2.1. Given a choice of clients \theta \in \{ 0,1\} N , as well as the associated indices
\scrN (\theta ) = \{ n1, . . . , nr\} and fees \xi = (\xi n1 , . . . , \xi nr), we define \scrE (\theta , \xi )\subset \scrU N as the set of all agents'
strategies that form Nash equilibria in the game defined by (2.5)--(2.6). Namely, \=\nu \in \scrE (\theta , \xi ) if
and only if the following two conditions hold:

J i,\theta (\=\nu i, \=\nu  - i, \xi i)\geq J i,\theta (\nu , \=\nu  - i, \xi i) \forall \nu \in \scrU , \forall i\in \scrN (\theta ),(2.7)

J i,\theta (\=\nu i, \=\nu  - i)\geq J i,\theta (\nu , \=\nu  - i) \forall \nu \in \scrU , \forall i /\in \scrN (\theta ).(2.8)

The objective of the broker is given by the sum of expected fees in the best equilibrium
attainable with these fees:

J\theta 
P (\xi ) := sup

\nu \in \scrE (\theta ,\xi )
\BbbE 

\sum 

j\in \scrN (\theta )

\xi j .(2.9)

In the above, we make the standard assumption that, given a set of admissible contracts, the
agents will choose an equilibrium that is best for the principal among all attainable equilibria.
To ensure that \scrE (\theta , \xi ) \not = \emptyset and that the agents' reservation values are met, we introduce the
set of admissible fees of the broker:

\Sigma (\theta ) := \{ (\xi j)j\in \scrN (\theta ) : \scrE (\theta , \xi ) \not = \emptyset and J j(\=\nu , \xi j)\geq Rj,\theta \forall j \in \scrN (\theta ), \forall \=\nu \in \scrE (\theta , \xi )\} ,(2.10)

where Rj,\theta is the reservation value of agent j \in \scrN (\theta ). Recall that each reservation value
Rj,\theta represents the alternative benefit that the agent j would receive if he does not enter
into the contractual agreement with the principal (see [9] and the references therein). This
value is allowed to depend on \theta , as the agent's alternative profits may depend on whether the
others trade via the broker or not. In general, the reservation values \{ Rj,\theta \} can be specified
arbitrarily, and most of the results of the present work (up to and including Theorem 5.5)
hold for any choice of the reservation values. However, in the present setting, there exists a
very natural choice of such reservation values, which is presented in Definition 5.6 and is used
in our numerical experiments.

Thus, we obtain the following ``local"" maximization problem for the broker, given a choice
of clients \theta :

V \theta 
P := sup

\xi \in \Sigma (\theta )
J\theta 
P (\xi ) = sup

\xi \in \Sigma (\theta )
sup

\nu \in \scrE (\theta ,\xi )
\BbbE 

\sum 

j\in \scrN (\theta )

\xi j .(2.11)

For each \theta , an optimal contract \xi \ast that solves the above local maximization problem is con-
structed in section 3. Then, in order to find an optimal portfolio of agents, one needs to
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BROKERAGE CONTRACTS IN ALMGREN--CHRISS MODEL 861

solve the ``global"" optimization problem of the broker, i.e., find an optimal \theta \ast \in \{ 0,1\} N which
attains the supremum in

VP := sup
\theta \in \{ 0,1\} N

V \theta 
P .(2.12)

The above is a discrete optimization problem. We do not provide a complete solution to this
problem herein, assuming instead that it can be solved by an exhaustive search in case of a
reasonably small N or of a smaller subset of admissible \{ \theta \} (see section 6). However, even to
perform such an exhaustive search, one needs to have a numerically tractable representation
of the value of the local maximization problem, V \theta 

P , for each \theta . The latter representation is
the main subject of sections 4 and 5.

3. Optimal contract for a given \bfittheta . The main result of this section is the following
proposition, which describes an optimal collection of fees offered by the broker, given a choice
of clients \theta and agents' reservation values \{ Ri,\theta \} .

Proposition 3.1. For any \theta \in \{ 0,1\} N and \{ Ri,\theta \} , the fees

\xi i,\ast := - Ri,\theta + PTX
i
T  - 

\int T

0
\nu itPtdt - 

\lambda i

2
(Xi

T )
2, i\in \scrN (\theta ),(3.1)

are optimal for the problem (2.11).

Remark 4. Note that \xi i,\ast can be expressed in the integral form

\xi i,\ast := - Ri,\theta + P0x
i
0  - 

\lambda i

2
(xi0)

2 +

\int T

0
Xi

tdPt  - \lambda i

\int T

0
Xi

t\nu 
i
tdt,

showing that this fee can be paid as a continuous cash flow.

Proof. It is easy to see that, with the fees (3.1), the objective of any agent i \in \scrN , given
by (2.3), is constant and is equal to his reservation Ri,\theta . In particular, every agent i \in \scrN is
indifferent in which action to choose. Using this observation, let us show that, for any set of
admissible fees (\xi j)j\in \scrN \in \Sigma (\theta ), we have the inclusion

\scrE (\theta , \xi )\subset \scrE (\theta , \xi \ast ),(3.2)

where \xi \ast is given by (3.1). Indeed, for any (\~\nu 1, . . . , \~\nu N )\in \scrE (\theta , \xi ) and i\in \scrN , we have

J i,\theta (\~\nu i, \~\nu  - i, \xi i,\ast ) =Ri,\theta = sup
\nu i\in \scrU 

J i,\theta (\nu i, \~\nu  - i, \xi i,\ast ),

J i,\theta (\~\nu i, \~\nu  - i) = sup
\nu i\in \scrU 

J i,\theta (\nu i, \~\nu  - i),

which implies (\~\nu 1, . . . , \~\nu N ) \in \scrE (\theta , \xi \ast ). Using (3.2) and the admissibility constraint in (2.10),
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862 G. ALONSO ALVAREZ, S. NADTOCHIY, AND K. WEBSTER

we deduce

V \theta 
P = sup

\xi \in \Sigma (\theta )
sup

\nu \in \scrE (\theta ,\xi )
\BbbE 

\sum 

j\in \scrN (\theta )

\xi j = sup
\xi \in \Sigma (\theta )

sup
\nu \in \scrE (\theta ,\xi )

\left[ 

 \BbbE 

\sum 

j\in \scrN 

\biggl( 

Xj
T

\biggl( 

PT  - 
\lambda j

2
Xj

T

\biggr) 

 - 

\int T

0
\nu jtP

\theta 
t dt

\biggr) 

 - \BbbE 

\sum 

j\in \scrN 

\biggl( 

Xj
T

\biggl( 

PT  - 
\lambda j

2
Xj

T

\biggr) 

 - 

\int T

0
\nu jtP

\theta 
t dt - \xi j

\biggr) 

\right] 

 

\leq sup
\xi \in \Sigma (\theta )

sup
\nu \in \scrE (\theta ,\xi )

\BbbE 

\sum 

j\in \scrN 

\biggl( 

Xj
T

\biggl( 

PT  - 
\lambda j

2
Xj

T

\biggr) 

 - 

\int T

0
\nu jtP

\theta 
t dt

\biggr) 

 - 
\sum 

j\in \scrN 

Rj,\theta 

\leq sup
\nu \in \scrE (\theta ,\xi \ast )

\BbbE 

\left( 

 

\sum 

j\in \scrN 

Xj
T

\biggl( 

PT  - 
\lambda j

2
Xj

T

\biggr) 

 - 

\int T

0
\nu jtP

\theta 
t dt

\right) 

  - 
\sum 

j\in \scrN 

Rj,\theta = sup
\nu \in \scrE (\theta ,\xi \ast )

\BbbE 

\left( 

 

\sum 

j\in \scrN 

\xi j,\ast 

\right) 

 

= J\theta 
P (\xi 

\ast ).

