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Abstract  33 

Background: Carefully calibrated large-scale computational models of epidemic spread represent a 34 

powerful tool to support the decision-making process during epidemic emergencies. Epidemic models are 35 

being increasingly used for generating forecasts of the spatial-temporal progression of epidemics at 36 

different spatial scales and assessing the likely impact of different intervention strategies.  However, the 37 

management and analysis of simulation ensembles stemming from large-scale computational models 38 

poses challenges particularly when dealing with multiple inter-dependent parameters, spanning multiple 39 

layers and geo-spatial frames, affected by complex dynamic processes operating at different resolutions. 40 

Methods: We describe and illustrate with examples a novel epidemic simulation data management system 41 

which was developed to address the challenges that arise from the need to generate, search, visualize, 42 

and analyze in a scalable manner, large volumes of epidemic simulation ensembles and observations 43 

during the progression of an epidemic. 44 

Results and conclusion: EpiDMS is a publicly available system that facilitates management and analysis of 45 

large epidemic simulation ensembles. EpiDMS aims to fill an important hole in decision making during 46 

health-care emergencies and enabling critical services with significant economic and health impact. 47 

Keywords: Epidemics, big data, simulation ensembles, data management, analytics, public-health 48 

decision making. 49 

50 
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1 Introduction 51 

The potential for pandemics to rapidly generate morbidity, mortality, and economic impact around the 52 

world has highlighted the need to develop quantitative frameworks for supporting public health decision-53 

making in near real-time. For instance, the 2003 SARS coronavirus (Severe Acute Respiratory 54 

Syndrome) emergency, which originated in China and spread to 29 countries, generated important 55 

nosocomial outbreaks in several regions by August 2003 [8,24].  More recently, the 2009 A/H1N1 56 

influenza pandemic originating in Mexico rapidly spread around the globe via the airline network and 57 

reached 20 countries with highest volume of passengers arriving from Mexico within a few weeks of 58 

epidemic onset [14]. Importantly, the economic impact associated with a pandemic similar to the 2009 59 

A/H1N1 influenza pandemic has been estimated to cost the global economy between $360 billion and $4 60 

trillion [17] for the first year of virus circulation.  61 

Large-scale computational transmission models of infectious disease spread are increasingly becoming 62 

part of the toolkit to carry out inferences on the spread and control of infectious diseases. Examples of 63 

real-time analyses of epidemics supported by large-scale transmission models include:  64 

 estimating transmissibility of an epidemic disease, such as influenza [2,3,21], 65 

 forecasting the spatio-temporal evolution of pandemics at different spatial scales [19,27], 66 

 assessing the effect of travel controls during the early epidemic phase [9,12,22], 67 

 predicting the effect of school closures in mitigating disease spread [5,6,29],  68 

 assessing the  impact of reactive vaccination strategies [16], 69 

These analyses, however, require access to, integration, and analysis of models and large volumes of 70 

data, including datasets from diverse sources in order to parameterize demographic characteristics, 71 

contact networks, age-specific contact rates, mobility networks, and health-care and control interventions.  72 

In this paper, we argue that, if effectively leveraged, existing simulation analyses and real-time 73 

observations generated during an outbreak can be collectively used for better understanding the 74 

transmission dynamics and refining existing models.  At the same time, these model simulations are 75 

useful for performing exploratory, if-then type of hypothetical analyses of epidemic scenarios in order to 76 
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address critical questions including: (a) Can we identify and classify key events (e.g., epidemic peak 77 

timing, likely epidemic duration) during an infectious disease outbreak from large simulation ensembles? 78 

(b) Can we compare and summarize a large number of epidemic simulations and observations under 79 

different epidemiological scenarios? (c) Can we discover latent relationships and dependencies among 80 

disease dynamics and social parameters?  81 

1.1 Epidemic Simulations 82 

Global epidemic spread can be characterized via simulation through networks of multiple (local and 83 

global) scales: individuals within a subpopulation may be infected through local contacts during a 84 

localized outbreak. These infected individuals then may seed the infection in other regions, starting a new 85 

outbreak. Thus, large-scale epidemic simulation systems (e.g., GLEaM [27] and STEM [26]) are required 86 

to leverage models and data at different spatial scales. These include social contact networks, local and 87 

global individual mobility patterns, location-specific control interventions, and epidemiological 88 

characteristics of the infectious disease in question: 89 

 The population model for a global epidemic simulation system can be based, for example, on the 90 

Gridded Population of the World project by the Socio-Economic Data and Applications Center 91 

(SEDAC) [25], which has a resolution of 15 × 15 minutes of arc.  92 

 Mobility models can include long-range air travel mobility data, from the International Air 93 

Transport Association and the Official Airline Guide and/or short-range commuting patterns 94 

between adjacent subpopulations. High-resolution demographic and age-specific contact data 95 

has become available for a number of countries including the US [11], and South-East Asia [16] 96 

while age-specific contact rates have been derived from population surveys for a number of 97 

European countries [20]. Large-scale computational transmission models, parameterized with 98 

high volume air traffic data and country-level seasonality factors, are being increasingly used to 99 

assess the global transmission patterns of emerging infectious diseases and the effectiveness of 100 

control measures  [10,13,18].  101 

 Epidemic models allow the user to specify epidemiological parameters that are specific of the 102 

infectious disease (such as transmissibility and seasonality), initial outbreak conditions (e.g. 103 
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seeding characteristics of the epidemic and the immunity profile of the subpopulation), and the 104 

timing, type and intensity of intervention measures. While the disease model can be specific to 105 

the type of infection, the parameters of a typical model (the modified Susceptible-Latent-106 

Infectious-Recovered model described in [27]) include (a) the infection rate of contracting illness 107 

when an individual interacts with an infectious person; (b) infection rate scaling factors for 108 

asymptomatic infectors and treated infectors; (c) average length of the latency period (in which 109 

the individual is infected, but not infecting); (d) probability of symptomatic vs. asymptomatic 110 

infections; (e) change in the travelling behavior after the onset of symptoms; (f) average length of 111 

recovery; (g) percentage of infectious individuals that undergo pharmaceutical treatment; and (h) 112 

impact (e.g. on the length of the infectious period) of the treatment. 113 

The output of a simulation is a multi-variate time series, which tracks for each spatial location (such as the 114 

US states) the simulation values of each output parameter, such as the number of infected individuals.  115 

1.2 Challenges 116 

While large-scale epidemic simulation systems such as GLEaM [27] or STEM [26] represent very 117 

powerful and highly modular and flexible epidemic spread simulation systems, their power for real-time 118 

decision making could be enhanced by addressing the following challenges:  119 

(a) Complexity of the simulation and observation data. A sufficiently useful disease spreading simulation 120 

system requires models, including social contact networks, local and global mobility patterns of 121 

individuals, and epidemiological parameters for the infectious disease (e.g., infectious period). 122 

Epidemic simulations track 10s or 100s of inter-dependent parameters, spanning multiple layers and 123 

geo-spatial frames, affected by complex dynamic processes operating at different resolutions. 124 

Moreover, an ensemble of stochastic epidemic realizations may include 100s or 1000s of 125 

simulations, each with different parameters settings corresponding to slightly different, but plausible, 126 

scenarios [4,7]. As a consequence, running and interpreting simulation results (along with the real-127 

world observations) to generate timely actionable results pose challenges. 128 

(b) Dynamicity of the real-world observations. A major challenge in using data- and model-driven 129 

computer simulations for predicting geo-temporal evolution of epidemics for managing health 130 
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emergencies, such as the 2014-15 Ebola epidemic in West Africa, is that the data, models, and the 131 

underlying model parameters dynamically evolve over time. This necessitates continuous analyses 132 

and interpretations of the incoming data and adaptation of the networks and models. Therefore, 133 

simulation ensembles may need to be continuously revised and refined as the situation on the 134 

ground changes: (a) revisions involve incorporating the real-world observations as well as updated 135 

probability surfaces into existing simulations to alter their outcomes; (b) refinements involve 136 

identifying new simulations to run based on the changing situation on the ground to provide trustable 137 

recommendations. As the situation on the ground and intervention mechanisms evolve, the sampling 138 

strategies for the input parameter spaces have to be varied (by eliminating irrelevant scenarios and 139 

considering new scenarios or varying the likelihood of old scenarios) in such a way that more 140 

accurate simulation results are obtained where it is more relevant. 141 

In order to have a significant impact on disease control and to devise validated epidemic response 142 

strategies within a realistic time frame, public health authorities need to adequately and systematically 143 

interpret observations, understand the processes driving epidemic outbreaks, and assess the robustness 144 

of conclusions driven from simulations. Because of the volume and complexity of the data, the varying 145 

spatial and temporal scales at which the key transmission processes operate and relevant observations 146 

are made, public health experts could benefit from novel decision support systems. Therefore, tools that 147 

help (a) executing large-scale simulation ensembles under a large number of diverse 148 

hypotheses/scenarios, and (b) analysis, exploration, interpretation, and visualization of large simulation 149 

ensembles (aligned with the real-world observations) to generate timely actionable results are critically 150 

needed for understanding the evolution patterns of the outbreaks (including estimating transmissibility, 151 

forecasting the spatio-temporal spread at different spatial scales, assessing the cost and impact of 152 

interventions, including travel controls, at various stages of the epidemic) and supporting real-time 153 

decision making and hypothesis testing through large scale simulations.  154 

2 EpiDMS System Overview and Use Scenario 155 

The key characteristics of data and models relevant to data-intensive simulations include the following: 156 

