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Abstract

Background: Carefully calibrated large-scale computational models of epidemic spread represent a
powerful tool to support the decision-making process during epidemic emergencies. Epidemic models are
being increasingly used for generating forecasts of the spatial-temporal progression of epidemics at
different spatial scales and assessing the likely impact of different intervention strategies. However, the
management and analysis of simulation ensembles stemming from large-scale computational models
poses challenges particularly when dealing with multiple inter-dependent parameters, spanning multiple
layers and geo-spatial frames, affected by complex dynamic processes operating at different resolutions.
Methods: We describe and illustrate with examples a novel epidemic simulation data management system
which was developed to address the challenges that arise from the need to generate, search, visualize,
and analyze in a scalable manner, large volumes of epidemic simulation ensembles and observations
during the progression of an epidemic.

Results and conclusion: EpiDMS is a publicly available system that facilitates management and analysis of
large epidemic simulation ensembles. EpiDMS aims to fill an important hole in decision making during
health-care emergencies and enabling critical services with significant economic and health impact.
Keywords: Epidemics, big data, simulation ensembles, data management, analytics, public-health

decision making.
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1 Introduction

The potential for pandemics to rapidly generate morbidity, mortality, and economic impact around the
world has highlighted the need to develop quantitative frameworks for supporting public health decision-
making in near real-time. For instance, the 2003 SARS coronavirus (Severe Acute Respiratory
Syndrome) emergency, which originated in China and spread to 29 countries, generated important
nosocomial outbreaks in several regions by August 2003 [8,24]. More recently, the 2009 A/H1N1
influenza pandemic originating in Mexico rapidly spread around the globe via the airline network and
reached 20 countries with highest volume of passengers arriving from Mexico within a few weeks of
epidemic onset [14]. Importantly, the economic impact associated with a pandemic similar to the 2009
A/H1N1 influenza pandemic has been estimated to cost the global economy between $360 billion and $4
trillion [17] for the first year of virus circulation.

Large-scale computational transmission models of infectious disease spread are increasingly becoming

part of the toolkit to carry out inferences on the spread and control of infectious diseases. Examples of

real-time analyses of epidemics supported by large-scale transmission models include:

estimating transmissibility of an epidemic disease, such as influenza [2,3,21],

o forecasting the spatio-temporal evolution of pandemics at different spatial scales [19,27],

assessing the effect of travel controls during the early epidemic phase [9,12,22],

predicting the effect of school closures in mitigating disease spread [5,6,29],

e assessing the impact of reactive vaccination strategies [16],

These analyses, however, require access to, integration, and analysis of models and large volumes of
data, including datasets from diverse sources in order to parameterize demographic characteristics,

contact networks, age-specific contact rates, mobility networks, and health-care and control interventions.

In this paper, we argue that, if effectively leveraged, existing simulation analyses and real-time
observations generated during an outbreak can be collectively used for better understanding the
transmission dynamics and refining existing models. At the same time, these model simulations are

useful for performing exploratory, if-then type of hypothetical analyses of epidemic scenarios in order to
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address critical questions including: (a) Can we identify and classify key events (e.g., epidemic peak
timing, likely epidemic duration) during an infectious disease outbreak from large simulation ensembles?
(b) Can we compare and summarize a large number of epidemic simulations and observations under
different epidemiological scenarios? (c) Can we discover latent relationships and dependencies among

disease dynamics and social parameters?

1.1 Epidemic Simulations

Global epidemic spread can be characterized via simulation through networks of multiple (local and
global) scales: individuals within a subpopulation may be infected through local contacts during a
localized outbreak. These infected individuals then may seed the infection in other regions, starting a new
outbreak. Thus, large-scale epidemic simulation systems (e.g., GLEaM [27] and STEM [26]) are required
to leverage models and data at different spatial scales. These include social contact networks, local and
global individual mobility patterns, location-specific control interventions, and epidemiological

characteristics of the infectious disease in question:

o The population model for a global epidemic simulation system can be based, for example, on the
Gridded Population of the World project by the Socio-Economic Data and Applications Center
(SEDAC) [25], which has a resolution of 15 x 15 minutes of arc.

e Mobility models can include long-range air travel mobility data, from the International Air
Transport Association and the Official Airline Guide and/or short-range commuting patterns
between adjacent subpopulations. High-resolution demographic and age-specific contact data
has become available for a number of countries including the US [11], and South-East Asia [16]
while age-specific contact rates have been derived from population surveys for a number of
European countries [20]. Large-scale computational transmission models, parameterized with
high volume air traffic data and country-level seasonality factors, are being increasingly used to
assess the global transmission patterns of emerging infectious diseases and the effectiveness of
control measures [10,13,18].

o Epidemic models allow the user to specify epidemiological parameters that are specific of the

infectious disease (such as transmissibility and seasonality), initial outbreak conditions (e.g.
4
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seeding characteristics of the epidemic and the immunity profile of the subpopulation), and the
timing, type and intensity of intervention measures. While the disease model can be specific to
the type of infection, the parameters of a typical model (the modified Susceptible-Latent-
Infectious-Recovered model described in [27]) include (a) the infection rate of contracting illness
when an individual interacts with an infectious person; (b) infection rate scaling factors for
asymptomatic infectors and treated infectors; (c) average length of the latency period (in which
the individual is infected, but not infecting); (d) probability of symptomatic vs. asymptomatic
infections; (e) change in the travelling behavior after the onset of symptoms; (f) average length of
recovery; (g) percentage of infectious individuals that undergo pharmaceutical treatment; and (h)

impact (e.g. on the length of the infectious period) of the treatment.

The output of a simulation is a multi-variate time series, which tracks for each spatial location (such as the

US states) the simulation values of each output parameter, such as the number of infected individuals.

1.2 Challenges
While large-scale epidemic simulation systems such as GLEaM [27] or STEM [26] represent very
powerful and highly modular and flexible epidemic spread simulation systems, their power for real-time

decision making could be enhanced by addressing the following challenges:

(a) Complexity of the simulation and observation data. A sufficiently useful disease spreading simulation
system requires models, including social contact networks, local and global mobility patterns of
individuals, and epidemiological parameters for the infectious disease (e.g., infectious period).
Epidemic simulations track 10s or 100s of inter-dependent parameters, spanning multiple layers and
geo-spatial frames, affected by complex dynamic processes operating at different resolutions.
Moreover, an ensemble of stochastic epidemic realizations may include 100s or 1000s of
simulations, each with different parameters settings corresponding to slightly different, but plausible,
scenarios [4,7]. As a consequence, running and interpreting simulation results (along with the real-
world observations) to generate timely actionable results pose challenges.

(b) Dynamicity of the real-world observations. A major challenge in using data- and model-driven

computer simulations for predicting geo-temporal evolution of epidemics for managing health
5
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emergencies, such as the 2014-15 Ebola epidemic in West Africa, is that the data, models, and the
underlying model parameters dynamically evolve over time. This necessitates continuous analyses
and interpretations of the incoming data and adaptation of the networks and models. Therefore,
simulation ensembles may need to be continuously revised and refined as the situation on the
ground changes: (a) revisions involve incorporating the real-world observations as well as updated
probability surfaces into existing simulations to alter their outcomes; (b) refinements involve
identifying new simulations to run based on the changing situation on the ground to provide trustable
recommendations. As the situation on the ground and intervention mechanisms evolve, the sampling
strategies for the input parameter spaces have to be varied (by eliminating irrelevant scenarios and
considering new scenarios or varying the likelihood of old scenarios) in such a way that more

accurate simulation results are obtained where it is more relevant.

In order to have a significant impact on disease control and to devise validated epidemic response
strategies within a realistic time frame, public health authorities need to adequately and systematically
interpret observations, understand the processes driving epidemic outbreaks, and assess the robustness
of conclusions driven from simulations. Because of the volume and complexity of the data, the varying
spatial and temporal scales at which the key transmission processes operate and relevant observations
are made, public health experts could benefit from novel decision support systems. Therefore, tools that
help (a) executing large-scale simulation ensembles under a large number of diverse
hypotheses/scenarios, and (b) analysis, exploration, interpretation, and visualization of large simulation
ensembles (aligned with the real-world observations) to generate timely actionable results are critically
needed for understanding the evolution patterns of the outbreaks (including estimating transmissibility,
forecasting the spatio-temporal spread at different spatial scales, assessing the cost and impact of
interventions, including travel controls, at various stages of the epidemic) and supporting real-time

decision making and hypothesis testing through large scale simulations.

2 EpiDMS System Overview and Use Scenario
The key characteristics of data and models relevant to data-intensive simulations include the following:

(a) voluminous, (b) multi-variate, (c) multi-resolution, (d) multi-layer, (e) geo-temporal, (f) inter-connected

6
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and inter-dependent, and (g) often incomplete/imprecise. Moreover, data and models dynamically evolve
over time, due to control actions taken by individuals and public health interventions, requiring continuous

adaptation and re-modeling.

The novel epiDMS software framework [1] aims to address the key challenges underlying large epidemic
spread simulations, which, today, hinder real-time and continuous analysis and decision making during
ongoing outbreaks. Unlike other dynamic modeling platforms such as Berkeley Madonna [30], the

services provided by epiDMS include

e storage and indexing of large ensemble simulation data sets and the corresponding models; and
e search and analysis of ensemble simulation data sets to enable ensemble-based decision

support [15,23,28].

The target user group for epiDMS include a range of public health researchers and decision makers.
While creation of models for ensemble simulations and query formulation require moderate infectious
disease modeling experience, epiDMS also provides parameterized queries and other interactive user

interfaces to enable decision makers with minimal experience to explore large ensemble simulations.

21 System Overview
The epidemic simulation data management system (epiDMS [1]) for managing the data and models for

data-driven real-time epidemic simulations consists of three major components (Figure 1):

e Epidemic ensemble execution engine (epiRun) takes as input an epidemic model,
mobility/connectivity models, interventions, and outbreak conditions (such as ground zero), and
creates an epidemic ensemble by sampling the disease parameter space and executing
simulations using an external simulation engine. Note that epiRun is not specific to any disease
model or simulation engine and can wrap —as a black-box software component— any epidemic
simulation engine as long as it provides command line invocation. The epidemic model
(formulated in the format specific to the simulation engine), the selected input parameter values,
and the simulation results (i.e., time series for each output variable) then become inputs for the

epidemic data and model store (epiStore), described next.



184 e Epidemic data and model store (epiStore) stores, and indexes the relevant data and metadata

185 sets. The data and models relevant for modeling large-scale epidemics include the following:

186 o Network layers: An epidemic simulation requires one or more layers of networks, from
187 local and global mobility patterns to social contact networks.