(3.3)

Remark 5. Note that the structure of the optimal fee \xi \ast is very simple: the principal
takes all the profits (and losses) from each agent and gives him back his reservation value. To
show that a similar phenomenon can be observed in practice, we recall that some hedge funds
consist (fully or partially) of (teams of) portfolio managers (PMs), who have close-to-complete
freedom in making their investment decisions. Such a hedge fund provides investment capital
to its PMs and executes their orders---the latter being reminiscent of the role of a broker in
the present model. In return, the fund takes all the profits and losses of the PMs and gives
them back an agreed-upon compensation. The model proposed herein clearly applies to the
interaction between such a fund and its PMs, with the broker's fee being the negative of the
compensation paid by the fund to a PM. This observation illustrates that the following two
features, assumed or derived in the present model, are indeed observed in the real world: (i) a
brokerage fee may be customized to the characteristics of a client (such as his reservation value
and price impact) and (ii) the optimal fee may have the structure described in Proposition 3.1
(i.e., ``take away the profits and pay back a compensation"").

4. Equilibrium strategies of independent agents. Proposition 3.1 shows that, for any
given \theta , there exists a trivial choice of optimal contracts. This provides a solution to the
broker's local problem (2.11). Nevertheless, to find the optimal choice of \theta that solves the
global problem (2.12), we need to compute the value function V \theta 

P for each \theta . This, in turn,
requires the knowledge of the equilibrium strategies of the agents that correspond to the fees
\xi \ast constructed in Proposition 3.1, as well as the value of the broker in this Stackelberg game.
The former is discussed in this section, and the latter is analyzed in section 5.

The results of this section hold for an arbitrary fixed \theta \in \{ 0,1\} N . However, for convenience,
we assume that \scrN (\theta ) = \{ m+ 1, . . . ,N\} with some 0\leq m\leq N  - 1.

Notice that, with the fees given by (3.1), the objectives of the broker's clients do not
depend on their actions nor on the actions of the independent agents. Hence, any equilibrium
in the subgame among the independent agents can trivially be extended to an equilibrium

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
2
/2

8
/2

3
 t

o
 7

6
.1

3
6
.9

5
.2

0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



BROKERAGE CONTRACTS IN ALMGREN--CHRISS MODEL 863

among all agents. This observation is made precise in Theorem 5.5, and it is only brought up
here to explain why it suffices to focus on the equilibria among independent agents, which is
the main subject of the remainder of this section.

We begin by noticing that the objective (2.4) of an independent agent, by design, is only
affected by the actions of the broker and of her clients through the total order flow of the
broker's clients, denoted

u :=

N
\sum 

i=m+1

\nu i.

We refer to u as the broker's order flow. In particular, for the fees \xi \ast constructed in Proposi-
tion 3.1, the objective (2.4) of an independent agent i /\in \scrN can be rewritten as

J i,\theta (\nu i, \nu  - i) = \~J i,\theta (\nu i, \nu m, - i, u)

:=\BbbE 

\left[ 

 

\int T

0
Xi

t

\left( 

 \mu +

m
\sum 

j=1

\lambda j\nu 
j
t + \lambda 0ut

\right) 

 dt - 

\int T

0
\nu it

\left( 

 

m
\sum 

j=1

\kappa j\nu 
j
t + \kappa 0ut

\right) 

 dt - 
\lambda i

2
(Xi

T )
2

\right] 

 

=\BbbE 

\left[ 

 

\int T

0
Xi

t

\left( 

 \mu +
\sum 

j \not =i, j\leq m

\lambda j\nu 
j
t + \lambda 0ut

\right) 

 dt - 

\int T

0
\nu it

\left( 

 

m
\sum 

j=1

\kappa j\nu 
j
t + \kappa 0ut

\right) 

 dt - 
\lambda i

2
(xi0)

2

\right] 

 ,

(4.1)

where \nu m, - idenotes the vector (\nu 1, . . . , \nu m) without the ith element and Xi
t = xi0 +

\int t
0 \nu 

i
sds.
The main goal of this section is to characterize all Nash equilibria among independent

agents who solve

sup
\~\nu i\in \scrU 

\~J i,\theta (\~\nu i, \~\nu  - i, u), i= 1, . . . ,m,(4.2)

for any given order flow of the broker u\in \scrU . It is worth mentioning that the above equilibrium
problem is similar to the ones appearing in the existing literature on multiple agents trading
in a price impact model (see, e.g., [7] and the references therein). Nevertheless, there are three
features that (collectively) differentiate the equilibrium problem herein: (i) the population of
agents is finite and heterogeneous, (ii) the broker's strategy u is an arbitrary square-integrable
(stochastic) process, and (iii) the agents interact through both permanent and temporary
impact. These features bring the present problem outside the scope of the existing results,
and, in particular, we have to prove existence and uniqueness of the associated equilibrium
directly, which is done in the following proposition.

Proposition 4.1. For any u \in \scrU , there exists a unique Nash equilibrium (\~\nu 1,\ast , . . . , \~\nu m,\ast ) of
(4.2), and it is given by

\~\nu i,\ast t =
1

\kappa i(m+ 1)

\left( 

 mY i
t  - 

m
\sum 

j \not =i

Y j
t  - \kappa 0ut

\right) 

 , 1\leq i\leq m,(4.3)

where (Y,Z) is the unique solution of the BSDE:
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864 G. ALONSO ALVAREZ, S. NADTOCHIY, AND K. WEBSTER

dY i
t = - 

\left[ 

 \mu  - 
\gamma  - \lambda i/\kappa i
m+ 1

Y i
t +

m
\sum 

j \not =i

\biggl( 

\lambda j

\kappa j
 - 

\gamma  - \lambda i/\kappa i
m+ 1

\biggr) 

Y j
t +

\biggl( 

\lambda 0  - 
\gamma  - \lambda i/\kappa i
m+ 1

\kappa 0

\biggr) 

ut

\right] 

 dt

+Zi
tdBt,

Y i
T = 0, 1\leq i\leq m,

(4.4)

and

\gamma :=

m
\sum 

i=1

\lambda i

\kappa i
.

Proof. Let us fix arbitrary u\in \scrU , 1\leq i\leq m, \~\nu  - i \in \scrU m - 1, and describe an optimal strategy
for the agent i. Recall that the agent i maximizes the right-hand side of (4.1). We introduce
his Hamiltonian:

H i
t

\bigl( 

\~\nu i, \~xi, yi, \~\nu  - i
\bigr) 

= \~\nu iyi + \~xi

\left( 

 \mu + \lambda 0ut +
\sum 

j \not =i

\lambda j\~\nu 
j

\right) 

  - \kappa i
\bigl( 

\~\nu i
\bigr) 2

 - \~\nu i
\sum 

j \not =i

\kappa j\~\nu 
j  - \kappa 0ut\~\nu 

i.