(a) voluminous, (b) multi-variate, (c) multi-resolution, (d) multi-layer, (e) geo-temporal, (f) inter-connected 157 
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and inter-dependent, and (g) often incomplete/imprecise. Moreover, data and models dynamically evolve 158 

over time, due to control actions taken by individuals and public health interventions, requiring continuous 159 

adaptation and re-modeling.  160 

The novel epiDMS software framework [1] aims to address the key challenges underlying large epidemic 161 

spread simulations, which, today, hinder real-time and continuous analysis and decision making during 162 

ongoing outbreaks. Unlike other dynamic modeling platforms such as Berkeley Madonna [30], the 163 

services provided by epiDMS include  164 

 storage and indexing of large ensemble simulation data sets and the corresponding models; and  165 

 search and analysis of ensemble simulation data sets to enable ensemble-based decision 166 

support [15,23,28].  167 

The target user group for epiDMS include a range of public health researchers and decision makers. 168 

While creation of models for ensemble simulations and query formulation require moderate infectious 169 

disease modeling experience, epiDMS also provides  parameterized queries and other interactive user 170 

interfaces to enable decision makers with minimal experience to explore large ensemble simulations. 171 

2.1 System Overview 172 

The epidemic simulation data management system (epiDMS [1]) for managing the data and models for 173 

data-driven real-time epidemic simulations consists of three major components (Figure 1): 174 

 Epidemic ensemble execution engine (epiRun) takes as input an epidemic model, 175 

mobility/connectivity models, interventions, and outbreak conditions (such as ground zero), and 176 

creates an epidemic ensemble by sampling the disease parameter space and executing 177 

simulations using an external simulation engine. Note that epiRun is not specific to any disease 178 

model or simulation engine and can wrap –as a black-box software component– any epidemic 179 

simulation engine as long as it provides command line invocation. The epidemic model 180 

(formulated in the format specific to the simulation engine), the selected input parameter values, 181 

and the simulation results (i.e., time series for each output variable) then become inputs for the 182 

epidemic data and model store (epiStore), described next.  183 
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 Epidemic data and model store (epiStore) stores, and indexes the relevant data and metadata 184 

sets. The data and models relevant for modeling large-scale epidemics include the following: 185 

o Network layers: An epidemic simulation requires one or more layers of networks, from 186 

local and global mobility patterns to social contact networks. 187 

o Disease models, describing the epidemiological parameters relevant to a simulation and 188 

the parameter dependencies necessary in the computation of the disease spread. 189 

o Simulation time series: For a given disease study, researchers and decision makers 190 

often perform multiple  simulations, each corresponding to different sets of assumptions 191 

(disease parameters or models) or context (e.g. spatio-temporal context, outbreak 192 

conditions, interventions). 193 

o Disease observations: These include real-world observations that arise in near real-time 194 

relating to a particular epidemic, including the spread and severity of the disease and 195 

observations about other relevant parameters, such as the average length of recovery or 196 

percentage of infectious individuals that undergo pharmaceutical treatment. 197 

EpiStore captures simulation metadata (simulation model, parameter values, connectivity 198 

graphs) and simulation outputs (time series) and provides data analysis (such as clustering, 199 

classification, event extraction) to support decision-making. Once again, epiStore is not specific 200 

to any disease model or simulation ensembles generated by a specific simulation engine – it can 201 

read and store models and simulation results produced by any epidemic simulation engine as 202 

long as data wrappers that convert data and metadata into internal epiStore representation are 203 

available. 204 

 Epidemic ensemble query, visualization, and exploration module (epiViz) provides a web-based 205 

query and result visualization interface to support user interaction and exploratory decision 206 

making through simulation ensembles (Figure 2). Query specification language is also model 207 

independent, in the sense that the system does not make any assumptions regarding what the 208 

input and output parameters of the simulations are – once imported into epiStore, parameters of 209 

any model can be queried, visualized, and explored. 210 
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2.2 EpiDMS Use Scenario  211 

Let us consider a governmental agency charged with developing a preparedness plan for the next 212 

influenza pandemic. To account for uncertainty in the epidemiology of the disease, characteristics of 213 

surveillance systems, and actual field conditions (e.g, healthcare capacity) including the availability and 214 

effectiveness of the interventions, public health experts execute a large number of simulations using the 215 

epiRun simulation ensemble creation engine to generate simulation instances. The configuration file for 216 

epiRun specifies applicable disease models, parameter value ranges and sampling granularities, 217 

connectivity and mobility graph assumptions, simulation duration, and assumptions regarding when and 218 

what interventions are to be applied.  Given these, epiRun schedules the execution of these simulations. 219 

The simulation metadata and results are then read and stored in epiStore. Intuitively, each simulation 220 

result corresponds to a “possible world” and thus it is annotated and indexed with the metadata 221 

describing the corresponding scenario. Later, during hypothetical public health planning or pandemic 222 

response, the simulation results stored in epiStore can be accessed through scenario-based or 223 

observational search. 224 

2.2.1 Scenario-based Querying and Exploration 225 

A basic functionality of the epiDMS system is to retrieve epidemic simulations, stored in epiStore, based 226 

on a user specified scenario description. For example, the user can formulate a query that asks the 227 

system to identify all pre-executed simulations, based on SEIR (susceptible-exposed-infectious-removed) 228 

and SIR (susceptible-infectious-removed) epidemic models, where the input transmission rate parameter 229 

was set between 0.3 and 0.6, the recovery rate parameter was set to 0.5, and a “vaccination” type trigger 230 

was used in the simulation. The query also specifies a particular mobility graph, describing expected 231 

movements of the populations during the epidemic, as an underlying assumption. In addition, the query 232 

asks the system to return daily (1-D) averages of “infected”, “incidence”, and “deaths” simulation output 233 

parameters for Arizona (AZ), California (CA), and New Mexico (NM), for an epidemic simulation that lasts 234 

8 months (Please see the online supplement for the details of this query as well as a detailed description 235 

of the query and visual exploration interface provided by epiDMS).  236 

Once the query is executed and the relevant simulations are identified, epiDMS then organizes the results 237 
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in the form of a navigable hierarchy, based on the temporal dynamics of the disease: scenarios that result 238 

in similar patterns are grouped under the same branch, while simulations that show key differences in 239 

disease development are placed under different branches of the navigation hierarchy. The user can then 240 

navigate on this hierarchy using “drill-down” and “roll-up” operations and filter sets of simulations for 241 

further analysis. 242 

2.2.2 Observational Alignment Based Querying and Exploration 243 

In addition to scenario-based filtering, search, and exploration, epiDMS also enables searching particular 244 

temporal patterns on the epidemic ensembles. During an epidemic, this feature allows the expert to 245 

identify a relevant subset of stored simulations that match actual disease patterns or specific targets for 246 

intervention measures. This facilitates public-health decision makers to 1) identify the relevant parameters 247 

that characterize transmission patterns in near real time, 2) forecast epidemic spread as the epidemic 248 

evolves, 3) assess potential impact of intervention scenarios. This platform also allows the user to 249 

perform simulation refinements by narrowing down the parameter space of  “possible worlds” based on 250 

the current state of the epidemic. Hence, the user can use epiDMS to run additional simulations within the 251 

constrained parameter space to obtain more detailed simulations, possibly with additional intervention 252 

assumptions, that are relevant to the current state of the epidemic. 253 

3 Conclusions 254 

In this paper, we describe and illustrate with an example a novel epidemic simulation data management 255 

system (EpiDMS [1]) that supports the generation, search, visualization, and analysis, in a scalable 256 

manner, of large volumes of epidemic simulation ensembles for decision making. The system aims to 257 

assist experts and decision makers in exploring large epidemic simulation ensemble data sets, through 258 

efficient metadata and similarity based querying, data analysis, and visual exploration.   259 
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Figure 1. EpiDMS system overview 
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Figure 2.   A sample epiDMS screenshot, which includes scenario-based querying and exploration: the 

figure shows a query posed to the epiDMS system, the set of results (visualized in the form of a navigable 

hierarchy of heatmaps) and two simulations selected for detailed comparison. Please see the 

accompanying supplementary material and the video at https://www.youtube.com/watch?v=9w-4nDhXv3k 

for more details. 
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A basic functionality of the epiDMS system is to retrieve epidemic simulations, stored in epiStore, based 

on the user specified scenario description.   

