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Abstract

We consider the Stefan problem with surface tension, also known as the Stefan—Gibbs—
Thomson problem, in an ambient space of arbitrary dimension. Assuming the radial
symmetry of the initial data we introduce a novel “probabilistic” notion of solution,
which can accommodate the discontinuities in time (of the radius) of the evolving
aggregate. Our main result establishes the global existence of a probabilistic solution
satisfying the natural upper bound on the sizes of the discontinuities. Moreover, we
prove that the upper bound is sharp in dimensions d 3, in the sense that none of the
discontinuities in the solution can be decreased in magnitude. The detailed analysis of
the discontinuities, via appropriate stochastic representations, differentiates this work
from the previous literature on weak solutions to the Stefan problem with surface
tension.

Mathematics Subject Classification 80A22 - 60H30 - 35B44

1 Introduction

Free boundary problems for the heat equation have been introduced independently by
Lamé & Clapeyron in [17] and by Stefan in [25-28], and are now commonly known as
Stefan problems. Following a lecture by Brillouin at the Institute Henri Poincaré in
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386 S. Nadtochiy, M. Shkolnikov

1929 and its publication [3] Stefan problems have taken a central place in the theory of
partial differential equations (see, e.g., the classical reference [24]) and in math-
ematical physics (see, e.g., the classical reference [29]). They are now considered
canonical as models of melting and freezing (and also of evaporation and condensa-
tion). The original Stefan problem is endowed with a Dirichlet boundary condition
that corresponds to melting and freezing at a constant equilibrium temperature. This is,
however, in violation of the Gibbs—Thomson principle which asserts that smaller
convex solid crystals find themselves in equilibrium with the associated liquid at a
lower temperature, due to a surface tension effect (see, e.g., [10, Subsection 8.3.1] for
more details). Stefan problems taking the Gibbs—Thomson principle into account are
referred to as Stefan problems with surface tension or Stefan—Gibbs—Thomson
problems (see, e.g., [29, Problem 1.1]).

The classical formulation of the Stefan problem with surface tension can be stated
as follows. Given some d 1,0 B R?, v(0,-): R = R and T B (0, =), one
needs to find (; @ RY);m(0,7) and (v(t, -): RY > R).my0, 1) satisfying

1
dtV(t,y)z zyv(t,Y), de\dt/ t(OI T)I (11)

v(t,y)= yHi(y), yBd:, tB(0,T) (1.2)
Vilv) = :Lyv(t’y)'"**"‘y“ 2‘/(t’y)'""t(¥)’9 yBd, tB[0,T)

(1.3)

where y > 0, H; is the mean curvature of d; (chosen so that H; 0 if; is convex),

Vi is the normal growth speed of ;, and nﬁ n ?are the normal vector fields on
d; directed into R¥\;, , respectively. In physical terms, for each ¢ @ [0, T'), the set
describes the region occupied by a solid, whereas R\, is the region occu-pied by the
associated liquid, and v(¢,-) captures the temperature distribution below the
equilibrium freezing point in both regions. Equation (1.1) then postulates that the
temperature distribution evolves according to the (standard) heat equation; Eq. (1.2)
quantifies the Gibbs—Thomson principle by enforcing a freezing temperature subceed-
ing the equilibrium freezing point by the multiple y (“surface tension parameter”) of
H;; finally, Eq. (1.3), known as the Stefan growth condition, asserts that the solid
grows (or shrinks) according to the sum of the (negative) temperature slopes in the
liquid and in the solid.

A global classical solution to (1.1)—(1.3) fails to exist in general, even when the
initial data (o, v(0, -)) is radially symmetric (see [20]). This is due to temperatures far
below the equilibrium freezing point in regions of high curvature along the solid—
liquid interface where melting at an infinite rate may occur. While the existence of
such blow-ups is established in [20], the author points out that “it is difficult to see what
happens to the solution” after a blow-up occurs (see also [11] for a related discussion in
the setting of d = 3). This feature has led to work on (1.1)—(1.3) in specific situations
where well-behaved solutions do exist, e.g., for small surface tension parametersy > 0
(see [9]), under a smallness assumption on the initial data (see [8]), near a flat initial
interface (see [13]), or when the initial interface is close to a steady sphere (see [12]). In
the full generality of (1.1)—(1.3) weak solutions, possibly with a phase function taking
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values strictly between 0 and 1 (i.e., a non-sharp interface), have been shown to exist
globally in [30]. In the seminal paper [19], the global existence of weak solutions with a
sharp interface is proved (see also [23, Example 5] and the references therein for an
alternative proof via an abstract gradient flow approach). As noted in [19, Section 5],
the solution concept in [19] is too weak to yield a unique solution. We therefore argue
the global existence for a new stronger notion of a weak solution to (1.1)—(1.3),
focusing on initial data that is radially symmetric.

The presence of the Gibbs—Thomson condition (1.2) makes it impossible to use
the global comparison principle that is available for the (radially symmetric) Stefan
problem with the Dirichlet boundary condition. This complicates the mathematical
analysis of (1.1)—(1.3) and, in some sense, is responsible for the formation of singu-
larities in time. On the other hand, the Gibbs—Thomson condition ensures the absence
of singularities in space, i.e., the boundary d, remains sufficiently regular. The latter is
important for establishing the well-posedness of Stefan-type problems in multiple
space dimensions: e.g., the results of [22] illustrate how the lack of regularity in space
may cause an approximating scheme to converge to a wrong limit. Although the reg-
ularity in space is irrelevant in the radially symmetric case (as the boundary of ;is
always a sphere), it is important to stress that our main motivation for the present work
is to develop methods that can ultimately be used to prove the well-posedness of
(1.1)—(1.3) without any spatial symmetry assumptions. In fact, Sect.2 provides a
“forward representation” (akin to a particle system) of the proposed Euler scheme for
(1.1)—(1.3) (see Lemma 2.4) which can be implemented without the assumption of
radial symmetry. Of course, the proof of convergence for this approximation in the
absence of radial symmetry requires additional tools and does not follow immediately
from the present work.

From here on we assume that ¢ is a ball of some radius ¢ > 0 and that v(0, -) is
radially symmetric. It is then natural to look for solutions to (1.1)—(1.3) for which
every , is a ball and all v(¢, -) are radially symmetric. Letting ; be the radius of ;and
taking u(t, |y|) = v(t, y) we recast the problem (1.1)—(1.3), with a minor abuse of
notation, as

O = %dxxu + ! Oxu, x@(0,=)\{;}, tB(0,T), (1.4)
X
u(t,i)= Y_=: H(;), t8(0,T), (1.5)
t
-2£umx+nﬁ,-2m&mx-nﬁﬂ (B0, T). (1.6)

Here, 10” + —dx in (1.4) is the radial part of the Laplacian on R¥, and - in ( 1.5)
is the mean curvature of the sphere with radius ;. Writing R + for [0 oo) we call a
function in the Skorokhod space D([0, T ), R+) a probabilistic solution to (1.4)—(1.6)
on [0, T') with initial data (o-, u(0-, -)) if

u(t,x) = E"lyr, 1y H(Re,_ ) + E' 14z, >y u(0-, Rs),
(t,x)B[0,T)x R+ (1.7)
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satisfies

%nﬂ—m4d= w(0- x)v(dx) - ult,x)v(dx), (@0, TEE),

R+ R+
(1.8)
with R being a d-dimensional Bessel process started from x under P*,

T, :=inf{s@[0,z+ 1]: (Rs— ¢t-s)(x — ¢) 0},

1-

v(dx) = x4 Vdx, ¢:=inf{t®B[0,T]: = 0}, (1.9)

and where we set ; := -, t @ [-1, 0) for convenience. Hereby, the choice of R
mirrors (1.4) (note that, for d = 1, we implicitly have ux (¢, 0) = 0, since then R is a
reflected standard Brownian motion); the definition (1.7) encodes the boundary
condition (1.5) together with the initial condition u(0-, -); and the growth condition
(1.8) is a weak formulation of the growth condition (1.6).

To see why (1.7) and (1.8) is a natural weak version of (1.4)—(1.6), consider any
classical solution (, u) to the latter system, such that, e.g., |u(t, x)| decays exponen-
tially in x locally uniformly in ¢ @ [0, T), x¢~ 10 u(t, x) converges to 0 as x - oo and
asx 0, and || is v(dx) x dt integrable. Then, (1.7) results from (1.4), (1.5) via the
standard Feynman-Kac formula. To obtain (1.8), we proceed as follows:

t o

u(t,x)v(dx) - u(0, x)v(dx) = d u(s, x)v(dx)ds
R+ R+ 0 ds 0
1 7 s
= 3 x4 ocu+ (d-1)x%%0u dxdso
0
LA d-2
+ 3 x4 0xyu+ (d-1)x Oxu dxds
0Os
Lrs g L=
= _ Ox x“""Oxu dx ds + —0x x“ " 0yu dxdso 0
2 0 2

0
t t
_ 3 a5 uls, s=) - Oxufs, s+)ds = -

_ 1
ldg= ()7 - (1)
0o 9 d

In general, probabilistic solutions to (1.4)—(1.6) exhibit jumps. (It is worth men-
tioning that, unlike the case without surface tension, one cannot exclude the jumps of
globally even by imposing smallness assumptions on the initial data.) Fig. 1 shows a
numerical simulation of a probabilistic solution (viaa version of the Euler scheme in
Definition 2.1), which, in particular, suggests multiple downward jumps and illus-
trates the complexity of the dynamics of , even for very simple initial data. Note also that
a jump may occur at time zero, which explains the notation (¢-, u(0-, -)) for the input
data. (The energy of the system is preserved at the initial jump, via (1.8).)
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Fig.1 The plot depicts a version of the Euler scheme in Definition 2.1, with Exponential(1/) time steps, for d
= 3, initial data (o-, u(0-,-)) = (0.9,1[0,0.81]) and parameter y = 1. Hereby, we have chosen