Next, we observe that H i
t is concave in (\~\nu i, \~xi). Applying the stochastic maximum principle

for the ith agent's problem (see, e.g., Theorem 6.4.6 in [17]), we conclude that the strategy
defined by

\~\nu it =
1

2\kappa i

\left( 

 Y i
t  - 

m
\sum 

j \not =i

\kappa j\~\nu 
j
t  - \kappa 0ut

\right) 

 ,

dY i
t = - 

\left( 

 \mu +

m
\sum 

j \not =i

\lambda j\~\nu 
j
t + \lambda 0ut

\right) 

 dt+Zi
tdBt, Y i

T = 0,

(4.5)

is optimal.
Moreover, as the objective of the agent i is strictly concave, we conclude that (4.5) defines

his unique optimal strategy, given \~\nu  - i \in \scrU m - 1. Applying the same argument for every agent
1 \leq i \leq m, we deduce that any solution of the system (4.5), for i = 1, . . . ,m, defines a Nash
equilibrium among the independent agents. By the strict concavity of the individual objectives
we obtain that any Nash equilibrium is a solution to (4.5). Summing up the first equation in
(4.5) over i, we obtain

m
\sum 

j=1

\kappa j\~\nu 
j
t =

1

m+ 1

\left( 

 

m
\sum 

j=1

Y j
t  - m\kappa 0ut

\right) 

 ,(4.6)

and, in turn,

\~\nu it =
1

\kappa i

\left( 

 Y i
t  - 

m
\sum 

j=1

\kappa j\~\nu 
j
t  - \kappa 0ut

\right) 

 =
1

\kappa i

\left( 

 Y i
t  - 

1

m+ 1

\left( 

 

m
\sum 

j=1

Y j
t  - m\kappa 0ut

\right) 

  - \kappa 0ut

\right) 

 , 1\leq i\leq m.

Plugging the above in the second equation in (4.5), we obtain (4.4). Thus, we have shown that
any Nash equilibrium among the independent agents satisfies (4.3)--(4.4). It remains to notice
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BROKERAGE CONTRACTS IN ALMGREN--CHRISS MODEL 865

that (4.4) is a standard linear BSDE, and its solution is unique. The latter, in particular,
yields uniqueness of the solution to (4.5) and hence the uniqueness of equilibrium.

An immediate corollary of Proposition 4.1 is that, with \scrN (\theta ) = \{ m+ 1, . . . ,N\} and with
the fees \xi \ast given by (3.1), the set \scrE (\theta , \xi \ast ) of all equilibria among the agents (see Definition 2.1)
is given by

\scrE (\theta , \xi \ast ) =

\Biggl\{ 

(\~\nu 1,\ast (u), . . . , \~\nu m,\ast (u), \nu m+1, . . . , \nu N ) : u=

N
\sum 

i=m+1

\nu i, \nu m+1, . . . , \nu N \in \scrU 

\Biggr\} 

,

where (\~\nu 1,\ast (u), . . . , \~\nu m,\ast (u)) are given by (4.3).

5. Optimization problem of the broker. As in the previous section, the results of this
section hold for an arbitrary fixed \theta \in \{ 0,1\} N , but, for convenience, we assume that \scrN (\theta ) =
\{ m+ 1, . . . ,N\} with some 0\leq m\leq N  - 1.

Herein, we turn to the control problem of the broker. Notice that, with the fees given by
(3.1) and with the strategies of the broker's clients denoted by (\nu m+1, . . . , \nu N ), the independent
agents will necessarily adapt the strategies (\~\nu 1,\ast (u), . . . , \~\nu m,\ast (u)), given by (4.3) with u =
\sum N

i=m+1 \nu 
i, and the payoff of the broker can be written as

\~J\theta 
P (u,X

m+1
T , . . . ,XN

T ) =\BbbE 

\Biggl[ 

\int T

0

\Biggl( 

X0
t +

N
\sum 

i=m+1

xi0

\Biggr) \Biggl( 

\mu +

m
\sum 

i=1

\lambda i\~\nu 
i,\ast 
t + \lambda 0ut

\Biggr) 

dt(5.1)

 - 

\int T

0
ut

\Biggl( 

m
\sum 

i=1

\kappa i\~\nu 
i,\ast 
t + \kappa 0ut

\Biggr) 

dt - 
N
\sum 

i=m+1

\lambda i

2
(Xi

T )
2  - 

N
\sum 

i=m+1

Ri,\theta 

\Biggr] 

,

where

X0
t :=

\int t

0
utdt, Xi

T = xi0 +

\int T

0
\nu itdt.

This implies that the value of the broker's objective (2.9), for the fees given by (3.1), can be
written as

J\theta 
P (\xi 

\ast ) = sup
u\in \scrU 

sup
Xm+1

T ,...,XN
T \in \scrG ,\int 

T

0
utdt=

\sum 
N

i=m+1
(Xi

T - xi
0)

\~J\theta 
P (u,X

m+1
T , . . . ,XN

T ),(5.2)

where

\scrG :=

\biggl\{ 

X \in \scrF T , s.t. X =

\int T

0
utdt, for some u\in \scrU 

\biggr\} 

.

Next, we use (4.3) to deduce

m
\sum 

i=1

\kappa i\~\nu 
i,\ast 
t =

m

m+ 1

m
\sum 

i=1

Y i
t  - 

1

m+ 1

m
\sum 

i=1

\left( 

 

m
\sum 

j=1

Y j
t  - Y i

t

\right) 

  - 
m

m+ 1
\kappa 0ut

=
1

m+ 1

m
\sum 

i=1

Y i
t  - 

m

m+ 1
\kappa 0ut,
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866 G. ALONSO ALVAREZ, S. NADTOCHIY, AND K. WEBSTER

m
\sum 

i=1

\lambda i\~\nu 
i,\ast 
t =

m

m+ 1

m
\sum 

i=1

\lambda i

\kappa i
Y i
t  - 

1

m+ 1

m
\sum 

i=1

\lambda i

\kappa i

\left( 

 

m
\sum 

j=1

Y j
t  - Y i

t

\right) 

  - 
\gamma 

m+ 1
\kappa 0ut

=

m
\sum 

i=1

\lambda i

\kappa i
Y i
t  - 

\gamma 

m+ 1

m
\sum 

i=1

Y i
t  - 

\gamma 

m+ 1
\kappa 0ut =

m
\sum 

i=1

\biggl( 

\lambda i

\kappa i
 - 

\gamma 

m+ 1

\biggr) 

Y i
t  - 

\gamma 

m+ 1
\kappa 0ut,

which leads to

\~J\theta 
P (u,X

m+1
T , . . . ,XN

T )

=\BbbE 

\Biggl[ 

\int T

0

\Biggl( 

X0
t +

N
\sum 

i=m+1

xi0

\Biggr) \Biggl( 

\mu +

m
\sum 

i=1

\biggl[ 

\lambda i

\kappa i
 - 

\gamma 

m+ 1

\biggr] 

Y i
t +

\biggl[ 

\lambda 0  - 
\gamma \kappa 0
m+ 1

\biggr] 

ut

\Biggr) 

dt

 - 
1

m+ 1

\int T

0
ut

\Biggl( 

m
\sum 

i=1

Y i
t + \kappa 0ut

\Biggr) 

dt - 
N
\sum 

i=m+1

\lambda i

2
(Xi

T )
2  - 

N
\sum 

i=m+1

Ri,\theta 

\Biggr] 

,

where (Y,Z) is the unique solution to the linear BSDE (4.4).
Let us resolve the optimization over Xm+1

T , . . . ,XN
T in (5.2) for each fixed u and \omega . Indeed,

the latter amounts to solving the quadratic minimization problem with linear constraints:

inf
Xm+1

T ,...,XN
T \in \BbbR 

N
\sum 

i=m+1

\lambda i

2
(Xi

T )
2

s.t.

N
\sum 

i=m+1

(Xi
T  - xi0) =X0

T ,

where we recall that X0
T is known given u. Constructing the Lagrangian and setting its

derivatives to zero, we deduce that the above infimum equals

1

2
\sum N

i=m+1 1/\lambda i

\Biggl( 

X0
T +

N
\sum 

i=m+1

xi0

\Biggr) 2

.

