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Soft Mechanical Metamaterials with Transformable
Topology Protected by Stress Caching

Jason Christopher Jolly, Binjie Jin, Lishuai Jin, YoungJoo Lee, Tao Xie, Stefano Gonella,
Kai Sun, Xiaoming Mao,* and Shu Yang*

Maxwell lattices possess distinct topological states that feature mechanically
polarized edge behaviors and asymmetric dynamic responses protected by the
topology of their phonon bands. Until now, demonstrations of non-trivial
topological behaviors from Maxwell lattices have been limited to fixed
configurations or have achieved reconfigurability using mechanical linkages.
Here, a monolithic transformable topological mechanical metamaterial is
introduced in the form of a generalized kagome lattice made from a shape
memory polymer (SMP). It is capable of reversibly exploring topologically
distinct phases of the non-trivial phase space via a kinematic strategy that
converts sparse mechanical inputs at free edge pairs into a biaxial, global
transformation that switches its topological state. All configurations are stable
in the absence of confinement or a continuous mechanical input. Its
topologically-protected, polarized mechanical edge stiffness is robust against
broken hinges or conformational defects. More importantly, it shows that the
phase transition of SMPs that modulate chain mobility, can effectively shield a
dynamic metamaterial’s topological response from its own kinematic stress
history, referred to as “stress caching”. This work provides a blueprint for
monolithic transformable mechanical metamaterials with topological
mechanical behavior that is robust against defects and disorder while
circumventing their vulnerability to stored elastic energy, which will find
applications in switchable acoustic diodes and tunable vibration dampers
or isolators.

1. Introduction

Mechanical metamaterials have extrinsic properties that tran-
scend conventional material behavior including variable Pois-
son’s ratios,[1,2] vanishing shear moduli,[3] high stiffness at low
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densities,[4] tunable stiffness,[5–7] tunable
acoustic behavior,[7] chirality,[8] and prede-
termined or energy dissipative failure.[9,10]

Such exotic mechanical behaviors facilitate
their potential application as mechanical
cloaks, vibration isolators, energy dissipa-
tors, switchable acoustic diodes and tunable
nanophotonic devices.[9–14] Recently, a sub-
set known as topological mechanical meta-
materials have gained attention as the me-
chanical analogs of electronic topological
insulators, in which mesoscopic features in
the bulk and their topology in reciprocal
space can inform and preserve mechanical
behaviors along surfaces and edges or at a
localized defect.[15] Therefore, they possess
protected physical properties that are robust
against disorder and wear.
Freely-jointed elastic frames known as

Maxwell lattices can exhibit such topologi-
cal mechanical phenomena when they have
exactly the amount of bonds (nB) required
to balance out the degrees of freedom (n.d)
of n joints in a d dimensional space, that is,
they are critically coordinated with a coordi-
nation number, z = 2nB

n
= 2d, and are there-

fore on the brink of instability.[16] Whereas
coordination number (z) and Maxwell’s
criterion[17] determine the onset of rigidity

at the mean field level, Calladine’s counting rule[18] rigorously ac-
counts for states of self-stress and floppy modes or mechanisms.
The latter can be thought of as mechanical charge equivalents of
particle-hole pairs, and correspond to displacements of the lattice
sites that do not produce strain in the bonds (i.e., floppy modes)
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and to tensile or compressive stresses in bonds that can exist
in the absence of equilibrating forces applied at the sites (i.e.,
self-stress), respectively.[16] For instance, in an infinite regular
kagome lattice (a type ofMaxwell lattice) under periodic boundary
conditions, sample traversing lines of bonds can accommodate
states of self stress and floppy modes.[19] A finite regular kagome
lattice sample excised from an infinite sheet has floppy modes
courtesy of the cleaved bonds, and these can either reside in the
bulk or migrate to the surfaces upon twisting the lattice units
to distort the straight lines of bonds.[20] Kane and Lubensky[21]

show how these floppy modes can migrate away from one edge
and localize at an opposite edge, resulting in a polarized elastic
response that is informed by the topology of the lattice’s phonon
bands. The localization of these modes is captured by a topologi-
cal polarization vector, R⃗T that points along the primitive vectors
of the lattice, to the edge that is deemed floppy.[21] Theoretical pre-
dictions and experimental observations of such polarized topo-
logical phenomena at both zero and finite frequencies, have been
made in 2D and 3D frames of elastic members,[9,22–27] origami
and kirigami structures,[28] and gear assemblies.[29]