=0.5- 1073 and have discretized space according to a mesh size of 3 - 1073, The exponential time steps
enable us to use [4, Section IL.5, displays (1.0.4), (1.1.2), (1.1.6), (1.2.2), (1.2.6)] in the implementation

At any given time, many jump sizes may be consistent with the growth condi-tion
(1.8). The following additional condition rules out the ambiguity about the jump sizes
in:

B0, 1 ult- x)v(dx)>  H(x)- 1 v(dx)
- o= inf P P
(1.10)
+pr -
(= ¢- = inf y>0: u(t-, x)v(dx) < H(x)+ 1 v(dx) . (1.11)

- -

We call a probabilistic solution physical if it satisfies (1.10) at any downward jump
time ¢ and (1.11) at any upward jump time ¢. It is shown in Subsects. 4.1 and 4.2 that,
under the Assumption 1.1 below and under a natural upper bound on the absolute jump

sizes, any probabilistic solution has no upward jumps and that the absolute sizes of
its downward jumps are bounded from below by the right-hand side of (1.10), provided

d 3. Thus, a physical solution has the smallest possible jumps, which correspond to
the smallest amounts of energy exchange between the phase configuration and the
temperature. In particular, whenever the infimum in (1.10) is achieved at y & (0, ;- ), we

have

T UH() - uft-, x)v(dx) = 1v(dx) (1.12)
t-"y t-"y
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Fig.2 The graphs of the functions y - 0'8'_9)} 1 -110,0.817(x) x2dxandy - 0_9_y(359 dx, appearing

on the two sides of (1.12) for = 0, g- = 0.9,y = 1, u(0-, x) = 1[g,0.81)(x) and d = 3, are plotted

in orange and blue, respectively. The physical jump size - = o = 0.11 is given by the value of y at which

the two graphs intersect. In contrast, ; = 0, ¢ @ [0, ') (“instantaneous complete melting”) is a non-physical

probabilistic solution since its jump size att = 0, - — ¢ = 0.9, violates the “minimal energy preservation”
condition (1.10)

(see Fig. 2 for an example), so a unit of heat in excess of the Gibbs—Thomson tempera-
ture H (attained after ajump) leads to the melting of a unit volume of the solid. A similar
comment applies to (1.11). The physicality condition (1.10)—(1.11) is analogous with
the one recently leveraged to uniquely determine the solution of the one-dimensional
one-phase supercooled Stefan problem without surface tension (see [7, display (1.5)],
as well as [6, 14, 18, 21] that led up to [7]).

We work throughout under the following assumption on the input data (o-,
u(0-,-)).
Assumption 1.1 The function u(0-,-) is non-negative, continuous,
u(0-,x)v(dx) = 1, and there exist constants C; & (0, 1), C,> 0, a > 0 sugh
thatu(0-, x) C1@ C2e™®* ,x 0.In addition, o- > 0.

The above assumption holds throughout the paper even if not cited explicitly. We
are now ready to state our main result.

Theorem 1.2 Foranyy > 0, any (0-, u(0-, -)) satisfying Assumption 1.1, and any T
(0, =), there exists a probabilistic solution D([0, T), R+), in the sense that
satisfies (1.8) for all t @ [0, T & {), with u given by (1.7), and it is such that has no
upward jumps and the jump condition (1.10) holds with “” instead of “="" for all t
[0, TRZ]. If, in addition, d 3, then can be chosen so that it is physical, in the sense
that (1.10) holds (with equality) for all t @ [0, T B ).

Remark 1.3 A few comments on Assumption 1.1 and on Theorem 1.2 are in order:
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(a) The non-negativity of u(0-, -) means that the liquid is supercooled globally,
and not only near the solid-liquid interface as required by the Gibbs—Thomson
condition (1.5). This assumption can be easily relaxed to allow for u(0-, -) that
also takes negative values but is bounded from below by a constant —a. This
relaxation is achieved by a simple change of variables u < u + a and by setting
H(x)= Y+ a.

(b) The assumption R, u(0-, x)v(dx) = 1 can be relaxed to
(0, =) by a change of the space scale.

(¢) Theinequality u(0-, x) CiB Cre™** canbebrokendownintou(0-, -)es < 1
and an exponential decay of u(0-, -) at infinity. The former excludes the so-
called hypercooled regime, in which distinct phenomena are observed experi-
mentally, such as glass formation (see [10, Subsection 17.3.2] for more details).

(d) The problem can be set up on a bounded domain (as opposed to R+ ) by prescrib-
ing a Dirichlet or a Neumann condition at the exterior boundary (which would
correspond to absorption or reflection of the associated Bessel process).

(e) The proof of Theorem 1.2 is constructive and uses a family of numerical approx-
imations whose limit points are probabilistic solutions.

(f) Notethatthesize of a jump at the time { of complete melting may not satisfy (1.10),
and the growth (or, energy preservation) condition (1.8) may fail at # = . This is
because the radius of the ball at - may be too small to realize the prescribed jump
and to fulfill the growth condition. (Physically, this means that the temperature
along [0, ;-] will not be equal to H.) However, it is important to notice that
the absolute jump size at { is still bounded from above by the right-hand side of
(1.10), which excludes “unnecessary” jumps and, in turn, the obvious cases of
non-uniqueness.

(g) We conjecture that the additional physicality condition (1.10) leads to uniqueness
of a probabilistic solution . This conjecture is a subject of ongoing research.

(h) We also believe that the assumption d 3 can be relaxed, but this relaxation
requires the use of somewhat different methods and is also a subject of ongoing
investigation.

R, u(0-, x)v(dx)

The rest of the paper proves Theorem 1.2. In Sect.2, we introduce (implicit) Euler
scheme approximations associated with (1.7) and (1.8). We then show the relative
compactness of the Euler scheme approximations with respect to the Skorokhod
M1 topology, by passing to their equivalent forward probabilistic formulation. A
particular challenge is the non-monotonicity of , in contrast to the setting of the one-
dimensional one-phase supercooled Stefan problem studied in [7]. In Sect.3, we
investigate the limits of the Euler scheme approximations and derive the weak Ste-fan
growth condition (1.8). Hereby, we use the backward probabilistic formulation
together with the remarkable observation of [1, Proposition 3.4(i)]. In Sect.4, we
verify the physicality condition (1.10): in Subsects. 4.1 and 4.2 we prove that every
solution to (1.7) and (1.8) satisfies the desired lower bound on the absolute sizes of its
downward jumps, provided d 3, and Subsect. 4.3 shows that the jumps of the limit
points of the proposed Euler approximations satisfy the same upper bound and that
they do not jump upwards. The former is proved by suitably recasting the right-hand
side in (1.7) and by relying on the supermartingale property of H(R) whend 3. The
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latter is obtained by establishing a corresponding upper bound on the time increments
of the Euler scheme approximations and that this upper bound is preserved in the limit.

2 Euler scheme approximation: definition and relative compactness

Our starting point is an (implicit) Euler scheme approximation for (1.7) and (1.8).

Definition 2.1 For > 0, set = - u(0,x) = u(0-, x) and, for m =
0,1,...,7/- 1,

u(t,x): EY 1{1’ <r—m}H( ) +mEx l{r t—m}u(m/ Rt—m) ’,

t@(m,(m+ 1)), x>0,

0@supy @10, ,,):
g, Ul(m+1)=,x) 1g \y, ((x)+H(x) 1, y(x)-u(m,x)v(dx)@d < 1

d
m d_yd
(m+1) = if , >0 and R, u((m+ 1)-, x)v(dx) R, u(m, x)v(dx),
infy >
R, wl(m+1)=, ) Ny (e +H(x) 1 y(x)=u(m, x)v(dx) > 4 (,)?
-
B if ,>0 and r, ul(m+ 1)-,x)v(dx) < o u(m,x)v(dx),
u((m+ 1)-,x)1 (x)+ H(x)1 (x)
RNL (ms1) vm ] [ tme1) om ]
if (m+1) 7 m
u(fm+ 1),x) =
u(fm+ 1)-,x)1 (x)+ H(x)1 (x)
- RANL 1 . [ . 1
m (me1) m (men)if (m+1) =~ m*

In the above, R is a Bessel process of dimension d started from x 0 under P*, T is
its first hitting time of level > 0, and v(dx) := x?~! dx on R.. We also use the
following conventions: 79 := o=, H(0) := 0 (only needed for d = 1), sup@ = -oo,
inf@ = oo. The first display in Definition 2.1 mimics Eq. (1.7) while holding the
value of fixed at . In the second display of Definition 2.1, we pick the value
of ,,,1) such that upon resetting u((m + 1)-, -) to H between (m+1) and

rSthird display of Definition 2.1), and provided that > 0, the energy

preservation condition (m+1)
1 d d _ d
7 (m+) - (), = u(m, x)v(dx)
- u((m+ 1), x)v(dx) 2.1

R+
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is satisfied (cf. Eq. (1.8)), with the smallest possible value of ) - . Finally, we

define as the unique extension of the above values to a right- "

continuous function on [-1, 7+ 1] that is constant on each interval (m, (m+1))n (0,
T),andis equal to o- in[-1,0) and to , in [T, T + 1].

Remark 2.2 In the expressions appearing in Definition 2.1 we implicitly rely on the
fact that u((m + 1)-, x) = limgqpm+1) u(s, x) is well-defined. The proof of this fact
can be carried out in the same way as the proof of Lemma 3.2 below and is

omitted here for brevity.

The next proposition is the main result of this section.

