

1 **EPIDMS: DATA MANAGEMENT AND ANALYTICS FOR DECISION MAKING FROM EPIDEMIC SPREAD**2 **SIMULATION ENSEMBLES^{i,ii}**3 Sicong Liu¹, Silvestro Poccia², K. Selcuk Candan¹, Gerardo Chowell³, Maria Luisa Sapino²

4

5 ¹ School of Informatics, and Decision Systems Engineering, Arizona State University, Tempe, Arizona,
6 85287, USA7 ² Computer Science Department, University of Torino, Torino, 10149, Italy8 ³ School of Public Health, Georgia State University, Atlanta, GA, 30033, USA

9 Corresponding author contact information:

10 K. Selcuk Candan
11 Professor, Computer Science and Engineering
12 School of Computing, Informatics, and Decision Systems Engineering
13 Arizona State University
14 P.O. Box 878809
15 Tempe, AZ 85287-8809
16 e-mail: candan@asu.edu
17 phone: (480) 965-2770
18 fax: (480) 965-2751

19 Alternate author contact information:

20 Sicong Liu
21 School of Computing, Informatics, and Decision Systems Engineering
22 Arizona State University
23 P.O. Box 878809
24 Tempe, AZ 85287-8809
25 e-mail: sliu104@asu.edu

26

27

28 **Running title:** EpiDMS: An epidemic simulation data management system

29

30 Abstract word count: 16931 Manuscript word count: 281832 Article type: Major Article

33 **Abstract**

34 *Background:* Carefully calibrated large-scale computational models of epidemic spread represent a
35 powerful tool to support the decision-making process during epidemic emergencies. Epidemic models are
36 being increasingly used for generating forecasts of the spatial-temporal progression of epidemics at
37 different spatial scales and assessing the likely impact of different intervention strategies. However, the
38 management and analysis of simulation ensembles stemming from large-scale computational models
39 poses challenges particularly when dealing with multiple inter-dependent parameters, spanning multiple
40 layers and geo-spatial frames, affected by complex dynamic processes operating at different resolutions.

41 *Methods:* We describe and illustrate with examples a novel epidemic simulation data management system
42 which was developed to address the challenges that arise from the need to generate, search, visualize,
43 and analyze in a scalable manner, large volumes of epidemic simulation ensembles and observations
44 during the progression of an epidemic.

45 *Results and conclusion:* EpiDMS is a publicly available system that facilitates management and analysis of
46 large epidemic simulation ensembles. EpiDMS aims to fill an important hole in decision making during
47 health-care emergencies and enabling critical services with significant economic and health impact.

48 **Keywords:** Epidemics, big data, simulation ensembles, data management, analytics, public-health
49 decision making.

50

51 **1 Introduction**

52 The potential for pandemics to rapidly generate morbidity, mortality, and economic impact around the
53 world has highlighted the need to develop quantitative frameworks for supporting public health decision-
54 making in near real-time. For instance, the 2003 SARS coronavirus (Severe Acute Respiratory
55 Syndrome) emergency, which originated in China and spread to 29 countries, generated important
56 nosocomial outbreaks in several regions by August 2003 [8,24]. More recently, the 2009 A/H1N1
57 influenza pandemic originating in Mexico rapidly spread around the globe via the airline network and
58 reached 20 countries with highest volume of passengers arriving from Mexico within a few weeks of
59 epidemic onset [14]. Importantly, the economic impact associated with a pandemic similar to the 2009
60 A/H1N1 influenza pandemic has been estimated to cost the global economy between \$360 billion and \$4
61 trillion [17] for the first year of virus circulation.

62 Large-scale computational transmission models of infectious disease spread are increasingly becoming
63 part of the toolkit to carry out inferences on the spread and control of infectious diseases. Examples of
64 real-time analyses of epidemics supported by large-scale transmission models include:

- 65 • estimating transmissibility of an epidemic disease, such as influenza [2,3,21],
- 66 • forecasting the spatio-temporal evolution of pandemics at different spatial scales [19,27],
- 67 • assessing the effect of travel controls during the early epidemic phase [9,12,22],
- 68 • predicting the effect of school closures in mitigating disease spread [5,6,29],
- 69 • assessing the impact of reactive vaccination strategies [16],

70 These analyses, however, require access to, integration, and analysis of models and large volumes of
71 data, including datasets from diverse sources in order to parameterize demographic characteristics,
72 contact networks, age-specific contact rates, mobility networks, and health-care and control interventions.

73 In this paper, we argue that, if effectively leveraged, existing simulation analyses and real-time
74 observations generated during an outbreak can be collectively used for better understanding the
75 transmission dynamics and refining existing models. At the same time, these model simulations are
76 useful for performing exploratory, if-then type of hypothetical analyses of epidemic scenarios in order to

77 address critical questions including: (a) Can we identify and classify key events (e.g., epidemic peak
78 timing, likely epidemic duration) during an infectious disease outbreak from large simulation ensembles?
79 (b) Can we compare and summarize a large number of epidemic simulations and observations under
80 different epidemiological scenarios? (c) Can we discover latent relationships and dependencies among
81 disease dynamics and social parameters?

82 **1.1 *Epidemic Simulations***

83 Global epidemic spread can be characterized via simulation through *networks* of multiple (local and
84 global) scales: individuals within a subpopulation may be infected through local contacts during a
85 localized outbreak. These infected individuals then may seed the infection in other regions, starting a new
86 outbreak. Thus, large-scale epidemic simulation systems (e.g., GLEaM [27] and STEM [26]) are required
87 to leverage models and data at different spatial scales. These include social contact networks, local and
88 global individual mobility patterns, location-specific control interventions, and epidemiological
89 characteristics of the infectious disease in question:

- 90 • The population model for a global epidemic simulation system can be based, for example, on the
91 Gridded Population of the World project by the Socio-Economic Data and Applications Center
92 (SEDAC) [25], which has a resolution of 15×15 minutes of arc.
- 93 • Mobility models can include long-range air travel mobility data, from the International Air
94 Transport Association and the Official Airline Guide and/or short-range commuting patterns
95 between adjacent subpopulations. High-resolution demographic and age-specific contact data
96 has become available for a number of countries including the US [11], and South-East Asia [16]
97 while age-specific contact rates have been derived from population surveys for a number of
98 European countries [20]. Large-scale computational transmission models, parameterized with
99 high volume air traffic data and country-level seasonality factors, are being increasingly used to
100 assess the global transmission patterns of emerging infectious diseases and the effectiveness of
101 control measures [10,13,18].
- 102 • Epidemic models allow the user to specify epidemiological parameters that are specific of the
103 infectious disease (such as transmissibility and seasonality), initial outbreak conditions (e.g.

104 seeding characteristics of the epidemic and the immunity profile of the subpopulation), and the
105 timing, type and intensity of intervention measures. While the disease model can be specific to
106 the type of infection, the parameters of a typical model (the modified Susceptible-Latent-
107 Infectious-Recovered model described in [27]) include (a) the infection rate of contracting illness
108 when an individual interacts with an infectious person; (b) infection rate scaling factors for
109 asymptomatic infectors and treated infectors; (c) average length of the latency period (in which
110 the individual is infected, but not infecting); (d) probability of symptomatic vs. asymptomatic
111 infections; (e) change in the travelling behavior after the onset of symptoms; (f) average length of
112 recovery; (g) percentage of infectious individuals that undergo pharmaceutical treatment; and (h)
113 impact (e.g. on the length of the infectious period) of the treatment.

114 The output of a simulation is a multi-variate time series, which tracks for each spatial location (such as the
115 US states) the simulation values of each output parameter, such as the number of infected individuals.

116 **1.2 Challenges**

117 While large-scale epidemic simulation systems such as GLEaM [27] or STEM [26] represent very
118 powerful and highly modular and flexible epidemic spread simulation systems, their power for real-time
119 decision making could be enhanced by addressing the following challenges:

120 (a) *Complexity of the simulation and observation data.* A sufficiently useful disease spreading simulation
121 system requires models, including social contact networks, local and global mobility patterns of
122 individuals, and epidemiological parameters for the infectious disease (e.g., infectious period).
123 Epidemic simulations track 10s or 100s of inter-dependent parameters, spanning multiple layers and
124 geo-spatial frames, affected by complex dynamic processes operating at different resolutions.
125 Moreover, an ensemble of stochastic epidemic realizations may include 100s or 1000s of
126 simulations, each with different parameters settings corresponding to slightly different, but plausible,
127 scenarios [4,7]. As a consequence, running and interpreting simulation results (along with the real-
128 world observations) to generate timely actionable results pose challenges.

129 (b) *Dynamicity of the real-world observations.* A major challenge in using data- and model-driven
130 computer simulations for predicting geo-temporal evolution of epidemics for managing health

131 emergencies, such as the 2014-15 Ebola epidemic in West Africa, is that the data, models, and the
132 underlying model parameters dynamically evolve over time. This necessitates continuous analyses
133 and interpretations of the incoming data and adaptation of the networks and models. Therefore,
134 simulation ensembles may need to be continuously revised and refined as the situation on the
135 ground changes: (a) revisions involve incorporating the real-world observations as well as updated
136 probability surfaces into existing simulations to alter their outcomes; (b) refinements involve
137 identifying new simulations to run based on the changing situation on the ground to provide trustable
138 recommendations. As the situation on the ground and intervention mechanisms evolve, the sampling
139 strategies for the input parameter spaces have to be varied (by eliminating irrelevant scenarios and
140 considering new scenarios or varying the likelihood of old scenarios) in such a way that more
141 accurate simulation results are obtained where it is more relevant.

142 In order to have a significant impact on disease control and to devise validated epidemic response
143 strategies within a realistic time frame, public health authorities need to adequately and systematically
144 interpret observations, understand the processes driving epidemic outbreaks, and assess the robustness
145 of conclusions driven from simulations. Because of the volume and complexity of the data, the varying
146 spatial and temporal scales at which the key transmission processes operate and relevant observations
147 are made, public health experts could benefit from novel decision support systems. Therefore, tools that
148 help (a) executing large-scale simulation ensembles under a large number of diverse
149 hypotheses/scenarios, and (b) analysis, exploration, interpretation, and visualization of large simulation
150 ensembles (aligned with the real-world observations) to generate timely actionable results are critically
151 needed for understanding the evolution patterns of the outbreaks (including estimating transmissibility,
152 forecasting the spatio-temporal spread at different spatial scales, assessing the cost and impact of
153 interventions, including travel controls, at various stages of the epidemic) and supporting real-time
154 decision making and hypothesis testing through large scale simulations.

155 **2 EpiDMS System Overview and Use Scenario**

156 The key characteristics of data and models relevant to data-intensive simulations include the following:
157 (a) voluminous, (b) multi-variate, (c) multi-resolution, (d) multi-layer, (e) geo-temporal, (f) inter-connected

158 and inter-dependent, and (g) often incomplete/imprecise. Moreover, data and models dynamically evolve
159 over time, due to control actions taken by individuals and public health interventions, requiring continuous
160 adaptation and re-modeling.

161 The novel epiDMS software framework [1] aims to address the key challenges underlying large epidemic
162 spread simulations, which, today, hinder real-time and continuous analysis and decision making during
163 ongoing outbreaks. Unlike other dynamic modeling platforms such as Berkeley Madonna [30], the
164 services provided by epiDMS include

165 • storage and indexing of large ensemble simulation data sets and the corresponding models; and
166 • search and analysis of ensemble simulation data sets to enable ensemble-based decision
167 support [15,23,28].

168 The target user group for epiDMS include a range of public health researchers and decision makers.
169 While creation of models for ensemble simulations and query formulation require moderate infectious
170 disease modeling experience, epiDMS also provides parameterized queries and other interactive user
171 interfaces to enable decision makers with minimal experience to explore large ensemble simulations.

172 **2.1 System Overview**

173 The *epidemic simulation data management system* (epiDMS [1]) for managing the data and models for
174 data-driven real-time epidemic simulations consists of three major components (Figure 1):

175 • *Epidemic ensemble execution engine* (epiRun) takes as input an epidemic model,
176 mobility/connectivity models, interventions, and outbreak conditions (such as ground zero), and
177 creates an epidemic ensemble by sampling the disease parameter space and executing
178 simulations using an external simulation engine. Note that epiRun is not specific to any disease
179 model or simulation engine and can wrap –as a black-box software component– any epidemic
180 simulation engine as long as it provides command line invocation. The epidemic model
181 (formulated in the format specific to the simulation engine), the selected input parameter values,
182 and the simulation results (i.e., time series for each output variable) then become inputs for the
183 epidemic data and model store (epiStore), described next.

184 • *Epidemic data and model store* (epiStore) stores, and indexes the relevant data and metadata
185 sets. The data and models relevant for modeling large-scale epidemics include the following:
186 ○ Network layers: An epidemic simulation requires one or more layers of networks, from
187 local and global mobility patterns to social contact networks.
188 ○ Disease models, describing the epidemiological parameters relevant to a simulation and
189 the parameter dependencies necessary in the computation of the disease spread.
190 ○ Simulation time series: For a given disease study, researchers and decision makers
191 often perform multiple simulations, each corresponding to different sets of assumptions
192 (disease parameters or models) or context (e.g. spatio-temporal context, outbreak
193 conditions, interventions).
194 ○ Disease observations: These include real-world observations that arise in near real-time
195 relating to a particular epidemic, including the spread and severity of the disease and
196 observations about other relevant parameters, such as the average length of recovery or
197 percentage of infectious individuals that undergo pharmaceutical treatment.
198 EpiStore captures simulation metadata (simulation model, parameter values, connectivity
199 graphs) and simulation outputs (time series) and provides data analysis (such as clustering,
200 classification, event extraction) to support decision-making. Once again, epiStore is not specific
201 to any disease model or simulation ensembles generated by a specific simulation engine – it can
202 read and store models and simulation results produced by any epidemic simulation engine as
203 long as data wrappers that convert data and metadata into internal epiStore representation are
204 available.
205 • *Epidemic ensemble query, visualization, and exploration module* (epiViz) provides a web-based
206 query and result visualization interface to support user interaction and exploratory decision
207 making through simulation ensembles (Figure 2). Query specification language is also model
208 independent, in the sense that the system does not make any assumptions regarding what the
209 input and output parameters of the simulations are – once imported into epiStore, parameters of
210 any model can be queried, visualized, and explored.

211 **2.2 EpiDMS Use Scenario**

212 Let us consider a governmental agency charged with developing a preparedness plan for the next
213 influenza pandemic. To account for uncertainty in the epidemiology of the disease, characteristics of
214 surveillance systems, and actual field conditions (e.g, healthcare capacity) including the availability and
215 effectiveness of the interventions, public health experts execute a large number of simulations using the
216 epiRun simulation ensemble creation engine to generate simulation instances. The configuration file for
217 epiRun specifies applicable disease models, parameter value ranges and sampling granularities,
218 connectivity and mobility graph assumptions, simulation duration, and assumptions regarding when and
219 what interventions are to be applied. Given these, epiRun schedules the execution of these simulations.
220 The simulation metadata and results are then read and stored in epiStore. Intuitively, each simulation
221 result corresponds to a “possible world” and thus it is annotated and indexed with the metadata
222 describing the corresponding scenario. Later, during hypothetical public health planning or pandemic
223 response, the simulation results stored in epiStore can be accessed through *scenario-based* or
224 *observational search*.