Thus, the broker's objective for a fixed choice of clients \theta can be written as

J\theta 
P (\xi 

\ast ) = sup
u\in \scrU 

\^J\theta 
P (u),(5.3)

where

\^J\theta 
P (u) :=\BbbE 

\Biggl[ 

\int T

0

\Biggl( 

X0
t +

N
\sum 

i=m+1

xi0

\Biggr) \Biggl( 

\mu +

m
\sum 

i=1

\biggl[ 

\lambda i

\kappa i
 - 

\gamma 

m+ 1

\biggr] 

Y i
t +

\biggl[ 

\lambda 0  - 
\gamma \kappa 0
m+ 1

\biggr] 

ut

\Biggr) 

dt

 - 
1

m+ 1

\int T

0
ut

\Biggl( 

m
\sum 

i=1

Y i
t + \kappa 0ut

\Biggr) 

dt - 
1

2
\sum N

i=m+1 1/\lambda i

\Biggl( 

X0
T +

N
\sum 

i=m+1

xi0

\Biggr) 2

 - 
N
\sum 

i=m+1

Ri,\theta 

\Biggr] 

.

(5.4)

Let us denote x0 :=
\sum N

i=m+1 x
i
0. The above expression can be viewed as a backward

representation of \^J\theta 
P (u) as it involves Y that solves a BSDE. The following lemma establishes

a convenient forward representation for \^J\theta 
P (u), which is used in the subsequent analysis.
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Lemma 5.1. For any u\in \scrU , we have

\^J\theta 
P (u) =\BbbE 

\biggl[ \int T

0
X0

t

\biggl( 

1

m+ 1
\mu +

2

m+ 1
\~\gamma \top Ct

\biggr) 

dt+
2

m+ 1

\int T

0
X0

t \~\gamma 
\top eAtDt dt - 

2

m+ 1
ET DT

+x0

\int T

0
\~\gamma \top Ct dt - x0\~\gamma 

\top 

\int T

0
eAt dtDT + x0\~\gamma 

\top 

\int T

0
eAtDt dt

+
1

2

\Biggl( 

\lambda 0

m+ 1
 - 

2\gamma \kappa 0
(m+ 1)2

 - 
1

\sum N
i=m+1 1/\lambda i

\Biggr) 

(X0
T )

2+x0

\Biggl( 

\lambda 0 - 
\gamma \kappa 0
m+ 1

 - 
1

\sum N
i=m+1 1/\lambda i

\Biggr) 

X0
T

 - 
\kappa 0

m+ 1

\int T

0
(ut)

2dt

\biggr] 

+

\Biggl( 

\mu Tx0  - 
1

2
\sum N

i=m+1 1/\lambda i

x20

\Biggr) 

 - 
N
\sum 

i=m+1

Ri,\theta ,

(5.5)

where A\in \BbbR 
m\times m, \bfb , \~\gamma \in \BbbR 

m are defined by

Aij :=

\biggl\{ 1
m+1(\gamma  - \lambda i/\kappa i), i= j,

 - \lambda j/\kappa j +
1

m+1(\gamma  - \lambda i/\kappa i), i \not = j,
(5.6)

\bfb :=

\biggl( 

(\gamma  - \lambda 1/\kappa 1)\kappa 0
m+ 1

 - \lambda 0, . . . ,
(\gamma  - \lambda m/\kappa m)\kappa 0

m+ 1
 - \lambda 0

\biggr) \top 

,

\~\gamma :=

\biggl( 

\lambda 1

\kappa 1
 - 

\gamma 

m+ 1
, . . . ,

\lambda m

\kappa m
 - 

\gamma 

m+ 1

\biggr) \top 

,

(5.7)

and

Ct := \mu eAt

\int T

t
e - As

\bfone ds, Dt :=

\int t

0
us e

 - As
\bfb ds, Et :=

\int t

0
X0

s \~\gamma 
\top eAs ds.(5.8)

Proof. Integrating by parts and recalling (4.4), we obtain:

 - 
1

m+ 1
\BbbE 

\int T

0
ut

m
\sum 

i=1

Y i
t dt= - 

1

m+ 1
\BbbE 

\int T

0
X0

t

\Biggl[ 

m\mu  - 
m
\sum 

i=1

\gamma  - \lambda i/\kappa i
m+ 1

Y i
t

+ (m - 1)

m
\sum 

j=1

\lambda j

\kappa j
Y j
t  - 

m\gamma  - 
\sum m

i=1 \lambda i/\kappa i
m+ 1

m
\sum 

j=1

Y j
t +

m
\sum 

i=1

\gamma  - \lambda i/\kappa i
m+ 1

Y i
t

+

\Biggl( 

m\lambda 0  - 
m
\sum 

i=1

\gamma  - \lambda i/\kappa i
m+ 1

\kappa 0

\Biggr) 

ut

\Biggr] 

dt

= - 
1

m+ 1
\BbbE 

\int T

0
X0

t

\left[ 

 m\mu + (m - 1)

m
\sum 

j=1

\lambda j

\kappa j
Y j
t  - 

m\gamma  - \gamma 

m+ 1

m
\sum 

j=1

Y j
t +

\biggl( 

m\lambda 0  - 
m\gamma  - \gamma 

m+ 1
\kappa 0

\biggr) 

ut

\right] 

 dt.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
2
/2

8
/2

3
 t

o
 7

6
.1

3
6
.9

5
.2

0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



868 G. ALONSO ALVAREZ, S. NADTOCHIY, AND K. WEBSTER

Plugging the above into the right-hand side of (5.4), we obtain

\^J\theta 
P (u) =\BbbE 

\Biggl[ 

\int T

0
X0

t

\Biggl( 

1

m+ 1
\mu +

2

m+ 1

m
\sum 

i=1

\biggl[ 

\lambda i

\kappa i
 - 

\gamma 

m+ 1

\biggr] 

Y i
t

\Biggr) 

dt

(5.9)

+
1

2

\Biggl( 

\lambda 0

m+ 1
 - 

2\gamma \kappa 0
(m+ 1)2

 - 
1

\sum N
i=m+1 1/\lambda i

\Biggr) 

(X0
T )

2 + x0

\Biggl( 

\lambda 0  - 
\gamma \kappa 0
m+ 1

 - 
1

\sum N
i=m+1 1/\lambda i

\Biggr) 

X0
T

+x0

m
\sum 

i=1

\int T

0

\biggl( 

\lambda i

\kappa i
 - 

\gamma 

m+ 1

\biggr) 

Y i
t dt - 

\kappa 0
m+ 1

\int T

0
(ut)

2dt

\Biggr] 

+

\Biggl( 

\mu Tx0  - 
1

2
\sum N

i=m+1 1/\lambda i

x20

\Biggr) 

 - 
N
\sum 

i=m+1

Ri,\theta .