Proposition 2.3 The family {}yo0 is relatively compact, in the sense that every
sequence ( "), with , 4 0 has a subsequence converging in the Skorokhod space
D([-1, T + 1], R+) equipped with the M1 topology.

The proof of Proposition 2.3 relies on the following two lemmas, which invoke the
next probabilistic objects:

* A d-dimensional Bessel process X started according to the density u (0-, - ) x?~1;
e Its hitting time T := inf 7> 0: X, - , Xo- <0
e Forevery m 1, the d-dimensional Bessel processes {X""};; started at time m from

the atoms of an independent Poisson random measure of intensity A in the interval
between (m-1) and ;

m . .
e Theirhittingtimesg":=inf ¢ > m: X™" Xt —,, <0 e
The jumps times {7 5’}1,-1 of a Poisson process with rate 2p 671 ()d -2 for
6> 0;
e [-1, 1]-valued independent uniform random variables {y ;};1 ;

o Independent d-dimensional Bessel processes {Y%};; started at the times
; {T5’},-1 from {(Té’ + 8yi) B 0};1, respectively;

i

J Theirhittingtimesgé':inf t> T5'l.: Yo Pl Y:_’;' - T<0

Lemma2.4 Fixa > 0. Then, forallm = 0, 1, ..., inf myo 1:0 = Om—l,

la 4
- "=Ptm- PtV>ma=1i1
- lim P T_5'rrr"z<r5' ,
— 0- i i.
d m 5\1/0” i
t/
u(t,’)v=pP X/B-,T>¢t + P X"@,t" >t 29
n=1 il ( : )
+1lim P Yt5’[’-, T‘s'_t<r‘5’ ,
1

610 !
il

td (m-1)",m ,
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where the second 6 {, 0 limit is in the sense of the total variation convergence of
measures.

Proof We argue (2.2) by induction over m. The two assertions are clear for m = 0.
Suppose now that we have (2.2) with (m — 1) in place of m, foranm 1. Letus show that
the first line of (2.2) holds and that

t/
u(t,”)v=P X/B, 7>t + P X;”"-,r”’l>t
n=11il
. i 2.3
+lim P v>'@, %r<t® 3)
5\1/0“ i i

tB((m=-1),m],

where the § {0 limit is in the sense of the total variation convergence of measures.
Step 1. We set A = and use the induction hypothesis along with the Markov
property of the Besselmp_rocess to compute, for any s & (0, ), any Borel 4 @ R+,
andt:= (m- 1)+ s,

m-1
P X,BA, 1>t + P X;’”’A,r"ll)t

n=1il

+lim P Y04, T%(m-1),t<t®
5\1/01_1
= P*(Rs @A, ta> s)PX(p-1)Bdx, T>(m - 1)R,
m-1
+ P X;’mlp)ldx, > (m-1)

n=1il

i

#imp ¥°' @dx, 7% (m-1) <t®
5\]/01'1 (m-1 i i
P (Rs@ A, Ta> s) ulfm- 1), x)v(dx)"*
W(s;x, y) PV (ta > s)dyu((m - 1), x)v(dx), r.

where ¢ is the transition kernel of the d-dimensional Bessel process and P¥ ™Y is the
law of the d-dimensional Bessel bridge from x to y on [0, s]. The explicit formula for

Y (see, e.g., [16, display (17)]) shows that x4~1 (s; x, y) = y?~ 1 (s; y, x) and that
under P*>Y the time-reversal of the canonical process has the law P¥>*. These
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and Fubini’s Theorem yield
m-1 )
P X;BA4, >t + P X""BA4, r”(i>t

n=11il

#flim P Y)'BA, T%(m-1), 1<%
631,10

i

Y(s;y, x) PY?¥(taA > s)u((m - 1), x)dx v(dy) 4

R+
) EY Lgyosyu((m - 1), Rs) v(dy).

Step 2. Next, we notice that
, i
PpY® @ (m-1)< 7% 1< %
t . L . j i
S pi-12t V’ A(d_z)l _2ly/\d—2r/5 1 '

= o T G-1re ¢ 25
i (2.4)
PMA (R, B TA> s r)dadr
-6
d-2 s 6
= vA pAta (R B-, A > s- 1) dadr.o

82 s

Then, using the notation of Step 1, we conclude that the density of the left-hand side
in the above display converges, as § .0, to

yAd‘2
oo PMaDY 0 s s— ) (s - 1A+ a,x)dadr
2 0 -6
yfcd—l s 6
= F %iféé—z PXPA Aty > s— 1) P(s - rix, A+ a)dadr
0 -4
yxd—l 1 K}
= %i\l%é_z P*(Rs—r B[A= 8,A+ 6], a> s- r)dr
0
d-1 T)\Bs
VX .1 A
= lim — E* 1¢r,BA-6,A+613 A7,
A 6o 82 0 *

provided the latter limit is well-defined.
In view of the occupation time formula (see, e.g., [15, Chapter 3, Theorem 7.1])
and Fubini’s Theorem, this equals to
d-1 A+6
yx lim L E L, 1gg Xia A-6
A o 62 “
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d-1 A+6
+yx limE_ 1 L, Y>syda (2.5)

A s 62 Ao s

where L is the semimartingale local time of R.
Forx > A, to evaluate the first summand in (2.5) we compute, ford 2and & > 0:

1 A+é
lim EX LY "% da
600 §2 A ™
= ilim &4 E* LY et = ~y llfm lim b hai" e vl
ala t ald bLo
=~ Liimiim ! d y X2 KT (Y 28, y v

2aid b b da A-4/240 Ko (A 20)42ba¥/2(20)427 Sapr-i(a 20,4 28) Ky 1(a 28)
X2 gan(y 29)

TN K (1 200
X a2+ Vg (x,v 29)
A2 KA 29)?
x~d/24 0 Ky (x ,ﬁ)

v Vv v
= Y—(20)%/2"1 " 200, Sap1(A 2ZTA 28)
A-3d/2%2 K (A 20) !
v

d v VvV __ v
(29)%/?1 lim - a®?Sap-1(a 28,1 20) Kasa-1(a 208)

v d _ v v
(20)%2° 1292 K 4/5_1 (A 2F) lim 35 Sar 1(a 28, A 29)
alA Qa

o v
= X2 Kap 1(x 29 (agjipe-1z (3 290 = X2 Kap 1(xy 29)
A-3d/22 Ky - (A 20) A=d/241 Ky -1 (A 28)
- B[], (2.6)

where

= (xl/z)l—d/2+2k
2sin((d/2 - l)n)k=0 K(1-df2+ k+ 1)

Kap-1(x1) :=

(xl/z)d/2—1+2k

K(d/2- T+ k+ 1)@¢
0 "y s

=:ld/a-1(x1)
is the modified Bessel function of the second kind, is the Gamma function,

Sas-1(x1, x2) := (x1x2)' 2 Lap-1(x1) Kajp-1(x2) = Kap-1(x1) Lajr-1(x2),

the third equality in (2.6) is from [4, Sections I1.4, I1.6: displays 2.3.3], the last equality
in (2.6) is a consequence of [4, Sections 11.4, 11.6: displays 2.0.1], and the intermediate
equalities in (2.6) follow from the properties of Sq/2-1 stated in [4, Appendix 2.10].
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Similarly, ford = 1 and & > 0, we use [4, Section 11.3: displays 2.3.3, 2.0.1] to
obtain

1 A+6
lim EXL? ¢ 9Tadq
50062 A R
) %hm d grze e = - fmlim 1 ¢¥er, 0%
& o pi 94
1 d \/gig_e—(x—a)‘/%?
= — —lim Bl Nl i
2alA b0 b da = TFela-A) 23+ 2b sinh((a - A)”2F)
Vv
- 21?6_(x a)' 2
= - lim lim ¥

ala bL0 2‘13’6(“ -A) 219'+2b smh((a A) 2‘1?')
\
—20 sinh((a—/\) 2_19)—cosh((a—/\) 29)
- v - vy
25 ela-2) 2_'7_+2b sinh((a- /\) 27)

. ela- x) 29 sinh((a - /\)—2'17)- cosh((a - /U 29)
alA e(a—A) £ ela-d) T
I

[6—191',\ ]

In addition, by [4, Sections I1.6: displays 2.3.1, 2.0.2], for d 3 it holds

A+é
500 512 EYLY liry<eyda = 2 0l da E'LY ryceoy = — )
W3 1im E et ) lir<eey  — lim — T

o dgo !
B I i 14 "(d/2-1) x> 2.7)
- 2a\J//\ bd,o b da (d/2-1)A2-d +pa(A2-d —gq2-d)

2 d

= AZ_—d = Px(T/\ < °°)

Ford = 1,2, [4, Sections I1.3, I1.4: displays 2.3.1] show that the first expression in
(2.7) is equal to 1, and thus equal to the last expression in (2.7).

In view of (2.6), (2.7), and since the weak convergence of probability measures on
R+ follows from the pointwise convergence of their Laplace transforms (see [2,
Example 5.5]),

d-1 1 A+6
lim EXLY 1z gda = H(A)P*(ta s)x 1 a-s
A 60 62 noA
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398 S. Nadtochiy, M. Shkolnikov

(Note that P¥(tp = s)= 0, s @R+, see [4, Section 11.6: display 2.02]). The second
summand in (2.5) vanishes since lims,0 5% AA_? L81¢z;>sy da = 0 almost surely and

| Ao 2 | Ao o E
LXI{gzm};iilé “E L Ha6_4 ) ¢
A+6
X - T erd
A
1A+5

T 8(a- AV da if d=1,
o ’;+6 8a2(loga - logA) da if d= 2,
L O 8(d - 2) 22 A2 gl (270 - A2 da if d 3
implies the uniform integrability of - A+ pa 1¢z)>sy da as 6 1 0. Here, we have
used the monotonicity of local times® JeAsén’ss inequality, and the first Ray-Knight
Theorem (see, e.g., [15, Chapter 6, Theorem 4.7]), [4, Sections 11.4, I1.6: displays
2.3.2], respectively.