 
 

The basic query interface, visualized above, provides the following functionalities: 

 Query Menu --‐ visualizes the list of queries that are stored in the system. 

 Query Box --‐ visualizes the selected query and/or allows the user to edit a query 
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 Query Description --‐ shows the description of the selected query and/or allows the user to add a 

query description. 

EpiDMS provides a rich query language to specify user queries. Consider, for example, the following 

sample query:   

1. FOR $p in fn:collection('EpidemicSimulationEnsemble') ^ 

2. LET $diseaseModel := $p/project/scenario/model/disease     ^ 

o LET $triggerModel := $p/project/scenario/trigger     ^ 

o LET $epidemicScenario := $p/project/scenario ^  

3. WHERE  

a. $diseaseModel/transmissionRate <= 0.6 and   

b. $diseaseModel/transmissionRate >= 0.3 and  

c. $diseaseModel/recoveryRate = 0.5 and  

d. $triggerModel/@type="Vaccination" and 

e. ($epidemicScenario/infector/@targetISOKey="US-CA"  or 

$epidemicScenario/infector/@targetISOKey="US-NY" ) and   

f. ($epidemicScenario/graph = "mobility_graph_7.xml"  or 

$epidemicScenario/graph = "mobility_graph_8.xml")  ^ 

4. RETURN 

a. $diseaseModel/transmissionRate, 

b. $diseaseModel/recoveryRate, 

c. $epidemicScenario/graph   ^ 

d. STATE={AZ,CA,NM}; 

e. MODEL={SEIR,SIR}; 

f. PROPERTIES={Infected,Incidence,Deaths}; 

5. FROM ={01/01/2012 12:00:00}; TO={08/31/2012 12:00:00}; 

6. BY={1-D}; FUNCTION ={avg}; 

We describe the different components of this sample query below: 
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1. The “FOR” statement allows the user select the simulation dataset to query. In this example, the 

user selects to focus on the stored simulation set “EpidemicSimulationEnsemble”. 

2. The “LET” statement allows to associate variables representing disease and intervention  trigger 

models  and epidemic scenarios.  

3. The “WHERE” clause allows the user to specify conditions on the simulation models to filter those 

simulations that are relevant for the current analysis. In this example, the user specifies that for 

the returned simulations, the transmission rate parameter should be between 0.3 and 0.6, the 

recovery rate parameter should be set to 0.5, and that a “vaccination” type trigger should be 

included in the simulation model. The user also specifies that epidemic should have started at 

California (CA) or New York (NY) state and the “mobility_graph_7.xml” or “mobility_graph_8.xml” 

should have been used to generate the simulations. 

4. The “RETURN” clause lists the simulation parameters to be returned in the result. In this 

example, the user is interested in the transmission rate, recovery rate, the mobility graph for each 

returned simulation. In addition, the query asks the system to return the time series 

corresponding to the “infected”, “incidence”, and “deaths” simulation output parameters for 

Arizona (AZ), California (CA), and New Mexico (NM) states. 

5. In this clause, the user specifies that s/he is interested in only the first 8 months of the simulation. 

6. Furthermore, the user specifies that the system return daily (1-D) averages of the simulation 

parameters for the specified duration. 

 

1.1.1 Query Interface 

The epiDMS query interface allows the user to specify and execute parametric queries. As illustrated 

below, parametric queries support query specification reuse – instead of writing a new query for different 

parameters, the user can specify and store a parametric query, which can then be invoked with different 

parameter values, as seen in the following example:  
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In the above example, those query parameters whose values are bracketed with the symbol “(par)” are 

interpreted as being parametric. The user can vary these values using a form-based interface without 

having to modify the source code directly. 

1.1.2 Result Set Exploration Module 

Once the query is executed and the relevant simulations are identified, epiDMS then organizes the results 

in the form of a navigable hierarchy, based on the temporal dynamics of the disease: scenarios that result 

in similar patterns are grouped under the same branch, while simulations that show key differences in 

disease development are placed under different branches of the navigation hierarchy. The user can then 

navigate on this hierarchy using “drill-down” and “roll-up” operations on this hierarchy and pick sets of 

simulations to study and compare in further detail the corresponding scenarios. This process is described 

below: 

Once the matching simulations are identified, the user is presented with an initially collapsed hierarchy of 

results: 

 

Above, we see that the query identified 60 matching simulations, from two different disease models. The 

legend at the top provides the scope of values in the results. The user can explore these simulations by 

drilling down or rolling up on the result hierarchy: 
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As we see above, the top-level of the result hierarchy includes the disease models (SIR and SEIR in this 

example). At the next level, the user is presented the output parameters specified in the query 

(“incidence”, “deaths”, and “infected” in this example).  Under this level, the results are organized in the 

form of a cluster hierarchy, where similar simulations are clustered under the same navigation branch. For 

each node in the navigation hierarchy, a cluster representative is selected and the corresponding 

simulation is visualized in the form of a heatmap, where each row corresponds to a location (states “AZ”. 

“CA”, and “NM”) in this example.  The user can obtain detailed information about the presented 

simulations, by hovering the mouse on the heatmaps or download simulation results (in the form of CSV 

files) or metadata and model specifications (in XML format) corresponding to different simulations for 

further study or dissemination to decision makers.  

The user can also use the “match range” feature to change the scale of visualization so that the upper 

bound of visualized values in the heatmap is modified in a way that matches a selected simulation to 

enable better visualization of its details. For example, in the example below, the heatmap scale has been 

modified to match the number of incidences, rather than the number of deaths; thus, we are able to better 

observe the differences among the incidence clusters: 
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The user can explore these simulations by navigating on the hierarchy by drilling down or rolling up 

different branches. In the following example, the user has drilled down on the cluster 1.2.2 of the 

“incidence” data to observe the simulations clustered under this navigation node:  

 

To further study individual simulations, the user then can double click on any simulation in the navigation 

hierarchy to place them in to a separate comparison interface. In the example, shown below, the user 

selected two simulations (#225 and #296) under cluster 1.2.2 to be studied and compared further in 

detail: 
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In the detailed comparison interface, the user can compare the two (or more) simulations side by side and 

observe the differences in the input parameters and models. The user can further ask the system to 

visualize the precise differences in the metadata corresponding to selected pairs of simulations: 

             

Here the text highlighted in red points to the differences in metadata corresponding to the pair of 

simulations selected or comparison. 

1.1.3 Observational Similarity Based Querying and Exploration 

In addition to scenario-based filtering, search, and exploration, EpiDMS also enables searching particular 

temporal patterns on the epidemic ensembles. During an epidemic, this feature allows the expert to 
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identify a relevant subset of stored simulations that match actual disease patterns or specific targets for 

intervention measures.  

To use similarity based querying, the user can either click on the “Search Similar” option on the result 

visualization interface or switch to the “Similarity Query” interface and provide a file which contains the 

observations of interest: 

 

Once a simulation/observation and states of interest are provided, the system searches in the databases 

existing simulations that show a similar pattern. Results are ranked in terms of their similarities to the 

provided query pattern:  

 

 
 

 
Note that, once again, the user can obtain detailed information about the presented simulations by 



9 
 
 
 
 

hovering the mouse on the heatmaps or download simulation data or metadata corresponding to different 

simulations for further study. Moreover, as before, to further study individual simulations, the user can 

double click on any simulation in the navigation hierarchy to place them in to the comparison interface.  

Please see the accompanying video at https://www.youtube.com/watch?v=9w-4nDhXv3k for more details.  

 

Frequently Asked Questions 

Question #1: “It appears that epiDMS would be operated by those with at least moderate infectious 

disease modeling experience. Is it true that epiDMS requires programming skills by the operator (while 

there appears to be a GUI, there also appears to be a moderate amount of programming involved in 

operating this).” 