188 o Disease models, describing the epidemiological parameters relevant to a simulation and
189 the parameter dependencies necessary in the computation of the disease spread.

190 o Simulation time series: For a given disease study, researchers and decision makers
191 often perform multiple simulations, each corresponding to different sets of assumptions
192 (disease parameters or models) or context (e.g. spatio-temporal context, outbreak
193 conditions, interventions).

194 o Disease observations: These include real-world observations that arise in near real-time
195 relating to a particular epidemic, including the spread and severity of the disease and
196 observations about other relevant parameters, such as the average length of recovery or
197 percentage of infectious individuals that undergo pharmaceutical treatment.

198 EpiStore captures simulation metadata (simulation model, parameter values, connectivity
199 graphs) and simulation outputs (time series) and provides data analysis (such as clustering,
200 classification, event extraction) to support decision-making. Once again, epiStore is not specific
201 to any disease model or simulation ensembles generated by a specific simulation engine — it can
202 read and store models and simulation results produced by any epidemic simulation engine as
203 long as data wrappers that convert data and metadata into internal epiStore representation are
204 available.

205 o Epidemic ensemble query, visualization, and exploration module (epiViz) provides a web-based
206 query and result visualization interface to support user interaction and exploratory decision
207 making through simulation ensembles (Figure 2). Query specification language is also model
208 independent, in the sense that the system does not make any assumptions regarding what the
209 input and output parameters of the simulations are — once imported into epiStore, parameters of
210 any model can be queried, visualized, and explored.
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2.2 EpiDMS Use Scenario

Let us consider a governmental agency charged with developing a preparedness plan for the next
influenza pandemic. To account for uncertainty in the epidemiology of the disease, characteristics of
surveillance systems, and actual field conditions (e.g, healthcare capacity) including the availability and
effectiveness of the interventions, public health experts execute a large number of simulations using the
epiRun simulation ensemble creation engine to generate simulation instances. The configuration file for
epiRun specifies applicable disease models, parameter value ranges and sampling granularities,
connectivity and mobility graph assumptions, simulation duration, and assumptions regarding when and
what interventions are to be applied. Given these, epiRun schedules the execution of these simulations.
The simulation metadata and results are then read and stored in epiStore. Intuitively, each simulation
result corresponds to a “possible world” and thus it is annotated and indexed with the metadata
describing the corresponding scenario. Later, during hypothetical public health planning or pandemic
response, the simulation results stored in epiStore can be accessed through scenario-based or

observational search.

2.2.1  Scenario-based Querying and Exploration

A basic functionality of the epiDMS system is to retrieve epidemic simulations, stored in epiStore, based
on a user specified scenario description. For example, the user can formulate a query that asks the
system to identify all pre-executed simulations, based on SEIR (susceptible-exposed-infectious-removed)
and SIR (susceptible-infectious-removed) epidemic models, where the input transmission rate parameter
was set between 0.3 and 0.6, the recovery rate parameter was set to 0.5, and a “vaccination” type trigger
was used in the simulation. The query also specifies a particular mobility graph, describing expected
movements of the populations during the epidemic, as an underlying assumption. In addition, the query
asks the system to return daily (1-D) averages of “infected”, “incidence”, and “deaths” simulation output
parameters for Arizona (AZ), California (CA), and New Mexico (NM), for an epidemic simulation that lasts

8 months (Please see the online supplement for the details of this query as well as a detailed description

of the query and visual exploration interface provided by epiDMS).

Once the query is executed and the relevant simulations are identified, epiDMS then organizes the results

9
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in the form of a navigable hierarchy, based on the temporal dynamics of the disease: scenarios that result
in similar patterns are grouped under the same branch, while simulations that show key differences in
disease development are placed under different branches of the navigation hierarchy. The user can then
navigate on this hierarchy using “drill-down” and “roll-up” operations and filter sets of simulations for

further analysis.

2.2.2 Observational Alignment Based Querying and Exploration

In addition to scenario-based filtering, search, and exploration, epiDMS also enables searching particular
temporal patterns on the epidemic ensembles. During an epidemic, this feature allows the expert to
identify a relevant subset of stored simulations that match actual disease patterns or specific targets for
intervention measures. This facilitates public-health decision makers to 1) identify the relevant parameters
that characterize transmission patterns in near real time, 2) forecast epidemic spread as the epidemic
evolves, 3) assess potential impact of intervention scenarios. This platform also allows the user to
perform simulation refinements by narrowing down the parameter space of “possible worlds” based on
the current state of the epidemic. Hence, the user can use epiDMS to run additional simulations within the
constrained parameter space to obtain more detailed simulations, possibly with additional intervention

assumptions, that are relevant to the current state of the epidemic.

3 Conclusions

In this paper, we describe and illustrate with an example a novel epidemic simulation data management
system (EpiDMS [1]) that supports the generation, search, visualization, and analysis, in a scalable
manner, of large volumes of epidemic simulation ensembles for decision making. The system aims to
assist experts and decision makers in exploring large epidemic simulation ensemble data sets, through

efficient metadata and similarity based querying, data analysis, and visual exploration.
Acknowledgements
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Figure 2. A sample epiDMS screenshot, which includes scenario-based querying and exploration: the
figure shows a query posed to the epiDMS system, the set of results (visualized in the form of a navigable
hierarchy of heatmaps) and two simulations selected for detailed comparison. Please see the
accompanying supplementary material and the video at https://www.youtube.com/watch?v=9w-4nDhXv3k

for more details.

*


https://www.youtube.com/watch?v=9w-4nDhXv3k
http://www.editorialmanager.com/jid/download.aspx?id=624718&guid=05dd5de4-48aa-44a1-89bf-26a883dd6e7a&scheme=1
http://www.editorialmanager.com/jid/download.aspx?id=624718&guid=05dd5de4-48aa-44a1-89bf-26a883dd6e7a&scheme=1

Figure

Click here to download Figure jid16_supplement1_version2.docx

EPIDMS: DATA MANAGEMENT AND ANALYTICS FOR DECISION MAKING FROM EPIDEMIC SPREAD

SIMULATION ENSEMBLES
(ONLINE SUPPLEMENT)

Sicong Liu
Arizona State University
s.liu@asu.edu
Gerardo Chowell

K. Selcuk Candan

Arizona State University Georgia State University

gchowell@gsu.edu

candan@asu.edu

Silvestro Poccia
University of Torino

silvestro.poccia@edu.unito.it

Maria Luisa Sapino
University of Torino

marialuisa.sapino@unito.it

A basic functionality of the epiDMS system is to retrieve epidemic simulations, stored in epiStore, based

on the user specified scenario description.

Associated Grant(s) : NSF # 1318788 and NSF # 1518835
© Metadata Query
Similarity Query

Query ID

Query

Welcome Guest Home Help Sign out

Name: SampleQuery

Description

for $p in fn:collection( Epidemic’)
let $a := $p/project/scenario/model/disease
let $t := $p/project/ecenario/trigger -
where $a/transmissionRate <= 0.6 and $a/transmissionRate >= 0.3 and 3a/recoveryRate = 0.5 and
$t/Etype="Vaccination"

return $a/transmissionRate,$a/recoveryRate
state={AZ,CA,NM};model={SEIR,S5IR};properties={Infected, Incidence,Deaths};

Start Time 2012-01-01 12:00:00 Visual Comparison No
Comparison Type ~ Maean Difference &
End Time 2012-08-31 12:00:00
Difference Type Absolut &
Down Sampling 1 )| Day <l Average < Tr——— a
Nomalization — =
Executa Query

Return SIR and SEIR simulations that have
a vaccination ger and satisfy several
other constr, lot the results for
Arizona, Cali ia, Wew Mexico states.
The output series are counts of Infected,
Incidence, and Deaths; return also the
transmission rate and recovery rate for
the identified simulations.

The basic query interface, visualized above, provides the following functionalities:

e Query Menu --- visualizes the list of queries that are stored in the system.

¢ Query Box --- visualizes the selected query and/or allows the user to edit a query
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¢ Query Description --- shows the description of the selected query and/or allows the user to add a

query description.

EpiDMS provides a rich query language to specify user queries. Consider, for example, the following

sample query:

1. FOR $p in fn:collection('EpidemicSimulationEnsemble') A

2. LET $diseaseModel := $p/project/scenario/model/disease *

o LET $triggerModel := $p/project/scenario/trigger  *

o LET $epidemicScenario := $p/project/scenario »

3. WHERE
a. $diseaseModel/transmissionRate <= 0.6 and
b. $diseaseModel/transmissionRate >= 0.3 and
c. $diseaseModel/recoveryRate = 0.5 and
d. $triggerModel/@type="Vaccination" and
e. ($epidemicScenario/infector/@targetlISOKey="US-CA" or
$epidemicScenario/infector/@targetlSOKey="US-NY" ) and
f.  ($epidemicScenario/graph = "mobility_graph_7.xml" or
$epidemicScenario/graph = "mobility_graph_8.xml") *
4. RETURN
a. $diseaseModel/transmissionRate,
b. $diseaseModel/recoveryRate,
c. $epidemicScenario/graph *
d. STATE={AZ,CANM};
e. MODEL={SEIR,SIR};
f. PROPERTIES={Infected,Incidence,Deaths};

5. FROM ={01/01/2012 12:00:00}; TO={08/31/2012 12:00:00}:

6. BY={1-D}; FUNCTION ={avg};

We describe the different components of this sample query below:
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1. The “FOR” statement allows the user select the simulation dataset to query. In this example, the
user selects to focus on the stored simulation set “EpidemicSimulationEnsemble”.

2. The “LET” statement allows to associate variables representing disease and intervention trigger
models and epidemic scenarios.

3. The “WHERE” clause allows the user to specify conditions on the simulation models to filter those
simulations that are relevant for the current analysis. In this example, the user specifies that for
the returned simulations, the transmission rate parameter should be between 0.3 and 0.6, the
recovery rate parameter should be set to 0.5, and that a “vaccination” type trigger should be
included in the simulation model. The user also specifies that epidemic should have started at
California (CA) or New York (NY) state and the “mobility_graph_7.xml” or “mobility_graph_8.xml"
should have been used to generate the simulations.

4. The “RETURN?” clause lists the simulation parameters to be returned in the result. In this
example, the user is interested in the transmission rate, recovery rate, the mobility graph for each
returned simulation. In addition, the query asks the system to return the time series
corresponding to the “infected”, “incidence”, and “deaths” simulation output parameters for
Arizona (AZ), California (CA), and New Mexico (NM) states.