Reconfigurability endows metamaterials with tunability and
pluripotency, whereby structures capable of altering their topol-
ogy and modulating protected properties offer a wider opera-
tional phase space than their ‘fixed-design’ counterparts.[30] Rock-
lin et al.[31] proposed a generalized deformed kagome lattice
(GDKL) capable of switching between multiple auxetic and topo-
logically polarized states via a global soft transformation. Prior
experimental realizations of metamaterials with transformable
topology have focused on geometric topological changes, lever-
agingmechanical compaction of macroscale lattice units[7,32] and
capillary forces to ‘zip’ microstructures,[33] in order to alter nodal
connectivity and modulate static and dynamic mechanical re-
sponses. However, investigations into systems with polar elastic-
ity protected by the topology of their phonon bands, have thus far
been limited tomonoliths with fixed configurations,[34,35] orman-
ually assembled systemswherein reconfigurability is achieved via
macroscale mechanical linkages,[31] thereby limiting their poten-
tial for scalability and miniaturization.
In this work, we show how topological polarization can be

modulated experimentally in a monolithic transformable meta-
material. Our transformable topological mechanical metamate-
rial (TTMM) is fabricated from a shape memory polymer using
a top-down photolithography process, which allows for not only
the possibility of miniaturization as devices, but also a high level
of control over the smallest, critical hinge features that are essen-
tial to realize topologically polarized states. Prescribing precise
kinematic transformations in a high degree-of-freedom geom-
etry is non-trivial. Rather than adopting a brute-force approach
of prescribing local unit rotations, our solution, informed by it-
erative finite element modeling (FEM), leverages an intrinsic
Guest-Hutchinsonmode[36] to achieve this complex biaxial global
metamorphosis via only a pair of uniaxial inputs applied at the
edges. With handed scissor mechanisms at the sample edges,
we suppress kinematic indeterminacy fromundesirable buckling
modes as a result of the emergence of sample-traversing aligned
bonds at phase boundaries. Here, the intrinsic shape memory
effect affords two crucial functionalities: (i) the stability of ev-
ery conformation without the need for a continuous mechani-
cal input and (ii) the ability to temporarily lock away (i.e., cache)

stored elastic energy from a prior kinematic transformation. By
comparing with reference samples made from commercial elas-
tomers that are incapable of caching stress, we reveal that un-
managed stored stresses can significantly attenuate topological
polarization (up to 70%). We not only propose a practical strategy
to change stiffness using a non-trivial lattice geometry (which can
be done in other ways such as via jamming phase transitions),
but also present an experimental framework for (i) switching po-
lar elasticity on and off, and in the near future, (ii) turning low
frequency edge waves, on and off.[34] This manuscript lays the
groundwork for future realizations of reconfigurable devices ca-
pable of switching non-trivial and defect tolerant topological me-
chanical behaviors for applications such as switchable acoustic
diodes,[37] tunable vibration dampers or isolators [38] and tires ca-
pable of adapting to diverse terrains.[39]

2. Results and Discussion

2.1. Transformable Metamaterials Made from Functional, Soft
Materials

The TTMM reported here is based on a two-dimensional (2D)
GDKL variant that has been shown[31] to have multiple auxetic
and topologically polarized conformations depending on the an-
gle 𝜃 subtended by its triangular units. The lattice is constructed
by tessellating corner-sharing scalene and equilateral triangles
with side length ratios (0.57, 1, 0.72) and (1, 1, 1) respectively,
and a maximum side length of 2.25 mm, along primitive vectors
a⃗1 and a⃗2 (see Figure 1a). While theoretical treatments[19,21,31] as-
sumed ‘ideal’ or ‘free’ hinges with zero bending stiffness, the tri-
angular repeating units in this work are connected via slender
hinge ligaments (100 μm wide), corresponding to a hinge-width
to side-length slenderness ratio of 0.044. This value embodies an
optimal compromise between extrinsic compliance (so as to pre-
serve the vestiges of theoretical topological behavior in the con-
tinuum elasticity limit), and sample robustness (to survive fabri-
cation, handling and experimentation).
As described by Rocklin et al.,[31] the chosen GDKL passes