 

Answer: The target user group for epiDMS include a range of public health researchers and decision 

makers. While creation of models for ensemble simulations and formulating queries over ensembles 

simulations require moderate infectious disease modeling experience and familiarity with (not 

programming, but) declarative querying, epiDMS also provides parameterized queries and other 

interactive user interfaces to enable decision makers with minimal experience to explore large ensemble 

simulations. 

 

Question #2: “Can you give a pathogen-specific example of a public health emergency in which the data, 

models and underlying model parameters dynamically evolve over time requiring continuous analyses 

and interpretations of the incoming data and adaptation of the networks and models.”  

Response: The 2014-15 Ebola epidemic in West Africa was an example of such an health emergency 

where the situation (what we new about the disease characteristics, available and implemented 

intervention strategies, population dynamics, and social interactions among and within effected 

populations) continuously changed as the epidemic evolved, requiring reassessment and revisions 

models and re-interpretations of the data.  

 

https://www.youtube.com/watch?v=9w-4nDhXv3k
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Question #3: “How does epiDMS differ from existing modeling platforms and packages (e.g,. Berkeley 

Madonna or R).” 

Answer: Unlike other dynamic modeling platforms such as Berkeley Madonna, the services provided by 

epiDMS include  

 storage and indexing of large ensemble simulation data sets and the corresponding and models; 

and  

 search and analysis of ensemble simulation data sets to support ensemble-based decision 

support.  

In that sense, epiDMS is less of a modeling tool and more of a multi-model, multi-instance ensemble 

simulation-based decision support system.  

 

Question #4: “Is epiDMS specific to a particular disease model or simulation engine? If not, how does 

different models fit within the database?” 

Response: We thank the reviewer for bringing to our attention that the original manuscript did not make it 

sufficiently clear that epiDMS is a model independent system by design: 

 epiRun, for execution ensemble simulations, is not specific to any disease model or simulation 

engine and can wrap –as a black-box software component– any epidemic simulation engine as 

long as it provides command line invocation.  

 epiStore, which stores epidemic models and the generated simulation ensembles, is not specific 

to any disease model or simulation ensembles generated by a specific simulation engine – it can 

read and store models and simulation results produced by any epidemic simulation engine as 

long as data wrappers that convert data and metadata into internal epiStore representation is 

available. This wrapper based design ensures that models and simulations generated by different 

engines and tools can be imported into epiStore and queried and analyzed simultaneously 

irrespective of their origin. 

 Finally, epiViz, which provides a web-based query and result visualization interface to support 



11 
 
 
 
 

user interaction and exploratory decision making is also model independent. More specifically, 

the underlying query specification language can support queries based on any model, without 

having to make any a priori assumptions regarding what the input and output parameters of the 

simulations are. Once they are imported into epiStore, parameters of any model can be queried, 

visualized, and explored. 

The current alpha version of the system provides wrappers for the STEM simulation engine and can 

import models and simulations generated by STEM tool. The beta version of the tool will include wrappers 

for other systems. 

 

Question #5: “(i) What are the computational demands of epiDMS. e.g., can this be run on a standard 

laptop? A tablet/smartphone? From the video, it appears this is a web-based platform, but is there a stand 

alone downloadable form which can be run in potential areas with no internet connection (e.g., in certain 

field settings)?” 

Answer: The user interface of epiDMS is indeed a web-based platform and can run on any networked 

laptop and most tablets or smartphones.  The backend, however, runs on server hardware. It is, however, 

possible to configure a laptop to act both as the backend and frontend.  

 

Question #6: “What is the speed of the simulation analyses?”  

Answer: This depends on the size of the simulation ensemble, number of variates/parameters of interest, 

the type of analysis, and the hardware configuration (memory, number of cores) at the back-end server 

platform. Having said that, we are doing our best to provide a near real-time and interactive experience to 

the users. 

 

Question #7: “What is the format of the modelling output? Can it easily be downloaded and disseminated 

to decision makers in public health practice?” 

Answer: Users of epiDMS can download simulation results (in the form of CSV files) or metadata and 

model specifications (in XML format) corresponding to different simulations for further study or 
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dissemination to decision makers.  

 

Question #8: “Can you confirm if this is a free system?...is there an open-source version of the software 

with scope for a community of developers?” 

Answer: An alpha version of the source-code for epiDMS is currently available upon request, and free of 

charge, to researchers and educators in the non-profit sector, including institutions of education, 

research, and government laboratories under an Apache 2.0 license 

(http://www.apache.org/licenses/LICENSE-2.0). The terms of the license allows individuals to modify the 

source code and to share modifications and also enable open source development of the software by 

other individuals and teams. The terms of software availability permits the commercialization of enhanced 

and customized versions of the software and incorporation of the software or pieces of it into other 

software packages. The beta release of the source-code will be available to the public through GitHub 

under the same terms. 

 

Question #9: “Is there a user-group forum for users to ask questions, trouble-shoot, show applications 

etc.?” 

Answer: While such a user-group forum does not currently exist, we will bootstrap a group along with the 

beta release of the system. In addition, we are planning to 

 carry out demonstrations of epiDMS, 

 give tutorials, and 

 organize workshops 

at leading forums targeting public healthcare researchers, scientists, and decision makers.   
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Epidemics….
• SARS (Severe Acute Respiratory Syndrome) epidemic is estimated to have started in 

China in November 2002, had spread to 29 countries by August 2003
• A pandemic similar to the swine flu in 2009 is estimated to cost $360 billion in a mild 

scenario to the global economy and up to $4 trillion in an ultra scenario, within the first 
year of the outbreak 

• The World Health Organization declared the Ebola epidemic in West Africa a Public 
Health Emergency of International Concern on August 8th, 2014, with exponential 
dynamics characterizing the initial growth in numbers of new cases in some areas 

K. Selcuk Candan @ ASU



Epidemics….
• Data- and model-driven computer simulations are increasingly critical in 

predicting geo-temporal evolution of epidemics 
• estimating transmissibility of an epidemic disease, such as influenza,
• forecasting the spatio-temporal spread of pandemic disease at different spatial 

scales,
• assessing the effect of travel controls during the early stage of the pandemic,
• predicting the effect of implementing school closures, 
• assessing the  impact of pharmaceutical interventions on pandemic disease 

K. Selcuk Candan @ ASU



Epidemics….

K. Selcuk Candan @ ASU

Not much room for error

Both action and inaction can have high costs in terms 
of their economic impacts and human lives affected



Critically needed…

K. Selcuk Candan @ ASU

• Tools that help 
• executing large-scale simulation ensembles under a large number of diverse 

hypotheses/scenarios, and

• analysis, exploration, interpretation, and visualization of large simulation ensembles 
(aligned with the real-world observations) to generate timely actionable results

are critically needed for 

• understanding the evolution patterns of the outbreaks, including 
• estimating transmissibility, 

• forecasting the spatio-temporal spread at different spatial scales, 

• assessing the cost and impact of interventions, including travel controls, at various stages of the epidemic

• supporting real-time decision making and hypothesis testing through large scale 
simulations. 



Good news: epidemic simulation software…

K. Selcuk Candan @ ASU

• Various time-step based epidemic spread simulation software exist (GLEaM, STEM)



Simulation model parameters…

K. Selcuk Candan @ ASU

• Spatial/Demographic Layer
• 3,362 subpopulations in 220 countries of the world) 

• Mobility layer
• long-range air travel mobility data, from the Inter. Air Transport Assoc. and the Official Airline 

• short-range commuting patterns between adjacent subpopulations 

• Epidemic layer 
• infection rate of contracting illness when an individual interacts with an infectious person; 

• infection rate scaling factors for asymptomatic infectors and treated infectors; 

• probability of symptomatic vs. asymptomatic infections; 

• average length of the latency period (in which the individual is infected, but not infecting); 

• average length of recovery; 

• percentage of infectious individuals that undergo pharmaceutical treatment 

• impact of treatment (e.g. on the length of the infectious period) 

• change in the travelling behavior after the onset of symptoms; 

• Initial conditions of outbreak

• intervention measures. 



How do the simulation results look?

K. Selcuk Candan @ ASU

Simulation #1 Simulation #2

• These two simulation differ in 
• where the disease enters the US and 
• the disease characteristics, such as infection rate and recovery rate.

Each curve is a different US state



Bad news…
• Challenge #1: Epidemic simulations track 

• 100s of inter-dependent parameters, 
• spanning multiple layers and geo-spatial frames,
• affected by complex dynamic processes operating at different resolutions. 