For x < A, the first summand in (2.5) equals to H(A) P¥(ta s) x4=1 due to the

analogues of (2.6), (2.7) based on [4, Sections 11.3, 1.4, I1.6: displays 2.3.3, 2.0.1,
2.3.1, 2.0.2, and Appendix 2.10]. The second summand in (2.5) is seen to be 0 by a

repetition of the same argument, where we now compute E*[(L %, )?1by the Ray-Knight
Theorem in [32, Theorem 2]. All in all,

lim PY*" @, (m- 1)< T% t< t®= HA)P(ta s5)v, il

540 ! i i

where the § {0 limit is taken in the sense of pointwise convergence of (Lebesgue)
densities.

Step 3. Let us verify the applicability of the Dominated Convergence Theorem to the
function on R + that maps x to

de—l | Ao yxd—l Aqs E L Iy da+t
1 Ex a L1 sYida, = L a
A 62 a5 woA A 62 a5 52

(2.8)

as 6 0. To this end, we upper bound (2.8) by "', , **® E¥L“ ] da and use [32,

Theorem 2] for x < A, as well as [15, Chapter 6, Théorenr4.7], [4,8ections 11.4, IL.6:
displays 2.3.2] for A < x < A+ 1, to find that the latter equals to

BY _aA-a)da if d= 1,
fézsa A aflogA - loga)da if d= 2,
x %2—57 AsaAd? - q?2)da if d 3
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and

B2, A a- A)da if d= 1,
Je_%A M8 illoga - logA)da if d= 2,
@ A /\+6a /\2 d _ 2—d)+ a2d—3(A2_d _ a2—d)2 da if d 3,

X (de2paB#2d g2 A

respectively. For x A+ 1, we estimate (2.8) by vx' px (ta+1 < s) - A8 A+l pa
]da. By [15, Chapter 6, Theorem 4.7], [4, Sectichs 11.4, I1.6: displafffs 2}.‘3.2], this
coriputes to

PX(an < 5) 2 MPa- Nda if d= 1,

B xPY(tas < sﬁ%" A0 4floga - logA)da if d = 2,
1274 A+ a(A2-d _ aZ—d)

x4V PY (T < 5) ZZ!QQﬂI 2 A
B 4424732274 - 42 d)zda if d 3.

Thus, the expression in (2.8) can be estimated by C 1[0 a+1)(x) + Cx41p¥ (a4 <
5)1[a+1,0)(x) for some C = C(d,y,A) < e=. A comparison with a standard Brow-
nian motion in R started from x reveals the latter as (Lebesgue) integrable over
R+. Combining this conclusion with the results of Steps 1 and 2 we obtain (2.3) for
t@((m-1),m).

Step 4. Finally, we note that the reasoning thus far also reveals u(m—-, -) v as

m-1
P Xp@-,tm + P X:'n"", r"'lm
n=1il
6,

+lim P Y5’l T6<mr , il
610

where the 6 J 0 limit is in the sense of the total variation convergence of measures.
Together with the definition of u(m, -) (Definition 2.1) this shows thatu(m, -)v  equals
to

i

PXm-,r>m+PX"i B >m n=1i1
m i
+lim P Y5’| % m<z®
50,

(2.9)

where the limit is taken in the same sense as before. This completes the proof of (2.3).
The first equation in (2.2) follows from the induction hypothesis and

1 d d
E m  (m-1) = u((m- 1), x)v(dx) +
R
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400 S. Nadtochiy, M. Shkolnikov

u(m, x)v(dx)Rr.

= -P(t > m)+ P(t> (m- 1)) - P(t" >"m)n=1i1
+ Pt > (m=1)-lim P T% m<t® u=1i1 01 l

7 i i
+ lim P T[.é’(m—1)<r5’ ,if‘l’o
50

which, in turn, is a consequence of Definition 2.1, (2.9), and the induction hypothesis.

Remark 2.5 The first equation in (2.2) implies supg, (d + (0-)?)'/.

Lemma 2.6 Fixa > 0 and define
o=inftB@N: H() u(0-,:)=0QT. 2.1

t

Then:

\
(a) - > C_(nrrltz'— ‘m ) Jorait0—mt < m2 < o with (m2 - m ) 1, where C =
Clo-,u(0-, ) ) < oo,
(b)  is non-increasing on [c , T].

Proof (a).Clearly, it suffices to consider0 m1 < m2 < o with (mz—ml)_
1 and m infmy,my) =: A, my = SUPpm,m 1, =: A. Then, the
forward representation (2.2) gives

1 ¢ 4 n=1il my

L, =Ptma-Pt" >my

d m m i

- lim P Tié'm2<r6'il ;
640

- Ptmi+P " >nffn=1i1

. 5, 5.
+ lim P Tl mi<t’il
50
Pmi<t ma+Pmi<t’ m3=1i1
i
+ lim P Ti‘s’m1<r5’m2i
50
il
= P T (m 5 m ), u(m,x)y(dx). r.

my+
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Recalling A =inf(m,,m,1, A= sup[_m _m ] We boynd the latter expression
further by

A oo
u(mi, x)v(dx)+ PY£— (m> - ml) u(ml,x)v(dx)/l

_ A
+ P¥ ta (ma- m,) u(mi,x)v(dx). o
A A

Proceeding inductively over the intervals [0, ], [, 2], ... we read offu u(0-, -)e
on [0, m1] x R+ from Definition 2.1. Plugging in this estimate we upper bound the
above by

1 _ oo
u(0-, +)eo p - A+ - P* & (m2- m,) v(dx)a
+ P (ta (m2- mi))v(dx) .o

Next, we bound the sum of the two integrals by replacing P* with the law of a standard
Brownian motion in R started from x when x A, estimating P*(tx (m2-m1))

by 1 when x @ [(A? - d(m2 - m1)) 2,A) =: [Ag, A), and applying the Dambis-
Dubins-Schwarz Theorem (see, e.g., [15, Chapter 3, Problem 4.7]) when x & [0, Ag),
upon noting that the diffusion coefficient of R? is smaller or equal to 4A2 until ) and
that its drift coefficient is d. Thus, the sum of the two integrals in the above display is at
most

oo 7 A
v 2 A )+ v(dy)

x (mz =" A
Ao A2- d(ma- m1)- x?

+ + v(dx)
0 20" (ma - ml)

e - =7 -1 L sa_ a
=2 (m2 - m,) (y) A+y (m2-m)) dy + %_AO
* - 2/\\/( WM 5 * o d/2-1
+ 2A (ma——mp— A== 2yA_(m2 - m}——4dy0

where (x) is the probability that a standard normal randogl variable exceeds x. In
view of Remark 2.5, the above can be controlled by C (m2 - ml) for some C =
Clo-) < oo.

All in all, we have obtained

1 d d
E mo T om M(O_, )""
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whichduetoA =, A=, canbe written as

mi1°
d d Cu(0-,)eo *

1 -
7 my - om m (ma = miy).

m

vt /u(0-, )41,
(b). It suffices to check that, foro < T"andallm= 0, 1, ..., (T - o)/,

Since > v/u(0-, ), the left-hand side bounds (,,

T om )2 1

ufo + m,-) H(,, ) an(oi (2.11)

oc+m o+(m-1)*"
To this end, we argue by induction over m. We have H( ) u(0-, ) for m=0,
whereas H()<u(0-,-) , t&[0, o). Proceeding inductivel}g over the intervals [0, ],
[,2],...weread off& u(0-, ) on’]0,0)x R4+ from

Definition 2.1. Hence, u (o ,-) H(_). Suppose now that (2.11) holds for an

0 m < (T - o )/. Then, by Definition 2.1, the reversibility of R with respect to v,
and (2.11),

oo

uo+ (m+ 1)-,x v(dx)o

oo

= EXu(o+m, R)
+0Ex 1{1— <} H -uo+m, R V(dx) o+m

oo oo

E*uo+m, Rv(dx)= o +m uo+ m,x v(dx).o
0

Therefore, Definition 2.1 yields . Using Definition 2.1,
+(m+1) o +m

(2.11), and the latter inequality we find

uo+ m+1),- uo+ (m+ 1)-,-8H H(m+1)

H

o+(m+1) 7

thus concluding the proof. O
We are now ready to give the proof of Proposition 2.3.

Proof of Proposition 2.3 Remark 2.5 and Lemma 2.6 allow to easily verify the relative
compactness criterion for D([-1, T + 1], R) with the M1 topology (see, e.g., [3,
Theorem 4.3]). |

Remark 2.7 Employing the arguments in the proof of Lemma 2.6 it is easy to deduce
from Assumption 1.1 and Definition 2.1 the existence of a constant C> < e such that

u(t,x) Ci(t)BCa(Ci(t)+ 1)e”*/2, x>0, with
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Stefan problem with surface tension: global existence... 403

Ci(t) := u(0-, )= @ sup H(), s[(;,t]

holds for all ¢ @ [0, T']. This observation is used in Subsect. 4.3.