through three topological phase transitions as the angle sub-
tended by the triangular sub-units, 𝜃, increases from 0° to 199°.
It exhibits four distinct phases—two auxetic and two polarized.
Theoretically, at the extremities of the lattice’s rotational phase
space, it exists in dilatory, maximally auxetic states, that is, when
0° < 𝜃 < 76.554° and 120.211° < 𝜃 < 199° wherein R⃗T = 0
and floppy modes are uniformly distributed between all edges
(Figure 1a(i)). Soft twisting the lattice into either of its two
polarized phases where 79° < 𝜃 > 94° and 94° < 𝜃 > 120°,
sees its surface floppy modes migrate away from a particular
edge in a given edge pair (‘left-right’ edges and ‘top-bottom’
edges, respectively) and localize at its opposite counterpart
with R⃗T = a⃗2 − a⃗1 or R⃗T = a⃗2, respectively (Figure 1a(ii)). At the
topological phase transitions at 𝜃 = 𝜃a1−a2 = 79◦, 𝜃a1 = 94◦ and
𝜃a2 = 199◦ surface floppy modes are temporarily converted into
bulk modes due to states of self stress associated with sample
spanning straight lines of bonds, that is, aligned triangle edges.
These ‘transient’ bulk floppy modes pose a challenge to prescrib-
ing a wholly determinate kinematic transformation, which will
be addressed later. It must be noted that precise ‘critical’ angles
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Figure 1. A TTMMmade from a shapememory polymer, PCLDA-SMP, capable of stress caching. a) A ‘deformed’ kagome lattice TTMM can be reversibly
transformed between (i) an auxetic phase with uniformly distributed floppy modes and (ii) a polarized phase with a non-zero topological polarization
vector, R⃗T and a polar mechanical response, by uniformly twisting its triangular sub-units. b) Chemical structures of the constituents of the polycapro-
lactone diacrylate (PCLDA)-based shape memory polymer (PCLDA-SMP). c) Illustrations of the intrinsic shape memory effect: i–iii) Melting crystalline
domains in the polymer network facilitates kinematic transformations that store minimal elastic strain energy. iv) The reformation of these domains
upon cooling stabilizes the TTMM in each phase even after the applied external input or constraint is removed. The temporary zero-stress state referred
to as stress-caching, permits the lattice to circumvent detrimental effects on its topologically polarized edge response, from stresses stored during its
transformation. v,i) Remelting the crystalline domains restores polymer mobility and thereby unlocks these cached stresses which, in the absence of
external confinement, induces shape recovery to the initial configuration.

in the ideal lattice become slightly ‘blurred’ in the limit of finite
hinge widths and in the presence of disorder. Also, since the
two auxetic and two polarized phases that exist on either side of
the phase boundaries at 𝜃a1−a2 and 𝜃a2 in the GDKL’s rotational
phase space are very similar in nature, the discussion henceforth
focuses on reversibly transforming the lattice between its auxetic
and polarized states on either side of 𝜃a1−a2 and characterizing its
behavior in each phase. We note that our experimental strategy
and findings are not limited to this subset phase space nor this
particular GDKL geometry; they can be adapted to suit other
Maxwell lattices with a Guest mode.