• Challenge #2: Given the 
• unpredictability of an epidemic and 
• unpredictability of the actions of various independent agencies,
decision makers need to generate many thousands of simulations, 
each with different parameters corresponding to plausible scenarios.

• Challenge #3: Simulations need to be continuously revised based on 
real-world data as the epidemic and intervention mechanisms evolve. 

K. Selcuk Candan @ ASU



Challenges

• Because of the size and complexity of the data and the varying 
spatial and temporal scales at which the key processes operate; 
experts lack the means to 
• analyzing simulation results, 

• understanding relevant processes and 

• assessing the robustness of conclusions driven from the resulting 
simulations. 

K. Selcuk Candan @ ASU



Questions (??)…..

• Can we discover key events in a simulation trace and summarize a large simulation 
trace to highlight these key events?

• Can we classify these key events?

• Can we compare a large number of simulation traces and observations (under 
different parameter settings) to identify their similarities and differences?

• Can we analyze one or more simulation traces to discover underlying patterns and 
relationships between input parameters, key events/interventions, and simulation 
outcomes?

• Can we search and retrieve simulation traces based on the underlying key 
events or the overall trace similarities? 

K. Selcuk Candan @ ASU



epiDMS Framework…

aims to address the key challenges underlying large epidemic spread simulations, 
which, today, hinder real-time and continuous analysis and decision making during 

ongoing outbreaks. 
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EpiDMS Epidemic Simulation Ensemble Exploration 
Interface



epiDMS
• epiDMS facilitates public-health decision makers 

• identify the relevant parameters that characterize transmission 
characteristics, 

• forecast epidemic spread as the epidemic evolves, 
• assess potential impact of intervention scenarios. 

• epiDMS also allows the user to 
• perform simulation refinements by  narrowing down the parameter 

space based on the current state of the epidemic
• run additional simulations within the new parameter space to obtain 

more detailed simulations relevant to the current disease state.



Conclusion
• A sample EpiDMS visualization interface is available at

• http://aria.asu.edu/epidms

• You can also watch a tutorial at
• https://www.youtube.com/watch?v=9w-4nDhXv3k

• For feedback, please contact:
• candan@asu.edu
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Abstract  38 

Background: Carefully calibrated large-scale computational models of epidemic spread represent a 39 

powerful tool to support the decision-making process during epidemic emergencies. TheseEpidemic 40 

models are being increasingly used for generating forecasts of the spatial-temporal progression of 41 

epidemics at different spatial scales and assessing the likely impact of different intervention strategies.  42 

However, the management and analysis of simulation ensembles stemming from large-scale 43 

computational models poses challenges particularly when dealing with multiple inter-dependent 44 

parameters, spanning multiple layers and geo-spatial frames, affected by complex dynamic processes 45 

operating at different resolutions. Methods: We describe and illustrate with examples a novel epidemic 46 

simulation data management system which was developed to address the challenges that arise from the 47 

need to generate, search, visualize, and analyze in a scalable manner, large volumes of epidemic 48 

simulation ensembles and observations during the progression of an epidemic. 49 

Results and conclusion: EpiDMS is a publicly available system that facilitates management and analysis of 50 

large epidemic simulation ensembles. EpiDMS aims to fill an important hole in decision making during 51 

health-care emergencies and enabling critical services with significant economic and health impact . 52 

Keywords: Epidemics, big data, simulation ensembles, data management, analytics, public-health 53 

decision making. 54 

  55 
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1 Introduction 56 

The potential for pandemics to rapidly generate morbidity, mortality, and economic impact around the 57 

world has highlighted the need to develop quantitative frameworks for supporting public health decision-58 

making in near real-time. For instance, the 2003 SARS coronavirus (Severe Acute Respiratory 59 

Syndrome) emergency that, which originated in China and spread to 29 countries and, generated 60 

important nosocomial outbreaks in several regions by August 2003 [258,24].  More recently, the 2009 61 

A/H1N1 influenza pandemic originating in Mexico rapidly spread around the globe via the airline network 62 

and reached 20 countries with highest volume of passengers arriving from Mexico within a few weeks of 63 

epidemic onset [14]. A]. Importantly, the economic impact associated with a pandemic similar to the 2009 64 

A/H1N1 influenza pandemic has been estimated to cost $360 billion in a mild scenario to the global 65 

economy between $360 billion and up to $4 trillion in an ultra scenario [17], within] for the first year of 66 

virus circulation.  67 

Large-scale computational transmission models of infectious disease spread are increasingly becoming 68 

part of the toolkit to carry out inferences on the spread and control of infectious diseases  [4].. Examples of 69 

real-time analyses of epidemics supported by large-scale transmission models include:  70 

 estimating transmissibility of an epidemic disease, such as influenza [2,33,21], 71 

 Estimating the risk of observing multiple generations of disease transmission in particular areas of the 72 

world  73 

 forecasting the spatio-temporal evolution of pandemics at different spatial scales [19,27], 74 

 assessing the effect of travel controls during the early epidemic phase [9,12,22], 75 

 predicting the effect of school closures in mitigating disease spread [5,6,29],  76 

 assessing the  impact of reactive vaccination strategies [16], 77 

These analyses, however, require access to, integration, and analysis of models and large volumes of 78 

data, including datasets from diverse sources in order to parameterize demographic datacharacteristics, 79 

contact networks, age-specific contact rates, mobility networks, and data on health-care and control 80 

interventions from diverse sources. .  81 Formatted: Bold
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In this paper, we argue that, if effectively leveraged, existing simulation analyses and real-time 82 

observations incominggenerated during an outbreak can be collectively used for better understanding the 83 

transmission dynamics and refining existing models.  At the same time, these model simulations are 84 

useful for performing exploratory, if-then type of hypothetical analyses of epidemic scenarios in order to 85 

address critical questions including: (a) Can we discoveridentify and classify key events and summarize 86 

a(e.g., epidemic peak timing, likely epidemic duration) during an infectious disease outbreak from large 87 

simulation trace to highlight these key events?ensembles? (b) Can we compare and summarize a large 88 

number of simulation tracesepidemic simulations and observations (under different parameter 89 

settings)?epidemiological scenarios? (c) Can we discover latent relationships and 90 

structuresdependencies among disease dynamics and social parameters?  91 

1.1 Epidemic Simulations 92 

Global epidemic spread can be characterized via simulation through networks of multiple (local and 93 

global) scales: individuals within a subpopulation may be infected through local contacts during a 94 

locallocalized outbreak. These infected individuals then may seed the infection in other regions, starting a 95 

new outbreak. Thus, state-of-the-art disease spread simulators, such asThus, large-scale epidemic 96 

simulation systems (e.g., GLEaM [4,2827] and STEM [26],]) are required to leverage models and data at 97 

different spatial scales, including. These include social contact networks, local and global individual 98 

mobility patterns of individuals as well as, location-specific transmissibilitycontrol interventions, and 99 

epidemiological characteristics of the infectious disease in question and control intervention data and 100 

models: 101 

 The population model for the GLEaMa global epidemic simulation enginesystem can be based, 102 

for example, is basedon the Gridded Population of the World project by the Socio-Economic Data 103 

and Applications Center (SEDAC) [25] and], which has a resolution of 15 × 15 minutes of arc.  104 

 Mobility models can include long-range air travel mobility data, from the International Air 105 

Transport Association and the Official Airline Guide and/or short-range commuting patterns 106 

between adjacent subpopulations. High-resolution demographic and age-specific contact data 107 

has become available for a number of countries including the US [11], and South-East Asia [16] 108 
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while age-specific contact rates have been derived from population surveys for a number of 109 

European countries [20]. Large-scale computational transmission models, parameterized with 110 

high volume air traffic data and country-level seasonality factors, are being increasingly used to 111 

assess the global transmission patterns of emerging infectious diseases and the effectiveness of 112 

control measures  [410,11,1413,18].  113 

 Epidemic models allow the user to specify epidemiological parameters forthat are specific of the 114 

infectious disease (such as reproductive numbertransmissibility and seasonality), initial outbreak 115 

conditions (e.g. seeding characteristics of the epidemic and the immunity profile of the 116 

subpopulation), and the timing, type and intensity of intervention measures. While the disease 117 

model can be specific to the type of infection, the parameters of a typical model (the modified 118 

Susceptible-Latent-Infectious-Recovered model described in [27]) includesinclude (a) the 119 

infection rate of contracting illness when an individual interacts with an infectious person; (b) 120 

infection rate scaling factors for asymptomatic infectors and treated infectors; (c) average length 121 

of the latency period (in which the individual is infected, but not infecting); (d) probability of 122 

symptomatic vs. asymptomatic infections; (e) change in the travelling behavior after the onset of 123 

symptoms; (f) average length of recovery; (g) percentage of infectious individuals that undergo 124 

pharmaceutical treatment; and (h) impact (e.g. on the length of the infectious period) of the 125 

treatment. 126 

The output of an epidemica simulation is a multi-variate time series, which tracks for each spatial location 127 