5. In this clause, the user specifies that s/he is interested in only the first 8 months of the simulation.

6. Furthermore, the user specifies that the system return daily (1-D) averages of the simulation

parameters for the specified duration.

1.1.1  Query Interface

The epiDMS query interface allows the user to specify and execute parametric queries. As illustrated
below, parametric queries support query specification reuse — instead of writing a new query for different
parameters, the user can specify and store a parametric query, which can then be invoked with different

parameter values, as seen in the following example:



Query

for $p in fn:collection( 'Epidemic’)
let $a := $p/project/scenario/model/disease
let $t := $p/project/scenario/trigger

Where:
transmissionRate <= 0.6 transmissionRate >= 0.3 recoveryRate = 0.5

In the above example, those query parameters whose values are bracketed with the symbol “(par)” are
interpreted as being parametric. The user can vary these values using a form-based interface without

having to modify the source code directly.

1.1.2  Result Set Exploration Module

Once the query is executed and the relevant simulations are identified, epiDMS then organizes the results
in the form of a navigable hierarchy, based on the temporal dynamics of the disease: scenarios that result
in similar patterns are grouped under the same branch, while simulations that show key differences in
disease development are placed under different branches of the navigation hierarchy. The user can then
navigate on this hierarchy using “drill-down” and “roll-up” operations on this hierarchy and pick sets of
simulations to study and compare in further detail the corresponding scenarios. This process is described

below:

Once the matching simulations are identified, the user is presented with an initially collapsed hierarchy of

results:
Lower Bound Upper Bound
0 : - 33883101 :
Q [?]
L Epidemic, #Models : 2, #sims : 60

Above, we see that the query identified 60 matching simulations, from two different disease models. The
legend at the top provides the scope of values in the results. The user can explore these simulations by

drilling down or rolling up on the result hierarchy:



Lower Bound Upper Bound

o H ‘ 33883101

Q 7]
Collapse AN
I—Epidcmic #Models : 2, #sims : 80

- 1= SIR, #Properties : 3, #sims : 48
- 1.1> Deaths, #subCluster : 1, #sims : 16, Resolution : 1 day

‘II\BMAZ:WB\:IJB“" 2012 19:00:00 GMT-0700 (MST) - 880878
1.1. 1> #stubCluster - 1 #sims - 13, Resolulion T day

225> 5IR, Deaths, transmissionRate : 0.4, recoveryRate : 0.5,
Resoluticn : 1 day

344> SIR, Deaths, transmissionRate : 0.4, recoveryRate : 0.5,
Resoluticn : 1 day

224> SIR, Deaths, transmissionRate : 0.4, recoveryRate : 0.5,
Resoluticn : 1 day

- 1.2= Incidence, #subCluster : 2, #sims : 18, Resolution : 1 day

L 1.3> Infected, #subCluster : 3, #sims : 16, Resoclution : 1 day

= 2> SEIR, #Properties : 3, #sims : 12

As we see above, the top-level of the result hierarchy includes the disease models (SIR and SEIR in this
example). At the next level, the user is presented the output parameters specified in the query
(“incidence”, “deaths”, and “infected” in this example). Under this level, the results are organized in the
form of a cluster hierarchy, where similar simulations are clustered under the same navigation branch. For
each node in the navigation hierarchy, a cluster representative is selected and the corresponding
simulation is visualized in the form of a heatmap, where each row corresponds to a location (states “AZ".
“CA”, and “NM”) in this example. The user can obtain detailed information about the presented
simulations, by hovering the mouse on the heatmaps or download simulation results (in the form of CSV
files) or metadata and model specifications (in XML format) corresponding to different simulations for
further study or dissemination to decision makers.

The user can also use the “match range” feature to change the scale of visualization so that the upper
bound of visualized values in the heatmap is modified in a way that matches a selected simulation to
enable better visualization of its details. For example, in the example below, the heatmap scale has been
modified to match the number of incidences, rather than the number of deaths; thus, we are able to better

observe the differences among the incidence clusters:



Lower Bound Upper Bound

o 4 - 1533541

L Epidemic, #Models @ 2, #sims : 60
— 1> SIR, #Properties : 3, #sims : 48
i~ 1.1> Deaths, #subCluster : 1, #sims : 16, Resolution : 1 day

(1.2~ Incidence, #subCluster : 2, #sims : 16, Resolution : 1 day Match % ]

1.2.1>#subCluster : 1, #sims : 10, Resolution : 1 day

1.2.2>#sims : 4, Resolution : 1 day
| | !
Resolution : 1 day

224> SIR, Incidence, transmissionRate : 0.4, recoveryRate : 0.5,
Resolution : 1 day
2416> SIR, Incidence, transmissionRate : 0.8, recoveryRate : 0.5,
& 1.3> Infected, #subCluster : 3, #sims : 186, Resclution : 1 day
W

— 2> SEIR, #Properties : 3, #sims : 12

The user can explore these simulations by navigating on the hierarchy by drilling down or rolling up
different branches. In the following example, the user has drilled down on the cluster 1.2.2 of the

“‘incidence” data to observe the simulations clustered under this navigation node:

L Epidemic, #Models : 2, #sims : 60
1> SIR, #Properties : 3, #sims : 48
{~ 1.1= Deaths, #subCluster : 1, #sims : 16, Resolution : 1 day

 1.2= Incidence, #subCluster : 2, #sims : 16, Resolution : 1 day
L

— 1.2.1>#subCluster : 1, #sims : 10, Resolution : 1 day
— 1.2.2>#sims : 4, Resolution : 1 day

(- 225> SIR, Incidence, issionRate : 0.4, r yRate : 0.5,
Resclution : 1 day
-

298> SIR, Incidence, transmissionRate : 0.6, recoveryRate : 0.5,
Resolution : 1 day

(343> SIR, Incidence, transmissionRate : 0.4, recoveryRate : 0.5,
Resclution : 1 day
| !

— 344= SIR, Incidence, transmissionRate : 0.4, recoveryRate : 0.5,
Resclution : 1 day

To further study individual simulations, the user then can double click on any simulation in the navigation
hierarchy to place them in to a separate comparison interface. In the example, shown below, the user

selected two simulations (#225 and #296) under cluster 1.2.2 to be studied and compared further in

detail:
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[~ 1.1> Deaths, #subCluster : 1, 71 End Time
Difference Type
7 Down Sampling rage
{- 1.2> Incidence, #subCluster Normalization
— | Exccuto Fitaring || Compars Seected Motacata
{~1.2.1> #subCluster : 1, #8 Grayscale Type Normalization Type Differcnce Type
[ [— smison [ Assiuts
Germpare Simuatons
—1.2.2> #sims : 4, Resolu|
! Simid:225 Property:incidence Model:SIR graph:graph? xmi
225> IR, Incidence, MmunityLossRate:0.2 infectionMortalityRate:0.5 infector:US-CA incubationRate:0.3 deathRate:3.26-5 5 birthRate:3.56-5
Resolution : 1 day | AL
cal B
= ) NM|
296> SIR, Incidence, February March Agril May June
Resolution : 1day |
Check to select this simulation )| Remove | Metch fargs | Dowricsd et
343> SIR, Incidenca, |
Resolution : 1 day 8| 7 Simid:296 Proparty:incidenca Model:SIR graph:graph? xmi
immunityLossRate:0.2 infectionMortalityRate:0.4 infector:US-NY incubationRate:0.3 thRate:3.2E-5 5 birthRate:3.56-5
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344> SIR, Incidence, | Ca
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In the detailed comparison interface, the user can compare the two (or more) simulations side by side and
observe the differences in the input parameters and models. The user can further ask the system to

visualize the precise differences in the metadata corresponding to selected pairs of simulations:

<project name="225">

0. A</transmissionRate>

0.5</infectionMortalityRate>

<infector name="1Inf" target] SOKey="US-CA" targetURI="stem eclipse.org/graphs/US/CA"
fectionCount="10" populationIdentifier="human">

<project name="296">
O.6<ransmissionRate>
0.4<finfectionMortalityRate>
<infector name="Inf" targetlSOKey="US-NY" targetURI="stem eclipse org/graphs/US/NY"
type="perventage” infectionCount="10" populationldentifier="human">

href I 7 d

<project name="225">
<scenario name="scenario">
<model name="disease_t
<disease name="disease" model="SIR">
<! Use Disease Name from disease tag here - diseaseName->
<ransmissionRate>
0 A</transmissionRate>
<recoveryRate>
0 5</recoveryRate>
<infectionMortalityRate>
0 5</infectionMortalityRate>
<incubationRate>
0.3</incubationRate>
<immunityLossRate>
0.2</immunityLossRates
</disease>
<populationModel>
inthRate>

3 5E-S</birthRate>
<deathRate>
3.2E-5</deathRate>
<ipopulationModel>
</model>
<sequencer name
<! FORMAT
<date start="MONDAY JAN 01 12:
2013">

>
TEM Time DAY MMM DD HH:MM:

YYYY

m.eclipse.org/graphs/US/CA"
10 “human">
Use Disease Name from disease tag here - diseaseName-->
</infector>
<logger name="csvlog" title="CSV File Logger">

1 Tire Nicaaca Noma fram Aicasce tag here . Al

"platform:resou sidisease > platf tandard#human/r*/>
discase. dard, in ence”, i ce/296/d /disease . ] dence"/>
/decorators/disease standard#huma > platform:/resource/296/decorators/disease standard#human/i"/>
idecorators/disease. standard#hum; > platform: /resource Id Jdisease. , S
S/ idiseas platfos [296/ds ors/disease standard#! V] ">
<properties href="platform: fresource/225 disecase standard d latf; 129616 d {5,

-
::00 MST 2013" end="SUNDAY JUL 31 12:00::00 MST <date start="MONDAY JAN 01 12::00::00 MST 2013" end="SUNDAY JUL 31 12::00::00 MST

<project name="296">
<scenario name="scenario”>
<model name="disease_model">
<disease name="diseasc” model="SIR">
<I-- Use Disease Name from disease tag here - diseaseName-->
<transmissionRate>
0.6</iransmissionRate>
<recoveryRate>
0.5</recoveryRate>
<infectionMortalityRate>
0.4</infectionMorialityRate>
<incubationRate>
03</incubationRate>
<immunityLossRate>
0.2</immunityLossRate>
</disease>
<populationModel>
<birthRate>
3 5E-5</birthRate>
<deathRate>
32E-5</deathRaie>
</populationMadel>

model>
<sequencer name="">
<!-- FORMAT :: STEM Time DAY MMM DD HH:MM::58 MST YYYY -->

2013

</sequencer>

<infector name="In{" targetISOKey="US-NY" targetURI="stem eclipse org/graphs/US/NY "
reentage” infectionCount="10" populationldentifier="human">

se Disease Name from disease tag here - diseaseName—>

ctor>

<logger name="csvlog" title="CSV File Logger™>
o Ulca Nisansa Narta foom o hars i

Here the text highlighted in red points to the differences in metadata corresponding to the pair of

simulations selected or comparison.