Next, we recall that the linear BSDE (4.4) has a semiexplicit solution:

Yt = \mu eAt

\int T

t
e - As

\bfone ds - \BbbE 

\biggl( 

eAt

\int T

t
use

 - As
\bfb ds | \scrF t

\biggr) 

.(5.10)

Plugging the above expression into (5.9) and recalling the definition of Ct in (5.8), we obtain

\^J\theta 
P (u) =\BbbE 

\biggl[ \int T

0
X0

t

\biggl( 

1

m+ 1
\mu +

2

m+ 1
\~\gamma \top Ct  - 

2

m+ 1
\~\gamma \top \BbbE 

\biggl( 

eAt

\int T

t
use

 - As
\bfb ds| \scrF t

\biggr) \biggr) 

dt

+x0\~\gamma 
\top 

\int T

0
Ct dt - x0\~\gamma 

\top 

\int T

0
\BbbE 

\biggl( 

eAt

\int T

t
use

 - As
\bfb ds | \scrF t

\biggr) 

dt

+
1

2

\Biggl( 

\lambda 0

m+ 1
 - 

2\gamma \kappa 0
(m+ 1)2

 - 
1

\sum N
i=m+1 1/\lambda i

\Biggr) 

(X0
T )

2 + x0

\Biggl( 

\lambda 0  - 
\gamma \kappa 0
m+ 1

 - 
1

\sum N
i=m+1 1/\lambda i

\Biggr) 

X0
T

 - 
\kappa 0

m+ 1

\int T

0
(ut)

2dt

\biggr] 

+

\Biggl( 

\mu Tx0  - 
1

2
\sum N

i=m+1 1/\lambda i

x20

\Biggr) 

 - 
N
\sum 

i=m+1

Ri,\theta .

Using Fubini's theorem and the tower property, we remove the conditional expectations in the
right-hand side of the above. Finally, noticing that

\int T

t
use

 - As
\bfb ds=DT  - Dt

and recalling the definition of ET (in (5.8)), we obtain the statement of the lemma.

Next, we introduce our main assumption, which guarantees the concavity of the broker's
objective.

Assumption 1. The parameters \{ \lambda i, \kappa i\} are such that

2\| \~\gamma \| \| \bfb \| e\| A\| 2T T 2 + \lambda 0T/2<\kappa 0,(5.11)

where \| \cdot \| 2 is the 2-norm of a matrix, \| .\| denotes the Euclidean norm in \BbbR 
m, and we recall
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BROKERAGE CONTRACTS IN ALMGREN--CHRISS MODEL 869

\~\gamma =

\biggl( 

\lambda 1

\kappa 1
 - 

\gamma 

m+ 1
, . . . ,

\lambda m

\kappa m
 - 

\gamma 

m+ 1

\biggr) \top 

,

\bfb =

\biggl( 

(\gamma  - \lambda 1/\kappa 1)\kappa 0
m+ 1

 - \lambda 0, . . . ,
(\gamma  - \lambda m/\kappa m)\kappa 0

m+ 1
 - \lambda 0

\biggr) \top 

,

\gamma =

m
\sum 

i=1

\lambda i

\kappa i
, Aij :=

\biggl\{ 1
m+1(\gamma  - \lambda i/\kappa i), i= j,

 - \lambda j/\kappa j +
1

m+1(\gamma  - \lambda i/\kappa i), i \not = j,

When verifying the above assumption, it is convenient to recall that \| A\| 2 \leq \| A\| \mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b},
where

\| A\| \mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b} :=
1

m+ 1

\left( 

 

m
\sum 

i=1

\biggl( 

\gamma  - 
\lambda i

\kappa i

\biggr) 2

+

m
\sum 

i=1

m
\sum 

j \not =i

\biggl( 

\lambda j

\kappa j
(m+ 1) - \gamma +

\lambda i

\kappa i

\biggr) 2
\right) 

 

1/2

.

The next proposition shows that the broker's optimization problem (5.3) is well-posed
under Assumption 1.

Proposition 5.2. Under Assumption 1, there exists a unique maximizer u\ast of \^J\theta 
P (\cdot ) over \scrU .

Moreover, the optimal strategy u\ast is deterministic.

Proof. Using Lemma 5.1, we deduce that \^J\theta 
P (u) =\BbbE Gu, where

Gu :=

\int T

0
X0

t

\biggl( 

1

m+ 1
\mu +

2

m+ 1
\~\gamma \top Ct

\biggr) 

dt+
2

m+ 1

\int T

0
X0

t \~\gamma 
\top eAtDt dt - 

2

m+ 1
ET DT

+ x0

\int T

0
\~\gamma \top Ct dt - x0\~\gamma 

\top 

\int T

0
eAt dtDT + x0\~\gamma 

\top 

\int T

0
eAtDt dt

+
1

2

\Biggl( 

\lambda 0

m+ 1
 - 

2\gamma \kappa 0
(m+ 1)2

 - 
1

\sum N
i=m+1 1/\lambda i

\Biggr) 

(X0
T )

2 + x0

\Biggl( 

\lambda 0  - 
\gamma \kappa 0
m+ 1

 - 
1

\sum N
i=m+1 1/\lambda i

\Biggr) 

X0
T

 - 
\kappa 0

m+ 1

\int T

0
(ut)

2dt+

\Biggl( 

\mu Tx0  - 
1

2
\sum N

i=m+1 1/\lambda i

x20

\Biggr) 

 - 
N
\sum 

i=m+1

Ri,\theta .

Next, we observe

2

m+ 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

DTET  - 

\int T

0
X0

t \~\gamma 
\top eAtDt dt

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\leq 
2

m+ 1

\biggl( \int T

0

\bigm| 

\bigm| 

\bigm| 

\bigm| 

X0
t \~\gamma e

At

\int T

t
e - As

\bfb us ds

\bigm| 

\bigm| 

\bigm| 

\bigm| 

dt

\biggr) 

\leq 
2

m+ 1
\| \~\gamma \| \| \bfb \| e\| A\| 2T

\biggl( \int T

0
| X0

t | dt

\int T

0
| ut| dt

\biggr) 

\leq 
2

m+ 1
\| \~\gamma \| \| \bfb \| e\| A\| 2T T

\biggl( \int T

0
| ut| dt

\biggr) 2

\leq 
2

m+ 1
\| \~\gamma \| \| \bfb \| e\| A\| 2T T 2

\int T

0
u2tdt,

(5.12)

where we used Jensen's inequality:
\biggl( \int T

0
| ut| dt

\biggr) 2

\leq T

\int T

0
u2tdt.
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870 G. ALONSO ALVAREZ, S. NADTOCHIY, AND K. WEBSTER

The above inequality also yields

(X0
T )

2 \leq T

\int T

0
(ut)

2dt.

Collecting the above, we conclude that

Gu \leq 

\biggl( 

2

m+ 1
\| \~\gamma \| \| \bfb \| e\| A\| 2TT 2  - 

\kappa 0
m+ 1

+
\lambda 0T

2(m+ 1)

\biggr) \int T

0
(ut)

2dt

+ x0\~\gamma 

\int T

0
Ctdt - x0\~\gamma 

\int T

0
eAtdtDT + x0\~\gamma 

\int T

0
eAtDtdt

+

\int T

0
X0

t

\biggl( 

1

m+ 1
\mu +

2

m+ 1
\~\gamma Ct

\biggr) 

dt+ x0

\Biggl( 

\lambda 0  - 
\gamma \kappa 0
m+ 1

 - 
1

\sum N
i=m+1 1/\lambda i

\Biggr) 

X0
T + \~a,

where \~a\in \BbbR . Notice that the second and third lines in the right-hand side of the above display
are linear in u. In addition, Assumption 1 yields that the coefficient in front of

\int T
0 (ut)

2dt is
strictly negative, which implies that the above expression is strictly concave as a function of
u \in \scrU d, where we introduced the set of deterministic strategies \scrU d := L2([0, T ]). As Gu is
linear-quadratic in u, we conclude that it is also strictly concave (this can be deduced easily
by contradiction), which yields the statement of the proposition.

The above lemma shows that there is no loss of optimality in reducing the optimization
problem (5.3) of the broker to the deterministic set of strategies u \in \scrU d = L2([0, T ]). As the
objective \^J\theta 

P is linear-quadratic, we can find its maximizer by setting to zero its derivative.