(such as the US states) the simulation values of each output parameter, such as the number of infected 128 

individuals.  129 

1.2 Challenges 130 

While large-scale epidemic simulation systems such as GLEaM [4,28] and27] or STEM [26] arerepresent 131 

very powerful and highly modular and flexible epidemic spread simulation softwaresystems, their power 132 

for real-time decision making could be enhanced by addressing the following challenges:  133 

(a) Complexity of the simulation and observation data. A sufficiently useful disease spreading simulation 134 

system requires models, including social contact networks, local and global mobility patterns of 135 
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individuals, and epidemiological parameters for the infectious disease (e.g., infectious period). 136 

Epidemic simulations track 10s or 100s of inter-dependent parameters, spanning multiple layers and 137 

geo-spatial frames, affected by complex dynamic processes operating at different resolutions. 138 

Moreover, an ensemble of stochastic epidemic realizations may include 100s or 1000s of 139 

simulations, each with different parameters settings corresponding to slightly different, but plausible, 140 

scenarios [1,7]. As a consequence, running and interpreting simulation results (along with the real-141 

world observations) to generate timely actionable results are difficultpose challenges. 142 

(b) Dynamicity of the real-world observations. A major challenge in using data- and model-driven 143 

computer simulations for disease spreading and for predicting geo-temporal evolution of epidemics 144 

for managing health emergencies, such as the 2014-15 Ebola epidemic in West Africa, is that the 145 

data, models, and the underlying model parameters dynamically evolve over time requiring. This 146 

necessitates continuous analyses and interpretations of the incoming data and adaptation of the 147 

networks and models. Therefore, simulation ensembles may need to be continuously revised and 148 

refined as the situation on the ground changes: (a) revisions involve incorporating the real-world 149 

observations as well as updated probability surfaces into existing simulations to alter their outcomes; 150 

(b) refinements involve identifying new simulations to run based on the changing situation on the 151 

ground to provide trustable recommendations. As the situation on the ground and intervention 152 

mechanisms evolve, the sampling strategies for the input parameter spaces have to be varied (by 153 

eliminating irrelevant scenarios and considering new scenarios or varying the likelihood of old 154 

scenarios) in such a way that more accurate simulation results are obtained where it is more 155 

relevant. 156 

Unfortunately, becauseIn order to have a significant impact on disease control and to devise validated 157 

epidemic response strategies within a realistic time frame, public health authorities need to adequately 158 

and systematically interpret observations, understand the processes driving epidemic outbreaks, and 159 

assess the robustness of conclusions driven from simulations. Because of the volume and complexity of 160 

the data, the varying spatial and temporal scales at which the key transmission processes operate and 161 

relevant observations are made, public health experts could benefit from novel systems to adequately 162 
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and systematically interpret observations, understand the processes driving epidemic outbreaks, and 163 

assess the robustness of conclusions driven from simulations to provide validated epidemic response 164 

strategies to public health authorities within a realistic time to have a significant impact on disease 165 

control.decision support systems. Therefore, tools that help (a) executing large-scale simulation 166 

ensembles under a large number of diverse hypotheses/scenarios, and (b) analysis, exploration, 167 

interpretation, and visualization of large simulation ensembles (aligned with the real-world observations) 168 

to generate timely actionable results are critically needed for understanding the evolution patterns of the 169 

outbreaks (including estimating transmissibility, forecasting the spatio-temporal spread at different spatial 170 

scales, assessing the cost and impact of interventions, including travel controls, at various stages of the 171 

epidemic.)) and supporting real-time decision making and hypothesis testing through large scale 172 

simulations.  173 

 174 

 175 

2 EpiDMS System Overview and Use Scenario 176 

The key characteristics of data and models relevant to data-intensive simulations include the following: 177 

(a) voluminous, (b) multi-variate, (c) multi-resolution, (d) multi-layer, (e) geo-temporal, (f) inter-connected 178 

and inter-dependent, and (g) often incomplete/imprecise. Moreover, data and models dynamically evolve 179 

over time, due to preventivecontrol actions taken by individuals and public health interventions, requiring 180 

continuous adaptation and re-modeling.  181 

The novel epiDMS software framework [1] aims to address the key challenges underlying large epidemic 182 

spread simulations, which, today, hinder real-time and continuous analysis and decision making during 183 

ongoing outbreaks. The services provided by epiDMS include (a) indexing and metadata and/or 184 

similarity–based search of large ensemble simulation data sets, including extraction of salient features 185 

from the inter-dependent parameters, spanning multiple layers and spatial-temporal frames, driven by 186 

complex dynamic processes operating at different resolutions [29]; and  (b) data analysis, including 187 

identification of unknown dependencies across the input parameters and output variables spanning the 188 

different layers of the observation and simulation data [16,24].Unlike other dynamic modeling platforms 189 
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such as Berkeley Madonna [0], the services provided by epiDMS include  190 

 storage and indexing of large ensemble simulation data sets and the corresponding models; and  191 

 search and analysis of ensemble simulation data sets to enable ensemble-based decision 192 

support [15,23,28].  193 

The target user group for epiDMS include a range of public health researchers and decision makers. 194 

While creation of models for ensemble simulations and query formulation require moderate infectious 195 

disease modeling experience, epiDMS also provides  parameterized queries and other interactive user 196 

interfaces to enable decision makers with minimal experience to explore large ensemble simulations. 197 

2.1 System Overview 198 

The epidemic simulation data management system (epiDMS [1]) for managing the data and models for 199 

data-driven real-time epidemic simulations consists of three major components (Figure 1): 200 

 Epidemic ensemble execution engine (epiRun),) takes as input an epidemic model, 201 

mobility/connectivity models, interventions, and outbreak conditions (such as ground zero), and 202 

creates an epidemic ensemble by sampling the disease parameter space and executing 203 

simulations in parallel using STEM simulation engine,using an external simulation engine. Note 204 

that epiRun is not specific to any disease model or simulation engine and can wrap –as a black-205 

box software component– any epidemic simulation engine as long as it provides command line 206 

invocation. The epidemic model (formulated in the format specific to the simulation engine), the 207 

selected input parameter values, and the simulation results (i.e., time series for each output 208 

variable) then become inputs for the epidemic data and model store (epiStore), described next.  209 

 Epidemic data and model store (epiStore) ingests, stores, and indexes the relevant data and 210 

metadata sets. The data sets and models relevant for modeling large-scale epidemics include 211 

the following: 212 

o Network layers: An epidemic simulation requires one or more layers of networks, from 213 

local and global mobility patterns to social contact networks. 214 

o Disease models, describing the epidemiological parameters relevant to a simulation and 215 
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the parameter dependencies necessary in the computation of the disease spread. 216 

o Simulation time series: For a given disease study, researchers and decision makers 217 

often  perform  multiple  simulations, each corresponding to different sets of assumptions 218 

(disease parameters or models) or context (e.g. spatio-temporal context, outbreak 219 

conditions, interventions). 220 

o Disease observations: These include real-world observations that arise in near real-time 221 

relating to a particular epidemic, including the spread and severity of the disease and 222 

observations about other relevant parameters, such as the average length of recovery or 223 

percentage of infectious individuals that undergo pharmaceutical treatment.  224 

EpiStore maintainscaptures simulation metadata (simulation model, parameter values, 225 

connectivity graphs) and simulation outputs (time series) and provides data analysis (such as 226 

clustering, classification, event extraction) to support decision making-making. Once again, 227 

epiStore is not specific to any disease model or simulation ensembles generated by a specific 228 

simulation engine – it can read and store models and simulation results produced by any 229 

epidemic simulation engine as long as data wrappers that convert data and metadata into 230 

internal epiStore representation are available. 231 

 Epidemic ensemble query, visualization, and exploration module (epiViz) provides a web-based 232 

query and result visualization interface to support user interaction and exploratory decision 233 

making through simulation ensembles (Figure 2). Query specification language is also model 234 

independent, in the sense that the system does not make any assumptions regarding what the 235 

input and output parameters of the simulations are – once imported into epiStore, parameters of 236 

any model can be queried, visualized, and explored. 237 

2.2 EpiDMS Use Scenario  238 

Let us consider a group of public health officials at the CDC who are to developgovernmental agency 239 

charged with developing a preparedness plan for the next influenza pandemic. To account for uncertainty 240 

in the epidemiology of the disease, characteristics of surveillance systems, and actual field conditions 241 