In any ‘real’ lattice with hinges of finite width, where free ro-
tations of triangular units are replaced by flexure of hinge liga-
ments, the associated elasticity could potentially affect its behav-
ior following a kinematic phase transformation. Notably, restora-
tive stresses generated in hinges with finite bending stiffness,
K = EC𝜅t3, where E is the Young’s modulus, C is a geometric
constant, 𝜅 is its curvature and t is the hinge width, would re-
quire a continuousmechanical input at the sample boundaries to
stabilize each topologically-distinct conformation.[40] To free our
TTMM from this encumbrance, we imbue it with shape mem-
ory. Figure 1b shows the chemical structures of the constituents
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of our poly(caprolactone diacrylate) (PCLDA)-based shape mem-
ory polymer (PCLDA-SMP). The lattices are made via a multi-
step ‘thick’ photolithography process (see the detailed process
in Figure S1, Supporting Information), optimized to minimize
fabrication defects such as broken hinges and missing units and
achieve uniform hinge width distributions within ±7 μm of the
targeted 100 μm value. Figure 1c shows the general sequence
of operations required to transform the TTMM, where the inset
shows the morphology of the polymer network in the hinges at
each step. At room temperature, the lattice is rendered rigid and
elastic by the crystalline domains in the polymer network, and
has a Young’s modulus, E ≈ 132 MPa (see Figure S2, Support-
ing Information). The lattice is then heated to above the melt-
ing temperature of PCLDA-SMP, Tm = 55°C (see Figure S3, Sup-
porting Information), where the material behaves like a conven-
tional soft elastomer with a Young’s modulus, E ≈ 2.1 MPa. In
this state, the auxetic (or polarized) lattice is malleable and can
be easily transformed into its adjacent topological phase via a
stretching (compression) dominated global kinematic transfor-
mation that stores amixture of tensile (compressive) and bending
stresses primarily in the hinges as evidenced in the FEM stress
heat map shown in Figure 1c(iii). At the molecular level (see the
inset), polymer chains are mobile and align with the local stress
fields. Here, the temperature modulation of the material’s elastic
modulus by more than two orders of magnitude exacts a lower
elastic energy cost for the lattice transformation, with minimal
stress being generated compared to the case if the same trans-
formation was performed at room temperature where the ma-
terial is stiffer or if a conventional rigid material was used. The
transformation of the lattice is completed and locked by cooling
down to room temperature without altering its boundary con-
ditions. PCLDA is recrystallized, restoring its intrinsic stiffness
and ‘freezing’ locally deformed polymer chain conformations to
lock the prescribed lattice structure via a shape memory effect.
In this state, polymer mobility is effectively zero with relaxation
times far exceeding experimental time scales.[41] This allows for
locking away or caching any stress generated during the transfor-
mation of the lattice. Upon reheating the sample to above its Tm,
polymermobility is restored and the previously cached elastic en-
ergy is released, driving its recovery to the initial, unstressed or
entropically-favored state. The evolution of localized stresses in
the lattice hinges during a typical phase transformation cycle of
the lattice, is captured in the inset in Figure 1c.
This stress caching ability is confirmed experimentally via dy-

namic mechanical testing (Figure S4a, Supporting Information)
wherein a PCLDA-SMP sample is heated and subjected to a ten-
sile strain of 105% (the largest local strain generated in a trans-
formed lattice, from FEM). The measured stress increases with
the applied strain up to a maximum equilibrium value and then
falls to zero as the sample is cooled down to room temperature.
Upon reheating above Tm, the measured stress recovers sharply
to its original value. To confirm that this intrinsic ability is non-
trivial, we perform an identical test on a reference sample made
from a commercial elastomer, Elite Double 32 (ED-32; Zhermack
SpA), which does not exhibit a shape memory effect (Figure S4b,
Supporting Information). Not surprisingly, only a mild reduction
in stress is measured in the strained ED-32 sample during tem-
perature cycling, which is typical for rubber elasticity. Shape fix-
ity ratio, Rf = ϵf /ϵl ×100%, quantifies a material’s shape memory

abilities, where ϵl and ϵf are the respective strains before and after
removing the applied load.[42] Shape memory and stress caching
operations are repeated multiple times without any degradation
of the PCLDA-SMP material and with 99.8% shape fixity over at
least three cycles, as verified by cyclic dynamic mechanical anal-
ysis under stress control (Figure S5, Supporting Information).