Lemma 5.3. The mapping u \mapsto \rightarrow \^J\theta 
P (u) is Fr\'echet-differentiable w.r.t. the L2-norm on \scrU d,

and its derivative is given by the following linear functional of v \in \scrU d:

D \^J\theta 
P (u)(v)

:=

\int T

0
vt

\Biggl( 

\mu (T  - t)

m+ 1
+ pt  - 

2

m+ 1
\~\gamma qt + x0

\Biggl[ 

\lambda 0  - 
\gamma \kappa 0
m+ 1

 - 
1

\sum N
j=1 1/\lambda j

\Biggr] 

 - x0\~\gamma rt  - 
2\kappa 0

m+ 1
ut

\Biggr) 

dt,

where (q, p, r) \in C([0, T ],\BbbR \times \BbbR 
m \times \BbbR 

m) is the unique solution of the (noncoupled) system of
ODEs:

dpt = - 
2

m+ 1
\~\gamma \top Ytdt, pT =

\Biggl( 

\lambda 0

m+ 1
 - 

\gamma \kappa 0
(m+ 1)2

 - 
1

\sum N
j=m+1 1/\lambda j

\Biggr) 

X0
T ,

dqt = ( - Aqt +X0
t \bfb )dt, q0 = \bfzero ,

drt = ( - Art + \bfb )dt, r0 = \bfzero ,

(5.13)

where \bfb , \~\gamma , and A are defined in (5.6)--(5.7).

Proof. For any u \in \scrU d we define X0,u
t :=

\int t
0 utdt, and we introduce Y u defined as the

unique solution of the ODE:
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BROKERAGE CONTRACTS IN ALMGREN--CHRISS MODEL 871

dYt = (AYt + \bfb ut  - \mu \bfone )dt,

YT = \bfzero ,
(5.14)

where \bfone = (1, . . . ,1)T \in \BbbR 
m. Recall that (5.14) can be written as

Yt = \mu eAt

\int T

t
e - As

\bfone ds - eAt

\int T

t
use

 - As
\bfb ds.(5.15)

Let u, v \in \scrU d. Then,

\^J\theta 
P (u+ v) - \^J\theta 

P (u) =
\mu 

m+ 1

\int T

0
X0,v

s ds

+
2

m+ 1

\int T

0
X0,u

s

\Biggl( 

m
\sum 

i=1

\biggl( 

\lambda i

\kappa i
 - 

1

m+ 1
\gamma 

\biggr) 

(Y i,u+v
s  - Y i,u

s )

\Biggr) 

ds

+
2

m+ 1

\int T

0
X0,v

s

\Biggl( 

m
\sum 

i=1

\biggl( 

\lambda i

\kappa i
 - 

1

m+ 1
\gamma 

\biggr) \biggl( 

Y i,u
s  - eAs

\int T

s
e - Ar

\bfb vrdr

\biggr) 

\Biggr) 

ds - 
2\kappa 0

m+ 1

\int T

0
usvsds

\Biggl( 

\lambda 0

m+ 1
 - 

2\gamma \kappa 0
(m+ 1)2

 - 
1

\sum N
i=m+1

1
\lambda i

\Biggr) 

X0,u
T X0,v

T

+

\int T

0
X0,v

s

\Biggl( 

m
\sum 

i=1

\biggl( 

\lambda i

\kappa i
 - 

1

m+ 1
\gamma 

\biggr) 

Y i,v
s

\Biggr) 

ds - 
\kappa 0

m+ 1

\int T

0
(vs)

2ds

1

2

\Biggl( 

\lambda 0

m+ 1
 - 

2\gamma \kappa 0
(m+ 1)2

 - 
1

\sum N
i=m+1

1
\lambda i

\Biggr) 

(X0,v
T )2 + x0

m
\sum 

i=1

\int T

0

\biggl( 

\lambda i

\kappa i
 - 

\gamma 

m+ 1

\biggr) 

(Y i,u+v
t  - Y i,u

t )dt

+ x0

\Biggl( 

\lambda 0  - 
\gamma \kappa 0
m+ 1

 - 
1

\sum N
i=m+1

1
\lambda i

\Biggr) 

X0,v
T .

It is a standard exercise to check that the linear part (in u) of the right-hand side of the above
gives the desired Fr\'echet derivative:

D \^J\theta 
P (u)(v) :=

\mu 

m+ 1

\int T

0
X0,v

s ds+
2

m+ 1

\int T

0
X0,u

s

\Biggl( 

m
\sum 

i=1

\biggl( 

\lambda i

\kappa i
 - 

1

m+ 1
\gamma 

\biggr) 

(Y i,u+v
s  - Y i,u

s )

\Biggr) 

ds

+
2

m+ 1

\int T

0
X0,v

s

\Biggl( 

m
\sum 

i=1

\biggl( 

\lambda i

\kappa i
 - 

1

m+ 1
\gamma 

\biggr) 

Y i,u
s

\Biggr) 

ds

+

\Biggl( 

\lambda 0

m+ 1
 - 

2\gamma \kappa 0
(m+ 1)2

 - 
1

\sum N
i=m+1

1
\lambda i

\Biggr) 

X0,u
T X0,v

T

 - 
2\kappa 0

m+ 1

\int T

0
usvsds+ x0

m
\sum 

i=1

\int T

0

\biggl( 

\lambda i

\kappa i
 - 

\gamma 

m+ 1

\biggr) 

(Y i,u+v
t  - Y i,u

t )dt

+ x0

\Biggl( 

\lambda 0  - 
\gamma \kappa 0
m+ 1

 - 
1

\sum N
i=m+1

1
\lambda i

\Biggr) 

X0,v
T .

(5.16)

Next, we rewrite DJ\theta 
P (u) in a more convenient way. To this end, we observe
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872 G. ALONSO ALVAREZ, S. NADTOCHIY, AND K. WEBSTER

\int T

0
X0,u

t

m
\sum 

i=1

\biggl( 

\lambda i

\kappa i
 - 

\gamma 

m+ 1

\biggr) 

(Y i,u+v
t  - Y i,u

t )dt= - 

\int T

0
X0,u

t \~\gamma T
\int \top 

t
eA(t - s)

\bfb vsdsdt

= - 

\int T

0
vt\~\gamma 

T

\int t

0
e - A(t - s)

\bfb X0,u
s dsdt,

\int T

0
X0,v

t

\Biggl( 

m
\sum 

i=1

\biggl( 

\lambda i

\kappa i
 - 

\gamma 

m+ 1

\biggr) 

Y i,u
t

\Biggr) 

dt=

\int T

0

\Biggl( 

m
\sum 

i=1

\biggl( 

\lambda i

\kappa i
 - 

\gamma 

m+ 1

\biggr) 

Y i,u
t

\Biggr) 

\int t

0
vsdsdt

=

\int T

0
vt

\int T

t
\~\gamma \top Y u

s dsdt,

X0,u
T X0,\eta 

T =

\int T

0
vt(X

0,u
T )dt,

\int T

0
(Y u+v

t  - Y u
t )dt= - 

\int T

0
eAt

\int T

t
vse

 - As
\bfb dsdt= - 

\int T

0
vt

\int t

0
e - A(t - s)

\bfb dsdt.