225 **2.2.1 Scenario-based Querying and Exploration**

226 A basic functionality of the epiDMS system is to retrieve epidemic simulations, stored in epiStore, based
227 on a user specified scenario description. For example, the user can formulate a query that asks the
228 system to identify all pre-executed simulations, based on SEIR (susceptible-exposed-infectious-removed)
229 and SIR (susceptible-infectious-removed) epidemic models, where the input transmission rate parameter
230 was set between 0.3 and 0.6, the recovery rate parameter was set to 0.5, and a “vaccination” type trigger
231 was used in the simulation. The query also specifies a particular mobility graph, describing expected
232 movements of the populations during the epidemic, as an underlying assumption. In addition, the query
233 asks the system to return daily (1-D) averages of “infected”, “incidence”, and “deaths” simulation output
234 parameters for Arizona (AZ), California (CA), and New Mexico (NM), for an epidemic simulation that lasts
235 8 months (*Please see the online supplement for the details of this query as well as a detailed description*
236 *of the query and visual exploration interface provided by epiDMS*).

237 Once the query is executed and the relevant simulations are identified, epiDMS then organizes the results

238 in the form of a navigable hierarchy, based on the temporal dynamics of the disease: scenarios that result
239 in similar patterns are grouped under the same branch, while simulations that show key differences in
240 disease development are placed under different branches of the navigation hierarchy. The user can then
241 navigate on this hierarchy using “drill-down” and “roll-up” operations and filter sets of simulations for
242 further analysis.

243 **2.2.2 Observational Alignment Based Querying and Exploration**

244 In addition to scenario-based filtering, search, and exploration, epiDMS also enables searching particular
245 temporal patterns on the epidemic ensembles. During an epidemic, this feature allows the expert to
246 identify a relevant subset of stored simulations that match actual disease patterns or specific targets for
247 intervention measures. This facilitates public-health decision makers to 1) identify the relevant parameters
248 that characterize transmission patterns in near real time, 2) forecast epidemic spread as the epidemic
249 evolves, 3) assess potential impact of intervention scenarios. This platform also allows the user to
250 perform simulation refinements by narrowing down the parameter space of “possible worlds” based on
251 the current state of the epidemic. Hence, the user can use epiDMS to run additional simulations within the
252 constrained parameter space to obtain more detailed simulations, possibly with additional intervention
253 assumptions, that are relevant to the current state of the epidemic.

254 **3 Conclusions**

255 In this paper, we describe and illustrate with an example a novel epidemic simulation data management
256 system (EpiDMS [1]) that supports the generation, search, visualization, and analysis, in a scalable
257 manner, of large volumes of epidemic simulation ensembles for decision making. The system aims to
258 assist experts and decision makers in exploring large epidemic simulation ensemble data sets, through
259 efficient metadata and similarity based querying, data analysis, and visual exploration.

260 **Acknowledgements**

261 We thank the members of the EmitLab at ASU for their contributions to the epiDMS system. Please see
262 the footnotes for the funding information and the conflict of interest statement.

263

264 **4 References**

265 1. Epidemic Simulation Data Management System (EpiDMS). Available at:
266 <https://hive.asu.edu:8443/MVTSDB/?p=epidemic>. Accessed 10 May 2016.

267 2. Abubakar I, Gautret P, Brunette GW, Blumberg L, Johnson D, Poumerol G, et al. Global perspectives
268 for prevention of infectious diseases associated with mass gatherings. *Lancet Infect Dis.*
269 Jan;12(1):66-74.

270 3. Anderson RM, May RM. *Infectious diseases of humans*. Oxford: Oxford University Press; 1991.

271 4. Barrett CL, Eubank SG, Smith JP. If smallpox strikes Portland. *Scientific American*. 2005
272 Mar;292(3):42-9.

273 5. Cauchemez S, Ferguson NM, Wachtel C, Tegnell A, Saour G, Duncan B, et al. Closure of schools
274 during an influenza pandemic. *Lancet Infect Dis*. 2009 Aug;9(8):473-81.

275 6. Centers for Disease Control and Prevention. *Interim pre-pandemic planning guidance: community*
276 *strategy for pandemic influenza mitigation in the United States—early, targeted, layered use of*
277 *nonpharmaceutical interventions*. Atlanta (GA): The Centers for Disease Control and Prevention;
278 2007.

279 7. Chao DL, Halloran ME, Obenchain VJ, Longini IM, Jr. FluTE, a publicly available stochastic influenza
280 epidemic simulation model. *PLoS Comput Biol*. Jan;6(1):e1000656.

281 8. Chowell G, Fenimore PW, Castillo-Garsow MA, Castillo-Chavez C. SARS outbreaks in Ontario, Hong
282 Kong and Singapore: the role of diagnosis and isolation as a control mechanism. *J Theor Biol*. 2003
283 Sep 7;224(1):1-8.

284 9. Colizza V, Barrat A, Barthélémy M, Valleron AJ, Vespignani A. Modeling the worldwide spread of
285 pandemic influenza: baseline case and containment interventions. *PLoS Med*. 2007 Jan;4(1):e13.

286 10. Flahault A, Vergu E, Boelle PY. Potential for a global dynamic of Influenza A (H1N1). *BMC Infect Dis*.
287 2009;9:129.

288 11. Germann TC, Kadau K, Longini IM, Jr., Macken CA. Mitigation strategies for pandemic influenza in
289 the United States. *Proc Natl Acad Sci U S A*. 2006 Apr 11;103(15):5935-40.

290 12. Hollingsworth TD, Ferguson NM, Anderson RM. Will travel restrictions control the international spread

291 of pandemic influenza? *Nat Med.* 2006 May;12(5):497-9.

292 13. Kenah E, Chao DL, Matrajt L, Halloran ME, Longini IM, Jr. The global transmission and control of
293 influenza. *PLoS One.* 2011;6(5):e19515.

294 14. Khan K, Arino J, Hu W, Raposo P, Sears J, Calderon F, et al. Spread of a novel influenza A (H1N1)
295 virus via global airline transportation. *N Engl J Med.* 2009 Jul 9;361(2):212-4.

296 15. Liu S., Garg Y, Candan KS, Sapino ML, Chowell G. NOTES2: Networks-Of-Traces for Epidemic
297 Spread Simulations. AAAI Workshop on Computational Sustainability, 2015.

298 16. Longini IM, Jr., Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DA, et al. Containing
299 pandemic influenza at the source. *Science.* 2005 Aug 12;309(5737):1083-7.

300 17. Warwick J. McKibbin. The Swine Flu Outbreak and its Global Economic Impact. Brookings. May 4th
301 2009. Available at <http://www.brookings.edu/research/interviews/2009/05/04-swine-flu-mckibbin>.
302 Accessed May 10th 2016.

303 18. Merler S, Ajelli M. The role of population heterogeneity and human mobility in the spread of pandemic
304 influenza. *Proc Biol Sci.* Feb 22;277(1681):557-65.

305 19. Merler S, Ajelli M, Pugliese A, Ferguson NM. Determinants of the spatiotemporal dynamics of the
306 2009 H1N1 pandemic in Europe: implications for real-time modelling. *PLoS Comput Biol.* 2011
307 Sep;7(9):e1002205.

308 20. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social contacts and mixing
309 patterns relevant to the spread of infectious diseases. *PLoS Med.* 2008 Mar 25;5(3):e74.

310 21. Nishiura H, Castillo-Chavez C, Safan M, Chowell G. Transmission potential of the new influenza
311 A(H1N1) virus and its age-specificity in Japan. *Euro Surveill.* 2009;14(22):pii: 19227.

312 22. Scalia Tomba G, Wallinga J. A simple explanation for the low impact of border control as a
313 countermeasure to the spread of an infectious disease. *Math Biosci.* 2008 Jul-Aug;214(1-2):70-2.

314 23. Schifanella C, Candan KS, Sapino ML. Multiresolution Tensor Decompositions with Mode
315 Hierarchies. *ACM Trans. Knowl. Discov. Data (TKDD)*, 8(2), Article No. 10, June 2014.

316 24. Siu A and Wong Y C R. Economic Impact of SARS: The Case of Hong Kong. MIT Press. 2004,
317 3(1), p. 62-83.

318 25. Socioeconomic Data and Applications Center (SEDAC). Columbia University; Available at:
319 <http://sedac.ciesin.columbia.edu>. Accessed 10 May 2016.

320 26. STEM. The spatiotemporal epidemiological modeler project. Available at <http://www.eclipse.org/stem>.
321 Accessed 10 May 2016.

322 27. Van den Broeck W, Gioannini C, Goncalves B, Quaggiotto M, Colizza V, Vespignani A. The
323 GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading
324 scenarios at the global scale. *BMC Infect Dis*. 2011;11:37.

325 28. Wang X, Candan KS, Sapino ML. Leveraging metadata for identifying local, robust multi-variate
326 temporal (RMT) features. *IEEE International Conference on Data Engineering (ICDE)* 2014: 388-399.

327 29. Wu JT, Cowling BJ, Lau EH, Ip DK, Ho LM, Tsang T, et al. School closure and mitigation of pandemic
328 (H1N1) 2009, Hong Kong. *Emerg Infect Dis*. 2010 Mar;16(3):538-41.

329 30. Berkeley Madonna - Modeling and Analysis of Dynamic Systems. <http://www.berkeleymadonna.com/>.
330 Accessed 10 July 2016.

ⁱ Funding statement: This work is supported by NSF grants NSF # 1318788 and NSF # 1518939.

ⁱⁱ Conflict of interest statement: The conflict of interest (COI) disclosure forms are attached. Authors report no competing interests related to this manuscript.

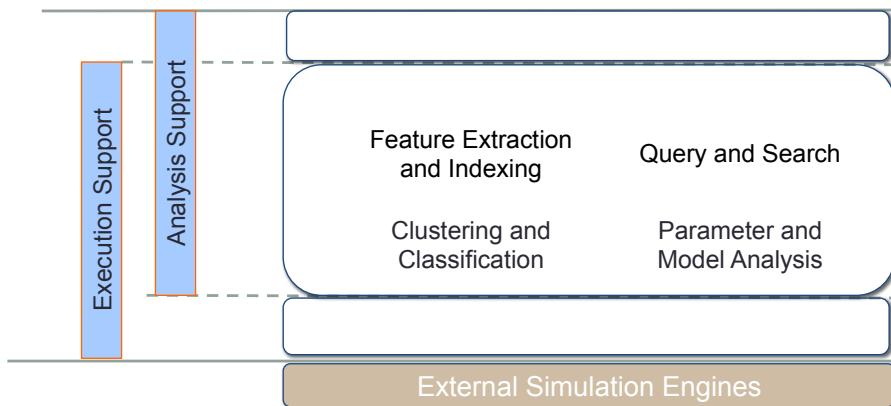


Figure 1. EpiDMS system overview

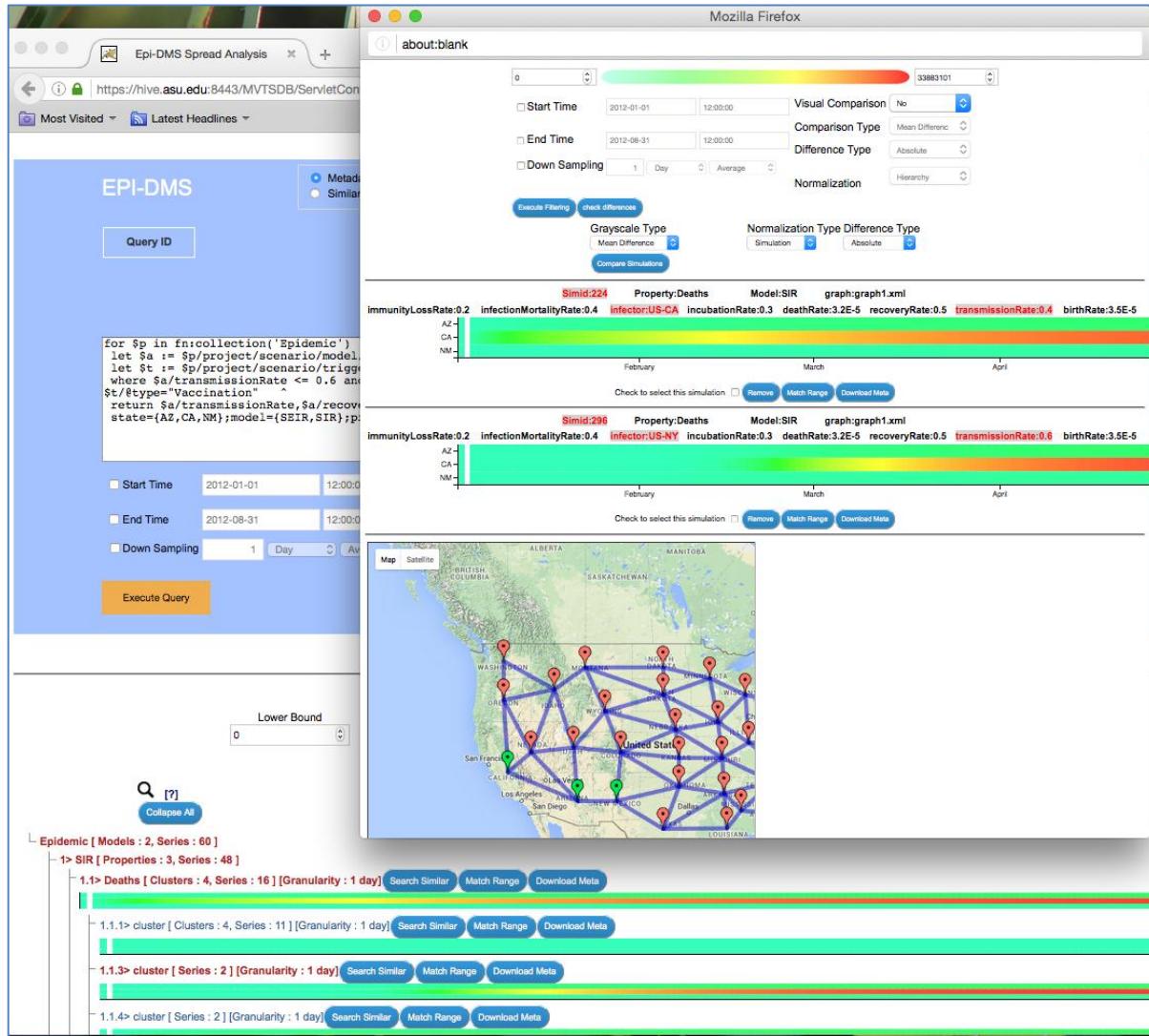


Figure 2. A sample epiDMS screenshot, which includes scenario-based querying and exploration: the figure shows a query posed to the epiDMS system, the set of results (visualized in the form of a navigable hierarchy of heatmaps) and two simulations selected for detailed comparison. Please see the accompanying supplementary material and the video at <https://www.youtube.com/watch?v=9w-4nDhXv3k> for more details.