2.2. Prescribing Kinematic Phase Transformations

In order to experimentally prescribe a reversible transformation
of the lattice, we need to overcome several challenges: (i) dictat-
ing uniform local deformations of all lattice units, that is, trigger-
ing the inherent Guest–Hutchinson mode, only via the edges,
(ii) the tendency of the lattice’s surface floppy modes to localize
a naively applied deformation within a finite distance of the in-
put edges, (iii) designing a physical jig that can accommodate
both the dilation-dominant behavior of the auxetic phases and
the shear-dominant behavior of the polarized phases, (iv) the
significant miniaturization of the jig and all its components for
the small lattice sizes, and (v) mounting the lattice in the jig for
mechanical testing without impeding or biasing test results. In-
formed by iterative FEM, we choose the left and right (L-R) edge
pair as the control edges (the input) while the top and bottom
(T-B) edges are left unmodified to measure the lattice’s topolog-
ical edge behavior (the output). The modifications to the input
edges involve the addition of loops connected via right- and left-
handed scissor mechanisms to the repeating units along the L-R
edges, respectively, to eliminate buckling indeterminacy at cer-
tain phase boundaries. As shown inFigure 2a(i), individual vector
displacements are applied to each edge loop, which collectively
map the lattice edges to a target configuration. The rest of the
lattice then follows the collective synchronized displacement of
its edges, courtesy the Guest–Hutchinson mode. The success of
this strategy in prescribing a reversible transformation between
an auxetic and a polarized state is verified via FEM before pro-
ceeding with experiments (Figure 2a(ii) and Movie S1, Support-
ing Information). While the directions and magnitudes of the in-
dividual components in a vector map are dependent on the initial
choice of a common, zero-displacement point (in this case, the
bottom left corner edge loop), we show in FEM that a successful
and reversible transformation can be realized regardless of this
initial choice (Figure S6 and Movie S2, Supporting Information).
Essentially, for a given final configuration, the behavior of a po-
larized or auxetic lattice is independent of how it is transformed.
Experimentally, we realize the transformation using a polyte-

trafluoroethylene (PTFE) jig with laser cut slots that represent the
vector displacements of the edge loops (see Figure S7, Support-
ing Information, and Experimental Section). The PCLDA-SMP
lattice is mounted in the jig via ‘pin-in-slot’ joints (Figure 2b,c).
Importantly, the jig has ‘slotted guides’ that move in their own
vector mapped slots at either edge and work to cascade two sim-
ple uniaxial inputs (uLx and u

R
x ) into synchronized displacements

of all edge loops along their individual slots. This in turn triggers
the inherent Guestmode of the lattice, wherein the bulk of the lat-
tice emulates the prescribed deformation at the edges, resulting
in a homogeneous biaxial kinematic transformation of the lattice.
Movie S3 (Supporting Information) shows a complete kinematic
cycle of the TTMM.
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Figure 2. A kinematic strategy to achieve the biaxial transformation of a high degree-of-freedom lattice, with simple uniaxial mechanical inputs at sample
edges. a) (i) Mapping the edges of an initial lattice configuration to those of a superimposed target conformation, determines the requisite vector
displacements of the input edges for a reversible transformation of the entire lattice via its Guest mode. (ii) FEM results verifying the effectiveness of the
proposed kinematic strategy in polarizing an initially-auxetic lattice. The inset stress color map reveals that stresses generated during the transformation
are localized in the hinge ligaments. b) Illustration of a unique jig design, wherein simple uniaxial inputs can be cascaded into synchronously applied
displacements of edge loops along laser cut slots, to prescribe a biaxial topological phase transformation of the lattice. c) Optical images of a PCLDA-
SMP TTMM lattice sample actuated via pin-in-slot joints in a laser cut PTFE kinematic jig. Inset: SEM images of a single mm-scale repeating unit of the
1 mm thick and cm-scale, free-standing PCLDA-SMP TTMM lattice monolith with 100 μm wide hinge ligaments.

2.3. Probing Topological Edge Behavior

The mechanical response of TTMM lattices subjected to local in-
vagination at the edges is studied both experimentally and via
FEM. The lattice-jig assembly is directly mounted in a universal
testing machine outfitted with a sensitive load cell and a custom
PTFE indenter (Figure 3a). All lattices are left mounted in their
jigs during testing because: (i) The lattices are small, thin and
delicate and as such some sort of brace/support is essential; (ii)
while the lattice can be left untethered in-plane and sandwiched
between two rigid sheets to prevent out-of-plane buckling, we
face issues such as high friction and/or loss of line-of-sight of the
deformation. Figure 3b and Movie S4 (Supporting Information)
show snapshots and videos of the indentation of the top (i, iii)
and bottom (ii, iv) edges of the same PCLDA-SMP TTMM lattice
in both its auxetic (i, ii) and polarized (iii, iv) phases, respectively.
Regions of interest where the bulk of the deformation is local-
ized in each test are isolated in Figure 3c and show good agree-
ment with the juxtaposed results from FEM. The slopes of the
force-displacement (f-d) curves (i.e., stiffness), measured within
the (linear) limit of indentation at various triangular units along
the lattice edges, reveal the static or ‘zero’ frequency elastic re-