Using the above, we deduce

DJ\theta 
P (u)(v) :=

\int T

0
vt

\biggl( 

\mu (T  - t)

m+ 1
+

2

m+ 1
\~\gamma \top 
\int T

t
Y u
s ds - 

2

m+ 1
\~\gamma T e - At

\int t

0
eAsX0,u

s \bfb ds

+

\Biggl[ 

\lambda 0

m+ 1
 - 

2\gamma \kappa 0
(m+ 1)2

 - 
1

\sum N
i=m+1

1
\lambda i

\Biggr] 

X0,u
T + x0

\Biggl[ 

\lambda 0  - 
\gamma \kappa 0
m+ 1

 - 
1

\sum N
j=m+1

1
\lambda j

\Biggr] 

 - x0\~\gamma 
\top e - At

\int t

0
eAs

\bfb ds - 
2\kappa 0

m+ 1
ut

\biggr) 

dt.

(5.17)

Recalling (5.13), we obtain the statement of the lemma.

The above lemma allows us to characterize the optimal order flow of the broker in terms
of the unique solution of a linear forward-backward system of ODEs, arising as a combination
of (5.13) and

dYt = (AYt + \bfb ut)dt, YT = \bfzero ,

dX0
t =

\Biggl[ 

\mu (T  - t)

2\kappa 0
+

(m+ 1)

2\kappa 0
pt  - 

1

\kappa 0
\~\gamma \top qt + x0

m+ 1

2\kappa 0

\Biggl( 

\lambda 0  - 
\gamma \kappa 0
m+ 1

 - 
1

\sum N
i=m+1

1
\lambda i

\Biggr) 

 - 
m+ 1

2\kappa 0
x0\~\gamma 

\top rt

\biggr] 

dt, X0
0 = 0.

(5.18)

Proposition 5.4. Under Assumption 1, there exists a unique classical solution (p, q, r, Y,X0)
to (5.13), (5.18), and the optimal order flow u\ast t of the broker is equal to dX0

t /dt.

Proof. By Proposition 5.2, we know that there exists a unique optimal control u\ast \in \scrU d.
Then, Lemma 5.3 implies that X0,\ast 

t :=
\int t
0 u

\ast 
sds satisfies the second line of (5.18) for a.e.

t, with (p\ast , q\ast , r\ast , Y \ast ) defined via (5.13) and the first line of (5.18). Noticing that (p, q, r)
are continuous, we conclude that X0 is continuously differentiable and that it satisfies the
second line of (5.18) for all t. Finally, for any solution (p, q, r, Y,X0) to (5.13), (5.18), the
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BROKERAGE CONTRACTS IN ALMGREN--CHRISS MODEL 873

Frechet derivative of \^J\theta 
P at ut := dX0

t /dt is zero, which implies that u = u\ast and in turn that
(p, q, r, Y ) = (p\ast , q\ast , r\ast , Y \ast ).

The following theorem summarizes all the results we have established.

Theorem 5.5. For any \theta \in \{ 0,1\} N and any \{ Ri,\theta \} \in \BbbR 
N , the set of fees \xi \ast = \{ \xi i,\ast \} i\in \scrN (\theta )

given by (3.1) is optimal for the broker's local optimization problem (2.11). Provided the broker
chooses this set of fees, the following holds.

\bullet Any choice of equilibrium strategies \{ \nu i,\ast \} Ni=1 \in \scrE (\theta , \xi \ast ) that is optimal for the broker
has the following structure: the clients' strategies \{ \nu i,\ast \} i\in \scrN (\theta ) can be chosen arbitrarily
subject to

\sum 

i\in \scrN (\theta )

\nu i,\ast = u\ast , Xi,\ast 
T = xi0 +

\int T

0
\nu i,\ast t dt= xi0 +

2

\lambda i
\sum N

j=m+1
1
\lambda j

\biggl( \int T

0
u\ast tdt

\biggr) 

,

where u\ast is defined in Proposition 5.4, and the strategies of independent agents,
\{ \nu i,\ast \} i/\in \scrN (\theta ), are determined uniquely by (4.3)--(4.4), with u\ast in place of u.

\bullet The broker's value V \theta 
P for a given \theta , defined in (2.11), satisfies

V \theta 
P = J\theta 

P (\xi 
\ast ) = \^J\theta 

P (u
\ast ),(5.19)

where \xi \ast = \{ \xi i,\ast \} i\in \scrN (\theta ) is given by (3.1), \^J\theta 
P is defined in (5.4), and u\ast is defined in

Proposition 5.4.
\bullet In any equilibrium \{ \nu j,\ast \} Nj=1 \in \scrE (\theta , \xi \ast ), the objective value of each independent agent

i /\in \scrN (\theta ) is given by the right-hand side of (4.1), with \{ \nu j\} Nj=1 replaced by \{ \nu j,\ast \} Nj=1.
In addition, for any agent i= 1, . . . ,N , his objective value is the same for any choice
of \{ \nu j,\ast \} Nj=1 \in \scrE (\theta , \xi \ast ) that is optimal for the broker.

Next, we propose an endogenous definition of the clients' reservation values. Notice that
the choice of reservation values \{ Ri,\theta \} Ni=1 does not affect the objective values \{ V i,\theta \} i/\in \scrN (\theta ) of
independent agents in any equilibrium that is optimal for the principal. Indeed, by the last
statement of Theorem 5.5, \{ V i,\theta \} i/\in \scrN (\theta ) are determined by the right-hand side of (4.1), which
depends only on \{ \nu j\} j /\in \scrN (\theta ) and on u=

\sum 

j\in \scrN (\theta ) \nu 
j . In any equilibrium that is optimal for the

broker, the latter quantities are determined uniquely by (4.3)--(4.4) and by Proposition 5.4,
and they do not depend on \{ Ri,\theta \} i. On the other hand, the choice of \{ Ri,\theta \} Ni=1 does affect the
optimal fees \xi \ast , given by (3.1), and in turn the objective value of the principal. Thus, in order
to determine the broker's value V \theta 

P (via (5.19) and (5.4)), we need to choose the reservation
values \{ Ri,\theta \} Ni=1. Even though, in general, the reservation values can be prescribed arbitrarily,
it turns out that the present setting allows for a natural constraint on these values which
determines them uniquely.

The motivation for the following definition of endogenous reservation values is clear. Recall
that the reservation value of an agent represents the alternative benefit that the agent would
receive if he does not enter into the contractual agreement with the principal (see [9] and the
references therein). In the present case (unlike many other optimal contract problems), there
is an obvious natural way to define such a reservation value. Indeed, each potential client
of the broker has an alternative opportunity to trade directly in the market (i.e., to become
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874 G. ALONSO ALVAREZ, S. NADTOCHIY, AND K. WEBSTER

an independent agent), hence, the reservation value of each agent must equal the maximum
objective value he can achieve by such trading.

Definition 5.6. For every \theta \in \{ 0,1\} N , we say that \{ Ri,\theta \} \in \BbbR 
N are endogenous reservation

values if

Ri,\theta = V i,\theta \prime (i), i\in \scrN (\theta ).(5.20)

In the above, all entries of \theta \prime (i) are equal to those of \theta , except for the ith entry, which is equal
to zero, and V i,\theta \prime (i) is given by the right-hand side of (4.1), with \theta replaced by \theta \prime (i) and with
any choice of equilibrium strategies \{ \nu j\} Nj=1 \in \scrE (\theta \prime (i), \xi \ast ) that is optimal for the broker, where

\xi \ast = \{ \xi i,\ast \} i\in \scrN (\theta \prime (i)) is given by (3.1).

Note that the above definition is consistent. Indeed, for i /\in \scrN (\theta \prime ), Theorem 5.5 implies
that V i,\theta \prime 

does not depend on \{ Ri,\theta \} , hence the right-hand side of (5.20) does not depend on
its left-hand side. Moreover, it is clear that, for each \theta \in \{ 0,1\} N , the endogenous reservation
values are determined uniquely and can be constructed by computing V i,\theta \prime (i) for each i \in 
\scrN (\theta ). In the remainder of this paper, we assume that the reservation values are chosen to be
endogenous.