3 Limit points as solutions of the Stefan problem

In this section, we prove that every limit point of {}-0 solves the problem (1.7) and
(1.8). Forany @ D([-1, T], R+), with o- > 0, we recall the associated { = inf{z >
0:,= 0}and consider
u(t,x) = E" 1y, 1y H(Rr, )+ E* 14z, >3 u(0-, Ry),
(2, x) B0, TR{] x (0, =), (3.1)
wheret = inf{s 0:(Rs- /-s)(x - 1) 0}as before. For convenience, we set u(z,
x):=u(0-,x)fort < 0.
Let us establish several preliminary properties of u. First, the Markov property

of the Bessel process yields that, under Assumption 1.1, any u satisfying (3.1) also
satisfies forany 0 s < ¢ TR,

u(t,x) = E" Ve, 4-sy H(Re,_ ) + E' Lr,_ >t-syuls, Ri-s), x> 0.(3.2)

Next, we establish an upper bound on u.
Lemma 3.1 Let u be given by (3.1). Then, for any t @ [0, T B {], we have
u(t,x) Ci(t,x)BCoC (t,x)+ 1)e™®/2, x>0, with

Ci(t,x):=u(0-, ) B sup H(s-)B(H(x)B H{(;)), sBl0,1]

where Cy < oo is a constant and H(0) := oo.
Proof The upper bound u(0-, +)eo BIsupgpo . H(s-)B(H (x) @ H(;)) follows
directly from (3.1). To obtain the upper bound C2(C,(t, x) + 1 )e™ /2 e combine

(3.1), the fact that the d-dimensional Bessel process is the radial part of a Brownian
motion in R? and [16, displays (18), (19)], which yield that (i) the first term on the
right-hand side of (3.1) decays faster than exponentially as x - oo and that (ii) the
second term can be bounded by Ce™®/2 (recall that u(0-, x) Ce™®%). O

The next lemma characterizes u(t-, -) and u(t+, ).
Lemma 3.2 Let u be given by (3.1). Then, for x B R:\{;-, + }, limgpru(s, x) =: u(t-,
x) is well-defined for any t @ [0, TR {] with ;- > 0, and limgyru(s, x) =: u(t+, x)is
well-defined for any t @ [0, T B (). In addition,
u(t"', x): u(tl x)/ XBR+ \{t_lt}l (3'3)
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404 S. Nadtochiy, M. Shkolnikov

u(t-,x)= u(t,x), xBR+ \[(Bs,B,], BAu(t, x)
= H(x), xB(:8,:8:-). (3.5)

Proof Let us prove that, for x @ {;-, ;} and as s ¢, u(s, x) converges to E* | PR
H(er‘) + l{rf‘>t} I/I(O—, Rt); (36)

where /7 := inf{s > 0: (Rs - ;-5)(x - (-) 0}. To this end, we recall from (3.1)
that

ufs, x) = E g H(Re_ )+ Ve ssyu(0-, R), (3.7)

where T,_. = inf{g 0:(Ry - s-¢)(x - 5) 0} as before.
Letus show that the random variable inside the expectation in (3.7) converges almost

surely to the one inside the expectation in (3.6) as s M. On the event {t?~ > ¢}, itis
easy to see from the continuity of R and the right-continuity of that, almost surely,

T > ¢ for all large enough s @ (0, ¢). Similarly, on the event {ti~ =1},
we must have R, (o @o-, 0 Bo-) and infypjo,) |Rg = 1-¢| > O, from which we
deduce that Rs B (, Bo-, 0 Bo-) and T = s for all large enough s

(0, t). Next, consider the event {r '~ < ¢}. First, we notice that

!~ > 0 since x @ {/-, :}. Then, we use the strong Markov property of R and [1,
proof of Proposition 3.4(i)] to deduce that R. - ;-. cannot have zeroes in (0, ¢) that are
local extrema. The latter conclusion and the left-continuity of R. — ;-. imply that
any small enough open right neighborhood of t cbntains a point ¢ such that
(Rg = t-g)(x = (-) < Oand -4 = (;-4)-. Then, for all large enough s @ (0, ¢), we
have (Rg=s-4)(x =) < 0, whichimplies thatlimss;t T . On the other hatrd,
using the continuity of R and the right-continuity of , we deduce, as above that lim
T t’~, which altogether yields limsp, T = 7’7 < ¢. Collecting
these observations and employlng the contlnulty of H and u(0-, -), we conclude that
the random variable inside the expectation in (3.7) converges almost
surely to the one inside the expectation in (3.6) as s M.
It only remains to notice that x @infagos) - Rc and to apply the Dom-inated
Convergence Theorem (recall Assumption 1.1), to deduce that the right-hand
side of (3.7) converges to the expression in (3.6). To obtain (3.4), we simply notice
thatt/!~ =t .. forx @R+ \ [(@;-,; @,-]. The convergence of u(s, x) ass ¢, and
(3.3) follow from very similar arguments. Finally, we deduce (3.5) from (3.1) by
observing that t,_. = Oforx B (; B;-, ; @;-). O

The next proposition is then the main result of this section.

Proposition 3.3 Let be a limit point of {}>0 in the sense of Proposition 2.3, and let
u be defined by (3.1). Then, the weak Stefan growth condition holds:

Y= (o) = u(0-, x) v(dx) - u(t, x) v(dx),
R R, (B0, THE).

— (3.8
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Our proof of Proposition 3.3 is based on the following key lemma.

Lemma 3.4 Leti L 0besuchthat = limjge * inthe sense of Proposition2.3. Then,
with u defined by (3.1), withu * as in Definition 2.1, and with o1 = o1(t, k) := sup{s
t:s BN}, we haveu(t,x) = limgse u (o1, x) forallt [0, TR{) satisfying - = ¢
andallR+ x = 4.

Proof Considerat B [0, T@() as describedandan x > ;. (The proofforRy x < ;is
very similar.) We study u(¢, x) - u *(o1, x) via a coupling, i.e., by expressing it as a
single expectation. To this end, we let R* be a d-dimensional Bessel process

started from x and set

w7 =1inf s 0: R Bio1 + 1)

sSO1—S

and T=inf s 0: R 45 B(r+ 1)

Then, using (3.1), Definition 2.1, the Markov property of R*, and * =0_" we igfer

u(t,x) - ut(o1, x) = EleyH(RY) + Lzs>iyu(0-, RY) = 1oy H(RY)
t

~1r,>03u(05, RY,) . “3.9)
o

On the event {t > ¢}, we have R} > o@o- almost surely, so sup 5810, 1+€] (t-s -
R{) < 0, almost surely, for a sufficiently small € & (0, 1). Moreover, s > s- R,_/*

t-s
is the M1 limit of s > , _ /¢ = R,_Jon [~1, ¢], by definition of the M1 distance
(e.g., [5, Subsection 4.1]) and [31, Corollary 12.7.1]. Thus, [5, display (5.31)] yields
limgseo SUP pr_e (5 -5 = Ry )Supspr-&,(t-s = Ry ) <0. Tt follows that 74 >
t o 1 for all large enough £, almost surely. So, the random variable inside the
expectation in (3.9) is u(0-, R*) - u(0-, Rgl ) for all large enough £, almost surely.
On the event {T = ¢}, we have, almost surely, o - R* < 0< o- - R}, as well

as supggpo,1(s = R;—) < 0. Then, the M1 convergence of s - ; _,,¢ = R,_ t0 s>
s— R* ,ands = g Ffors @B [-1,0), imply that limsse Tk = T = fand that Ty o for
all large enough k. The random variable inside the expectation
in (3.9) then equals to H(R}) - H(Rx) almost surely, where limj > T4 = T almost
surely.

Weturnto the event{t < ¢}. Repeating the argument in the preceding paragraphs we
find limj, 5.7+ T - v almost surely, forall v > 0, and thus lim; ., 74+ T almost
surely. Further, the strong Markov property of R*, Girsanov’s Theorem, [1, proof of
Proposition 3.4(i)], and [31, Corollary 12.2.1] almost surely allow us to find - t >
ur L0 such that Ry, ,, < ¢-t-v, and s-t-v;, = (1-r-u )-. SiNCE (-7-u; =
limgseo ® , we conclude that Rx <k , and consequently tx T+ U;
< o1, for afl Targé enough k. As above, wé concfide tflat the random variable inside
the expectation in (3.9) equals to H (R* ) H(R* ) almost surely, where limseo T4 = T
almost surely.

At this point, we see from the almost sure continuity of R* and the continuity of

u(0-, ) and H that the random variable inside the expectation in (3.9) tends to 0
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406 S. Nadtochiy, M. Shkolnikov

almost surely in the limit £ - e=. By applying the Dominated Convergence Theorem
with the upper bound H(O_ inf[o,,]) Bu(0-, ) Bsup H(inf[o,kt] k) we getu(t, x) =

limrse u k(o1, Xx). O
We are now ready to give the proof of Proposition 3.3.

Proof of Proposition 3.3 Let ¢t @ [0, T B {) be such that ;- = ;. With o] as in
Lemma 3.4, our starting point is the identity

Yot = o) = u(0-, x)v(dx) - ut(o1, x)v(dx), (3.10)
-5 R+ R+
d @

which follows from Definition 2.1 (cf. Eq. (2.1)). We take the limit £ - <o on
both sides. The left-hand side tends to dl (1) = (0-)¢ thanks to the MI con-
vergence ¥ - . On the right-hand side, Lemma 3.4 gives lims> u* (01, x ) = u(t, x).
Moreover, as in (3.9),

uk(o1,x) = Elgey H(R* ) + lig;>03u(0-, R*))
sup H(inf ¥) P(t "o1) + E[u(0-, R* )1’
k [0,2]

[

Estimating P(ty o0,) via Remark 2.5 and a comparison of R* with a standard

Brownian motion in R started from x, and controlling E[u(0-, R* )] via u(0-, y)
e, y B R4+ and [16, display (18)], we justify the application of the Dominated
Convergence Theorem to the right-hand side of (3.10). All in all, the £ = oo limit of
(3.10) reads

L= (o) = u(0-, x) v(dx) - u(t, x) v(dx).
E R+ R+

Next, lett @ [0, TE{) be arbitrary. Then, there exist TB{ > # t withs- = 4 (see
[31, Corollary 12.2.1]). In particular,

N u(0-, x) v(dx) - u(t, x)v(dx).  (3.11)
E ] R+ R+

We take the limit / - oo on both sides. The left-hand side converges to L) - (o-)4
thanks to the right-continuity of . On the right-hand side, we use Lemma 3.2 to deduce
lim/seo u(t;, x) = u(t,x) forall x @ R+ \ {/-, :}. Recalling the v-integrable upper
bound on u(1;, -) from Lemma 3.1, we pass to the / - oo limit of (3.11) to find (3.8).
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4 Limit points as physical solutions of the Stefan problem

The goal of this section is to show that (i) any solution (, ) of (3.1), (3.8) withd 3
satisfies
.
t-— ¢ inf yB(0,,-): u(t-, x)v(dx) -~y
-
> H(x)- 1lv(dx) , 4.1)
t-"Y

and that (ii) any limit point of {}y0, with « defined via (3.1), satisfies the above
inequality with an equality. This shows that the limits points have the smallest jumps
among all solutions to (3.1), (3.8) and explains why we call such solutions physical.