1.1.3  Observational Similarity Based Querying and Exploration

In addition to scenario-based filtering, search, and exploration, EpiDMS also enables searching particular

temporal patterns on the epidemic ensembles. During an epidemic, this feature allows the expert to
7



identify a relevant subset of stored simulations that match actual disease patterns or specific targets for

intervention measures.

To use similarity based querying, the user can either click on the “Search Similar” option on the result
visualization interface or switch to the “Similarity Query” interface and provide a file which contains the

observations of interest:

Associated Grani(s) : NSF # 1318788 and NSF # 1518939

EPI-DMS a

PROJECT: Select B MODEL: Select B Property: Select B ZONES: ‘ | Search Similar

Once a simulation/observation and states of interest are provided, the system searches in the databases
existing simulations that show a similar pattern. Results are ranked in terms of their similarities to the

provided query pattern:

Associated Gran{[s) : NSF # 1318788 and NSF # 1516930

:

Qm

Collapsa Al

L Epidemic, #Models : 1, #sims : 52
L 1> SIR, #Properties : 1, #sims : 52
L 1.1> Deaths, #subCluster : 11, #sims : 52,
- 1.1.1> #zims : 5, Resolution : 1 day Search Similar  Match Range  Downlead Meta
I e ———

- 1.1.2> #sims : 5, Resolution : 1 day Search Similar  Match Range  Download Meta
226> SIR, Deaths, Resolution : 1 day Search Similar  Match Bange  Download Meta

346> SIR, Deaths, Resolution : 1 day Search Similar - Maich Bange Dowrload Meta
LU |

Note that, once again, the user can obtain detailed information about the presented simulations by
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hovering the mouse on the heatmaps or download simulation data or metadata corresponding to different
simulations for further study. Moreover, as before, to further study individual simulations, the user can
double click on any simulation in the navigation hierarchy to place them in to the comparison interface.

Please see the accompanying video at https://www.youtube.com/watch?v=9w-4nDhXv3k for more details.

Frequently Asked Questions
Question #1: “It appears that epiDMS would be operated by those with at least moderate infectious
disease modeling experience. Is it true that epiDMS requires programming skills by the operator (while
there appears to be a GUI, there also appears to be a moderate amount of programming involved in

operating this).”

Answer: The target user group for epiDMS include a range of public health researchers and decision
makers. While creation of models for ensemble simulations and formulating queries over ensembles
simulations require moderate infectious disease modeling experience and familiarity with (not
programming, but) declarative querying, epiDMS also provides parameterized queries and other
interactive user interfaces to enable decision makers with minimal experience to explore large ensemble

simulations.

Question #2: “Can you give a pathogen-specific example of a public health emergency in which the data,
models and underlying model parameters dynamically evolve over time requiring continuous analyses
and interpretations of the incoming data and adaptation of the networks and models.”

Response: The 2014-15 Ebola epidemic in West Africa was an example of such an health emergency
where the situation (what we new about the disease characteristics, available and implemented
intervention strategies, population dynamics, and social interactions among and within effected
populations) continuously changed as the epidemic evolved, requiring reassessment and revisions

models and re-interpretations of the data.


https://www.youtube.com/watch?v=9w-4nDhXv3k

Question #3: “How does epiDMS differ from existing modeling platforms and packages (e.g,. Berkeley
Madonna or R).”
Answer: Unlike other dynamic modeling platforms such as Berkeley Madonna, the services provided by
epiDMS include
e storage and indexing of large ensemble simulation data sets and the corresponding and models;
and
e search and analysis of ensemble simulation data sets to support ensemble-based decision
support.
In that sense, epiDMS is less of a modeling tool and more of a multi-model, multi-instance ensemble

simulation-based decision support system.

Question #4: “Is epiDMS specific to a particular disease model or simulation engine? If not, how does
different models fit within the database?”

Response: We thank the reviewer for bringing to our attention that the original manuscript did not make it
sufficiently clear that epiDMS is a model independent system by design:

e epiRun, for execution ensemble simulations, is not specific to any disease model or simulation
engine and can wrap —as a black-box software component— any epidemic simulation engine as
long as it provides command line invocation.

e epiStore, which stores epidemic models and the generated simulation ensembles, is not specific
to any disease model or simulation ensembles generated by a specific simulation engine — it can
read and store models and simulation results produced by any epidemic simulation engine as
long as data wrappers that convert data and metadata into internal epiStore representation is
available. This wrapper based design ensures that models and simulations generated by different
engines and tools can be imported into epiStore and queried and analyzed simultaneously
irrespective of their origin.

o Finally, epiViz, which provides a web-based query and result visualization interface to support
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user interaction and exploratory decision making is also model independent. More specifically,
the underlying query specification language can support queries based on any model, without
having to make any a priori assumptions regarding what the input and output parameters of the
simulations are. Once they are imported into epiStore, parameters of any model can be queried,
visualized, and explored.
The current alpha version of the system provides wrappers for the STEM simulation engine and can
import models and simulations generated by STEM tool. The beta version of the tool will include wrappers

for other systems.

Question #5: “(i) What are the computational demands of epiDMS. e.g., can this be run on a standard
laptop? A tablet/smartphone? From the video, it appears this is a web-based platform, but is there a stand
alone downloadable form which can be run in potential areas with no internet connection (e.g., in certain
field settings)?”

Answer: The user interface of epiDMS is indeed a web-based platform and can run on any networked
laptop and most tablets or smartphones. The backend, however, runs on server hardware. It is, however,

possible to configure a laptop to act both as the backend and frontend.

Question #6: “What is the speed of the simulation analyses?”

Answer: This depends on the size of the simulation ensemble, number of variates/parameters of interest,
the type of analysis, and the hardware configuration (memory, number of cores) at the back-end server
platform. Having said that, we are doing our best to provide a near real-time and interactive experience to

the users.

Question #7: “What is the format of the modelling output? Can it easily be downloaded and disseminated
to decision makers in public health practice?”
Answer: Users of epiDMS can download simulation results (in the form of CSV files) or metadata and

model specifications (in XML format) corresponding to different simulations for further study or
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dissemination to decision makers.

Question #8: “Can you confirm if this is a free system?...is there an open-source version of the software
with scope for a community of developers?”

Answer: An alpha version of the source-code for epiDMS is currently available upon request, and free of
charge, to researchers and educators in the non-profit sector, including institutions of education,
research, and government laboratories under an Apache 2.0 license
(http://www.apache.org/licenses/LICENSE-2.0). The terms of the license allows individuals to modify the
source code and to share modifications and also enable open source development of the software by
other individuals and teams. The terms of software availability permits the commercialization of enhanced
and customized versions of the software and incorporation of the software or pieces of it into other
software packages. The beta release of the source-code will be available to the public through GitHub

under the same terms.

Question #9: “Is there a user-group forum for users to ask questions, trouble-shoot, show applications
etc.?”
Answer: While such a user-group forum does not currently exist, we will bootstrap a group along with the
beta release of the system. In addition, we are planning to

e carry out demonstrations of epiDMS,

e give tutorials, and

e organize workshops

at leading forums targeting public healthcare researchers, scientists, and decision makers.
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Epidemics....

- SARS (Severe Acute Respiratory Syndrome) epidemic is estimated to have started in
China in November 2002, had spread to 29 countries by August 2003

- A pandemic similar to the swine flu in 2009 is estimated to cost $360 billion in a mild
scenario to the global economy and up to $4 frillion in an ultra scenario, within the first
year of the outbreak

- The World Health Organization declared the Ebola epidemic in West Africa a Public
Health Emergency of International Concern on August 8%, 2014, with exponential
dynamics characterizing the initial growth in numbers of new cases in some areas

K. Selcuk Candan @ ASU



Epidemics....

- Data- and model-driven computer simulations are increasingly critical in
predicting geo-temporal evolution of epidemics
- estimating transmissibility of an epidemic disease, such as influenza,

- forecasting the spatio-temporal spread of pandemic disease at different spatial
scales,

- assessing the effect of travel controls during the early stage of the pandemic,
- predicting the effect of implementing school closures,
- assessing the impact of pharmaceutical interventions on pandemic disease

K. Selcuk Candan @ ASU



Epidemics....

4 N

Not much room for error

Both action and inaction can have high costs in terms
of their economic impacts and human lives affected

o /

K. Selcuk Candan @ ASU



Critically needed...

- Tools that help

- executing large-scale simulation ensembles under a large number of diverse
hypotheses/scenarios, and

- analysis, exploration, interpretation, and visualization of large simulation ensembles
(aligned with the real-world observations) to generate timely actionable results

are critically needed for

- understanding the evolution patterns of the outbreaks, including

estimating transmissibility,
forecasting the spatio-temporal spread at different spatial scales,
assessing the cost and impact of interventions, including travel controls, at various stages of the epidemic

- supporting real-time decision making and hypothesis testing through large scale
simulations.

K. Selcuk Candan @ ASU



Good news: epidemic simulation software...

- Various time-step based epidemic spread simulation software exist (GLEaM, STEM)

K. Selcuk Candan @ ASU



Simulation model parameters...

- Spatial/Demographic Layer
- 3,362 subpopulations in 220 countries of the world)
- Mobility layer
- long-range air travel mobility data, from the Inter. Air Transport Assoc. and the Official Airline
- short-range commuting patterns between adjacent subpopulations
- Epidemic layer
- Infection rate of contracting iliness when an individual interacts with an infectious person;
- infection rate scaling factors for asymptomatic infectors and treated infectors;
« probability of symptomatic vs. asymptomatic infections;
- average length of the latency period (in which the individual is infected, but not infecting);
- average length of recovery;
- percentage of infectious individuals that undergo pharmaceutical treatment
- Impact of treatment (e.g. on the length of the infectious period)
- change in the travelling behavior after the onset of symptoms;
- Initial conditions of outbreak

- Intervention measures.
K. Selcuk Candan @ ASU



How do the simulation results look?

Each curve is a different US state
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- These two simulation differ in
- where the disease enters the US and
- the disease characteristics, such as infection rate and recovery rate.
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Bad news...