EPI-DSMS: DATA MANAGEMENT AND ANALYTICS FOR DECISION MAKING FROM EPIDEMIC SPREAD

SIMULATION ENSEMBLES

(ONLINE SUPPLEMENT)

Sicong Liu

Arizona State University

s.liu@asu.edu

Silvestro Poccia

University of Torino

silvestro.poccia@edu.unito.it

K. Selcuk Candan

Arizona State University

candan@asu.edu

Gerardo Chowell

Georgia State University

gchowell@gsu.edu

Maria Luisa Sapino

University of Torino

marialuisa.sapino@unito.it

A basic functionality of the epiDSMS system is to retrieve epidemic simulations, stored in epiStore, based on the user specified scenario description.

Associated Grant(s) : NSF # 1318788 and NSF # 1518939

EPI-DSMS

Metadata Query Similarity Query

Welcome Guest Home Help Sign out

Query ID:

Query Description

```
for $p in fn:collection('Epidemic') ^  
let $a := $p/project/scenario/model/disease ^  
let $t := $p/project/scenario/trigger ^  
where $a/transmissionRate <= 0.6 and $a/transmissionRate >= 0.3 and $a/recoveryRate = 0.5 and  
$t/@type="Vaccination" ^  
return $a/transmissionRate,$a/recoveryRate ^  
state={AZ,CA,NM};model={SEIR,SIR};properties={Infected,Incidence,Deaths};
```

Return SIR and SEIR simulations that have a vaccination trigger and satisfy several other constraints. Plot the results for Arizona, California, New Mexico states. The output series are counts of Infected, Incidence, and Deaths; return also the transmission rate and recovery rate for the identified simulations.

Start Time: 2012-01-01 12:00:00 Visual Comparison: No

End Time: 2012-08-31 12:00:00 Comparison Type: Mean Difference

Down Sampling: 1 Day Difference Type: Absolute

Normalization: Hierarchy

The basic query interface, visualized above, provides the following functionalities:

- Query Menu --- visualizes the list of queries that are stored in the system.
- Query Box --- visualizes the selected query and/or allows the user to edit a query

- Query Description --- shows the description of the selected query and/or allows the user to add a query description.

EpiDMS provides a rich query language to specify user queries. Consider, for example, the following sample query:

1. FOR \$p in fn:collection('EpidemicSimulationEnsemble') ^
2. LET \$diseaseModel := \$p/project/scenario/model/disease ^
 - o LET \$triggerModel := \$p/project/scenario/trigger ^
 - o LET \$epidemicScenario := \$p/project/scenario ^
3. WHERE
 - a. \$diseaseModel/transmissionRate <= 0.6 and
 - b. \$diseaseModel/transmissionRate >= 0.3 and
 - c. \$diseaseModel/recoveryRate = 0.5 and
 - d. \$triggerModel/@type="Vaccination" and
 - e. (\$epidemicScenario/infector/@targetISOKey="US-CA" or
\$epidemicScenario/infector/@targetISOKey="US-NY") and
 - f. (\$epidemicScenario/graph = "mobility_graph_7.xml" or
\$epidemicScenario/graph = "mobility_graph_8.xml") ^
4. RETURN
 - a. \$diseaseModel/transmissionRate,
 - b. \$diseaseModel/recoveryRate,
 - c. \$epidemicScenario/graph ^
 - d. STATE={AZ,CA,NM};
 - e. MODEL={SEIR,SIR};
 - f. PROPERTIES={Infected,Incidence,Deaths};
5. FROM ={01/01/2012 12:00:00}; TO={08/31/2012 12:00:00};
6. BY={1-D}; FUNCTION ={avg};

We describe the different components of this sample query below:

1. The “FOR” statement allows the user select the simulation dataset to query. In this example, the user selects to focus on the stored simulation set “EpidemicSimulationEnsemble”.
2. The “LET” statement allows to associate variables representing disease and intervention trigger models and epidemic scenarios.
3. The “WHERE” clause allows the user to specify conditions on the simulation models to filter those simulations that are relevant for the current analysis. In this example, the user specifies that for the returned simulations, the transmission rate parameter should be between 0.3 and 0.6, the recovery rate parameter should be set to 0.5, and that a “vaccination” type trigger should be included in the simulation model. The user also specifies that epidemic should have started at California (CA) or New York (NY) state and the “mobility_graph_7.xml” or “mobility_graph_8.xml” should have been used to generate the simulations.
4. The “RETURN” clause lists the simulation parameters to be returned in the result. In this example, the user is interested in the transmission rate, recovery rate, the mobility graph for each returned simulation. In addition, the query asks the system to return the time series corresponding to the “infected”, “incidence”, and “deaths” simulation output parameters for Arizona (AZ), California (CA), and New Mexico (NM) states.
5. In this clause, the user specifies that s/he is interested in only the first 8 months of the simulation.
6. Furthermore, the user specifies that the system return daily (1-D) averages of the simulation parameters for the specified duration.

1.1.1 *Query Interface*

The epiDMS query interface allows the user to specify and execute parametric queries. As illustrated below, parametric queries support query specification reuse – instead of writing a new query for different parameters, the user can specify and store a parametric query, which can then be invoked with different parameter values, as seen in the following example:

Query

```

for $p in fn:collection('Epidemic') ^
  let $a := $p/project/scenario/model/disease ^
  let $t := $p/project/scenario/trigger ^
  where $a/transmissionRate <= (par) 0.6 (par) and $a/transmissionRate >= (par) 0.3 (par) and
    $a/recoveryRate = (par) 0.5 (par) and $t/@type="Vaccination"
  return $a/transmissionRate,$a/recoveryRate ^
  state={AZ,CA,NM};model={SEIR,SIR};properties={Infected,Incidence,Deaths};

```

Where:

transmissionRate <= transmissionRate >= recoveryRate =

In the above example, those query parameters whose values are bracketed with the symbol “(par)” are interpreted as being parametric. The user can vary these values using a form-based interface without having to modify the source code directly.

1.1.2 Result Set Exploration Module

Once the query is executed and the relevant simulations are identified, epiDMS then organizes the results in the form of a navigable hierarchy, based on the temporal dynamics of the disease: scenarios that result in similar patterns are grouped under the same branch, while simulations that show key differences in disease development are placed under different branches of the navigation hierarchy. The user can then navigate on this hierarchy using “drill-down” and “roll-up” operations on this hierarchy and pick sets of simulations to study and compare in further detail the corresponding scenarios. This process is described below:

Once the matching simulations are identified, the user is presented with an initially collapsed hierarchy of results:

Lower Bound

 ()

Upper Bound

 ()

?
Collapse All

Epidemic, #Models : 2, #sims : 60

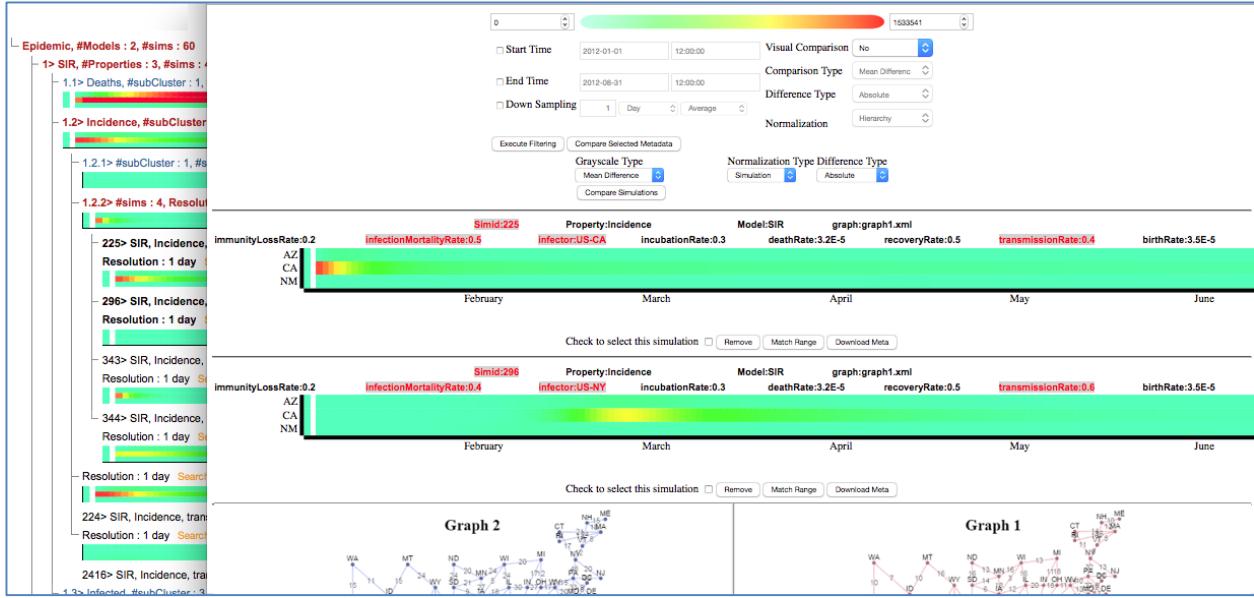
Above, we see that the query identified 60 matching simulations, from two different disease models. The legend at the top provides the scope of values in the results. The user can explore these simulations by drilling down or rolling up on the result hierarchy:

As we see above, the top-level of the result hierarchy includes the disease models (SIR and SEIR in this example). At the next level, the user is presented the output parameters specified in the query (“incidence”, “deaths”, and “infected” in this example). Under this level, the results are organized in the form of a cluster hierarchy, where similar simulations are clustered under the same navigation branch. For each node in the navigation hierarchy, a cluster representative is selected and the corresponding simulation is visualized in the form of a heatmap, where each row corresponds to a location (states “AZ”, “CA”, and “NM”) in this example. The user can obtain detailed information about the presented simulations, by hovering the mouse on the heatmaps or download simulation results (in the form of CSV files) or metadata and model specifications (in XML format) corresponding to different simulations for further study or dissemination to decision makers.

The user can also use the “match range” feature to change the scale of visualization so that the upper bound of visualized values in the heatmap is modified in a way that matches a selected simulation to enable better visualization of its details. For example, in the example below, the heatmap scale has been modified to match the number of incidences, rather than the number of deaths; thus, we are able to better observe the differences among the incidence clusters:

The user can explore these simulations by navigating on the hierarchy by drilling down or rolling up different branches. In the following example, the user has drilled down on the cluster 1.2.2 of the “incidence” data to observe the simulations clustered under this navigation node:

To further study individual simulations, the user then can double click on any simulation in the navigation hierarchy to place them in to a separate comparison interface. In the example, shown below, the user selected two simulations (#225 and #296) under cluster 1.2.2 to be studied and compared further in detail:



In the detailed comparison interface, the user can compare the two (or more) simulations side by side and observe the differences in the input parameters and models. The user can further ask the system to visualize the precise differences in the metadata corresponding to selected pairs of simulations:

```

<project name="225">
  0.4</transmissionRate>
  0.5</infectionMortalityRate>
  <infector name="Inf" targetISOKey="US-CA" targetURI="stem.eclipse.org/graphs/US/CA">
    <type>percentage</type> infectionCount="10" populationIdentifier="human">
      <propteries href="platform:/resource/225/decorators/disease.standard/human/r">
      <propteries href="platform:/resource/225/decorators/disease.standard/human/ incidence">
      <propteries href="platform:/resource/225/decorators/disease.standard/human/1%">
      <propteries href="platform:/resource/225/decorators/disease.standard/human/0%">
      <propteries href="platform:/resource/225/decorators/disease.standard/human/populationCount">
      <propteries href="platform:/resource/225/decorators/disease.standard/human/diseasedeath">
    </infector>
  <project name="225">
    <scenario name="scenario">
      <model name="disease_model">
        <dsaece name="disease" model="SIR">
          <!-- Use Disease Name from disease tag here - diseaseName-->
        </dsaece>
      <0.4</transmissionRate>
      <recoveryRate>
        0.5</recoveryRate>
      <infectionMortalityRate>
      0.5</infectionMortalityRate>
      <incubationRate>
        0.2</incubationRate>
        0.2</immunityLossRate>
      </diseases>
      <populationModel>
        <birthRate>
          3.5E-5</birthRate>
        <deathRate>
          3.2E-5</deathRate>
        <populationModel>
        </model>
      <sequencer name="*">
        <!-- FORMAT : STEM Time DAY MMMM DD HH:MM:SS MST YYYY -->
        <date start="MONDAY JAN 01 12:00:00 MST 2013" end="SUNDAY JUL 31 12:00:00 MST 2013">
      </sequencer>
      <infector name="Inf" targetISOKey="US-CA" targetURI="stem.eclipse.org/graphs/US/CA">
        <type>percentage</type> infectionCount="10" populationIdentifier="human">
          <!-- Use Disease Name from disease tag here - diseaseName-->
        </infector>
        <logger name="csvlog" title="CSV File Logger">
          <!-- Use Disease Name from disease tag here - diseaseName-->
        </logger>
      </infector>
    </scenario>
  <project name="296">
    <scenario name="scenario">
      <model name="disease_model">
        <dsaece name="disease" model="SIR">
          <!-- Use Disease Name from disease tag here - diseaseName-->
        </dsaece>
      <0.4</transmissionRate>
      <recoveryRate>
        0.5</recoveryRate>
      <infectionMortalityRate>
      0.4</infectionMortalityRate>
      <incubationRate>
        0.3</incubationRate>
        0.2</immunityLossRate>
      </diseases>
      <populationModel>
        <birthRate>
          3.5E-5</birthRate>
        <deathRate>
          3.2E-5</deathRate>
        <populationModel>
        </model>
      <sequencer name="*">
        <!-- FORMAT : STEM Time DAY MMMM DD HH:MM:SS MST YYYY -->
        <date start="MONDAY JAN 01 12:00:00 MST 2013" end="SUNDAY JUL 31 12:00:00 MST 2013">
      </sequencer>
      <infector name="Inf" targetISOKey="US-NY" targetURI="stem.eclipse.org/graphs/US/NY">
        <type>percentage</type> infectionCount="10" populationIdentifier="human">
          <!-- Use Disease Name from disease tag here - diseaseName-->
        </infector>
        <logger name="csvlog" title="CSV File Logger">
          <!-- Use Disease Name from disease tag here - diseaseName-->
        </logger>
      </infector>
    </scenario>
  </project>

```

Here the text highlighted in red points to the differences in metadata corresponding to the pair of simulations selected or comparison.

1.1.3 Observational Similarity Based Querying and Exploration

In addition to scenario-based filtering, search, and exploration, EpiDMS also enables searching particular temporal patterns on the epidemic ensembles. During an epidemic, this feature allows the expert to

identify a relevant subset of stored simulations that match actual disease patterns or specific targets for intervention measures.