sponse of the geometry (see Figure 3d). The experimental data
is in good agreement with FEM results quantitatively, validating
the elastic-plastic material model in our simulations. Ratios of
the slopes of f-d curves (i.e., stiffness ratios, S.R.) obtained by in-
denting opposite lattice edges quantify a polarized mechanical
response (or lack thereof). S.R. has a theoretical minimum value
of 1 in the auxetic state but can increase to a maximum value that
depends on hinge width when a sample is polarized, which will
be discussed later.
We further investigate the effects of various indenter geome-

tries, edge pinning boundary conditions, lattice sizes and aspect
ratios on the probed edge behaviors, so as not to inadvertently
introduce any ‘artificial’ S.R. between the opposite edges. For in-
stance, the geometry of the indenter tip can be engineered to
suppress stick-slip behavior during indentation but potentially at
the cost of suppressing local triangular rotations and measuring
an artificially stiffer response. As shown in Figure S8 (Support-
ing Information), three representative indenter tip geometries
are considered, including a flat, a small notched and a large, V-
shaped grooved tip. As anticipated, the V-shaped tip measures a
stiffer response across the board. In experiments, it is observed
to disproportionately stiffen the bottom edge of auxetic lattices by
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Figure 3. Experimental characterization of topological edge behavior by indentation. a) Schematic of the experimental setup to probe the mechanical
edge response of the TTMM. b) Optical images showing local invaginations of the (i,iii) top and (ii,iv) bottom edges of the lattice in its (i,ii) auxetic and
(ii,iv) polarized states, respectively. c) Simulated indentations of auxetic and polarized lattice edges juxtaposed with equivalent experimental results.
d) Force–displacement (f–d) curves from edge indentation tests of auxetic and polarized lattices. PCLDA-SMP TTMM samples with 100 μm hinges are
used in these tests.

simultaneously engaging multiple smaller triangular units and
suppressing rotations at the hinges. In contrast, the theoretically-
ideal flat tip measures the softest responses and does not sup-
press local rotations at the site of indentation. However, stick-slip
behavior is encountered when the indenter engages the lateral
edges of the rotating triangular units. Among the three geome-
tries considered, a tip with a small notch offers a healthy compro-
mise by positively engaging triangular edge units with negligible
artificial ‘polarization’ induced in the auxetic lattice (observed as
a small difference in the slopes of the top and bottom edges of the
auxetic samples). In the polarized configuration, the small notch
does not appreciably alter the stiffness of the rigid edge butmildly
stiffens the floppy edge as evidenced by the slight reduction in
measured S.R.’s.
The effect of the experimental boundary conditions of (i)

leaving the lattice pinned in its kinematic jig during testing as
opposed to (ii) leaving it sandwiched between two rigid plates and
resting on its opposite edge were simulated. Figure S9 (Support-
ing Information) reveals that at small depths of indentation (up
to 0.5 mm), the mechanical response is identical but begins to di-
verge as indentation depth increases, especially in the polarized

configuration: as the region affected by the local deformation at
the indentation site propagates and begins to pull against the ad-
ditional pinning constraints at the L-R edges. Tests on ‘narrower’
lattices, with fewer units along the ‘x’ direction and pinned
boundaries closer to the site of indentation, further supports this
assessment. Therefore, we limit calculations of edge stiffness to
be within a 0.5 mm indentation depth. The impact of various lat-
tice sizes and aspect ratios on polar elasticity is also investigated.
The f-d results are plotted in Figure S10 (Supporting Informa-
tion) with increasing numbers of lattice units along the x- and
y-axes. As observed earlier, narrow lattices with increasingly
fewer units along the horizontal (x) direction, are imbued with
an ‘artificial’ polar response courtesy the pinning constraints
at the L-R edges. In contrast, lattices with increasingly fewer
rows of units along the vertical (y) direction show increasingly
diminished polarization. A critical threshold is reached in lat-
tices with less than four rows of units wherein the S.R. suddenly
approaches 1. In this work, lattices are standardized to have 16x8
repeating units—which is sufficiently large to capture the bulk
behavior of TTMMswhile remaining tractable for fabrication and
testing.
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 21983844, 2023, 22, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202302475, W

iley O
nline Library on [28/12/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