- Challenge #1: Epidemic simulations track
- 100s of inter-dependent parameters,
- spanning multiple layers and geo-spatial frames,
- affected by complex dynamic processes operating at different resolutions.

- Challenge #2: Given the
- unpredictability of an epidemic and
- unpredictability of the actions of various independent agencies,

decision makers need to generate many thousands of simulations,
each with different parameters corresponding to plausible scenarios.

- Challenge #3: Simulations need to be continuously revised based on
real-world data as the epidemic and intervention mechanisms evolve.

K. Selcuk Candan @ ASU



.
Challenges

- Because of the size and complexity of the data and the varying
spatial and temporal scales at which the key processes operate;
experts lack the means to

- analyzing simulation results,
- understanding relevant processes and

- assessing the robustness of conclusions driven from the resulting
simulations.

- /
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Questions (?7?).....

a N

- Can we discover key events in a simulation trace and summarize a large simulation
trace to highlight these key events?

- Can we classify these key events?

- Can we compare a large number of simulation traces and observations (under
different parameter settings) to identify their similarities and differences?

- Can we analyze one or more simulation traces to discover underlying patterns and
relationships between input parameters, key events/interventions, and simulation
outcomes?

- Can we search and retrieve simulation traces based on the underlying key
events or the overall trace similarities?

K. Selcuk Candan @ ASU



-
epiDMS Framework...

External Simulation Engines (STEM)

aims to address the key challenges underlying large epidemic spread simulations,
which, today, hinder real-time and continuous analysis and decision making during
ongoing outbreaks.
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-
epiIDMS

- epiDMS facilitates public-health decision makers

- identify the relevant parameters that characterize transmission
characteristics,
- forecast epidemic spread as the epidemic evolves,

- assess potential impact of intervention scenarios.

- epiDMS also allows the user to

- perform simulation refinements by narrowing down the parameter
space based on the current state of the epidemic

- run additional simulations within the new parameter space to obtain
more detailed simulations relevant to the current disease state.



Conclusion

- A sample EpiDMS visualization interface is available at
- http://aria.asu.edu/epidms

- You can also watch a tutorial at
- https://www.youtube.com/watch?v=9w-4nDhXv3k

- For feedback, please contact:
- candan@asu.edu

G o
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Center Assured-and SCAlable Data Engineering

University

Supported by
NSF 11I#1318788 “Data Management for Real-Time Data Driven Epidemic Spread Simulations”
NSF RAPID “Understanding the Evolution Patterns of the Ebola Outbreak in West-Africa and Supporting Real-Time Decision Making and
Hypothesis Testing through Large Scale Simulations”
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Abstract

Background: Carefully calibrated large-scale computational models of epidemic spread represent a
powerful tool to support the decision-making process during epidemic emergencies. TheseEpidemic
models are being increasingly used for generating forecasts of the spatial-temporal progression of
epidemics at different spatial scales and assessing the likely impact of different intervention strategies.
However, the management and analysis of simulation ensembles stemming from large-scale
computational models poses challenges particularly when dealing with multiple inter-dependent
parameters, spanning multiple layers and geo-spatial frames, affected by complex dynamic processes
operating at different resolutions. Methods: We describe and illustrate with examples a novel epidemic
simulation data management system which was developed to address the challenges that arise from the
need to generate, search, visualize, and analyze in a scalable manner, large volumes of epidemic
simulation ensembles and observations during the progression of an epidemic.

Results and conclusion: EpiDMS is a publicly available system that facilitates management and analysis of
large epidemic simulation ensembles. EpiDMS aims to fill an important hole in decision making during
health-care emergencies and enabling critical services with significant economic and health impact.
Keywords: Epidemics, big data, simulation ensembles, data management, analytics, public-health

decision making.
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1 Introduction

The potential for pandemics to rapidly generate morbidity, mortality, and economic impact around the
world has highlighted the need to develop quantitative frameworks for supporting public health decision-
making in near real-time. For instance, the 2003 SARS coronavirus (Severe Acute Respiratory
Syndrome) emergency-that, which originated in China and spread to 29 countries—and, generated
important nosocomial outbreaks in several regions by August 2003 [258,24]. More recently, the 2009
A/H1N1 influenza pandemic originating in Mexico rapidly spread around the globe via the airline network
and reached 20 countries with highest volume of passengers arriving from Mexico within a few weeks of

epidemic onset [14}-A]. Importantly, the economic impact associated with a pandemic similar to the 2009

A/H1N1 influenza pandemic has been estimated to cost $360-billion-in—a-mild-scenario-to-the global
economy between $360 billion and up-to-$4 trillion in-an-ultra-scenario-[17}-within] for the first year of
virus circulation.

Large-scale computational transmission models of infectious disease spread are increasingly becoming
part of the toolkit to carry out inferences on the spread and control of infectious diseases{4}.. Examples of

real-time analyses of epidemics supported by large-scale transmission models include:

e estimating transmissibility of an epidemic disease, such as influenza [2,33,21],

e forecasting the spatio-temporal evolution of pandemics at different spatial scales [19,27],

e assessing the effect of travel controls during the early epidemic phase [9,12,22],

e predicting the effect of school closures in mitigating disease spread [5,6,29],

e assessing the impact of reactive vaccination strategies [16],

These analyses, however, require access to, integration, and analysis of models and large volumes of

data, including datasets from diverse sources in order to parameterize demographic datacharacteristics,

contact networks, age-specific contact rates, mobility networks, and data—en-health-care and control

interventions-from-diverse-sources—,
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In this paper, we argue that, if effectively leveraged, existing simulation analyses and real-time
observations inceminggenerated during an outbreak can be collectively used for better understanding the
transmission dynamics and refining existing models. At the same time, these model simulations are
useful for performing exploratory, if-then type of hypothetical analyses of epidemic scenarios in order to
address critical questions including: (a) Can we discoveridentify and classify key events and-summarize
a(e.q., epidemic peak timing, likely epidemic duration) during an infectious disease outbreak from large

simulation trace-te-highlight-thesekey-events?2ensembles? (b) Can we compare and summarize a large
number of simulation—tracesepidemic simulations and observations {under different parameter

settings)y?epidemiological  scenarios? (c) Can we discover latent relationships and

structuresdependencies among disease_dynamics and social parameters?

1.1 Epidemic Simulations

Global epidemic spread can be characterized via simulation through networks of multiple (local and
global) scales: individuals within a subpopulation may be infected through local contacts during a
leeallocalized outbreak. These_infected individuals then may seed the infection in other regions, starting a

new outbreak. Fhus,—state-of-the-art—disease—spread—simulators;—such—asThus, large-scale epidemic
simulation systems (e.q., GLEaM [4,2827] and STEM [26};]) are required to leverage models and data at

different spatial scales;—ineluding. These include social contact networks, local and global individual

mobility patterns—ef—individuals—as—wellas, location-specific transmissibilitycontrol interventions, and

epidemiological characteristics of the infectious disease in question-and-centrol-intervention-data—and

models:

e The population model for the-GLEaMa global epidemic simulation enginesystem can be based,

for example, is-basedon the Gridded Population of the World project by the Socio-Economic Data
and Applications Center (SEDAC) [25}-ard], which has a resolution of 15 x 15 minutes of arc.

e Mobility models can include long-range air travel mobility data, from the International Air
Transport Association and the Official Airline Guide and/or short-range commuting patterns
between adjacent subpopulations. High-resolution demographic and age-specific contact data

has become available for a number of countries including the US [11], and South-East Asia [16]
5
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while age-specific contact rates have been derived from population surveys for a number of
European countries [20]. Large-scale computational transmission models, parameterized with
high volume air traffic data and country-level seasonality factors, are being increasingly used to
assess the global transmission patterns of emerging infectious diseases and the effectiveness of
control measures [410,441413,18].

e Epidemic models allow the user to specify epidemiological parameters foerthat are specific of the
infectious disease (such as repreductive-rumbertransmissibility and seasonality), initial outbreak
conditions (e.g. seeding characteristics of the epidemic and the immunity profile of the

subpopulation), and the_timing, type and intensity of intervention measures. While the disease

model can be specific to the type of infection, the parameters of a typical model (the modified
Susceptible-Latent-Infectious-Recovered model described in [27]) ineludesinclude (a) the
infection rate of contracting illness when an individual interacts with an infectious person; (b)
infection rate scaling factors for asymptomatic infectors and treated infectors; (c) average length
of the latency period (in which the individual is infected, but not infecting); (d) probability of
symptomatic vs. asymptomatic infections; (e) change in the travelling behavior after the onset of
symptoms; (f) average length of recovery; (g) percentage of infectious individuals that undergo
pharmaceutical treatment; and (h) impact (e.g. on the length of the infectious period) of the
treatment.

The output of an-epidemica simulation is a multi-variate time series, which tracks for each spatial location

(such as the US states) the simulation values of each output parameter, such as the number of infected

individuals.

1.2 Challenges

While large-scale epidemic simulation systems such as GLEaM [4,28}-and27] or STEM [26] arerepresent

very powerful and highly modular and flexible epidemic spread simulation seftwaresystems, their power

for real-time decision making could be enhanced by addressing the following challenges:

(a) Complexity of the simulation and observation data. A sufficiently useful disease spreading simulation

system requires models, including social contact networks, local and global mobility patterns of
6
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individuals, and epidemiological parameters for the infectious disease (e.g., infectious period).

Epidemic simulations track 10s or 100s of inter-dependent parameters, spanning multiple layers and
geo-spatial frames, affected by complex dynamic processes operating at different resolutions.
Moreover, an ensemble of stochastic epidemic realizations may include 100s or 1000s of
simulations, each with different parameters settings corresponding to slightly different, but plausible,
scenarios [1,7]. As a consequence, running and interpreting simulation results (along with the real-
world observations) to generate timely actionable results are-difficultpose challenges.

Dynamicity of the real-world observations. A major challenge in using data- and model-driven
computer simulations for disease-spreading-and-for-predicting geo-temporal evolution of epidemics

for managing health emergencies, such as the 2014-15 Ebola epidemic in West Africa, is that the

data, models, and the underlying model parameters dynamically evolve over time-requiring. This
necessitates continuous analyses and interpretations of the incoming data and adaptation of the
networks and models. Therefore, simulation ensembles may need to be continuously revised and
refined as the situation on the ground changes: (a) revisions involve incorporating the real-world
observations as well as updated probability surfaces into existing simulations to alter their outcomes;
(b) refinements involve identifying new simulations to run based on the changing situation on the
ground to provide trustable recommendations. As the situation on the ground and intervention
mechanisms evolve, the sampling strategies for the input parameter spaces have to be varied (by
eliminating irrelevant scenarios and considering new scenarios or varying the likelihood of old
scenarios) in such a way that more accurate simulation results are obtained where it is more

relevant.