To use similarity based querying, the user can either click on the “Search Similar” option on the result visualization interface or switch to the “Similarity Query” interface and provide a file which contains the observations of interest:

Associated Grant(s) : NSF # 1318788 and NSF # 1518939

EPI-DMS

Metadata Query
 Similarity Query

Welcome Guest Home Help Sign out

Select a Multivariate Timeseries file: No file selected.

PROJECT: MODEL: PROPERTY: ZONES:

Once a simulation/observation and states of interest are provided, the system searches in the databases existing simulations that show a similar pattern. Results are ranked in terms of their similarities to the provided query pattern:

Associated Grant(s) : NSF # 1318788 and NSF # 1518939

EPI-DMS

Metadata Query
 Similarity Query

Welcome Guest Home Help Sign out

224> SIR, Deaths,

PROJECT: MODEL: PROPERTY: ZONES: CA,NM,AZ

└ Epidemic, #Models : 1, #sims : 52
 └ 1> SIR, #Properties : 1, #sims : 52
 └ 1.1> Deaths, #subCluster : 11, #sims : 52
 └ 1.1.1> #sims : 5, Resolution : 1 day
 └ 1.1.2> #sims : 5, Resolution : 1 day
 └ 226> SIR, Deaths, Resolution : 1 day
 └ 346> SIR, Deaths, Resolution : 1 day

Note that, once again, the user can obtain detailed information about the presented simulations by

hovering the mouse on the heatmaps or download simulation data or metadata corresponding to different simulations for further study. Moreover, as before, to further study individual simulations, the user can double click on any simulation in the navigation hierarchy to place them in to the comparison interface.

Please see the accompanying video at <https://www.youtube.com/watch?v=9w-4nDhXv3k> for more details.

Frequently Asked Questions

Question #1: *“It appears that epiDMS would be operated by those with at least moderate infectious disease modeling experience. Is it true that epiDMS requires programming skills by the operator (while there appears to be a GUI, there also appears to be a moderate amount of programming involved in operating this).”*

Answer: The target user group for epiDMS include a range of public health researchers and decision makers. While creation of models for ensemble simulations and formulating queries over ensembles simulations require moderate infectious disease modeling experience and familiarity with (not programming, but) declarative querying, epiDMS also provides parameterized queries and other interactive user interfaces to enable decision makers with minimal experience to explore large ensemble simulations.

Question #2: *“Can you give a pathogen-specific example of a public health emergency in which the data, models and underlying model parameters dynamically evolve over time requiring continuous analyses and interpretations of the incoming data and adaptation of the networks and models.”*

Response: The 2014-15 Ebola epidemic in West Africa was an example of such an health emergency where the situation (what we new about the disease characteristics, available and implemented intervention strategies, population dynamics, and social interactions among and within effected populations) continuously changed as the epidemic evolved, requiring reassessment and revisions models and re-interpretations of the data.

Question #3: *“How does epiDMS differ from existing modeling platforms and packages (e.g., Berkeley Madonna or R).”*

Answer: Unlike other dynamic modeling platforms such as Berkeley Madonna, the services provided by epiDMS include

- storage and indexing of large ensemble simulation data sets and the corresponding models; and
- search and analysis of ensemble simulation data sets to support ensemble-based decision support.

In that sense, epiDMS is less of a modeling tool and more of a multi-model, multi-instance ensemble simulation-based decision support system.

Question #4: *“Is epiDMS specific to a particular disease model or simulation engine? If not, how does different models fit within the database?”*

Response: We thank the reviewer for bringing to our attention that the original manuscript did not make it sufficiently clear that epiDMS is a model independent system by design:

- epiRun, for execution ensemble simulations, is not specific to any disease model or simulation engine and can wrap –as a black-box software component– any epidemic simulation engine as long as it provides command line invocation.
- epiStore, which stores epidemic models and the generated simulation ensembles, is not specific to any disease model or simulation ensembles generated by a specific simulation engine – it can read and store models and simulation results produced by any epidemic simulation engine as long as data wrappers that convert data and metadata into internal epiStore representation is available. This wrapper based design ensures that models and simulations generated by different engines and tools can be imported into epiStore and queried and analyzed simultaneously irrespective of their origin.
- Finally, epiViz, which provides a web-based query and result visualization interface to support

user interaction and exploratory decision making is also model independent. More specifically, the underlying query specification language can support queries based on any model, without having to make any a priori assumptions regarding what the input and output parameters of the simulations are. Once they are imported into epiStore, parameters of any model can be queried, visualized, and explored.

The current alpha version of the system provides wrappers for the STEM simulation engine and can import models and simulations generated by STEM tool. The beta version of the tool will include wrappers for other systems.

Question #5: *“(i) What are the computational demands of epiDMS. e.g., can this be run on a standard laptop? A tablet/smartphone? From the video, it appears this is a web-based platform, but is there a stand alone downloadable form which can be run in potential areas with no internet connection (e.g., in certain field settings)?”*

Answer: The user interface of epiDMS is indeed a web-based platform and can run on any networked laptop and most tablets or smartphones. The backend, however, runs on server hardware. It is, however, possible to configure a laptop to act both as the backend and frontend.

Question #6: *“What is the speed of the simulation analyses?”*

Answer: This depends on the size of the simulation ensemble, number of variates/parameters of interest, the type of analysis, and the hardware configuration (memory, number of cores) at the back-end server platform. Having said that, we are doing our best to provide a near real-time and interactive experience to the users.

Question #7: *“What is the format of the modelling output? Can it easily be downloaded and disseminated to decision makers in public health practice?”*

Answer: Users of epiDMS can download simulation results (in the form of CSV files) or metadata and model specifications (in XML format) corresponding to different simulations for further study or

dissemination to decision makers.

Question #8: *“Can you confirm if this is a free system?...is there an open-source version of the software with scope for a community of developers?”*

Answer: An alpha version of the source-code for epiDMS is currently available upon request, and free of charge, to researchers and educators in the non-profit sector, including institutions of education, research, and government laboratories under an Apache 2.0 license (<http://www.apache.org/licenses/LICENSE-2.0>). The terms of the license allows individuals to modify the source code and to share modifications and also enable open source development of the software by other individuals and teams. The terms of software availability permits the commercialization of enhanced and customized versions of the software and incorporation of the software or pieces of it into other software packages. The beta release of the source-code will be available to the public through GitHub under the same terms.

Question #9: *“Is there a user-group forum for users to ask questions, trouble-shoot, show applications etc.?”*

Answer: While such a user-group forum does not currently exist, we will bootstrap a group along with the beta release of the system. In addition, we are planning to

- carry out demonstrations of epiDMS,
- give tutorials, and
- organize workshops

at leading forums targeting public healthcare researchers, scientists, and decision makers.

EPIDMS: DATA MANAGEMENT AND ANALYTICS FOR DECISION MAKING FROM EPIDEMIC SPREAD SIMULATION ENSEMBLES

Sicong Liu @ Arizona State University, USA

Silvestro Poccia @ University of Torino, Italy

K. Selcuk Candan @ Arizona State University, USA

Gerardo Chowell @ Georgia State University & National Institutes of Health, USA

Maria Luisa Sapino @ Arizona State University, USA & University of Torino, Italy

Supported by

- NSF IIR#1318788 “Data Management for Real-Time Data Driven Epidemic Spread Simulations”
- NSF RAPID “Understanding the Evolution Patterns of the Ebola Outbreak in West-Africa and Supporting Real-Time Decision Making and Hypothesis Testing through Large Scale Simulations”

Epidemics....

- SARS (Severe Acute Respiratory Syndrome) epidemic is estimated to have **started in China in November 2002, had spread to 29 countries by August 2003**
- A **pandemic similar to the swine flu in 2009** is estimated to cost \$360 billion in a mild scenario to the global economy and up to **\$4 trillion** in an ultra scenario, within the first year of the outbreak
- The World Health Organization declared the **Ebola epidemic** in West Africa **a *Public Health Emergency of International Concern*** on August 8th, 2014, with **exponential dynamics** characterizing the initial growth in numbers of new cases in some areas

Epidemics....

- Data- and model-driven computer simulations are increasingly critical in predicting geo-temporal evolution of epidemics
 - estimating transmissibility of an epidemic disease, such as influenza,
 - forecasting the spatio-temporal spread of pandemic disease at different spatial scales,
 - assessing the effect of travel controls during the early stage of the pandemic,
 - predicting the effect of implementing school closures,
 - assessing the impact of pharmaceutical interventions on pandemic disease

Epidemics....

Not much room for error

Both action and inaction can have high costs in terms of their economic impacts and human lives affected

Critically needed...

- Tools that help
 - executing **large-scale simulation ensembles** under a large number of diverse hypotheses/scenarios, and
 - **analysis, exploration, interpretation, and visualization** of large simulation ensembles (aligned with the real-world observations) to generate timely actionable results are critically needed for
 - understanding the **evolution patterns of the outbreaks**, including
 - estimating transmissibility,
 - forecasting the spatio-temporal spread at different spatial scales,
 - assessing the cost and impact of interventions, including travel controls, at various stages of the epidemic
 - **supporting real-time decision making** and hypothesis testing through large scale simulations.

Good news: epidemic simulation software...

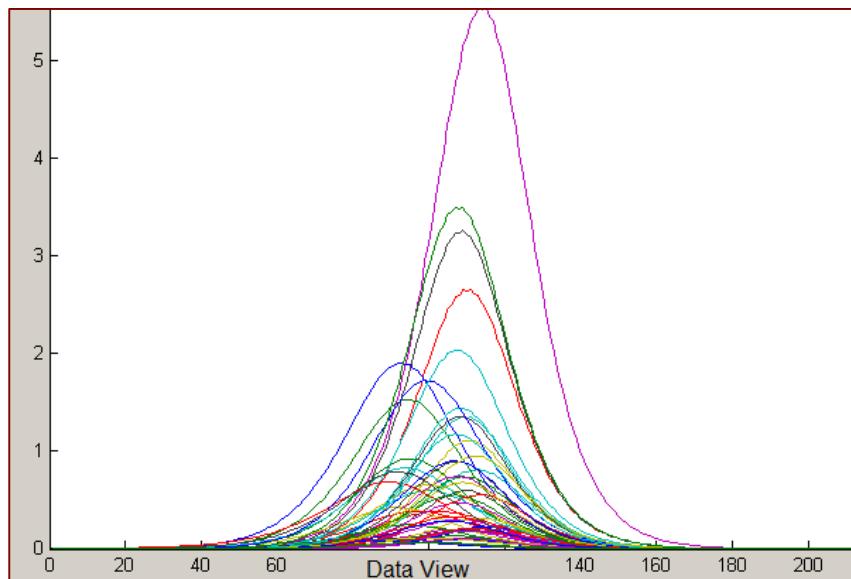
- Various time-step based epidemic spread simulation software exist (GLEaM, STEM)

Simulation model parameters...

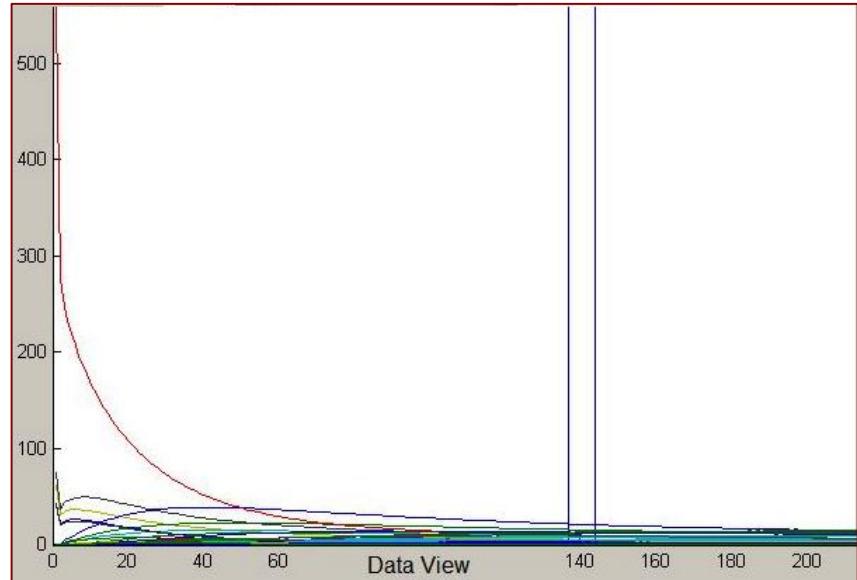
- **Spatial/Demographic Layer**
 - 3,362 subpopulations in 220 countries of the world)
- **Mobility layer**
 - long-range air travel mobility data, from the Inter. Air Transport Assoc. and the Official Airline
 - short-range commuting patterns between adjacent subpopulations
- **Epidemic layer**
 - infection rate of contracting illness when an individual interacts with an infectious person;
 - infection rate scaling factors for asymptomatic infectors and treated infectors;
 - probability of symptomatic vs. asymptomatic infections;
 - average length of the latency period (in which the individual is infected, but not infecting);
 - average length of recovery;
 - percentage of infectious individuals that undergo pharmaceutical treatment
 - impact of treatment (e.g. on the length of the infectious period)
 - change in the travelling behavior after the onset of symptoms;
 - Initial conditions of outbreak
 - intervention measures.

How do the simulation results look?

Each curve is a different US state



Simulation #1



Simulation #2

- These two simulation differ in
 - where the **disease enters the US** and
 - the disease characteristics, such as **infection rate** and **recovery rate**.

Bad news...

- Challenge #1: Epidemic simulations track
 - 100s of inter-dependent parameters,
 - spanning multiple layers and geo-spatial frames,
 - affected by complex dynamic processes operating at different resolutions.
- Challenge #2: Given the
 - unpredictability of an epidemic and
 - unpredictability of the actions of various independent agencies,decision makers need to generate many thousands of simulations, each with different parameters corresponding to plausible scenarios.
- Challenge #3: Simulations need to be continuously revised based on real-world data as the epidemic and intervention mechanisms evolve.