(e.g, healthcare capacity) including the availability and effectiveness of the interventions, public health 242 
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experts execute a large number of simulations using the epiRun simulation ensemble creation engine, 243 

which relies on STEM to generate simulation instances. The configuration file for epiRun specifies 244 

applicable disease models, parameter value ranges and sampling granularities, connectivity and mobility 245 

graph assumptions, simulation duration, and assumptions regarding intervention triggers.when and what 246 

interventions are to be applied.  Given these, epiRun schedules the execution of these simulations on a 247 

parallel cluster and,. The simulation metadata and storesresults are then read and stored in epiStore. 248 

Intuitively, each simulation result corresponds to a “possible world” and thus it is annotated and indexed 249 

with the metadata describing the corresponding scenario. Later, during hypothetical public health 250 

planning or pandemic response, the simulation results stored in epiStore can be accessed through 251 

scenario-based or observational search. 252 

 253 
2.2.1 Scenario-based Querying and Exploration 254 

A basic functionality of the epiDMS system is to retrieve epidemic simulations, stored in epiStore,  based 255 

on a user specified scenario description. For example, the user can formulate a query that asks the 256 

system to identify all pre-executed simulations, based on SEIR and SIR(susceptible-exposed-infectious-257 

removed) and SIR (susceptible-infectious-removed) epidemic models, where the input transmission rate 258 

parameter was set between 0.3 and 0.6, the recovery rate parameter was set to 0.5, and a “vaccination” 259 

type trigger was used in the simulation. The query also specifies a particular mobility graph, describing 260 

expected movements of the populations during the epidemic, as an underlying assumption. In addition, 261 

the query asks the system to return daily (1-D) averages of “infected”, “incidence”, and “deaths” 262 

simulation output parameters for Arizona (AZ), California (CA), and New Mexico (NM), for an 8 months 263 

longepidemic simulation that lasts 8 months (Please see the online supplement for the details of this 264 

query as well as a detailed description of the query and visual exploration interface provided by epiDMS ).  265 

Once the query is executed and the relevant simulations are identified, epiDMS then organizes the results 266 

in the form of a navigable hierarchy, based on the temporal dynamics of the disease: scenarios that result 267 

in similar patterns are grouped under the same branch, while simulations that show key differences in 268 

disease development are placed under different branches of the navigation hierarchy. The user can then 269 

navigate on this hierarchy using “drill-down” and “roll-up” operations and filter sets of simulations for 270 



 

12 
 
 
 
 

further analysis. 271 

2.2.2 Observational Alignment Based Querying and Exploration 272 

In addition to scenario-based filtering, search, and exploration, epiDMS also enables searching particular 273 

temporal patterns on the epidemic ensembles. During an epidemic, this feature allows the expert to 274 

identify a relevant subset of stored simulations that match actual disease patterns or specific targets for 275 

intervention measures. This facilitates public-health decision makers to 1) identify the relevant parameters 276 

that characterize transmission characteristicspatterns in near real time, 2) forecast epidemic spread as 277 

the epidemic evolves, 3) assess potential impact of intervention scenarios. This platform also allows the 278 

user to perform simulation refinements by narrowing down the parameter space of  “possible worlds” 279 

based on the current state of the epidemic. Hence, the user can use epiDMS to run additional simulations 280 

within the constrained parameter space to obtain more detailed simulations, possibly with addi tional 281 

intervention assumptions, that are relevant to the current state of the epidemic. 282 

3 Conclusions 283 

In this paper, we describe and illustrate with an example a novel epidemic simulation data management 284 

system (EpiDMS [1]) that supports the generation, searching, visualizingsearch, visualization, and 285 

analyzinganalysis, in a scalable manner, of large volumes of epidemic simulation ensembles for decision 286 

making. The system aims to assist experts and decision makers in exploring large epidemic simulation 287 

ensemble data sets, through efficient metadata and similarity based querying, data analysis, and visual 288 

exploration.   289 
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A basic functionality of the epiDMS system is to retrieve epidemic simulations, stored in epiStore, based 

on the user specified scenario description.   

 
 

The basic query interface, visualized above, provides the following functionalities: 

 Query Menu --‐ visualizes the list of queries that are stored in the system. 

 Query Box --‐ visualizes the selected query and/or allows the user to edit a query 
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 Query Description --‐ shows the description of the selected query and/or allows the user to add a 

query description. 

EpiDMS provides a  rich query language to specify user queries. Consider, for example, the following 

sample query:   

1. FOR $p in fn:collection('EpidemicSimulationEnsemble') ^ 

2. LET $diseaseModel := $p/project/scenario/model/disease     ^ 

o LET $triggerModel := $p/project/scenario/trigger     ^ 

o LET $epidemicScenario := $p/project/scenario ^  

3. WHERE  

a. $diseaseModel/transmissionRate <= 0.6 and   

b. $diseaseModel/transmissionRate >= 0.3 and  

c. $diseaseModel/recoveryRate = 0.5 and  

d. $triggerModel/@type="Vaccination" and 

e. ($epidemicScenario/infector/@targetISOKey="US-NYCA"  or 

$epidemicScenario/infector/@targetISOKey="US-NY" ) and   

f. ($epidemicScenario/graph = "mobility_graph_7.xml"  or 

$epidemicScenario/graph = "mobility_graph_8.xml")  ^ 

4. RETURN 

a. $diseaseModel/transmissionRate, 

b. $diseaseModel/recoveryRate, 

c. $epidemicScenario/graph   ^ 

d. STATE={AZ,CA,NM}; 

e. MODEL={SEIR,SIR}; 

f. PROPERTIES={Infected,Incidence,Deaths}; 

5. FROM ={01/01/2012 12:00:00}; TO={08/31/2012 12:00:00}; 

6. BY={1-D}; FUNCTION ={avg}; 

We describe the different components of this sample query below: 
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1. The “FOR” statement allows  the user select the simulation dataset to query. In this example, the 

user selects to focus on the stored simulation set “EpidemicSimulationEnsemble”. 

2. The “LET” statement allows to associate variables representing disease and intervention  trigger 

models  and epidemic scenarios.  

3. The “WHERE” clause allows the user to specify conditions on the simulation models to filter those 

simulations that are relevant for the current analysis. In this example, the user specifies that for 

the returned simulations, the transmission rate parameter should be between 0.3 and 0.6, the 

recovery rate parameter should be set to 0.5, and that a “vaccination” type trigger should be 

included in the simulation model. The user also specifies that epidemic should have started at 

California (CA) or New York (NY) state and the “mobility_graph_7.xml” or “mobility_graph_8.xml” 

should have been used to generate the simulations. 

4. The “RETURN” clause lists the simulation parameters to be returned in the result. In this 

example, the user is interested in the transmission rate, recovery rate, the mobility graph for each 

returned simulation. In addition, the query asks the system to return the time series 

corresponding to the “infected”, “incidence”, and “deaths” simulation output parameters for 

Arizona (AZ), California (CA), and New Mexico (NM) states. 

5. In this clause, the user specifies that s/he is interested in only the first 8 months of the simulation. 

6. Furthermore, the user specifies that the system return daily (1-D) averages of the simulation 

parameters for the specified duration. 

 

1.1.1 Query Interface 

The epiDMS query interface allows the user to specify and execute parametric queries. As illustrated 

below, parametric queries support query specification reuse – instead of writing a new query for different 

parameters, the user can specify and store a parametric query, which can then be invoked with different 

parameter values, as seen in the following example:  
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In the above example, those query parameters whose values are bracketed with the symbol “(par)” are 

interpreted as being parametric. The user can vary these values using a form-based interface without 

having to modify the source code directly. 

1.1.2 Result Set Exploration Module 

Once the query is executed and the relevant simulations are identified, epiDMS then organizes the results 

in the form of a navigable hierarchy, based on the temporal dynamics of the disease: scenarios that result 

in similar patterns are grouped under the same branch, while simulations that show key differences in 

disease development are placed under different branches of the navigation hierarchy. The user can then 

navigate on this hierarchy using “drill-down” and “roll-up” operations on this hierarchy and pick sets of 

simulations to study and compare in further detail the corresponding scenarios. This process is described 

below: 

Once the matching simulations are identified, the user is presented with an initially collapsed hierarchy of 

results: 

 

Above, we see that the query identified 60 matching simulations, from two different disease models. The 

legend at the top provides the scope of values in the results. The user can explore these simulations by 

drilling down or rolling up on the result hierarchy: 
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As we see above, the top-level of the result hierarchy includes the disease models (SIR and SEIR in this 

example). At the next level, the user is presented the output parameters specified in the query 

(“incidence”, “deaths”, and “infected” in this example).  Under this level, the results are organized in the 

form of a cluster hierarchy, where similar simulations are clustered under the same navigation branch. For 

each node in the navigation hierarchy, a cluster representative is selected and the corresponding 

simulation is visualized in the form of a heatmap, where each row corresponds to a location (states “AZ”. 