4.1 Preliminary results

The following lemma asserts that cannot jump at time ¢ if #(¢-, -)- 1 and
supgap-1,,) Hls) 1.

Lemmad.l Let (, u) be a solution to (3.1), (3.8), and let t B [0, T B {) be such that
u(t=, ) landsupgp_y, H(s) 1. Then, (- = ;.

Proof The growth condition (3.8) yields, for-1 s < ¢:
1
()" = (s) = u(s, x) - u(t, x)v(dx). r.

. .d e
Using the Dominated Convergence Theorem (recall Lemma 3.1) we pass to the limit
in the above as s P, and get

1 R
()= (1) = u(t-, x) - u(t,x)v(dx)
4 = u(t-,x)- H(x)v(dx),

,
(e
t t-

where we also used Lemma 3.2 to obtain the last equality. It is easy to see that, if ;-

= 4, the right-hand side in the above is strictly less than the left-hand side, which
yields the conclusion of the lemma. O

An immediate corollary of Lemmas 3.1 and 4.1 is that cannot have jumps before o
:=inft> 0: H(;) > u(0-, +)o. 4.2)

It is also clear that, if jumps at o, the jump must be downwards. The next lemma
shows that is monotone after o.
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408 S. Nadtochiy, M. Shkolnikov

Lemma4.2 Let (, u) be a solution to (3.1), (3.8) whose upward jumps satisfy

+

yH(x)+ 1 v(dx) .
4.3)

+y
t— - inf y>0: uft-, x)v(dx) <

t =

Then, is non-increasing on [0, T B ().

Proof Forn u(0-, -)e, define
M= inft>0: sup H(s) n, o"= inf{t " : H(;) = H(sn)}. s0I0,]

Notice that Lemma 3.1 and (4.3) imply that, whenever 6" < T @, we have gn ga-.
To prove the lemma, we argue by contradiction. Assume that is not non-increasing
on [0, T @). Then, there exists n H( ) u(0-, ") _ such that
o< TRA{,gn = gn-, u(0",)s H(sn), and for anye (0, TR - 0 ) there exists
an € [ (0, €) such that

on < gn+e, o s onN+es S [0-'7’ o+ €],
sup u(s, ) o =:Cy< o=,
s@[an,o+€]

Next, using (3.8), (3.2), and setting T = Tignse. W obtain

+e)-

0< l(o'ng)d - (on)? = u(o", x)v(dx) - u(o™+ g, x)v(dx)
d R4 R
= EY 14reyu(o”, Rg) - H(R:) v(dx)
E¥ 14rey (H(on) - H(R:)) v(dx)

R+

C2(gn+e = on) P*t £ v(dx)
R+

C3lanve = an) (onse)® = (on)? + " pr(c e)v(dx)
0

’
oo

+ PY(t €)v(dx)

ol+e

Cilonse = on) (anse)” = (on)
af ( o1 = X )

+ 2d P sup Ws v(dx)
0 sB[0,€ ] — =

+ P inf W, -x (x+ o )4 Ndx

R. s@[0,e ]
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where W is a standard Brownian motion in R. It remains to divide the above by
on+e — an, consider € .0, and notice that ;1+, = o0 and that the integrals

in the last expression of the above vanish as € {0, to obtain 4, d-10. This is the
desired contradiction. |

4.2 Lower bound on the jump sizes

In this subsection, we show (4.1) for any solution (, u) to (3.1), (3.8) with d 3
satisfying (4.3).

Proposition 4.3 Let (, u) be a solution to (3.1), (3.8) with d 3 satisfying (4.3), and
lett B [0, T R) be ajump time of . Then,

t- t-

- = ¢ inf y@E(0,:-): u(t-, x)v(dx) > (H(x)- 1) v(dx)

==y ==y

44

Proof Recall that Lemmas 3.1 and 4.1 imply that cannot have jumps before o.
Therefore, ¢ o. Recall also that is non-increasing on [o—-, T B ). Hence, ;- >
and u(s, -) H(s) for all sufficiently small s ¢.

Then, choosing < ¢ < s sufficiently close to ¢ and using (3.2), (3.8) we obtain

()%= ()% = u(s, x)v(dx) - u(r, x)v(dx)

R+ R4+
Exl{rs_.s"r} H(Rts_,) + l{ts__>s—r} u(r, Rs-r) = u(r, x)v(dx)
R .

E' e _ sy (H(Re_ ) = u(r, Rs-r)) + ulr, Rs-) = u(r, x)v(dx) _

R
E*1¢r,_s-r} (H(Rx,_ ) = u(r, Rs-y))v(dx)
_ (d/2+ 1) El(r (x)s—ry H(lx + Br(x)|) = ufr, |x + Bs—r|)dx (d/2
= dnf?  RiE (e Boy)s=r)
H(|x + Bry(x-B,.,) = Bs—r|) = u(r, |x|) dx, 45

where is the Gamma function, B is a standard Brownian motion in R?, and ts(x) is
the first hitting time of the boundary s-. by |x + B.|. In the above, we have used
Fubini’s Theorem, which is justified by the arguments below.

Notice that, almost surely for Lebesgue almost every x @ R?, u(r, |x|) converges
tou(t—, |x|) (recall Lemma 3.2) and Le (x-B,_,)s~r} convergesto 1, )r(lyg_l), asr P
tands J¢.Inaddition, as is bounded away from zero in [-1, £ +€] for some € >
0,and in view of Lemma 3.1, we conclude that H(|x + B (x-p _ )= Bs—r|)-u(r, |x])
is bounded in absolute value uniformly over all x > 0 and all small enoughs—-r > 0.
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410 S. Nadtochiy, M. Shkolnikov

Moreover, P(ts(x — Bs-r) s—r) is bounded from above by an integrable function of
x, uniformly over all small enough s — » > 0. Then, sending s .z, 7 ¢, and using the
Dominated Convergence Theorem we deduce from (4.5):

|| I
1 d 4 (d/2+1)
(=) =(:)" = Y —an H( x )-u(t-, |x )dx
d Al ey
‘-
= H(x)-u(t-, x)v(dx). (4.6)
t
Now, let us assume that there exists an n & (0, ;-] such that 0 < ;- - ; < nand

T ul- x)vidx) | H(x)- lv(dx), Y10, 7). 4.7)
t-=y -y

Our goal is to show that this assumption leads to a contradiction, yielding the propo-
sition. To this end, we observe that (4.6) gives
t- t-
u(t-, x)v(dx) = H(x)- lv(dx). (4.8)
t t
Letusnow fixay @ (0,n - (;- - )) and recall that u(t-, x) = u(t,x) forx <
¢ (see Lemma 3.2), which along with (4.8) and (4.7) implies

t t
u(t, x)v(dx) H(x)- 1lv(dx), y [0, x]. 4.9)
=y -y
Next, we repeat the first four steps in (4.5) with# = ¢ < s and use the monotonicity
of on [¢, s] to obtain

- 0 B Ny (H(Re) - ult, Ry—))v(dx). .

d
Due to the right-continuity of , for x > § the event Ry—¢ @ [, - x, (] impliest,_. s -

t. Thus, for small enoughs - ¢t > Oandy < ;- - ; we have

oo

Lt 07 B Nk (H(Re) = ult, Ro-r))v(dx)
‘ b By Ny (H(Re )~ H(Ry—)) v(dx).
Notice also that H(R) is a supermartingale for d 3. Hence,
E* Ve, 51y (H(Rr_ )= H(Rs-1))
= EY Yy, s-ry E'[H(Re,_n(s-1)) = H(Rs-t) | FRX_} 0,
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and so,

oo

LS B kst (H(Re-t) = ult, Ry-))v(dx).
d ‘ (4.10)

Further, with f(z) := qzer -y, W(H(1z]) = u(t, |z])), z B RY, we have for, -
s < x/8:

oo

EX 1R, 00, -x,, 1} (H(Rs-¢) = u(t, Rs—¢))v(dx) s

d/2+1 .