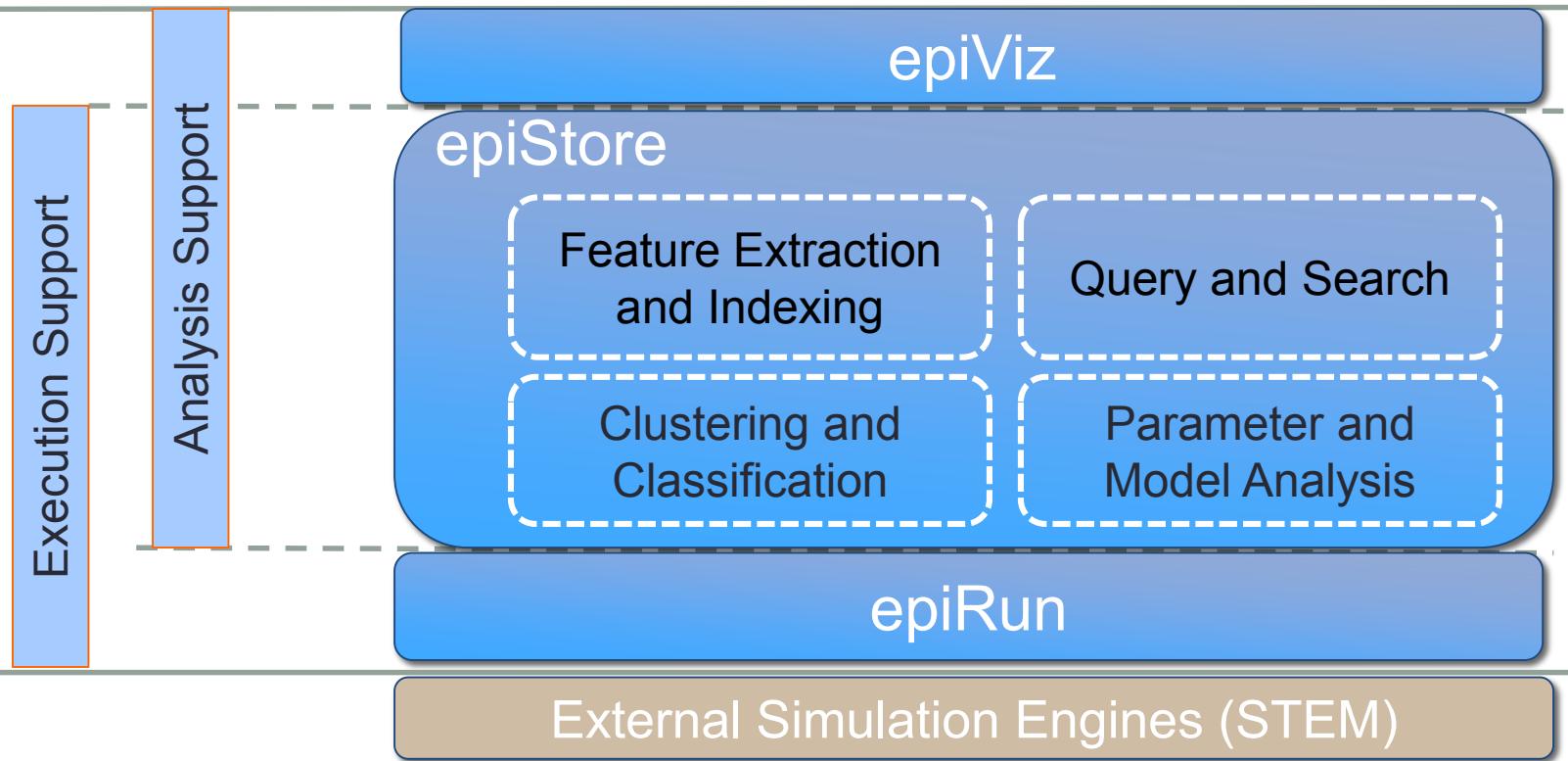
Challenges

- Because of the size and complexity of the data and the varying spatial and temporal scales at which the key processes operate; experts lack the means to
 - analyzing simulation results,
 - understanding relevant processes and
 - assessing the robustness of conclusions driven from the resulting simulations.

Questions (??).....

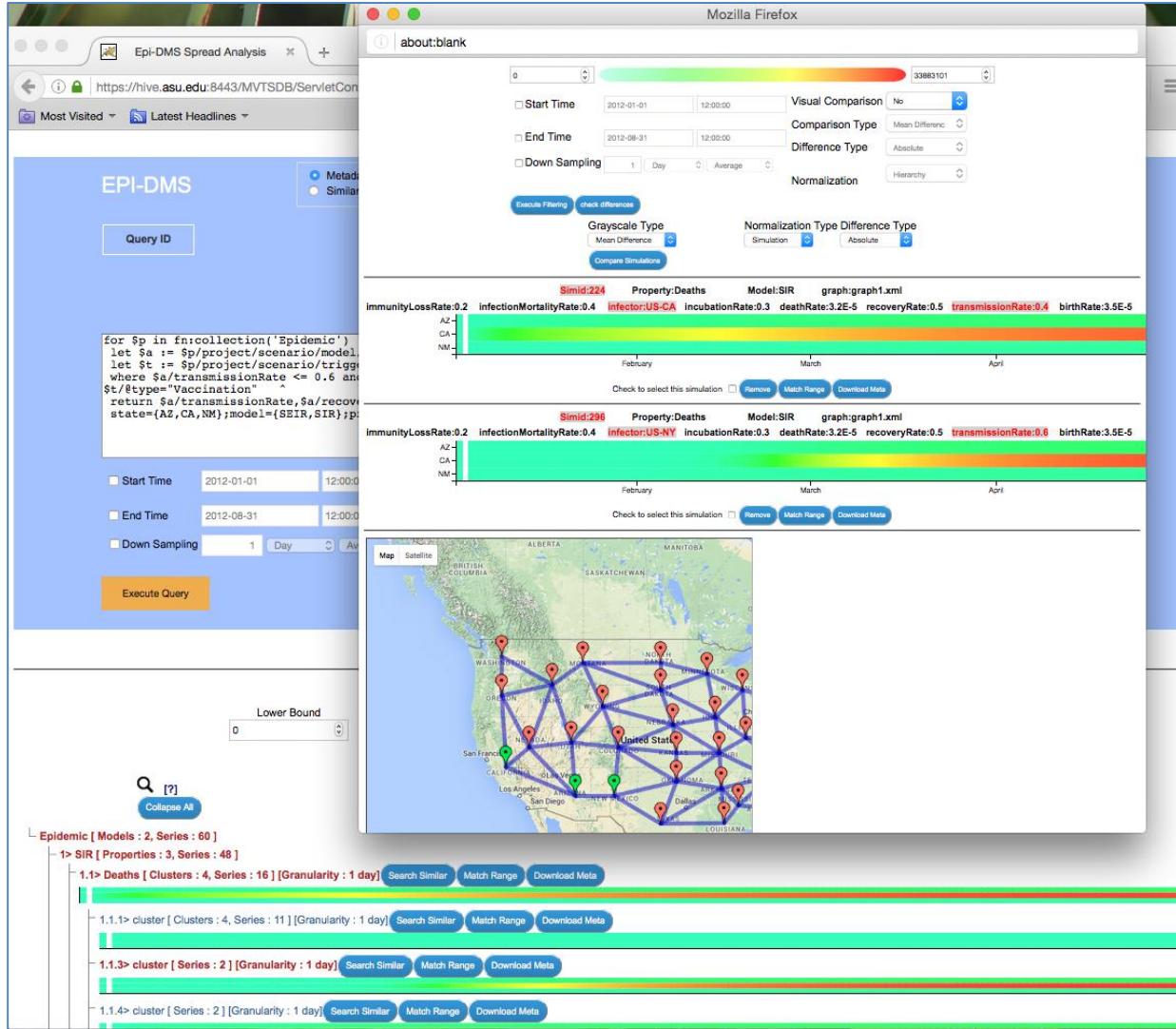
- Can we **discover key events** in a simulation trace and summarize a large simulation trace to highlight these key events?
- Can we **classify these key events**?
- Can we **compare a large number of simulation traces** and observations (under different parameter settings) to identify their similarities and differences?
- Can we analyze one or more simulation traces **to discover underlying patterns and relationships between input parameters, key events/interventions, and simulation outcomes**?
- Can we **search and retrieve simulation traces** based on the underlying key events or the overall trace similarities?

epiDMS Framework...



aims to address the key challenges underlying large epidemic spread simulations, which, today, hinder real-time and continuous analysis and decision making during ongoing outbreaks.

EpiDMS Epidemic Simulation Ensemble Exploration Interface



epiDMS

- epiDMS facilitates public-health decision makers
 - identify the relevant parameters that characterize transmission characteristics,
 - forecast epidemic spread as the epidemic evolves,
 - assess potential impact of intervention scenarios.
- epiDMS also allows the user to
 - perform simulation refinements by narrowing down the parameter space based on the current state of the epidemic
 - run additional simulations within the new parameter space to obtain more detailed simulations relevant to the current disease state.

Conclusion

- A sample EpiDMS visualization interface is available at
 - <http://aria.asu.edu/epidms>
- You can also watch a tutorial at
 - <https://www.youtube.com/watch?v=9w-4nDhXv3k>
- For feedback, please contact:
 - candan@asu.edu

Supported by

- NSF IIS#1318788 “Data Management for Real-Time Data Driven Epidemic Spread Simulations”
- NSF RAPID “Understanding the Evolution Patterns of the Ebola Outbreak in West-Africa and Supporting Real-Time Decision Making and Hypothesis Testing through Large Scale Simulations”

Contributors..

- Reece Bailey, ASU
- K. Selcuk Candan, ASU
- Xilun Chen, ASU
- Gerardo Chowell-Puente, GSU
- Yash Garg, ASU
- Anisha Gupta, ASU
- Shengyu Huang, ASU
- Jung Hyun Kim, ASU
- Sicong Liu, ASU
- Sam Morton, ASU
- Parth Nagarkar, ASU
- Silvestro Poccia, U. Torino
- Rosaria Rossini, U. Torino
- Shivam Sadakar, ASU
- Maria Luisa Sapino, U. Torino
- Adam Tse, ASU
- Xiaolan Wang, ASU
- Fiona Zhang, ASU
- Luke Zhang, ASU

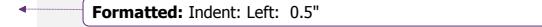
1 **EpiDMS: DATA MANAGEMENT AND ANALYTICS FOR DECISION MAKING FROM EPIDEMIC SPREAD**2 **SIMULATION ENSEMBLES^{i,ii}**3 Sicong Liu¹, Silvestro Poccia², K. Selcuk Candan¹, Gerardo Chowell³, Maria Luisa Sapino²

4

5 ¹ School of Informatics, and Decision Systems Engineering, Arizona State University, Tempe, Arizona,
6 85287, USA7 ² Computer Science Department, University of Torino, Torino, 10149, Italy8 ³ School of Public Health, Georgia State University, Atlanta, GA, 30033, USA

9

10 Corresponding author contact information:

11 K. Selcuk Candan
12 Professor, Computer Science and Engineering
13 School of Computing, Informatics, and Decision Systems Engineering
14 Arizona State University
15 P.O. Box 878809
16 Tempe, AZ 85287-8809
17 e-mail: candan@asu.edu
18 phone: (480) 965-2770
19 fax: (480) 965-2751 Formatted: Indent: Left: 0.5"20 Alternate author contact information:21 Sicong Liu
22 School of Computing, Informatics, and Decision Systems Engineering
23 Arizona State University
24 P.O. Box 878809
25 Tempe, AZ 85287-8809
26 e-mail: sliu104@asu.edu

27

28

29 **Running title:** EpiDMS: An epidemic simulation data management system

30

31 Abstract word count: 16932 Manuscript word count: 2617281833 Article type: Major Article

34

35

36
37

▲

Formatted: Justified, Right: -0.04", Space Before: 2.6 pt,
Line spacing: 1.5 lines, No widow/orphan control, Font
Alignment: Baseline

Formatted: Underline

38 **Abstract**

39 *Background:* Carefully calibrated large-scale computational models of epidemic spread represent a
40 powerful tool to support the decision-making process during epidemic emergencies. [TheseEpidemic](#)
41 models are being increasingly used for generating forecasts of the spatial-temporal progression of
42 epidemics at different spatial scales and assessing the likely impact of different intervention strategies.
43 However, the management and analysis of simulation ensembles stemming from large-scale
44 computational models poses challenges particularly when dealing with multiple inter-dependent
45 parameters, spanning multiple layers and geo-spatial frames, affected by complex dynamic processes
46 operating at different resolutions. *Methods:* We describe and illustrate with examples a novel epidemic
47 simulation data management system which was developed to address the challenges that arise from the
48 need to generate, search, visualize, and analyze in a scalable manner, large volumes of epidemic
49 simulation ensembles and observations during the progression of an epidemic.

50 *Results and conclusion:* EpiDMS is a publicly available system that facilitates management and analysis of
51 large epidemic simulation ensembles. EpiDMS aims to fill an important hole in decision making during
52 health-care emergencies and enabling critical services with significant economic and health impact.

53 **Keywords:** Epidemics, big data, simulation ensembles, data management, analytics, public-health
54 decision making.

55

56 1 Introduction

57 The potential for pandemics to rapidly generate morbidity, mortality, and economic impact around the
58 world has highlighted the need to develop quantitative frameworks for supporting public health decision-
59 making in near real-time. For instance, the 2003 SARS coronavirus (Severe Acute Respiratory
60 Syndrome) emergency ~~that, which~~ originated in China ~~and~~ spread to 29 countries~~and~~ generated
61 ~~important~~ nosocomial outbreaks in several regions by August 2003 [258,24]. More recently, the 2009
62 A/H1N1 influenza pandemic originating in Mexico rapidly spread around the globe via the airline network
63 and reached 20 countries with highest volume of passengers arriving from Mexico within a few weeks of
64 epidemic onset [14]. ~~Importantly, the economic impact associated with a~~ pandemic similar to the 2009
65 A/H1N1 influenza pandemic has been estimated to cost \$360 billion ~~in a mild scenario to~~ the global
66 economy ~~between \$360 billion and up to~~ \$4 trillion ~~in an ultra scenario [17], within~~ for the first year of
67 virus circulation.

68 Large-scale computational transmission models of infectious disease spread are increasingly becoming
69 part of the toolkit to carry out inferences on the spread and control of infectious diseases [41]. Examples of
70 real-time analyses of epidemics supported by large-scale transmission models include:

71 • estimating transmissibility of an epidemic disease, such as influenza [2,33,21],
72 • ~~Estimating the risk of observing multiple generations of disease transmission in particular areas of the~~
73 ~~world~~
74 • forecasting the spatio-temporal evolution of pandemics at different spatial scales [19,27],
75 • assessing the effect of travel controls during the early epidemic phase [9,12,22],
76 • predicting the effect of school closures in mitigating disease spread [5,6,29],
77 • assessing the impact of reactive vaccination strategies [16].

78 These analyses, however, require access to, integration, and analysis of models and large volumes of
79 data, including ~~datasets from diverse sources in order to parameterize demographic data characteristics,~~
80 contact networks, age-specific contact rates, mobility networks, and ~~data on~~ health-care and control
81 interventions ~~from diverse sources.~~

Formatted: Bold

82 In this paper, we argue that, if effectively leveraged, existing simulation analyses and real-time
83 observations ~~incominggenerated~~ during an outbreak can be collectively used for better understanding the
84 transmission dynamics and refining existing models. At the same time, these model simulations are
85 useful for performing exploratory, if-then type of hypothetical analyses of epidemic scenarios in order to
86 address critical questions including: (a) Can we ~~discoveridentify~~ and classify key events ~~and-summarize~~
87 ~~a(e.g., epidemic peak timing, likely epidemic duration) during an infectious disease outbreak from~~ large
88 simulation ~~trace to highlight these key events?ensembles?~~ (b) Can we compare and summarize a large
89 number of ~~simulation tracesepidemic simulations~~ and observations ~~(under different parameter~~
90 ~~settings)?epidemiological scenarios?~~ (c) Can we discover latent relationships and
91 ~~structuresdependencies~~ among disease ~~dynamics~~ and social parameters?