Having computed the endogenous reservation values, we can use Theorem 5.5 to compute
V \theta 
P for each \theta . Then, an optimal \theta can be found by maximizing V \theta 

P . The latter is accomplished
by an exhaustive search, in the next section, which is realistic for small N or if the choices of
\theta are restricted to a small enough subset of \{ 0,1\} N .

6. Numerical experiments. In this section we describe five numerical simulations to study
the structure of an optimal clients' portfolio for the broker, as well as the dependence of the
values (i.e., the expected equilibrium profits) of the broker and of the agents on the price
impact parameters \{ \kappa i, \lambda i\} . In particular, we ask, Does the broker include all agents in her
optimal portfolio? Does the broker prefer agents with low or high price impact coefficients?
Do the agents benefit from the presence of the broker? In all experiments, we fix \mu = 1, T = 1,
xi0 = 0.

6.1. Two agents, dependence of broker's value on \bfitlambda . In this subsection, we set N = 2,
fix \kappa 0 = \kappa 1 = \kappa 2 = 10 - 1, \lambda 0 = 10 - 3, and consider the dependence of the broker's value on
(\lambda 1, \lambda 2). We generate M = 100 equidistant values (\lambda 1, \lambda 2)\in [10 - 3,5\times 10 - 2]\times [10 - 3,5\times 10 - 2]
and show the value of the broker in Figure 1. In this experiment, the broker optimally takes
both agents as her clients (i.e., \theta \ast = (1,1)) for every value of (\lambda 1, \lambda 2).

We observe that the broker's value is larger for small (\lambda 1, \lambda 2). This can be explained
as follows. Each agent benefits from the permanent impact of other agents, as they trade
in the same directions (because they have the same initial inventories and observe the same
signal \mu ). In particular, a large value of \lambda 1 makes the second agent more optimistic about his
profits in case he decides to trade directly in the market. The latter means that the second
agent has larger (endogenous) reservation value, for which he needs to be compensated by the
broker, which in turn reduces the profits of the broker from taking the first agent as a client.
An analogous argument applies when \lambda 2 is large.

6.2. Two agents, dependence of broker's value on \bfitkappa . In this subsection, we set N = 2,
fix \lambda 0 = \lambda 1 = \lambda 2 = 10 - 2, \kappa 0 = 10 - 2, and consider the dependence of the broker's value on
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Figure 1. Broker's value as a function of \lambda 1 (horizontal axis) and \lambda 2 (vertical axis).
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Figure 2. Broker's value as a function of \kappa 1 (horizontal axis) and \kappa 2 (vertical axis).

(\kappa 1, \kappa 2). We generate M = 100 equidistant values (\kappa 1, \kappa 2) \in [10 - 2,10 - 1] \times [10 - 2,10 - 1] and
show the value of the broker in Figure 2. In this experiment, the broker optimally takes both
agents as her clients (i.e., \theta \ast = (1,1)) for every value of (\kappa 1, \kappa 2).

We observe that the broker's value is larger for large (\kappa 1, \kappa 2). This can be explained by
the fact that large \kappa i reduces the value of agent i in case he decides to trade directly in the
market, thus reducing his (endogenous) reservation value and in turn increasing the broker's
profit from taking this agent as a client.

6.3. Many agents, choice of portfolio via \bfitlambda . In this subsection, we set N = 100, fix
\kappa i = 5 \times 10 - 2, \lambda 0 = 10 - 4, 5 \times \kappa 0 = 10 - 2, generate \{ \lambda i\} 

N
i=1 as independent realizations of a

uniform random variable on (10 - 4,10 - 3), and consider the dependence of the broker's local
value function V \theta 

P on her portfolio of clients \theta \in \{ 0,1\} N . As it is too computationally expensive
to compute V \theta 

P for all \theta \in \{ 0,1\} N , we restrict the analysis to portfolios \theta chosen as the 100p-
percentile of agents with the highest or lowest \lambda i, e.g., \theta may be such that \theta i = 1 if and only
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Figure 3. Broker's local value V \theta 

P when she chooses 100p\% of agents with the lowest (red) or highest (blue)
permanent impact.
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Figure 4. Broker's local value V \theta 

P when she chooses 100p\% of agents with the lowest (red) or highest (blue)
temporary impact.

if \lambda i belongs to the bottom 10\% of \{ \lambda i\} . The local value of the broker for p \in [0,1] is shown
in Figure 3.

Figure 3 shows that it is not optimal for the broker to take too many clients: in fact, it is
better to take too few than too many. It is also worth mentioning that the broker is almost
indifferent between choosing the agents with high or low \lambda , which indicates that a permanent
impact coefficient is not a good metric for choosing a portfolio of clients.

6.4. Many agents, choice of portfolio via \bfitkappa . In this subsection, we set N = 100, fix
\lambda = 10 - 4, \lambda 0 = 5\times 10 - 5, \kappa 0 = 10 - 3, generate \{ \kappa i\} 

N
i=1 as independent realizations of a uniform

random variable on (10 - 4,10 - 3), and consider the dependence of the broker's local value
function V \theta 

P on her portfolio of clients \theta \in \{ 0,1\} N . As before, we restrict our analysis to
portfolios \theta chosen as the 100p-percentile of agents with the highest or lowest \kappa i. The local
value of the broker for p\in [0,1] is shown in Figure 4.

Figure 4 shows, once more, that it is not optimal for the broker to take too many clients.
It also shows that choosing the agents with large \kappa is better than choosing those with low \kappa ,
which is natural in view of the discussion in subsection 6.2. The results of this experiment
also suggest that \kappa is a better characteristic for choosing a portfolio of clients than \lambda , as the
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value of the broker is noticeably different in the two cases where her clients have high or low \kappa .
This is in contrast to the results of the previous experiment.

Remark 6. It would be very interesting to derive rigorously the optimal client portfolios
in conveniently chosen portfolio classes, e.g., based on the impact coefficients of the clients.
We conjecture that this problem becomes tractable in the infinite-population version of the
model proposed herein. Nevertheless, we leave it for future research.

6.5. Do agents benefit from the presence of a broker? In this subsection, we set N = 8,
\lambda 0 = 10 - 4, \lambda i = 10 - 4 + i

8(10
 - 4  - 10 - 3), \kappa i = 10 - 2 + i

8(10
 - 1  - 10 - 2), for i = 1, . . . ,8, and

consider the agents' values as \kappa 0 varies over [0.001,0.01]. Figure 5 shows the agents' values
less their values in the absence of a broker (the latter corresponds to \theta = 0)---we refer to them
as relative values. Figure 6 shows the optimal portfolio of clients for each \kappa 0.

Figure 5 indicates that all agents benefit from the presence of a broker, as their relative
values are positive. This is explained by the fact that the broker's price impact is lower than
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Figure 5. Agents' relative values across different \kappa 0 (vertical line) and across agents (horizontal line).
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Figure 6. \theta \ast i across different \kappa 0 (vertical line) and across i (horizontal line).
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878 G. ALONSO ALVAREZ, S. NADTOCHIY, AND K. WEBSTER

those of the agents. The latter allows some of the agents to reduce their trading costs by
becoming broker's clients. As a result, the overall temporary impact on the price is reduced,
which benefits the other (independent) agents as well.

Figures 5 and 6 show that the relative values of the agents and the optimal portfolio of
clients increase as \kappa 0 decreases. This is natural, as small \kappa 0 implies larger benefit for each
agent who becomes a broker's client and reduces the overall temporary impact on price (which
benefits everyone).
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