Unfortunately,—becauseln order to have a significant impact on disease control and to devise validated

epidemic response strategies within a realistic time frame, public health authorities need to adequately

and systematically interpret observations, understand the processes driving epidemic outbreaks, and

assess the robustness of conclusions driven from simulations. Because of the volume and complexity of

the data, the varying spatial and temporal scales at which the key transmission processes operate and

relevant observations are made, public health experts could benefit from novel systems-to-adequately

7
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eontrel.decision support systems. Therefore, tools that help (a) executing large-scale simulation

ensembles under a large number of diverse hypotheses/scenarios, and (b) analysis, exploration,
interpretation, and visualization of large simulation ensembles (aligned with the real-world observations)
to generate timely actionable results are critically needed for understanding the evolution patterns of the
outbreaks (including estimating transmissibility, forecasting the spatio-temporal spread at different spatial
scales, assessing the cost and impact of interventions, including travel controls, at various stages of the
epidemic-)) and supporting real-time decision making and hypothesis testing through large scale

simulations.

2 EpiDMS System Overview and Use Scenario

The key characteristics of data and models relevant to data-intensive simulations include the following:
(a) voluminous, (b) multi-variate, (c) multi-resolution, (d) multi-layer, (e) geo-temporal, (f) inter-connected
and inter-dependent, and (g) often incomplete/imprecise. Moreover, data and models dynamically evolve
over time, due to preventivecontrol actions taken by individuals and public health interventions, requiring
continuous adaptation and re-modeling.

The novel epiDMS software framework [1] aims to address the key challenges underlying large epidemic
spread simulations, which, today, hinder real-time and continuous analysis and decision making during

ongoing outbreaks.

different-layers—of the-observationand-simulation-data—{16;24}-Unlike other dynamic modeling platforms
8
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such as Berkeley Madonna [0], the services provided by epiDMS include

e storage and indexing of large ensemble simulation data sets and the corresponding models; and

e search and analysis of ensemble simulation data sets to enable ensemble-based decision

support [15,23,28].

The target user group for epiDMS include a range of public health researchers and decision makers.

While creation of models for ensemble simulations and query formulation require moderate infectious

disease modeling experience, epiDMS also provides parameterized queries and other interactive user

interfaces to enable decision makers with minimal experience to explore large ensemble simulations.

2.1 System Overview
The epidemic simulation data management system (epiDMS [1]) for managing the data and models for

data-driven real-time epidemic simulations consists of three major components (Figure 1):
e Epidemic ensemble execution engine (epiRun);) takes as input an epidemic model,

mobility/connectivity models, interventions, and outbreak conditions (such as ground zero), and

creates an epidemic ensemble by sampling the disease parameter space and executing

simulations in-paraliel-using-STEM-simulation-engine;using an external simulation engine. Note

that epiRun is not specific to any disease model or simulation engine and can wrap —as a black-

box software component— any epidemic simulation engine as long as it provides command line

invocation. The epidemic model (formulated in the format specific to the simulation engine), the

selected input parameter values, and the simulation results (i.e., time series for each output

variable) then become inputs for the epidemic data and model store (epiStore), described next.

e Epidemic data and model store (epiStore) ingests;—stores, and indexes the relevant data and
metadata sets. The data-sets and models relevant for modeling large-scale epidemics include
the following:

o Network layers: An epidemic simulation requires one or more layers of networks, from
local and global mobility patterns to social contact networks.

o Disease models, describing the epidemiological parameters relevant to a simulation and
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the parameter dependencies necessary in the computation of the disease spread.

o Simulation time series: For a given disease study, researchers and decision makers
often -perform- multiple simulations, each corresponding to different sets of assumptions
(disease parameters or models) or context (e.g. spatio-temporal context, outbreak
conditions, interventions).

o Disease observations: These include real-world observations that arise in near real-time
relating to a particular epidemic, including the spread and severity of the disease and
observations about other relevant parameters, such as the average length of recovery or
percentage of infectious individuals that undergo pharmaceutical treatment.

EpiStore maintainscaptures simulation metadata (simulation model, parameter values,

connectivity graphs) and simulation outputs (time series) and provides data analysis (such as

clustering, classification, event extraction) to support decision—making-making. Once again,

epiStore is not specific to any disease model or simulation ensembles generated by a specific

simulation engine — it can read and store models and simulation results produced by any

epidemic simulation engine as long as data wrappers that convert data and metadata into

internal epiStore representation are available.

e Epidemic ensemble query, visualization, and exploration module (epiViz) provides a_web-based
query and result visualization interface to support user interaction and exploratory decision

making through simulation ensembles (Figure 2)._Query specification language is also model

independent, in the sense that the system does not make any assumptions regarding what the

input and output parameters of the simulations are — once imported into epiStore, parameters of

any model can be queried, visualized, and explored.

2.2 EpiDMS Use Scenario

Let us consider a governmental agency

charged with developing a preparedness plan for the next influenza pandemic. To account for uncertainty

in the epidemiology of the disease, characteristics of surveillance systems, and actual field conditions

(e.g, healthcare capacity) including the availability and effectiveness of the interventions, public health
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experts execute a large number of simulations using the epiRun simulation ensemble creation engine;
which—relies—on—STEM to generate simulation instances. The configuration file for epiRun specifies
applicable disease models, parameter value ranges and sampling granularities, connectivity and mobility
graph assumptions, simulation duration, and assumptions regarding irtervention-triggers-when and what

interventions are to be applied. Given these, epiRun schedules the execution of these simulations-en-a

parallel-cluster-and;. The simulation metadata and steresresults are then read and stored in epiStore.

Intuitively, each simulation result corresponds to a “possible world” and thus it is annotated and indexed
with the metadata describing the corresponding scenario. Later, during hypothetical public health
planning or pandemic response, the simulation results stored in epiStore can be accessed through

scenario-based or observational search.

2.2.1  Scenario-based Querying and Exploration

A basic functionality of the epiDMS system is to retrieve epidemic simulations, stored in epiStore, based
on a user specified scenario description. For example, the user can formulate a query that asks the

system to identify all pre-executed simulations, based on SEIR and-SIR(susceptible-exposed-infectious-

removed) and SIR (susceptible-infectious-removed) epidemic models, where the input transmission rate

parameter was set between 0.3 and 0.6,_the recovery rate parameter was set to 0.5, and a “vaccination”
type trigger was used in the simulation. The query also specifies a particular mobility graph, describing

expected movements of the populations during the epidemic, as an underlying assumption. In addition,

the query asks the system to return daily (1-D) averages of “infected”, “incidence”, and “deaths”
simulation output parameters for Arizona (AZ), California (CA), and New Mexico (NM), for an 8-menths
lengepidemic simulation_that lasts 8 months (Please see the online supplement for the details of this
query as well as a detailed description of the query and visual exploration interface provided by epiDMS).

Once the query is executed and the relevant simulations are identified, epiDMS then organizes the results
in the form of a navigable hierarchy, based on the temporal dynamics of the disease: scenarios that result
in similar patterns are grouped under the same branch, while simulations that show key differences in
disease development are placed under different branches of the navigation hierarchy. The user can then

navigate on this hierarchy using “drill-down” and “roll-up” operations and filter sets of simulations for
11
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further analysis.

2.2.2 Observational Alignment Based Querying and Exploration

In addition to scenario-based filtering, search, and exploration, epiDMS also enables searching particular
temporal patterns on the epidemic ensembles. During an epidemic, this feature allows the expert to
identify a relevant subset of stored simulations that match actual disease patterns or specific targets for
intervention measures. This facilitates public-health decision makers to 1) identify the relevant parameters
that characterize transmission characteristiespatterns in near real time, 2) forecast epidemic spread as
the epidemic evolves, 3) assess potential impact of intervention scenarios. This platform also allows the
user to perform simulation refinements by narrowing down the parameter space of “possible worlds”
based on the current state of the epidemic. Hence, the user can use epiDMS to run additional simulations
within the constrained parameter space to obtain more detailed simulations, possibly with additional

intervention assumptions, that are relevant to the current state of the epidemic.

3 Conclusions
In this paper, we describe and illustrate with an example a novel epidemic simulation data management

system (EpiDMS [1]) that supports the generation, searching,—visualizingsearch, visualization, and

analyzinganalysis, in a scalable manner, _of large volumes of epidemic simulation ensembles for decision
making. The system aims to assist experts and decision makers in exploring large epidemic simulation
ensemble data sets, through efficient metadata and similarity based querying, data analysis, and visual
exploration.
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A basic functionality of the epiDMS system is to retrieve epidemic simulations, stored in epiStore, based

on the user specified scenario description.

Associated Grant(s) : NSF # 1318788 and NSF # 1518339

© Metadata Query e . T - -
Simifﬁm}f Cluery 'elcome Guest jome elp ign out

Query ID Name: SampleQuery

Query Description
for $p in fn:collection( Epidemic’) - Return SIR and SEIR simulations that have
- a vaccination ger and satisfy several

let $a := $p/project/scenario/model/disease

let $t := $p/project/ecenario/trigger - other constr, lot the results for

where $a/transmissionRate <= 0.6 and $a/transmissionRate >= 0.3 and 3a/recoveryRate = 0.5 and Arizona, Cali ia, New Mexico states.

$t/etype="Vaccination" The output series are counts of Infected,

return $a/transmissionRate,$a/recoveryRate - Incidence, and Deaths; return also the

state={AZ,CA,NM};model={SEIR,S5IR};properties={Infected, Incidence,Deaths}; transmission rate and recovery rate for
the identified simulations.

Start Time 2012-01-01 12:00:00 Visual Comparison No
Comparison Type ~ Maean Difference &
End Time 2012-08-31 12:00:00
Difference Type Absolut &
Down Sampling 1 )| Day <l Average < Tr——— a
Nomalization — =

i L

The basic query interface, visualized above, provides the following functionalities:

e Query Menu --- visualizes the list of queries that are stored in the system.