92 **1.1 Epidemic Simulations**

93 Global epidemic spread can be characterized via simulation through *networks* of multiple (local and
94 global) scales: individuals within a subpopulation may be infected through local contacts during a
95 ~~locallocalized~~ outbreak. These ~~infected~~ individuals then may seed the infection in other regions, starting a
96 new outbreak. ~~Thus, state-of-the-art disease spread simulators, such as~~ ~~Thus, large-scale epidemic~~
97 ~~simulation systems (e.g., GLEaM [4,2827] and STEM [26,]) are required to~~ leverage models and data at
98 different spatial scales, ~~including~~. ~~These include~~ social contact networks, local and global ~~individual~~
99 mobility patterns ~~of individuals as well as~~, location-specific ~~transmissibilitycontrol interventions~~, and
100 epidemiological characteristics of the infectious disease in question ~~and control intervention data and~~
101 ~~models~~:

- 102 • The population model for ~~the GLEaM global epidemic~~ simulation ~~enginesystem can be based~~,
103 for example, ~~is basedon~~ the Gridded Population of the World project by the Socio-Economic Data
104 and Applications Center (SEDAC) [25] ~~and~~, ~~which~~ has a resolution of 15×15 minutes of arc.
- 105 • Mobility models can include long-range air travel mobility data, from the International Air
106 Transport Association and the Official Airline Guide and/or short-range commuting patterns
107 between adjacent subpopulations. High-resolution demographic and age-specific contact data
108 has become available for a number of countries including the US [11], and South-East Asia [16]

109 while age-specific contact rates have been derived from population surveys for a number of
110 European countries [20]. Large-scale computational transmission models, parameterized with
111 high volume air traffic data and country-level seasonality factors, are being increasingly used to
112 assess the global transmission patterns of emerging infectious diseases and the effectiveness of
113 control measures [410,411,413,18].

114 • Epidemic models allow the user to specify epidemiological parameters for that are specific of the
115 infectious disease (such as reproductive numbertransmissibility and seasonality), initial outbreak
116 conditions (e.g. seeding characteristics of the epidemic and the immunity profile of the
117 subpopulation), and the timing, type and intensity of intervention measures. While the disease
118 model can be specific to the type of infection, the parameters of a typical model (the modified
119 Susceptible-Latent-Infectious-Recovered model described in [27]) includesinclude (a) the
120 infection rate of contracting illness when an individual interacts with an infectious person; (b)
121 infection rate scaling factors for asymptomatic infectors and treated infectors; (c) average length
122 of the latency period (in which the individual is infected, but not infecting); (d) probability of
123 symptomatic vs. asymptomatic infections; (e) change in the travelling behavior after the onset of
124 symptoms; (f) average length of recovery; (g) percentage of infectious individuals that undergo
125 pharmaceutical treatment; and (h) impact (e.g. on the length of the infectious period) of the
126 treatment.

127 The output of an epidemic simulation is a multi-variate time series, which tracks for each spatial location
128 (such as the US states) the simulation values of each output parameter, such as the number of infected
129 individuals.

130 **1.2 Challenges**

131 While large-scale epidemic simulation systems such as GLEaM [4,28] and [27] or STEM [26] arerepresent
132 very powerful and highly modular and flexible epidemic spread simulation software systems, their power
133 for real-time decision making could be enhanced by addressing the following challenges:

134 (a) *Complexity of the simulation and observation data.* A sufficiently useful disease spreading simulation
135 system requires models, including social contact networks, local and global mobility patterns of

136 individuals, and epidemiological parameters for the infectious disease (e.g., infectious period).
137 Epidemic simulations track 10s or 100s of inter-dependent parameters, spanning multiple layers and
138 geo-spatial frames, affected by complex dynamic processes operating at different resolutions.
139 Moreover, an ensemble of stochastic epidemic realizations may include 100s or 1000s of
140 simulations, each with different parameters settings corresponding to slightly different, but plausible,
141 scenarios [1,7]. As a consequence, running and interpreting simulation results (along with the real-
142 world observations) to generate timely actionable results are difficult~~pose challenges~~.

143 (b) *Dynamicity of the real-world observations.* A major challenge in using data- and model-driven
144 computer simulations for ~~disease spreading and for~~ predicting geo-temporal evolution of epidemics
145 for managing health emergencies, such as the 2014-15 Ebola epidemic in West Africa, is that the
146 data, models, and the underlying model parameters dynamically evolve over time ~~requiring~~. This
147 necessitates continuous analyses and interpretations of the incoming data and adaptation of the
148 networks and models. Therefore, simulation ensembles may need to be continuously revised and
149 refined as the situation on the ground changes: (a) revisions involve incorporating the real-world
150 observations as well as updated probability surfaces into existing simulations to alter their outcomes;
151 (b) refinements involve identifying new simulations to run based on the changing situation on the
152 ground to provide trustable recommendations. As the situation on the ground and intervention
153 mechanisms evolve, the sampling strategies for the input parameter spaces have to be varied (by
154 eliminating irrelevant scenarios and considering new scenarios or varying the likelihood of old
155 scenarios) in such a way that more accurate simulation results are obtained where it is more
156 relevant.

157 Unfortunately, because~~In order to have a significant impact on disease control and to devise validated~~
158 epidemic response strategies within a realistic time frame, public health authorities need to adequately
159 and systematically interpret observations, understand the processes driving epidemic outbreaks, and
160 assess the robustness of conclusions driven from simulations. Because of the volume and complexity of
161 the data, the varying spatial and temporal scales at which the key transmission processes operate and
162 relevant observations are made, public health experts could benefit from novel ~~systems to adequately~~

163 and systematically interpret observations, understand the processes driving epidemic outbreaks, and
164 assess the robustness of conclusions driven from simulations to provide validated epidemic response
165 strategies to public health authorities within a realistic time to have a significant impact on disease
166 control.decision support systems. Therefore, tools that help (a) executing large-scale simulation
167 ensembles under a large number of diverse hypotheses/scenarios, and (b) analysis, exploration,
168 interpretation, and visualization of large simulation ensembles (aligned with the real-world observations)
169 to generate timely actionable results are critically needed for understanding the evolution patterns of the
170 outbreaks (including estimating transmissibility, forecasting the spatio-temporal spread at different spatial
171 scales, assessing the cost and impact of interventions, including travel controls, at various stages of the
172 epidemic.) and supporting real-time decision making and hypothesis testing through large scale
173 simulations.

174
175
176 **2 EpiDMS System Overview and Use Scenario**
177 The key characteristics of data and models relevant to data-intensive simulations include the following:
178 (a) voluminous, (b) multi-variate, (c) multi-resolution, (d) multi-layer, (e) geo-temporal, (f) inter-connected
179 and inter-dependent, and (g) often incomplete/imprecise. Moreover, data and models dynamically evolve
180 over time, due to preventivecontrol actions taken by individuals and public health interventions, requiring
181 continuous adaptation and re-modeling.

182 The novel epiDMS software framework [1] aims to address the key challenges underlying large epidemic
183 spread simulations, which, today, hinder real-time and continuous analysis and decision making during
184 ongoing outbreaks. The services provided by epiDMS include (a) indexing and metadata and/or
185 similarity-based search of large ensemble simulation data sets, including extraction of salient features
186 from the inter-dependent parameters, spanning multiple layers and spatial-temporal frames, driven by
187 complex dynamic processes operating at different resolutions [29]; and (b) data analysis, including
188 identification of unknown dependencies across the input parameters and output variables spanning the
189 different layers of the observation and simulation data [16,24]. Unlike other dynamic modeling platforms

190 such as Berkeley Madonna [0], the services provided by epiDMS include
191 • storage and indexing of large ensemble simulation data sets and the corresponding models; and
192 • search and analysis of ensemble simulation data sets to enable ensemble-based decision
193 support [15,23,28].
194 The target user group for epiDMS include a range of public health researchers and decision makers.
195 While creation of models for ensemble simulations and query formulation require moderate infectious
196 disease modeling experience, epiDMS also provides parameterized queries and other interactive user
197 interfaces to enable decision makers with minimal experience to explore large ensemble simulations.

198 2.1 System Overview

199 The *epidemic simulation data management system* (epiDMS [1]) for managing the data and models for
200 data-driven real-time epidemic simulations consists of three major components (Figure 1):

201 • *Epidemic ensemble execution engine* (epiRun) takes as input an epidemic model,
202 mobility/connectivity models, interventions, and outbreak conditions (such as ground zero), and
203 creates an epidemic ensemble by sampling the disease parameter space and executing
204 simulations in parallel using STEM simulation engine, using an external simulation engine. Note
205 that epiRun is not specific to any disease model or simulation engine and can wrap –as a black-
206 box software component– any epidemic simulation engine as long as it provides command line
207 invocation. The epidemic model (formulated in the format specific to the simulation engine), the
208 selected input parameter values, and the simulation results (i.e., time series for each output
209 variable) then become inputs for the epidemic data and model store (epiStore), described next.
210 • *Epidemic data and model store* (epiStore) ingests, stores, and indexes the relevant data and
211 metadata sets. The data sets and models relevant for modeling large-scale epidemics include
212 the following:
213 ○ Network layers: An epidemic simulation requires one or more layers of networks, from
214 local and global mobility patterns to social contact networks.
215 ○ Disease models, describing the epidemiological parameters relevant to a simulation and

216 the parameter dependencies necessary in the computation of the disease spread.

217 ○ Simulation time series: For a given disease study, researchers and decision makers

218 often -perform- multiple simulations, each corresponding to different sets of assumptions

219 (disease parameters or models) or context (e.g. spatio-temporal context, outbreak

220 conditions, interventions).

221 ○ Disease observations: These include real-world observations that arise in near real-time

222 relating to a particular epidemic, including the spread and severity of the disease and

223 observations about other relevant parameters, such as the average length of recovery or

224 percentage of infectious individuals that undergo pharmaceutical treatment.

225 EpiStore [maintainscaptures](#) simulation metadata (simulation model, parameter values,

226 connectivity graphs) [and simulation outputs \(time series\)](#) and provides data analysis (such as

227 clustering, classification, event extraction) to support decision-making-making. Once again,

228 epiStore is not specific to any disease model or simulation ensembles generated by a specific

229 simulation engine – it can read and store models and simulation results produced by any

230 epidemic simulation engine as long as data wrappers that convert data and metadata into

231 internal epiStore representation are available.

232 • *Epidemic ensemble query, visualization, and exploration module* (epiViz) provides a [web-based](#)

233 query and result visualization interface to support user interaction and exploratory decision

234 making through simulation ensembles (Figure 2). [Query specification language is also model](#)

235 [independent, in the sense that the system does not make any assumptions regarding what the](#)

236 [input and output parameters of the simulations are – once imported into epiStore, parameters of](#)

237 [any model can be queried, visualized, and explored.](#)

238 **2.2 EpiDMS Use Scenario**

239 Let us consider a [group of public health officials at the CDC who are to develop governmental agency](#)

240 [charged with developing](#) a preparedness plan for the next influenza pandemic. To account for uncertainty

241 in the epidemiology of the disease, characteristics of surveillance systems, and actual field conditions

242 (e.g, healthcare capacity) including the availability and effectiveness of the interventions, public health

243 experts execute a large number of simulations using the epiRun simulation ensemble creation engine,
244 which relies on STEM to generate simulation instances. The configuration file for epiRun specifies
245 applicable disease models, parameter value ranges and sampling granularities, connectivity and mobility
246 graph assumptions, simulation duration, and assumptions regarding intervention triggers when and what
247 interventions are to be applied. Given these, epiRun schedules the execution of these simulations on a
248 parallel cluster and. The simulation metadata and stores results are then read and stored in epiStore.
249 Intuitively, each simulation result corresponds to a “possible world” and thus it is annotated and indexed
250 with the metadata describing the corresponding scenario. Later, during hypothetical public health
251 planning or pandemic response, the simulation results stored in epiStore can be accessed through
252 scenario-based or observational search.

253 2.2.1 Scenario-based Querying and Exploration
254 A basic functionality of the epiDMS system is to retrieve epidemic simulations, stored in epiStore, based
255 on a user specified scenario description. For example, the user can formulate a query that asks the
256 system to identify all pre-executed simulations, based on SEIR and SIR(susceptible-exposed-infectious-
257 removed) and SIR (susceptible-infectious-removed) epidemic models, where the input transmission rate
258 parameter was set between 0.3 and 0.6, the recovery rate parameter was set to 0.5, and a “vaccination”
259 type trigger was used in the simulation. The query also specifies a particular mobility graph, describing
260 expected movements of the populations during the epidemic, as an underlying assumption. In addition,
261 the query asks the system to return daily (1-D) averages of “infected”, “incidence”, and “deaths”
262 simulation output parameters for Arizona (AZ), California (CA), and New Mexico (NM), for an 8-months
263 long epidemic simulation that lasts 8 months (Please see the online supplement for the details of this
264 query as well as a detailed description of the query and visual exploration interface provided by epiDMS).
265 Once the query is executed and the relevant simulations are identified, epiDMS then organizes the results
266 in the form of a navigable hierarchy, based on the temporal dynamics of the disease: scenarios that result
267 in similar patterns are grouped under the same branch, while simulations that show key differences in
268 disease development are placed under different branches of the navigation hierarchy. The user can then
269 navigate on this hierarchy using “drill-down” and “roll-up” operations and filter sets of simulations for
270 11

271 further analysis.

272 **2.2.2 Observational Alignment Based Querying and Exploration**

273 In addition to scenario-based filtering, search, and exploration, epiDMS also enables searching particular
274 temporal patterns on the epidemic ensembles. During an epidemic, this feature allows the expert to
275 identify a relevant subset of stored simulations that match actual disease patterns or specific targets for
276 intervention measures. This facilitates public-health decision makers to 1) identify the relevant parameters
277 that characterize transmission [characteristics](#)[patterns](#) in near real time, 2) forecast epidemic spread as
278 the epidemic evolves, 3) assess potential impact of intervention scenarios. This platform also allows the
279 user to perform simulation refinements by narrowing down the parameter space of “possible worlds”
280 based on the current state of the epidemic. Hence, the user can use epiDMS to run additional simulations
281 within the constrained parameter space to obtain more detailed simulations, possibly with additional
282 intervention assumptions, that are relevant to the current state of the epidemic.

283 **3 Conclusions**

284 In this paper, we describe and illustrate with an example a novel epidemic simulation data management
285 system (EpiDMS [1]) that supports [the](#)[generation](#), [searching](#), [visualizing](#)[search](#), [visualization](#), and
286 [analyzing](#)[analysis](#), in a scalable manner, [of](#) large volumes of epidemic simulation ensembles for decision
287 making. The system aims to assist experts and decision makers in exploring large epidemic simulation
288 ensemble data sets, through efficient metadata and similarity based querying, data analysis, and visual
289 exploration.