www.advancedsciencenews.com www.advancedscience.com

Figure 4. Stress caching protects topologically polarized mechanical responses from elastic stresses generated during kinematic transformations. a–
c) Simulated edge indentation of auxetic lattices with 100 μm hinges following (i,b) a normal kinematic transformation into the polarized phase, and
(ii) an abnormal transformation with 20% excess stretching of the right edge. Comparing f–d data before and after stress caching (S.C.), reveals a (b)
significantly attenuated or (c) destroyed polar edge response in the absence of S.C., that recovers completely post-S.C.. d,f) Reference samples with
250 μm wide hinges, laser cut in (d) polarized and (f) auxetic configurations, respectively, from a commercial silicone elastomer incapable of S.C. High
in-plane stiffness precluded the transformation of the (d) as-fabricated polarized sample into the auxetic phase. The (f) as-fabricated auxetic lattice could
be stretched into the polarized configuration, albeit with noticeable curvature of the top-bottom edges. e,g) Experimental indentation results showing
the destroyed topological polarization of the (g) transformed auxetic lattice relative to the (e) as-fabricated polarized sample, due to the large stresses
generated, coupled with the lack of S.C.

In order to demonstrate the repeatability and cyclability of our
TTMM, we perform 10 complete kinematic cycles of transform-
ing the lattice between its auxetic and polarized states. In each
cycle, the sample’s mechanical edge behavior is characterized. As
seen from Figure S11 (Supporting Information), S.R.’s of the po-
larized (≈2.1x on average) and auxetic (≈1.15x) samples are con-
sistently recovered after each cycle, confirming that topological
polar elasticity can indeed be modulated in a TTMM and is ro-
bust against sample fatigue.

2.4. Effects of Kinematic Stress History on Polar Elasticity

Our use of PCLDA-SMP has thus far been primarily motivated
by its shape memory effect and stress caching abilities, which
stabilize various lattice conformations in the absence of confine-
ment or a continuous mechanical input. However, a closer look
at the influence of stored elastic stresses on a topological lattice’s
behavior reveals that the material’s intrinsic ability to modulate

polymer chain mobility and cache stresses does more than just
stabilize a given lattice conformation: it is also pivotal in pre-
serving its polar elasticity. To support this, we turn to reference
samples made from the ED-32 elastomer to study the effects of
uncached kinematic stresses. Edge indentations on ED-32 lat-
tices are simulated assuming hyperelasticmaterial properties. As
shown in Figure 4a, an auxetic lattice is stretched into its polar-
ized state and its top and bottom edges are probed immediately
after. To compare, hypothetical effects of stress caching in these
samples are simulated indirectly by indenting the stretched, ‘de-
formed’ FEM mesh geometry without carrying over any kine-
matic stress. While the more trivial effect of the stored stress
in causing a stiffer response at both edges is immediately ob-
vious from the f-d curves, a more subtle but detrimental effect
is observed in the reduction of the S.R. of the stressed polarized
lattice, 1.44x compared to 2.86x from the same lattice after eras-
ing its stress history—a nearly 2x increase as a result of stress
caching (Figure 4b). This phenomenon is exaggerated when the
right edge of the lattice is stretched excessively (20% more than

Adv. Sci. 2023, 10, 2302475 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2302475 (7 of 12)
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Figure 5. Design of lattice edges to suppress uncertainty in kinematic transformations. a,b) Schematic illustrations of TTMM lattice configurations at
topological phase boundaries with edge loop manipulators connected to (a) only regular triangles (K-1) and (b) both triangular sub-units via scissor
mechanisms (K-2), respectively. Bulk floppy modes set up by sample-spanning aligned triangle edges (bonds) lead to buckling indeterminacies during
compression. a) Exerting kinematic control via half the edge sub-units results in a quasi-determinate transformation into the auxetic state, courtesy
closely competing local modes. b) Undesirable modes can be suppressed by using scissor mechanisms to induce preferential rotations, resulting in a
wholly-determinate global transformation. c,d) Optical images of as-fabricated polarized (a) K-1 and (d) K-2 lattices after being compressed into their
auxetic state, overlaid with transformation-accuracy ‘heat maps’ that color code local repeating unit conformations as desirable (green) and undesirable
(red). e) Experimental edge indentation of K-1 samples reveal that its auxetic behavior is robust against disorder.