¢ Query Box --- visualizes the selected query and/or allows the user to edit a query
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¢ Query Description --- shows the description of the selected query and/or allows the user to add a
query description.
EpiDMS provides a- rich query language to specify user queries. Consider, for example, the following
sample query:
1. FOR $p in fn:collection('EpidemicSimulationEnsemble') A
2. LET $diseaseModel := $p/project/scenario/model/disease *
o LET $triggerModel := $p/project/scenario/trigger  *
o LET $epidemicScenario := $p/project/scenario »
3. WHERE
a. $diseaseModel/transmissionRate <= 0.6 and
b. $diseaseModel/transmissionRate >= 0.3 and
c. $diseaseModel/recoveryRate = 0.5 and
d. $triggerModel/@type="Vaccination" and
e. ($epidemicScenario/infector/@targetlISOKey="US-NYCA" or
$epidemicScenario/infector/@targetlSOKey="US-NY" ) and
f.  ($epidemicScenario/graph = "mobility_graph_7.xml" or
$epidemicScenario/graph = "mobility_graph_8.xml") *
4. RETURN
a. $diseaseModel/transmissionRate,
b. $diseaseModel/recoveryRate,
c. $epidemicScenario/graph *
d. STATE={AZ,CANM};
e. MODEL={SEIR,SIR};
f. PROPERTIES={Infected,Incidence,Deaths};
5. FROM ={01/01/2012 12:00:00}; TO={08/31/2012 12:00:00};
6. BY={1-D}; FUNCTION ={avg};
We describe the different components of this sample query below:
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1. The “FOR” statement allows -the user select the simulation dataset to query. In this example, the
user selects to focus on the stored simulation set “EpidemicSimulationEnsemble”.

2. The “LET” statement_allows to associate variables representing disease and intervention trigger
models and epidemic scenarios.

3. The “WHERE” clause allows the user to specify conditions on the simulation models to filter those
simulations that are relevant for the current analysis. In this example, the user specifies that for
the returned simulations, the transmission rate parameter should be between 0.3 and 0.6, the
recovery rate parameter should be set to 0.5, and that a “vaccination” type trigger should be
included in the simulation model. The user also specifies that epidemic should have started at
California (CA) or New York (NY) state and the “mobility_graph_7.xml” or “mobility_graph_8.xml"
should have been used to generate the simulations.

4. The “RETURN?” clause lists the simulation parameters to be returned in the result. In this
example, the user is interested in the transmission rate, recovery rate, the mobility graph for each
returned simulation. In addition, the query asks the system to return the time series
corresponding to the “infected”, “incidence”, and “deaths” simulation output parameters for
Arizona (AZ), California (CA), and New Mexico (NM) states.

5. In this clause, the user specifies that s/he is interested in only the first 8 months of the simulation.

6. Furthermore, the user specifies that the system return daily (1-D) averages of the simulation

parameters for the specified duration.

1.1.1  Query Interface

The epiDMS query interface allows the user to specify and execute parametric queries. As illustrated
below, parametric queries support query specification reuse — instead of writing a new query for different
parameters, the user can specify and store a parametric query, which can then be invoked with different

parameter values, as seen in the following example:



Query

for $p in fn:collection( 'Epidemic’)
let $a := $p/project/scenario/model/disease
let $t := $p/project/scenario/trigger

Where:
transmissionRate <= 0.6 transmissionRate >= 0.3 recoveryRate = 0.5

In the above example, those query parameters whose values are bracketed with the symbol “(par)” are
interpreted as being parametric. The user can vary these values using a form-based interface without

having to modify the source code directly.

1.1.2  Result Set Exploration Module

Once the query is executed and the relevant simulations are identified, epiDMS then organizes the results
in the form of a navigable hierarchy, based on the temporal dynamics of the disease: scenarios that result
in similar patterns are grouped under the same branch, while simulations that show key differences in
disease development are placed under different branches of the navigation hierarchy. The user can then
navigate on this hierarchy using “drill-down” and “roll-up” operations on this hierarchy and pick sets of
simulations to study and compare in further detail the corresponding scenarios. This process is described

below:

Once the matching simulations are identified, the user is presented with an initially collapsed hierarchy of

results:
Lower Bound Upper Bound
0 : - 33883101 :
Q [?]
L Epidemic, #Models : 2, #sims : 60

Above, we see that the query identified 60 matching simulations, from two different disease models. The
legend at the top provides the scope of values in the results. The user can explore these simulations by

drilling down or rolling up on the result hierarchy:



Lower Bound Upper Bound

o H - 33883101

Q 7]
Collapse Al
I—Epidcmic #Models : 2, #sims : 80
1= SIR, #Properties : 3, #sims : 48
[~ 1.1> Deaths, #subCluster : 1, #sims : 16, Resolution : 1 day

‘II\BMAZ:VMJB“" 2012 19:00:00 GMT-0700 (MST) - 880878
1.1. 1> #stubCluster - 1 #sims - 13, Resolulion T day

225> 5IR, Deaths, transmissionRate : 0.4, recoveryRate : 0.5,
Resoluticn : 1 day

344> SIR, Deaths, transmissionRate : 0.4, recoveryRate : 0.5,
Resoluticn : 1 day

224> SIR, Deaths, transmissionRate : 0.4, recoveryRate : 0.5,
Resoluticn : 1 day

f~ 1.2= Incidence, #subCluster : 2, #sims : 16, Resolution : 1 day

& 1.3> Infected, #subCluster : 3, #sims : 16, Resclution : 1 day

— 2> SEIR, #Properties : 3, #sims : 12

As we see above, the top-level of the result hierarchy includes the disease models (SIR and SEIR in this
example). At the next level, the user is presented the output parameters specified in the query
(“incidence”, “deaths”, and “infected” in this example). Under this level, the results are organized in the
form of a cluster hierarchy, where similar simulations are clustered under the same navigation branch. For
each node in the navigation hierarchy, a cluster representative is selected and the corresponding
simulation is visualized in the form of a heatmap, where each row corresponds to a location (states “AZ".
“CA”, and “NM”) in this example. The user can obtain detailed information about the presented

simulations, by hovering the mouse on the heatmaps or download metadatasimulation results (in the form

of CSV files) or metadata and model specifications (in XML format) corresponding to different simulations

for further study-_or dissemination to decision makers.

The user can also use the “match range” feature to change the scale of visualization so that the upper
bound of visualized values in the heatmap is modified in a way that matches a selected simulation to
enable better visualization of its details. For example, in the example below, the heatmap scale has been
modified to match the number of incidences, rather than the number of deaths; thus, we are able to better

observe the differences among the incidence clusters:



Lower Bound Upper Bound

o 4 - 1533541

L Epidemic, #Models @ 2, #sims : 60
— 1> SIR, #Properties : 3, #sims : 48
i~ 1.1> Deaths, #subCluster : 1, #sims : 16, Resolution : 1 day

(1.2~ Incidence, #subCluster : 2, #sims : 16, Resolution : 1 day Match % ]

1.2.1>#subCluster : 1, #sims : 10, Resolution : 1 day

1.2.2>#sims : 4, Resolution : 1 day
| | !
Resolution : 1 day

224> SIR, Incidence, transmissionRate : 0.4, recoveryRate : 0.5,
Resolution : 1 day
2416> SIR, Incidence, transmissionRate : 0.8, recoveryRate : 0.5,
& 1.3> Infected, #subCluster : 3, #sims : 186, Resclution : 1 day
W

— 2> SEIR, #Properties : 3, #sims : 12

The user can explore these simulations by navigating on the hierarchy by drilling down or rolling up
different branches. In the following example, the user has drilled down on the cluster 1.2.2 of the

“‘incidence” data to observe the simulations clustered under this navigation node:

L Epidemic, #Models : 2, #sims : 60
1> SIR, #Properties : 3, #sims : 48
{~ 1.1= Deaths, #subCluster : 1, #sims : 16, Resolution : 1 day

 1.2= Incidence, #subCluster : 2, #sims : 16, Resolution : 1 day
L

— 1.2.1>#subCluster : 1, #sims : 10, Resolution : 1 day
— 1.2.2>#sims : 4, Resolution : 1 day

(- 225> SIR, Incidence, issionRate : 0.4, r yRate : 0.5,
Resclution : 1 day
-

298> SIR, Incidence, transmissionRate : 0.6, recoveryRate : 0.5,
Resolution : 1 day

(343> SIR, Incidence, transmissionRate : 0.4, recoveryRate : 0.5,
Resclution : 1 day
| !

— 344= SIR, Incidence, transmissionRate : 0.4, recoveryRate : 0.5,
Resclution : 1 day

To further study individual simulations, the user then can double click on any simulation in the navigation
hierarchy to place them in to a separate comparison interface. In the example, shown below, the user

selected two simulations (#225 and #296) under cluster 1.2.2 to be studied and compared further in

detail:



. ; . [
L Epidemic, #Models : 2, #sims : 60 - Start Tirme R oo Visual Comparison No
1> SIR, #Properties : 3, #sims 1| L
- Comparison Type  Wear Déenne
[~ 1.1> Deaths, #subCluster : 1, 71 End Time
Difference Type
7 Down Sampling rage
{- 1.2> Incidence, #subCluster Normalization
— | Exccuto Fitaring || Compars Seected Motacata
[~ 1.2.1= #subCluster : 1, #8 Grayscale Type Normalization Type Differcnce Type
[ [— smison [ Assiuts
Germpare Simuatons
—1.2.2> #sims : 4, Resolu|
! Simid:225 Property:incidence Model:SIR graph:graph? xmi
225> IR, Incidence, MmunityLossRate:0.2 infectionMortalityRate:0.5 infector:US-CA incubationRate:0.3 deathRate:3.26-5 5 4 birthRate:3.56-5
Resolution : 1 day | AL
cal B
= ) NM|
296> SIR, Incidence, February March Agril May June
Resolution : 1day |
Check to select this simulation )| Remove | Metch fargs | Dowricsd et
343> SIR, Incidence,
Resolution : 1 day 8| 7 Simid:296 Proparty:incidenca Model:SIR graph:graph? xmi )
immunityLossRate:0.2 infectionMortalityRate:0.4 infector:US-NY incubationRate:0.3 thRate:3.2E-5 5 (] birthRate:3.56-5
L AZ
344> SIR, Incidence, | Ca
NM|
Resolution : 1 day &
February March Agpril May June
|- Resolution : 1 day Searc|
= = Check to select this simulation ~)| Remove | Metch fargs | Dowricsd et
224> SIR, Incidence, tran}
Graph 2 ¢ Graph 1
L Resolution : 1 day Searc| &
\ . P
2418 SIR, Incidence, tral . J M
L 1 3z Infected #suhCluster + 3l o L3 1D

In the detailed comparison interface, the user can compare the two (or more) simulations side by side and
observe the differences in the input parameters and models. The user can further ask the system to

visualize the precise differences in the metadata corresponding to selected pairs of simulations:

<project name="225"> <project name="296">
0 4</transmissionRate> O.6<ransmissionRate>
0.5</infectionMortalityRate> 0.4<finfectionMortalityRate>
<infector name="Inf" targetlSOKey="US-CA" targetURI="stem eclipse.org/graphs/US/CA" <infector name="Inf" targetlSOKey="US-NY" targetURI="stem eclipse org/graphs/US/NY"
Lype="percents; fectionCount="10" populationldentifier="human"> type="percentage" infectionCount="10" populationldentifier="human">
<properties href="platform:/resou I sidisease "> href="platform:/ . d tandard#human/r*/>
c idiscase. standard incidence"f f ce/296/d (discase fincidence"/>
{decorators/disease standardfhuman/i"/> platform:/resource/296/decorators/disease standard#humanti'/>
idecorators/disease standard#human/s/> platform:/resourc /d fdisease >
5 idiseas platform:/ /2961d ors/disease standard# Y />
<properties href="platform: fresource/228 idiscase. standard d Latform:/i 12961 i It dcath”/>
<project name="225"> <project name="296">
<scenario name="scenario"> <scenario name="scenario">
<model name="disease_t <model name="disease_model">
<disease name="disease" model="SIR"> <disease name="diseasc” model="SIR">
<! Use Disease Name from disease tag here - diseaseName-> <I-- Use Disease Name from disease tag here - diseaseName-->
<ransmissionRate> <transmissionRate>
0 A</transmissionRate> 0.6</iransmissionRate>
<recoveryRate> <recoveryRate>
0 5</recoveryRate> 0.5</recoveryRate>
<infectionMortalityRate> <infectionMortalityRate>
0 5</infectionMortalityRate> 0.4</infectionMorialityRate>
<incubationRate> <incubationRate>
0.3</incubationRate> 03</incubationRate>
<immunityLossRate> <immunityLossRate>
0.2</immunityLossRates 0.2</immunityLossRate>
</disease> </disease>
<populationModel> <populationModel>
inthRate> <birthRate>
3 5E-5</birthRate> 3 5E-5</birthRate>
<deathRate> <deathRate>
3.2E-5</deathRate> 32E-5</deathRaie>
<ipopulationModel> </populationMadel>
</madeb> </model>
«sequencer name=""> <sequencer name="">
<!— FORMAT :: STEM Time DAY MMM DD HH:MM: YYYY > <!-- FORMAT :: STEM Time DAY MMM DD HH:MM::58 MST YYYY -->
<date start="MONDAY JAN 01 12::00::00 MST 2013" end="SUNDAY JUL 31 12:00::00 MST <date start="MONDAY JAN 01 12::00::00 MST 2013" end="SUNDAY JUL 31 12::00::00 MST
2013"> 2013
</sequencer>
m.cclipse.org/graphs/US/CA" <infector name="In{" targetISOKey="US-NY" targetURI="stem eclipse org/graphs/US/NY "
10 "human"> reentage” infectionCount="10" populationldentifier="human">
Use Disease Name from disease tag here - diseaseName-—> se Disease Name from disease tag here - diseaseName—>
</infector> clor>
<logger name="csvlog" titke="CSV File Logger"> <logger name="csvlog" title="CSV File Logger">
1 Tiea D Nama from di tan hara . i 1o Lca D Mama fromn o u i

Here the text highlighted in red peintpoints to the differences in metadata corresponding to the pair of

simulations selected or comparison.

1.1.3  Observational Similarity Based Querying and Exploration

In addition to scenario-based filtering, search, and exploration, EpiDMS also enables searching particular

temporal patterns on the epidemic ensembles. During an epidemic, this feature allows the expert to
7



identify a relevant subset of stored simulations that match actual disease patterns or specific targets for

intervention measures.

To use similarity based querying, the user can either click on the “Search Similar” option on the result
visualization interface or switch to the “Similarity Query” interface and provide a file which contains the

observations of interest:

Associated Grani(s) : NSF # 1318788 and NSF # 1518939

EPI-DMS a

PROJECT: Select B MODEL: Select B Property: Select B ZONES: ‘ | Search Similar

Once a simulation/observation and states of interest are provided, the system searches in the databases
existing simulations that show a similar pattern. Results are ranked in terms of their similarities to the

provided query pattern:

Associated Gran{[s) : NSF # 1318788 and NSF # 1516930

:

Qm

Collapsa Al

L Epidemic, #Models : 1, #sims : 52
L 1> SIR, #Properties : 1, #sims : 52
L 1.1> Deaths, #subCluster : 11, #sims : 52,
- 1.1.1> #zims : 5, Resolution : 1 day Search Similar  Match Range  Downlead Meta
I e ———

- 1.1.2> #sims : 5, Resolution : 1 day Search Similar  Match Range  Download Meta
226> SIR, Deaths, Resolution : 1 day Search Similar  Match Bange  Download Meta

346> SIR, Deaths, Resolution : 1 day Search Similar - Maich Bange Dowrload Meta
LU |

Note that, once again, the user can obtain detailed information about the presented simulations by

8



hovering the mouse on the heatmaps or download simulation data or metadata corresponding to different

simulations for further study. Moreover, as before, to further study individual simulations, the user can
double click on any simulation in the navigation hierarchy to place them in to the comparison interface.

Please see the accompanying video at https://www.youtube.com/watch?v=9w-4nDhXv3k for more details.

Frequently Asked Questions

Question #1: “It appears that epiDMS would be operated by those with at least moderate infectious

disease modeling experience. Is it true that epiDMS requires programming skills by the operator (while

there appears to be a GUI, there also appears to be a moderate amount of programming involved in

operating this).”

Answer: The target user group for epiDMS include a range of public health researchers and decision

makers. While creation of models for ensemble simulations and formulating queries over ensembles

simulations require _moderate infectious disease modeling experience and familiarity with (not

programming, but) declarative querying, epiDMS also provides parameterized queries and other

interactive user interfaces to enable decision makers with minimal experience to explore large ensemble

simulations.

Question #2: “Can you give a pathogen-specific example of a public health emergency in which the data,

models _and underlying model parameters dynamically evolve over time requiring continuous analyses

and interpretations of the incoming data and adaptation of the networks and models.”

Response: The 2014-15 Ebola epidemic in West Africa was an example of such an health emergency

where the situation (what we new about the disease characteristics, available and implemented

intervention _strategies, population dynamics, and social interactions among and within effected

populations) continuously changed as the epidemic evolved, requiring reassessment and revisions

models and re-interpretations of the data.



https://www.youtube.com/watch?v=9w-4nDhXv3k

Question #3: “How does epiDMS differ from existing modeling platforms and packages (e.q,. Berkeley

Madonna or R).”

Answer: Unlike other dynamic modeling platforms such as Berkeley Madonna, the services provided by

epiDMS include

e storage and indexing of large ensemble simulation data sets and the corresponding and models;

and

e search and analysis of ensemble simulation data sets to support ensemble-based decision

support.

In that sense, epiDMS is less of a modeling tool and more of a multi-model, multi-instance ensemble

simulation-based decision support system.

Question #4: “Is epiDMS specific to a particular disease model or simulation engine? If not, how does

different models fit within the database?”

Response: We thank the reviewer for bringing to our attention that the original manuscript did not make it

sufficiently clear that epiDMS is a model independent system by design:

e epiRun, for execution ensemble simulations, is not specific to any disease model or simulation

engine and can wrap —as a black-box software component— any epidemic simulation engine as

long as it provides command line invocation.

e epiStore, which stores epidemic models and the generated simulation ensembles, is not specific

to any disease model or simulation ensembles generated by a specific simulation engine — it can

read and store models and simulation results produced by any epidemic simulation engine as

long as data wrappers that convert data and metadata into internal epiStore representation is

available. This wrapper based design ensures that models and simulations generated by different

engines and tools can be imported into epiStore and queried and analyzed simultaneously

irrespective of their origin.

e Finally, epiViz, which provides a web-based query and result visualization interface to support
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user interaction and exploratory decision making is also model independent. More specifically,

the underlying query specification language can support queries based on any model, without

having to make any a priori assumptions regarding what the input and output parameters of the

simulations are. Once they are imported into epiStore, parameters of any model can be queried,

visualized, and explored.

The current alpha version of the system provides wrappers for the STEM simulation engine and can

import models and simulations generated by STEM tool. The beta version of the tool will include wrappers

for other systems.

Question #5: “(i) What are the computational demands of epiDMS. e.q., can this be run on a standard

laptop? A tablet/smartphone? From the video, it appears this is a web-based platform, but is there a stand

alone downloadable form which can be run in potential areas with no internet connection (e.q., in certain

field settings)?”

Answer: The user interface of epiDMS is indeed a web-based platform and can run on any networked

laptop and most tablets or smartphones. The backend, however, runs on server hardware. It is, however,

possible to configure a laptop to act both as the backend and frontend.

Question #6: “What is the speed of the simulation analyses?”

Answer: This depends on the size of the simulation ensemble, number of variates/parameters of interest,

the type of analysis, and the hardware configuration (memory, number of cores) at the back-end server

platform. Having said that, we are doing our best to provide a near real-time and interactive experience to

the users.

Question #7: “What is the format of the modelling output? Can it easily be downloaded and disseminated

to decision makers in public health practice?”

Answer: Users of epiDMS can download simulation results (in the form of CSV files) or metadata and

model specifications (in XML format) corresponding to different simulations for further study or
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dissemination to decision makers.

Question #8: “Can you confirm if this is a free system?...is there an open-source version of the software

with scope for a community of developers?”

Answer: An alpha version of the source-code for epiDMS is currently available upon request, and free of

charge, to researchers and educators in the non-profit sector, including institutions of education,

research, and government laboratories under an Apache 2.0 license

(http://www.apache.org/licenses/LICENSE-2.0). The terms of the license allows individuals to modify the

source code and to share modifications and also enable open source development of the software by

other individuals and teams. The terms of software availability permits the commercialization of enhanced

and customized versions of the software and incorporation of the software or pieces of it into other

software packages. The beta release of the source-code will be available to the public through GitHub

under the same terms.

Question #9: “Is there a user-group forum for users to ask questions, trouble-shoot, show applications

etc.?”

Answer: While such a user-group forum does not currently exist, we will bootstrap a group along with the

beta release of the system. In addition, we are planning to

e carry out demonstrations of epiDMS,

e give tutorials, and

e organize workshops

at leading forums targeting public healthcare researchers, scientists, and decision makers.
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