290 **Acknowledgements**

291 We thank [to](#) the members of the EmitLab at ASU for their contributions to the epiDMS system. [Please see](#)
292 [the footnotes for the funding information and the conflict of interest statement.](#)

293

294

Formatted: List Paragraph, Space Before: 2 pt, After: 3 pt, Line spacing: Double

Formatted: Font: Not Bold, Not Expanded by / Condensed by

295 4 References

296 1. Epidemic Simulation Data Management System (EpiDMS). Available at:
297 <https://hive.asu.edu:8443/MVTSDB/?p=epidemic>. Accessed 10 May 2016.

298 2. Abubakar I, Gautret P, Brunette GW, Blumberg L, Johnson D, Poumerol G, et al. Global perspectives
299 for prevention of infectious diseases associated with mass gatherings. Lancet Infect Dis.
300 Jan;12(1):66-74.

301 3. Anderson RM, May RM. Infectious diseases of humans. Oxford: Oxford University Press; 1991.

302 4. Balcan D, Hu H, Goncalves B, Bajardi P, Poletto C, Ramasco JJ, et al. Seasonal transmission
303 potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on
304 human mobility. BMC Med. 2009;7:45.

305 5.4. Barrett CL, Eubank SG, Smith JP. If smallpox strikes Portland. Scientific American. 2005
306 Mar;292(3):42-9.

307 6.5. Cauchemez S, Ferguson NM, Wachtel C, Tegnell A, Saour G, Duncan B, et al. Closure of schools
308 during an influenza pandemic. Lancet Infect Dis. 2009 Aug;9(8):473-81.

309 7.6. Centers for Disease Control and Prevention. Interim pre-pandemic planning guidance: community
310 strategy for pandemic influenza mitigation in the United States—early, targeted, layered use of
311 nonpharmaceutical interventions. Atlanta (GA): The Centers for Disease Control and Prevention;
312 2007.

313 8.7. Chao DL, Halloran ME, Obenchain VJ, Longini IM, Jr. FluTE, a publicly available stochastic influenza
314 epidemic simulation model. PLoS Comput Biol. Jan;6(1):e1000656.

315 9.8. Chowell G, Fenimore PW, Castillo-Garsow MA, Castillo-Chavez C. SARS outbreaks in Ontario, Hong
316 Kong and Singapore: the role of diagnosis and isolation as a control mechanism. J Theor Biol. 2003
317 Sep 7;224(1):1-8.

318 10.9. Colizza V, Barrat A, Barthelemy M, Valleron AJ, Vespignani A. Modeling the worldwide spread of
319 pandemic influenza: baseline case and containment interventions. PLoS Med. 2007 Jan;4(1):e13.

320 11.10. Flahault A, Vergu E, Boelle PY. Potential for a global dynamic of Influenza A (H1N1). BMC Infect
321 Dis. 2009;9:129.

322 42-11. Germann TC, Kadau K, Longini IM, Jr., Macken CA. Mitigation strategies for pandemic influenza
323 in the United States. *Proc Natl Acad Sci U S A*. 2006 Apr 11;103(15):5935-40.

324 43-12. Hollingsworth TD, Ferguson NM, Anderson RM. Will travel restrictions control the international
325 spread of pandemic influenza? *Nat Med*. 2006 May;12(5):497-9.

326 44-13. Kenah E, Chao DL, Matrajt L, Halloran ME, Longini IM, Jr. The global transmission and control of
327 influenza. *PLoS One*. 2011;6(5):e19515.

328 45-14. Khan K, Arino J, Hu W, Raposo P, Sears J, Calderon F, et al. Spread of a novel influenza A
329 (H1N1) virus via global airline transportation. *N Engl J Med*. 2009 Jul 9;361(2):212-4.

330 46-15. Liu S., Garg Y, Candan KS, Sapino ML, Chowell G. NOTES2: Networks-Of-Traces for Epidemic
331 Spread Simulations. AAAI Workshop on Computational Sustainability, 2015.

332 47-16. Longini IM, Jr., Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DA, et al.
333 Containing pandemic influenza at the source. *Science*. 2005 Aug 12;309(5737):1083-7.

334 48-17. Warwick J. McKibbin. The Swine Flu Outbreak and its Global Economic Impact. Brookings. May
335 4th 2009. Available at <http://www.brookings.edu/research/interviews/2009/05/04-swine-flu-mckibbin>.
336 Accessed May 10th 2016.

337 49-18. Merler S, Ajelli M. The role of population heterogeneity and human mobility in the spread of
338 pandemic influenza. *Proc Biol Sci*. Feb 22;277(1681):557-65.

339 50-19. Merler S, Ajelli M, Pugliese A, Ferguson NM. Determinants of the spatiotemporal dynamics of the
340 2009 H1N1 pandemic in Europe: implications for real-time modelling. *PLoS Comput Biol*. 2011
341 Sep;7(9):e1002205.

342 51-20. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social contacts and mixing
343 patterns relevant to the spread of infectious diseases. *PLoS Med*. 2008 Mar 25;5(3):e74.

344 52-21. Nishiura H, Castillo-Chavez C, Safan M, Chowell G. Transmission potential of the new influenza
345 A(H1N1) virus and its age-specificity in Japan. *Euro Surveill*. 2009;14(22):pii: 19227.

346 53-22. Scalia Tomba G, Wallinga J. A simple explanation for the low impact of border control as a
347 countermeasure to the spread of an infectious disease. *Math Biosci*. 2008 Jul-Aug;214(1-2):70-2.

348 24-23. Schifanella C, Candan KS, Sapino ML. Multiresolution Tensor Decompositions with Mode
349 Hierarchies. ACM Trans. Knowl. Discov. Data (TKDD), 8(2), Article No. 10, June 2014.

350 25-24. Siu A and Wong Y C R. Economic Impact of SARS: The Case of Hong Kong. MIT Press. 2004,
351 3(1), p. 62-83.

352 26-25. Socioeconomic Data and Applications Center (SEDAC). Columbia University; Available at:
353 <http://sedac.ciesin.columbia.edu>. Accessed 10 May 2016.

354 27-26. STEM. The spatiotemporal epidemiological modeler project. Available at
355 <http://www.eclipse.org/stem>. Accessed 10 May 2016.

356 28-27. Van den Broeck W, Gioannini C, Goncalves B, Quaggiotto M, Colizza V,
357 Vespignani A. The GLEaMviz computational tool, a publicly available software to explore realistic
358 epidemic spreading scenarios at the global scale. BMC Infect Dis. 2011;11:37.

359 29-28. Wang X, Candan KS, Sapino ML. Leveraging metadata for identifying local,
360 robust multi-variate temporal (RMT) features. IEEE International Conference on Data Engineering
361 (ICDE) 2014: 388-399.

362 30-29. Wu JT, Cowling BJ, Lau EH, Ip DK, Ho LM, Tsang T, et al. School closure and mitigation of
363 pandemic (H1N1) 2009, Hong Kong. Emerg Infect Dis. 2010 Mar;16(3):538-41.

|364

365 30. Berkeley Madonna - Modeling and Analysis of Dynamic Systems. <http://www.berkeleymadonna.com/>.
366 Accessed 10 July 2016.

ⁱ Funding statement: This work is supported by NSF grants NSF # 1318788 and NSF # 1518939.

ⁱⁱ Conflict of interest statement: The conflict of interest (COI) disclosure forms are attached. Authors report no competing interests related to this manuscript.

EPI-DSMS: DATA MANAGEMENT AND ANALYTICS FOR DECISION MAKING FROM EPIDEMIC SPREAD

SIMULATION ENSEMBLES

(ONLINE SUPPLEMENT)

Sicong Liu

Arizona State University

s.liu@asu.edu

Silvestro Poccia

University of Torino

silvestro.poccia@edu.unito.it

K. Selcuk Candan

Arizona State University

candan@asu.edu

Gerardo Chowell

Georgia State University

gchowell@gsu.edu

Maria Luisa Sapino

University of Torino

marialuisa.sapino@unito.it

A basic functionality of the epiDSMS system is to retrieve epidemic simulations, stored in epiStore, based on the user specified scenario description.

Associated Grant(s) : NSF # 1318788 and NSF # 1518939

EPI-DSMS

Metadata Query Similarity Query

Welcome Guest Home Help Sign out

Query ID:

Query Description

```
for $p in fn:collection('Epidemic') ^  
let $a := $p/project/scenario/model/disease ^  
let $t := $p/project/scenario/trigger ^  
where $a/transmissionRate <= 0.6 and $a/transmissionRate >= 0.3 and $a/recoveryRate = 0.5 and  
$t/@type="Vaccination" ^  
return $a/transmissionRate,$a/recoveryRate ^  
state={AZ,CA,NM};model={SEIR,SIR};properties={Infected,Incidence,Deaths};
```

Return SIR and SEIR simulations that have a vaccination trigger and satisfy several other constraints. Plot the results for Arizona, California, New Mexico states. The output series are counts of Infected, Incidence, and Deaths; return also the transmission rate and recovery rate for the identified simulations.

Start Time: 2012-01-01 12:00:00 Visual Comparison: No

End Time: 2012-08-31 12:00:00 Comparison Type: Mean Difference

Down Sampling: 1 Day Difference Type: Absolute

Normalization: Hierarchy

The basic query interface, visualized above, provides the following functionalities:

- Query Menu --- visualizes the list of queries that are stored in the system.
- Query Box --- visualizes the selected query and/or allows the user to edit a query

- Query Description --- shows the description of the selected query and/or allows the user to add a query description.

EpiDMS provides a- rich query language to specify user queries. Consider, for example, the following sample query:

1. FOR \$p in fn:collection('EpidemicSimulationEnsemble') ^
2. LET \$diseaseModel := \$p/project/scenario/model/disease ^
 - o LET \$triggerModel := \$p/project/scenario/trigger ^
 - o LET \$epidemicScenario := \$p/project/scenario ^
3. WHERE
 - a. \$diseaseModel/transmissionRate <= 0.6 and
 - b. \$diseaseModel/transmissionRate >= 0.3 and
 - c. \$diseaseModel/recoveryRate = 0.5 and
 - d. \$triggerModel/@type="Vaccination" and
 - e. (\$epidemicScenario/infector/@targetISOKey="US-NYCA" or
\$epidemicScenario/infector/@targetISOKey="US-NY") and
 - f. (\$epidemicScenario/graph = "mobility_graph_7.xml" or
\$epidemicScenario/graph = "mobility_graph_8.xml") ^
4. RETURN
 - a. \$diseaseModel/transmissionRate,
 - b. \$diseaseModel/recoveryRate,
 - c. \$epidemicScenario/graph ^
 - d. STATE={AZ,CA,NM};
 - e. MODEL={SEIR,SIR};
 - f. PROPERTIES={Infected,Incidence,Deaths};
5. FROM ={01/01/2012 12:00:00}; TO={08/31/2012 12:00:00};
6. BY={1-D}; FUNCTION ={avg};

We describe the different components of this sample query below:

1. The “FOR” statement allows the user to select the simulation dataset to query. In this example, the user selects to focus on the stored simulation set “EpidemicSimulationEnsemble”.
2. The “LET” statement allows to associate variables representing disease and intervention trigger models and epidemic scenarios.
3. The “WHERE” clause allows the user to specify conditions on the simulation models to filter those simulations that are relevant for the current analysis. In this example, the user specifies that for the returned simulations, the transmission rate parameter should be between 0.3 and 0.6, the recovery rate parameter should be set to 0.5, and that a “vaccination” type trigger should be included in the simulation model. The user also specifies that epidemic should have started at California (CA) or New York (NY) state and the “mobility_graph_7.xml” or “mobility_graph_8.xml” should have been used to generate the simulations.
4. The “RETURN” clause lists the simulation parameters to be returned in the result. In this example, the user is interested in the transmission rate, recovery rate, the mobility graph for each returned simulation. In addition, the query asks the system to return the time series corresponding to the “infected”, “incidence”, and “deaths” simulation output parameters for Arizona (AZ), California (CA), and New Mexico (NM) states.
5. In this clause, the user specifies that s/he is interested in only the first 8 months of the simulation.
6. Furthermore, the user specifies that the system return daily (1-D) averages of the simulation parameters for the specified duration.

1.1.1 *Query Interface*

The epiDMS query interface allows the user to specify and execute parametric queries. As illustrated below, parametric queries support query specification reuse – instead of writing a new query for different parameters, the user can specify and store a parametric query, which can then be invoked with different parameter values, as seen in the following example:

Query

```

for $p in fn:collection('Epidemic') ^
  let $a := $p/project/scenario/model/disease ^
  let $t := $p/project/scenario/trigger ^
  where $a/transmissionRate <= (par) 0.6 (par) and $a/transmissionRate >= (par) 0.3 (par) and
    $a/recoveryRate = (par) 0.5 (par) and $t/@type="Vaccination"
  return $a/transmissionRate,$a/recoveryRate ^
  state={AZ,CA,NM};model={SEIR,SIR};properties={Infected,Incidence,Deaths};

```

Where:

transmissionRate <= transmissionRate >= recoveryRate =

In the above example, those query parameters whose values are bracketed with the symbol “(par)” are interpreted as being parametric. The user can vary these values using a form-based interface without having to modify the source code directly.