. (d2]) ELf(z+By-i)] dz
dred’2 {z1

d/2 + 1
- ! d/z) L= Wiz 1o -n (H(121) = uft, |2])) dz
(d/2%71 R

E1q| B, 1x/2} 1(1z-8o 1, 1210(H(12]) = uf(t, |2]))dz
7

d 1 RO _
= ( ) El{i3  1x/2) (H(r)- u(t,r)) rd=1 qr o(dv), s

Cdmd2 st oV

where B isastandard d-dimensional Brownian motion, S?~! is the (d-1)-dimensional
unit sphere centered at the origin, o(dv) is the volume element of this sphere, and
@(v) is the distance between the origin and the sphere {z: |z- Bs—| = s} along the
directionv @ S  d4-1.On the event {| Bs—¢| x/2}, we have ;- ¢(v) x, and hence
(4.9) yields
t t

(H(r)- u(t,r))r¢ ' dro(dv) rd7ldr o(dv).
sd-1 o(v)e, Sd-1 o(v)e,

The right-hand side is the Lebesgue measure of the difference {z : |z] }\ {z:
| ZBs-¢ | s } between two balls, which is equal to % (()~(s)?), provided
| Bs—¢| - s. Whenever the latter inequality is vioiated, the aforementioned measure

is strictly larger than - ”d/z((t )d - (s )d ), and it depends continuously on
y larg T p y
| Bs-¢|. Using this observation gn{&Jrre)callin that; - 5 < )(/8 we obtain
g g

(d/2+ 1 E1{|B 1x/2} t (H(r)- u(t,r)) I"d_ldl”O(dV)S
drd/? o oduviz;
1
%)d = ()P (|Bs=t| x/2)+ CiP(|Bs=¢| B [x/4, x/21)
1

5)”’— (s))+ CiP(|Bs—t| > x/4) = C2P (| Bst| > x/2),

with some C1, C2 @ (0, e=). For sufficiently small s - ¢ > 0, the above is strictly
larger than 1((,)? - (5)?), which yields the desired contradiction to (4.10). O
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412 S. Nadtochiy, M. Shkolnikov

4.3 Upper bound on the jump sizes

In this subsection, we show that the absolute jump sizes of the limits points of {}.,.0
satisfy the desired upper bound for all d. The following proposition is the main result of
this subsection and completes the proof of Theorem 1.2.

Proposition 4.4 Consider a limit point of {} 0, a jump time t B [0, T B{] of , and u
defined by (3.1). Then,
YE(0, -] : w(t-, x)v(dx)>  H{x)- 1 v(dx)
- =t inf ==y -y
(4.11)

t= ¢~ inf y>0: u(t-, x)v(dx) < H(x)+ 1 v(dx) . (4.12)

The proof of Proposition 4.4 relies on the following lemmas.

Lemma4.5 There are hi, h2: (0, =) - R+ bounded on compact subsets of (0, =)
such that

v
u((m+ 1)-, x)v(dx) - u(m,x)v(dx) h () v
R+ R. " (4.13)
m=20,1,..., 0, 1/h2(,,) such that , > 0.

Proof By using Definition 2.1, we represent the left-hand side in (4.13) as
E¥1¢c «}H() - u(m, R)v(dx)

m

+ E¥[u(m, R)] v(dx) - u(m, x)v(dx). r,

R+

+

Since the d-dimensional Bessel process is reversible with respect to the measure v,
the second line in the latter display is equal to 0. Therefore, we arrive at the upper
bound

H(,) Pt < v(dx). (4.14)
R m
Finally, we split the integral in (4.14) according to x

[ (,))-4d, ,),andx B [0, (,)?- d).Forx ,, we bound
P*(t < ) by replacing R* with a standard Brownian motion in R started from

x. Forx o[ (,)*- d,,), we estimate P*(t < ) by 1. For

X [0_, (1 )2 - d), we apply the Dambis-Dubins-Schwarz Theorem (see, e.g., [15,
Chapter 3, Problem 4.7]) upon noting that the diffusion coefficient of (R*)? is
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smaller or equal to 4/, )? until T , and that its drift coefficient equals to 4. Thus, we get
the upper bound "

2 My(dx)
= ( )2-d B 2 2
+ - v(dx)+ 2 .o v ydk )t 0
" /(2 )
v 7 Voo 14 2 d/2 2
=2 . I+ y ) dy+ () - (()3- A/ v ()
v d/2-1
+ VWWT)}) —)?- d- y dy.
2. m " 2m
The latter expression readily admits an estimate of the form asserted in (4.13). O

Lemma 4.6 Foranye > 0, there exist C = C(g), 0 = o(€), both in (0, =), such that
'
m= (m+1) C
provided (,,,/y ) B [1 + €, 1/€] and @ (0, o).

Proof. By Definition 2.1,
satisfying

(m+1) is bounded from below by any y & [0, )m

uf(fm+ 1)-, x)- u(m, x)v(dx)Rr.

v UH(x)- ulm+ 1)-, x)v(dx)y
< J0'-

m

Lemma 4.5 and the fact that H(y) 1/(1+¢g/2) for y @ [ —e%/Z, ] yieldsmfor such
y:

uf(fm+ 1)-, x)- u(m, x)v(dx)Rr.

+ U H(x)- u((m+ 1)-, x)v(dx)y

v "
Ci(e) + 1/(1+ &/2)v(dx)y
_ v 1 d_.d
=G et e
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414 S. Nadtochiy, M. Shkolnikov

Thus,

d(1+ €/2)Ci(g)Y,

d pd _
(mar)? () i

which implies, for all @ (0, o(€)),

d-1 d d v
dly + ve/2) (= ymer)) 0 = ((mer)) C2(€) . O
|
Lemma 4.7 Foranyt B [o, T B{] (with o defined in (4.2)) and n B N, let
sz inf yB(0,]:  u(t- xjvidx)>  H(x)- 1 vidx)+ 1,
(-=y t-=y ;
and, forr B [-1, t),
¢ =g(,r,n):=inf{s@[r, TA]: ; - - zn}
Then, for any n B N large enough, we have
lim, g, lim o 1~ = 2Zn
if t- = ¢ > zn, where the first limit inferior is taken over the continuity points r of .
Proof Recall the condition that determines the size of a downward jump:
s = 0@sup y@[0,,_): u(e , x) 1R+\[y/'_](x) + H(x)l[y/s_](x)
" 15) - ufe 4,
Jvidx) < (o) - yil
Due to Lemma 4.5, for any y & [0, ,_),
. uleg-, x) 1R+\[y,,,](x) + H(x) I[y,&](x) - u( - ,x)v(dx)
= ule-,x)- uleg - ,x)v(dx)
R+
(4.16)
o (H(x) = u (8=, 21y, (x) v(d)
v .-
Ci + H(x)- u(e-, x)v(dx).y
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We argue by contradiction and assume that there existan &y & (0, ;- — z;] and a
sequence r,; Pt of continuity points of such that for every r = rp,

lim e - = zn— €. (4.17)

Then, we choose mo @ N large enough to ensure sure that infsg. 1) s > - = zn
(notethatz, > 0). As a consequence, there exists a o(mo) so that forall m mo and all
(0, 0(mo)), it holdse @ (r,, T B ], and hence oo > t- T In. Next,
we use the definition of z, to deduce the existence of 0 < 61 < &2 < g and 63 > 0
with the property

inf yu(t—, x) - H(x)- lv(dx) 26 .

YBli-=zn, -1, yBle-=zn=62, -=zn=61] y

Let us fix an arbitrary y B [~ =z, =62, - =z, —61]. Increasing mo and making it
depend on y, if needed, we combine the convergence of u(ru, ) to u(t-, -) (see
Lemma 3.2) and the Dominated Convergence Theorem (recall Lemma 3.1) to conclude
that

y
inf u(r ,mx) - H(x)- lv(dx) ¢, s m mo.
VB[--zp,¢-] y
Now, from the M1-convergence -> we infer that for all m m , we have(}imw
& =t . This observation, as well as the M1-convergence of - , the property >
(- — zn, and the boundedness of # on [0, £) x R+ (see Lemma 3.1) and of H on [;-
- z; — 67,%3) yield via the latter display:

limyy  wfrm, x) - H(x)- lv(dx) 65, m mo. (4.18)
y

We consider two possible cases. The first case is ¢+ = 0. In this case, Lemma 3.1
and the choice of z, imply ;- - z, > y for large enoughn 1 (as ;- > yand
limpse zy = 0). Then, for any sufficiently small € > 0 and any m mo, there
existsa 1(m) > Osuchthat ,_ = ,_ /- - zx y(l+ ¢g)forall @(0,1(m)).
Finally, Lemma 4.6 and the inequality t- — zn give the
desired contradiction to (4.17). e-

The second caseist > o. Increasing mo we ensure thatry, ;> o.Decreasingo > 0,
if needed, we deduce from Lemma 2.6 that, for any m m andjall @ (0, ), the
function is non-increasing on [r,; , =) and u(rm, -) H(). Using this observation
and the Feynman-Kac representation we oubtain, forany x > 0, m mo, " (0, o), and &
(0, (t = rm)B):

ule - & x)= E'1 Lo y H(R: . )

+ EY 1 >6-&-r YU(rm, Re-6-r )

g-&-

0
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416 S. Nadtochiy, M. Shkolnikov

E*[u(rm, Re-g-r, )]-

Sending & 0 in the latter display and using the continuity of the transition kernel of
R in time with respect to the L'-norm in space together with the boundedness of
u(rm, -) for sufficiently small (see Remark 2.7) we deduce that for any x > 0, m mo,
(0, 1(m)),

u(e-,x) E [u(rm, Re-r, )].
Next, we take 0 andrely one = ¢ and u(rm, ) > u(rm, -) (pointwise inR + \ {,

}, cf. Lemma 3.4), as well as the Dominated Convergence Theorem and the continuity
of the transition kernel of R in time to conclude that for any m mo and @ (0, 1(m)),