“CA”, and “NM”) in this example.  The user can obtain detailed information about the presented 

simulations, by hovering the mouse on the heatmaps or download metadatasimulation results (in the form 

of CSV files) or metadata and model specifications (in XML format) corresponding to different simulations 

for further study.  or dissemination to decision makers.  

The user can also use the “match range” feature to change the scale of visualization so that the upper 

bound of visualized values in the heatmap is modified in a way that matches a selected simulation to 

enable better visualization of its details. For example, in the example below, the heatmap scale has been 

modified to match the number of incidences, rather than the number of deaths; thus, we are able to better 

observe the differences among the incidence clusters: 
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The user can explore these simulations by navigating on the hierarchy by drilling down or rolling up 

different branches. In the following example, the user has drilled down on the cluster 1.2.2 of the 

“incidence” data to observe the simulations clustered under this navigation node:  

 

To further study individual simulations, the user then can double click on any simulation in the navigation 

hierarchy to place them in to a separate comparison interface. In the example, shown below, the user 

selected two simulations (#225 and #296) under cluster 1.2.2 to be studied and compared further in 

detail: 
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In the detailed comparison interface, the user can compare the two (or more) simulations side by side and 

observe the differences in the input parameters and models. The user can further ask the system to 

visualize the precise differences in the metadata corresponding to selected pairs of simulations: 

             

Here the text highlighted in red pointpoints to the differences in metadata corresponding to the pair of 

simulations selected or comparison. 

1.1.3 Observational Similarity Based Querying and Exploration 

In addition to scenario-based filtering, search, and exploration, EpiDMS also enables searching particular 

temporal patterns on the epidemic ensembles. During an epidemic, this feature allows the expert to 
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identify a relevant subset of stored simulations that match actual disease patterns or specific targets for 

intervention measures.  

To use similarity based querying, the user can either click on the “Search Similar” option on the result 

visualization interface or switch to the “Similarity Query” interface and provide a file which contains the 

observations of interest: 

 

Once a simulation/observation and states of interest are provided, the system searches in the databases 

existing simulations that show a similar pattern. Results are ranked in terms of their similarities to the 

provided query pattern:  

 

 
 

 
Note that, once again, the user can obtain detailed information about the presented simulations by 
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hovering the mouse on the heatmaps or download simulation data or metadata corresponding to different 

simulations for further study. Moreover, as before, to further study individual simulations, the user can 

double click on any simulation in the navigation hierarchy to place them in to the comparison interface.  

Please see the accompanying video at https://www.youtube.com/watch?v=9w-4nDhXv3k for more details.  

 

Frequently Asked Questions 

Question #1: “It appears that epiDMS would be operated by those with at least moderate infectious 

disease modeling experience. Is it true that epiDMS requires programming skills by the operator (while 

there appears to be a GUI, there also appears to be a moderate amount of programming involved in 

operating this).” 

 

Answer: The target user group for epiDMS include a range of public health researchers and decision 

makers. While creation of models for ensemble simulations and formulating queries over ensembles 

simulations require moderate infectious disease modeling experience and familiarity with (not 

programming, but) declarative querying, epiDMS also provides parameterized queries and other 

interactive user interfaces to enable decision makers with minimal experience to explore large ensemble 

simulations. 

 

Question #2: “Can you give a pathogen-specific example of a public health emergency in which the data, 

models and underlying model parameters dynamically evolve over time requiring continuous analyses 

and interpretations of the incoming data and adaptation of the networks and models.”  

Response: The 2014-15 Ebola epidemic in West Africa was an example of such an health emergency 

where the situation (what we new about the disease characteristics, available and implemented 

intervention strategies, population dynamics, and social interactions among and within effected 

populations) continuously changed as the epidemic evolved, requiring reassessment and revisions 

models and re-interpretations of the data.  

 

https://www.youtube.com/watch?v=9w-4nDhXv3k
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Question #3: “How does epiDMS differ from existing modeling platforms and packages (e.g,. Berkeley 

Madonna or R).” 

Answer: Unlike other dynamic modeling platforms such as Berkeley Madonna, the services provided by 

epiDMS include  

 storage and indexing of large ensemble simulation data sets and the corresponding and models; 

and  

 search and analysis of ensemble simulation data sets to support ensemble-based decision 

support.  

In that sense, epiDMS is less of a modeling tool and more of a multi-model, multi-instance ensemble 

simulation-based decision support system.  

 

Question #4: “Is epiDMS specific to a particular disease model or simulation engine? If not, how does 

different models fit within the database?” 

Response: We thank the reviewer for bringing to our attention that the original manuscript did not make it 

sufficiently clear that epiDMS is a model independent system by design: 

 epiRun, for execution ensemble simulations, is not specific to any disease model or simulation 

engine and can wrap –as a black-box software component– any epidemic simulation engine as 

long as it provides command line invocation.  

 epiStore, which stores epidemic models and the generated simulation ensembles, is not specific 

to any disease model or simulation ensembles generated by a specific simulation engine – it can 

read and store models and simulation results produced by any epidemic simulation engine as 

long as data wrappers that convert data and metadata into internal epiStore representation is 

available. This wrapper based design ensures that models and simulations generated by different 

engines and tools can be imported into epiStore and queried and analyzed simultaneously 

irrespective of their origin. 

 Finally, epiViz, which provides a web-based query and result visualization interface to support 
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user interaction and exploratory decision making is also model independent. More specifically, 

the underlying query specification language can support queries based on any model, without 

having to make any a priori assumptions regarding what the input and output parameters of the 

simulations are. Once they are imported into epiStore, parameters of any model can be queried, 

visualized, and explored. 

The current alpha version of the system provides wrappers for the STEM simulation engine and can 

import models and simulations generated by STEM tool. The beta version of the tool will include wrappers 

for other systems. 

 

Question #5: “(i) What are the computational demands of epiDMS. e.g., can this be run on a standard 

laptop? A tablet/smartphone? From the video, it appears this is a web-based platform, but is there a stand 

alone downloadable form which can be run in potential areas with no internet connection (e.g., in certain 

field settings)?” 

Answer: The user interface of epiDMS is indeed a web-based platform and can run on any networked 

laptop and most tablets or smartphones.  The backend, however, runs on server hardware. It is, however, 

possible to configure a laptop to act both as the backend and frontend.  

 

Question #6: “What is the speed of the simulation analyses?”  

Answer: This depends on the size of the simulation ensemble, number of variates/parameters of interest, 

the type of analysis, and the hardware configuration (memory, number of cores) at the back-end server 

platform. Having said that, we are doing our best to provide a near real-time and interactive experience to 

the users. 

 

Question #7: “What is the format of the modelling output? Can it easily be downloaded and disseminated 

to decision makers in public health practice?” 

Answer: Users of epiDMS can download simulation results (in the form of CSV files) or metadata and 

model specifications (in XML format) corresponding to different simulations for further study or 
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dissemination to decision makers.  

 

Question #8: “Can you confirm if this is a free system?...is there an open-source version of the software 

with scope for a community of developers?” 

Answer: An alpha version of the source-code for epiDMS is currently available upon request, and free of 

charge, to researchers and educators in the non-profit sector, including institutions of education, 

research, and government laboratories under an Apache 2.0 license 

(http://www.apache.org/licenses/LICENSE-2.0). The terms of the license allows individuals to modify the 

source code and to share modifications and also enable open source development of the software by 

other individuals and teams. The terms of software availability permits the commercialization of enhanced 

and customized versions of the software and incorporation of the software or pieces of it into other 

software packages. The beta release of the source-code will be available to the public through GitHub 

under the same terms. 

 

Question #9: “Is there a user-group forum for users to ask questions, trouble-shoot, show applications 

etc.?” 

Answer: While such a user-group forum does not currently exist, we will bootstrap a group along with the 

beta release of the system. In addition, we are planning to 

 carry out demonstrations of epiDMS, 

 give tutorials, and 

 organize workshops 

at leading forums targeting public healthcare researchers, scientists, and decision makers.   

 