1.1.2 Result Set Exploration Module

Once the query is executed and the relevant simulations are identified, epiDMS then organizes the results in the form of a navigable hierarchy, based on the temporal dynamics of the disease: scenarios that result in similar patterns are grouped under the same branch, while simulations that show key differences in disease development are placed under different branches of the navigation hierarchy. The user can then navigate on this hierarchy using “drill-down” and “roll-up” operations on this hierarchy and pick sets of simulations to study and compare in further detail the corresponding scenarios. This process is described below:

Once the matching simulations are identified, the user is presented with an initially collapsed hierarchy of results:

Lower Bound

Upper Bound

└ Epidemic, #Models : 2, #sims : 60

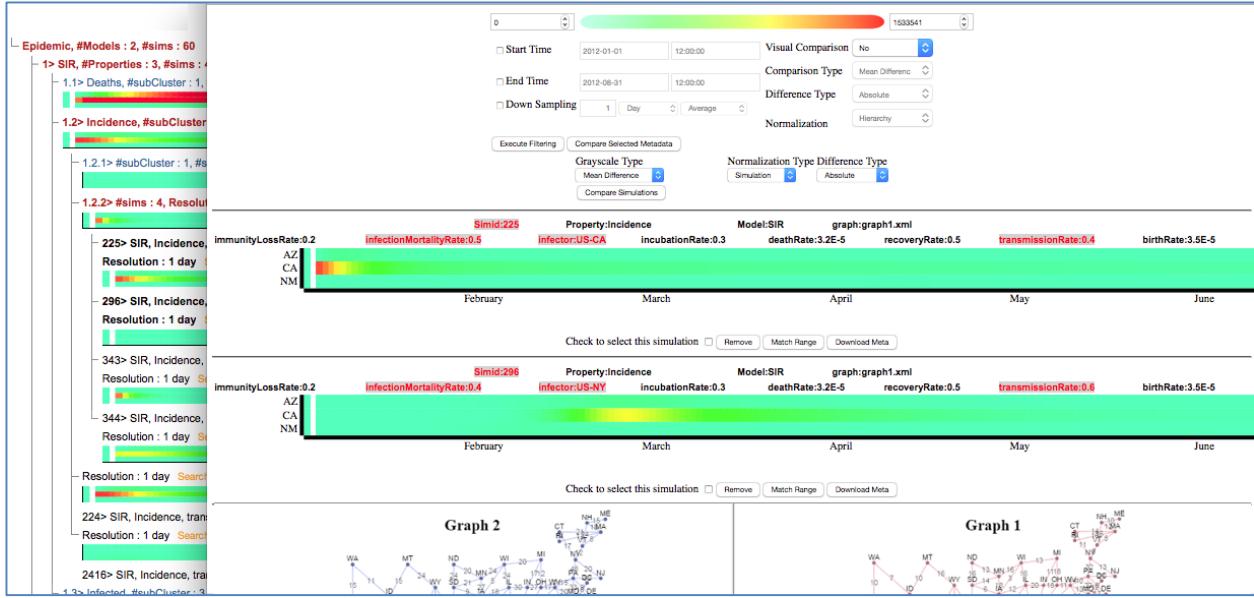
Above, we see that the query identified 60 matching simulations, from two different disease models. The legend at the top provides the scope of values in the results. The user can explore these simulations by drilling down or rolling up on the result hierarchy:

As we see above, the top-level of the result hierarchy includes the disease models (SIR and SEIR in this example). At the next level, the user is presented the output parameters specified in the query (“incidence”, “deaths”, and “infected” in this example). Under this level, the results are organized in the form of a cluster hierarchy, where similar simulations are clustered under the same navigation branch. For each node in the navigation hierarchy, a cluster representative is selected and the corresponding simulation is visualized in the form of a heatmap, where each row corresponds to a location (states “AZ”, “CA”, and “NM”) in this example. The user can obtain detailed information about the presented simulations, by hovering the mouse on the heatmaps or download [metadata](#) [simulation results \(in the form of CSV files\)](#) or [metadata and model specifications \(in XML format\)](#) corresponding to different simulations for further study [or dissemination to decision makers](#).

The user can also use the “match range” feature to change the scale of visualization so that the upper bound of visualized values in the heatmap is modified in a way that matches a selected simulation to enable better visualization of its details. For example, in the example below, the heatmap scale has been modified to match the number of incidences, rather than the number of deaths; thus, we are able to better observe the differences among the incidence clusters:

The user can explore these simulations by navigating on the hierarchy by drilling down or rolling up different branches. In the following example, the user has drilled down on the cluster 1.2.2 of the “incidence” data to observe the simulations clustered under this navigation node:

To further study individual simulations, the user then can double click on any simulation in the navigation hierarchy to place them in to a separate comparison interface. In the example, shown below, the user selected two simulations (#225 and #296) under cluster 1.2.2 to be studied and compared further in detail:



In the detailed comparison interface, the user can compare the two (or more) simulations side by side and observe the differences in the input parameters and models. The user can further ask the system to visualize the precise differences in the metadata corresponding to selected pairs of simulations:

```

<project name="225">
  0.4</transmissionRate>
  0.5</infectionMortalityRate>
  <infector name="Inf" targetISOKey="US-CA" targetURI="stem.eclipse.org/graphs/US/CA">
    type="percentage" infectionCount="10" populationIdentifier="human"/>
    <properties href="platform/resource/225/decorators/disease.standard#human/r"/>
    <properties href="platform/resource/225/decorators/disease.standard#human/incidence"/>
    <properties href="platform/resource/225/decorators/disease.standard#human/i"/>
    <properties href="platform/resource/225/decorators/disease.standard#human/s"/>
    <properties href="platform/resource/225/decorators/disease.standard#human/populationCount"/>
    <properties href="platform/resource/225/decorators/disease.standard#human/diseasedeath"/>
    <properties href="platform/resource/225/decorators/disease.standard#human/death"/>
  </infector>
  <scenario name="scenario">
    <model name="disease_model">
      <disease name="disease" model="SIR">
        <!-- Use Disease Name from disease tag here - diseaseName-->
      </disease>
      <transmissionRate>
        0.4</transmissionRate>
        0.5</recoveryRate>
        <infectionMortalityRate>
          0.5</infectionMortalityRate>
        </infectionMortalityRate>
        <incubationRate>
          0.3</incubationRate>
        </incubationRate>
        <immunityLossRate>
          0.2</immunityLossRate>
        </immunityLossRate>
      </disease>
      <populationModel>
        <birthRate>
          3.5E-5</birthRate>
        <deathRate>
          3.2E-5</deathRate>
        </populationModel>
      </model>
    </scenario>
    <sequencer name="*>
      <!-- FORMAT :: STEM Time DAY MMM DD HH:MM:SS MST YYYY -->
      <date start="MONDAY JAN 01 12:00:00 MST 2013" end="SUNDAY JUL 31 12:00:00 MST 2013">
        <!-- FORMATTED DATE -->
      </sequencer>
      <infector name="Inf" targetISOKey="US-CA" targetURI="stem.eclipse.org/graphs/US/CA">
        type="percentage" infectionCount="10" populationIdentifier="human"/>
        <!-- Use Disease Name from disease tag here - diseaseName-->
      </infector>
      <logger name="csvlog" title="CSV File Logger">
        <!-- Use Disease Name from disease tag here - diseaseName-->
      </logger>
    </sequencer>
  </project>
  0.6</transmissionRate>
  0.4</infectionMortalityRate>
  <infector name="Inf" targetISOKey="US-NY" targetURI="stem.eclipse.org/graphs/US/NY">
    type="percentage" infectionCount="10" populationIdentifier="human"/>
    <properties href="platform/resource/296/decorators/disease.standard#human/r"/>
    <properties href="platform/resource/296/decorators/disease.standard#human/incidence"/>
    <properties href="platform/resource/296/decorators/disease.standard#human/i"/>
    <properties href="platform/resource/296/decorators/disease.standard#human/s"/>
    <properties href="platform/resource/296/decorators/disease.standard#human/populationCount"/>
    <properties href="platform/resource/296/decorators/disease.standard#human/diseasedeath"/>
    <properties href="platform/resource/296/decorators/disease.standard#human/death"/>
  </infector>
  <scenario name="scenario">
    <model name="disease_model">
      <disease name="disease" model="SIR">
        <!-- Use Disease Name from disease tag here - diseaseName-->
      </disease>
      <transmissionRate>
        0.6</transmissionRate>
        0.5</recoveryRate>
        <infectionMortalityRate>
          0.4</infectionMortalityRate>
        </infectionMortalityRate>
        <incubationRate>
          0.3</incubationRate>
        </incubationRate>
        <immunityLossRate>
          0.2</immunityLossRate>
        </immunityLossRate>
      </disease>
      <populationModel>
        <birthRate>
          3.5E-5</birthRate>
        <deathRate>
          3.2E-5</deathRate>
        </populationModel>
      </model>
    </scenario>
    <sequencer name="*>
      <!-- FORMATTED DATE -->
      <date start="MONDAY JAN 01 12:00:00 MST 2013" end="SUNDAY JUL 31 12:00:00 MST 2013">
        <!-- FORMATTED DATE -->
      </sequencer>
      <infector name="Inf" targetISOKey="US-NY" targetURI="stem.eclipse.org/graphs/US/NY">
        type="percentage" infectionCount="10" populationIdentifier="human"/>
        <!-- Use Disease Name from disease tag here - diseaseName-->
      </infector>
      <logger name="csvlog" title="CSV File Logger">
        <!-- Use Disease Name from disease tag here - diseaseName-->
      </logger>
    </sequencer>
  </project>

```

Here the text highlighted in red **points** to the differences in metadata corresponding to the pair of simulations selected or comparison.

1.1.3 Observational Similarity Based Querying and Exploration

In addition to scenario-based filtering, search, and exploration, EpiDMS also enables searching particular temporal patterns on the epidemic ensembles. During an epidemic, this feature allows the expert to

identify a relevant subset of stored simulations that match actual disease patterns or specific targets for intervention measures.

To use similarity based querying, the user can either click on the “Search Similar” option on the result visualization interface or switch to the “Similarity Query” interface and provide a file which contains the observations of interest:

Associated Grant(s) : NSF # 1318788 and NSF # 1518939

EPI-DMS

Metadata Query
 Similarity Query

Welcome Guest Home Help Sign out

Select a Multivariate Timeseries file: No file selected.

PROJECT: MODEL: PROPERTY: ZONES:

Once a simulation/observation and states of interest are provided, the system searches in the databases existing simulations that show a similar pattern. Results are ranked in terms of their similarities to the provided query pattern:

Associated Grant(s) : NSF # 1318788 and NSF # 1518939

EPI-DMS

Metadata Query
 Similarity Query

Welcome Guest Home Help Sign out

224> SIR, Deaths,

PROJECT: MODEL: PROPERTY: ZONES: CA,NM,AZ

- └ Epidemic, #Models : 1, #sims : 52
 - └ 1> SIR, #Properties : 1, #sims : 52
 - └ 1.1> Deaths, #subCluster : 11, #sims : 52
 - 1.1.1> #sims : 5, Resolution : 1 day
 - 1.1.2> #sims : 5, Resolution : 1 day
 - 226> SIR, Deaths, Resolution : 1 day
 - 346> SIR, Deaths, Resolution : 1 day

Note that, once again, the user can obtain detailed information about the presented simulations by

hovering the mouse on the heatmaps or download [simulation data or metadata](#) corresponding to different simulations for further study. Moreover, as before, to further study individual simulations, the user can double click on any simulation in the navigation hierarchy to place them in to the comparison interface.

Please see the accompanying video at <https://www.youtube.com/watch?v=9w-4nDhXv3k> for more details.

Frequently Asked Questions

Question #1: *“It appears that epiDMS would be operated by those with at least moderate infectious disease modeling experience. Is it true that epiDMS requires programming skills by the operator (while there appears to be a GUI, there also appears to be a moderate amount of programming involved in operating this).”*

Answer: The target user group for epiDMS include a range of public health researchers and decision makers. While creation of models for ensemble simulations and formulating queries over ensembles simulations require moderate infectious disease modeling experience and familiarity with (not programming, but) declarative querying, epiDMS also provides parameterized queries and other interactive user interfaces to enable decision makers with minimal experience to explore large ensemble simulations.

Question #2: *“Can you give a pathogen-specific example of a public health emergency in which the data, models and underlying model parameters dynamically evolve over time requiring continuous analyses and interpretations of the incoming data and adaptation of the networks and models.”*

Response: The 2014-15 Ebola epidemic in West Africa was an example of such an health emergency where the situation (what we new about the disease characteristics, available and implemented intervention strategies, population dynamics, and social interactions among and within effected populations) continuously changed as the epidemic evolved, requiring reassessment and revisions models and re-interpretations of the data.

Question #3: *“How does epiDMS differ from existing modeling platforms and packages (e.g., Berkeley Madonna or R).”*

Answer: Unlike other dynamic modeling platforms such as Berkeley Madonna, the services provided by epiDMS include

- storage and indexing of large ensemble simulation data sets and the corresponding and models; and
- search and analysis of ensemble simulation data sets to support ensemble-based decision support.

In that sense, epiDMS is less of a modeling tool and more of a multi-model, multi-instance ensemble simulation-based decision support system.

Question #4: *“Is epiDMS specific to a particular disease model or simulation engine? If not, how does different models fit within the database?”*

Response: We thank the reviewer for bringing to our attention that the original manuscript did not make it sufficiently clear that epiDMS is a model independent system by design:

- epiRun, for execution ensemble simulations, is not specific to any disease model or simulation engine and can wrap –as a black-box software component– any epidemic simulation engine as long as it provides command line invocation.
- epiStore, which stores epidemic models and the generated simulation ensembles, is not specific to any disease model or simulation ensembles generated by a specific simulation engine – it can read and store models and simulation results produced by any epidemic simulation engine as long as data wrappers that convert data and metadata into internal epiStore representation is available. This wrapper based design ensures that models and simulations generated by different engines and tools can be imported into epiStore and queried and analyzed simultaneously irrespective of their origin.
- Finally, epiViz, which provides a web-based query and result visualization interface to support

user interaction and exploratory decision making is also model independent. More specifically, the underlying query specification language can support queries based on any model, without having to make any a priori assumptions regarding what the input and output parameters of the simulations are. Once they are imported into epiStore, parameters of any model can be queried, visualized, and explored.

The current alpha version of the system provides wrappers for the STEM simulation engine and can import models and simulations generated by STEM tool. The beta version of the tool will include wrappers for other systems.

Question #5: *(i) What are the computational demands of epiDMS. e.g., can this be run on a standard laptop? A tablet/smartphone? From the video, it appears this is a web-based platform, but is there a stand alone downloadable form which can be run in potential areas with no internet connection (e.g., in certain field settings)?*

Answer: The user interface of epiDMS is indeed a web-based platform and can run on any networked laptop and most tablets or smartphones. The backend, however, runs on server hardware. It is, however, possible to configure a laptop to act both as the backend and frontend.

Question #6: *What is the speed of the simulation analyses?*

Answer: This depends on the size of the simulation ensemble, number of variates/parameters of interest, the type of analysis, and the hardware configuration (memory, number of cores) at the back-end server platform. Having said that, we are doing our best to provide a near real-time and interactive experience to the users.

Question #7: *What is the format of the modelling output? Can it easily be downloaded and disseminated to decision makers in public health practice?*

Answer: Users of epiDMS can download simulation results (in the form of CSV files) or metadata and model specifications (in XML format) corresponding to different simulations for further study or

dissemination to decision makers.

Question #8: "Can you confirm if this is a free system?...is there an open-source version of the software with scope for a community of developers?"

Answer: An alpha version of the source-code for epiDMS is currently available upon request, and free of charge, to researchers and educators in the non-profit sector, including institutions of education, research, and government laboratories under an Apache 2.0 license (<http://www.apache.org/licenses/LICENSE-2.0>). The terms of the license allows individuals to modify the source code and to share modifications and also enable open source development of the software by other individuals and teams. The terms of software availability permits the commercialization of enhanced and customized versions of the software and incorporation of the software or pieces of it into other software packages. The beta release of the source-code will be available to the public through GitHub under the same terms.

Question #9: "Is there a user-group forum for users to ask questions, trouble-shoot, show applications etc.?"

Answer: While such a user-group forum does not currently exist, we will bootstrap a group along with the beta release of the system. In addition, we are planning to

- carry out demonstrations of epiDMS,
- give tutorials, and
- organize workshops

at leading forums targeting public healthcare researchers, scientists, and decision makers.