" E (rmy Roory )] = E¥Tu(rmy Reory )] v(dx) %,

y 7
where we decrease 1(m) > 0, if needed. Collecting the above, we obtain
o- o- 1)
(o=, x)v(dx)  E[u(rm, Ri-r Jv(dx)= ", (4.19)
y y m Z

forany m mo and & (0, 1(m)).
Now, we take the functionsu (7 m, z) := u(rm, |z|) on R?, and increase mo and
decrease 1(m ), if needed, to ensure that

e- d/2+ 1
E* [u(rm, Ri-r )1v(dx) = ( ) El(rm, z+ Bi-p )]dz
¥ m Tz {1z1080y,e-1} m
d/2 + 1
= (/4+)E u(rm,z)dz
drd/2 {12=Bi-ry 8Ly, 1} 420
(d/2 + 1) d 63 ( ’ )
W M(”'m, Z) z - ”Zl[y»a._]} Z
= u(rm, x)v(dx)- 63
y 4

holds for all m mo and @ (0, 1(m)). In the above, we made use of the bound-edness
of u on [0,7) x R+ and of the fact that the expected Lebesgue measure of the
symmetric difference between the sets {z: |z- B/~ |B [y, k]} and {z: |z| & [y, k]}
vanishes as r,, ¢, locally uniformly in k. y. "

Collecting (4.16), (4.19), (4.20), (4.18) we get that for any y B [;- = z, = 62, (-
- zp — 61], there exists an mo > 0 such that for any m mo, there exists a 1(m) > 0 for
which

. u(e—, x)1R+\[y,67](x)+ H(x)l[y,w](x)— ufe -, x)v(dx)

123



Stefan problem with surface tension: global existence... 417

\i 6-
Ci ™ + H(x)- u(6-, x)v(dx)y

v o- . 03
Cp + H(x)- EX[u(rm, Ri-» )]mv(dx)+ T
y

Voo 3
Ci + H(x)- u(rm, x)v(dx)+ 5
y

)
Ci~ + d(,l)d—yd— 4 (&3—1(771))

holds. In view of (4.15), this yields Yoi- = - & > - - zy — €0, resulting in
the desired contradiction to the choice of €. O

We conclude the subsection with the proof of Proposition 4.4.

Proof of Proposition 4.4 First, we recall that satisfies (3.8), with u given by (3.1) (see
Proposition 3.3). Recall also (from Subsect. 4.1) that does notjump in [0, 0 @T'), and
that its jump at o (if any) must be downwards, whereby o is defined in (4.2). On the
other hand, Lemma 2.6 asserts that is non-increasing in [0, T] (see (2.10)). The
M1 convergence of to and the above observations yield that is non-increasing on (g,
T']. Thus, to prove the proposition, it suffices to establish (4.11) for¢ @ [o, TR]. We let
zn, n B N be as in Lemma 4.7. Notice that the sequence (z,),zn 1S non-increasing
and strictly positive. If z, = oo for all n @ N, then the right-hand side of
(4.11) equals == and the statement of the proposition holds trivially. Hence, without loss
of generality we assume thatz, @ (0, -], n @ N, and aim to show that;-—; z, forall n
N. For this purpose, we fix an n @ N and suppose that ;- = ; > z,. To obtain a
contradiction we pick any € @ (0, z,) and any continuity time 0 s < ¢ of

which is close enough to ¢ that ; > ;- — z,. Next, we let

o1 = o1(s,) := supR [0, s]: 5@ N}, 4.21) o2
= oa2(n,s,) = inf@B[s, T]l:y (- - za} (4.22)

Then, by Definition 2.1,

1
()= () u(o , x)v(dx)
7 o o Re\[ -¢, +€] 2
tE 4 -
+u (@, x)vidx) (4.23)
(-e)r

- ufo1,x)v(dx). r.
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To study the first summand on the right-hand side of (4.23) we apply Definition 2.1
and get

u(oz,x) = Exl{r <02—01}H(Rr )+ Exl{-[- gz_g]}u(o'], Ra2_01) H
op-+ oy 0y

2= r[0,02)

P (t < 02~ o)+ E[u(01, Roy-0,)],

oy inf B
for x B R+\[, &g * g]. To analyze the second summand on the right-hand
side of (4.23) we note that

M(UZ,X): Exl{r <02—01}H(Rr )+ Exl{r gz_gl}u(al, Rg2—o'1) H x@
gy ay- gy

@1

re[0,a2) inf

forallx B[( -,£)*, + el whereasforx B[ + ¢ - g,

[}

inf BIPY(Ty-e A Ty4e < 02 — al)+ H(x - g)

u(oz,x) Hx
@ 2) r
[0,0

(since for such x, itholds T < 02 - o1 on the event {Tx-¢BATy+e 02 — 01}).
o s
Plugging the estimates of this f)aragraph into (4.23), we arrive at

1
() =)
d 01_5 o2
o H(x - g)v(dx) + E lu (01, Ro,-0,)1v(dx)
0y +E Ri\lg, =€, 0, *€]
- u(o1, x)v(dx)
R
e, (4.24)
+ 4e+ PY¥(tx_¢BlTy+e < 02-01)dx
02+E
sup x? Y Hx® inf Bl xe(
_E)+'05£] o 2 r@[0,0 )
+ H inf PY(t < oy- o1)v(dx),
- . 2
Ri\lg, ~€,0, *€] r[z(),o) ’ o -
for all sufficiently small, € > 0.
Next, we take the limit |, 0 on both sides. By construction, we havelimy,o = 5: In
addition, thanks to Lemma 4.7, we have lim = (- - zp - 6(s), with 5(s)

0 such that limgq; 6(s) = 0. This, in particular, meHls tht for all large enough s < ¢
and small enough € > 0 wehavelim ,, - € > 0. Using these observations,
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Proposition 2.3 and Remark 2.7 we take limits in (4.24), as .0, to obtain

é(s)" (1= 20 b(s))!
s H(x - €)v(dx) - u(s, x)v(dx)+ Cie
t-—zn=0(s)+e R+
+ Iim E¥[u(o1, Ro -p )]v(dx)

W R\lgy0,]
—-&

+CoTim 7' Px(Ty-e@Tyse<02-01) v(dx)
0

0.2+E
+ C3im PY(t < 02- 0,)v(dx).
NG 2 97

R+\[02_£/gl +5]

Finally, we pass to the limit in the above, as s M, to deduce

(€

5 (t-) @ (i--za) 4 H(x - €)v(dx)
- - x)v(dx)+ Cie
- u(t-, x)v(dx)
Re\li-=zn,¢-1
(4.25)
+ Tim lim E*lu (01, Roy-o,)] v(dx)

s 0 R\, 0, ]

—-&

+ CpIim Im ol PX(Ty-e@Ty+e < 02— 01)v(dx)

s™ 0 02+g
+ C3Iim lim P*(t <02 - o1)v(dx).
sP™ 0 R+\[H2 ~&4, +e] 2 0

At this point, it suffices to show that the second, the third, and the fourth lines in the
latter display are non-positive. Indeed, once the latter is established, we can let € {0
and recall the definition of z,, to obtain

t- -

O, H(x)v(dx) - u(t-, x) v(dx)

t-=Zn t-=Zn
d

d _ _ d _
d@—) (1- = zn) n’ l

which is the desired contradiction.
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The fourth line in (4.25),

C3 Iim Tim PY(t <02 - o)v(dx)
st 0 , O

Ri\lg, =€ 0y *el

<02 - o1)v(dx),

= (3 Tim Tim PY(T
™ A0 Re\[i--za-6,5+€] :

vanishes because 00 -0 ta]kes valuesin [- - zn — &/2, s + €/2] for all

s < t close enough ot andall > 0 small enough; limyo (02 = 01) = t - s; the
process R dominates a standard Brownian motion in R started from x forx > s+¢; and
the process ( R.r[_ X e )? can be compared to a Brownian motion in R with drift d

and diffusion 2(;- - z, - &/2) started from x for x <2,_ - z, — € (see the second
paragraph in the proof of Lemma 4.5 for a very similar argument).

To see that the third line in (4.25),

—-€
Cy [im [im o Py(Tx-eBTyse < 02- 0))v(dx)
s™ 0 ‘e

92

£

Colim Tim PX(Tx-¢ < 02- 0,)+ P¥(Txse < 02~ 01)v(dx),
s™ L0

t-—Zpté€

equals to 0, we recall limy,0 (02 - 01) = ¢ -5, dominate R* by a standard Brownian
motion in R started from x to bound P* (Tyx-¢ < 02 - ol), and compare (R* TH})Z toa
Brownian motion in R with drift d and diffusion 2y started from x to estirhate P* (Tx+e
<o2-01).

Lastly, we consider the term

Tim Tim E*[u(01, Ro -5 )] v(dx)

S/[\R+w02'01]

- u(t-, x)v(dx). (4.26)
Re\lz-=zn,¢-1]

Applying Lemma 4.7 and the Dominated Convergence Theorem (recall Remark 2.7)
we see

Ri\lp. o
lim  E*[u(o1, Ro -0 )]v(dx) Vovre]

- E*[u(o1, Ro 1g )] v(dx)
R+\[[—_Zn,s]

lim E*[u(01, Ro -5 )] v(dx) Ca6(s).
o [t-=zn=6(s),t--2zn]
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Using the definition of the Bessel process we get

E*[u(01, Ro —p )] v(dx)

Ri\lr-=zn,s]
(d/2 + 1
= d]'[d/z) 4 1R+\[t7‘Zn,S](|x |)u(01/ Ix + BUz—Ul I)dx =
R
(d/2 + 1
W1R+\u-—zn,s](|x = Boy-o 1) u(o1, |x|)dx,

where is the Gamma function and B is a standard Brownian motion in R?. Then,
Lemma 3.4 and the Dominated Convergence Theorem yield

Tim E*[u(01, Ro -p )] v(dx)
NG Ri\lr-=zn,s]
C(d2+ 1

Trd) y TR\[--zu,s1 (1% = Be=s[Jufs, |x])dx .

Taking s ¢ we obtain

Tim lim E*[u(01, Ro - )] v(dx)
st 0 Re\lr-=zn,s]
df2+ 1
e A (LTI
- an RCwu(t-, x) v(dx).
Ri\lr-=zn,¢-]

Collecting the above four displays we conclude that the expression in (4.26) equals to
0. O
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