required for polarization), thereby storing a larger amount of ten-
sile stress in the hinges. Here, the polar response of the stressed
lattice is almost entirely annihilated (S.R.≈1.13x) but recovers
dramatically by 2.69x (i.e., S.R.≈3.04x) upon erasing its stress his-
tory prior to indentation (Figure 4c).
These results are validated experimentally in auxetic and po-

larized lattices laser cut from a 1 mm thick sheet of ED-32
(Figure 4d,f). Due to fabrication and material limitations, these
lattices have 250 μm wide hinges as opposed to the 100 μm wide
hinges in the PCLDA-SMP lattices. The ‘restorative’ effects of un-
cached stress in a transformed ED-32 lattice are juxtaposed with
a stable PCLDA-SMP counterpart in Movie S5 (Supporting In-
formation). A significantly polar response with an S.R.≈1.98x is
measured in the as-fabricated polarized ED-32 lattice (Figure 4e).
However, courtesy the wider hinges, the lattice is too ‘stiff’ in-
plane relative to its out-of-plane compliance, and preferred to
buckle instead of transforming into its auxetic phase (Figure 4d).
As shown in Figure 4g, the probed mechanical behavior of the
as-fabricated auxetic lattice shows no polarization after being
stretched into its ‘polarized’ phase. Instead, a uniformly stiffer
response of both edges is observed relative to its auxetic behav-
ior. This loss of polarization is attributed to the inability of ED-32
to cache stresses generated in its hinges. A telltale sign of exces-
sive elastic restorative stress in a lattice is the curvature of the top

and bottom lattice edges after being stretched into the polarized
state (see Figure 4a(ii),f).

2.5. Designing Lattice Edges to Mitigate Kinematic Indeterminacy

There is a special case arising at phase boundaries where straight
lines of bonds (edges of triangles) align and span the extent of
a sample, temporarily transforming surface floppy modes into
bulk modes. Consequently, as shown in Figure 5, when a lattice
is subjected to compressive vector displacements at its edges, to
transform a polarized configuration into the auxetic phase, local
buckling indeterminacies impede its compaction into an ordered
auxetic lattice. This is encountered experimentally while trans-
forming a polarized TTMM lattice configuration residing exactly
on the phase boundary between the first and second polarized
phases, with straight lines of horizontally aligned bonds. For a
specific lattice design referred to as K-1, that has edge loops con-
nected directly to the corners of the larger of the two triangular
sub-units (Figure 5a), a nearly 50% split between desirable and
undesirable local rotations is observed upon its compression,
that is, a quasi-determinate transformation (Figure 5c). The
design of the K-1 lattice, its kinematic jig and their assembly
can be found in Figure S12 (Supporting Information). With the

Adv. Sci. 2023, 10, 2302475 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2302475 (8 of 12)
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addition of right- and left-handed scissor mechanisms at the L-R
edges of the optimized lattice design introduced earlier, referred
to here as K-2, the unwanted local modes can be suppressed as
shown in Figure 5b, leading to a 97% deterministic transforma-
tion (3% attributed to local broken hinges) into the auxetic phase,
where lattice units rotate preferentially due to biased buckling
(Figure 5d). It must be noted that despite a high level of disorder
in the K-1 lattice’s first auxetic phase, its mechanical response
is preserved, that is, the opposite edges are equally soft. The
lattice is also able to stretch into a pristine polarized phase every
time due to the lack of any competing modes and thus, shows
typical, highly polar edge behavior in this state (Figure 5e).
Eliminating competing modes can be crucial in preserving
topological behaviors during transitions between the first and
second polarized state in use cases that explore the entire phase
space. Here, we clearly differentiate our proposed method from
prior work[40] which uses asymmetric or pre-twisted units to
eliminate competition between ‘collapsing’ modes and thereby
program maximally-auxetic responses in regular kagome lat-
tices. In contrast, our lattice has to be transformed between
both dilation-dominant (auxetic) and shear-dominant (polarized)
phases, and exhibits topological behaviors that are strongly
coupled to the the twisting angle, 𝜃. Importantly, by modifying
the lattice edges with scissor mechanisms, we separate the key
geometric parameter, 𝜃, that defines the topological phase space,
from the geometric modifications required to suppress buckling
indeterminacy at phase boundaries.

2.6. Evidence for the Topological Origins of Polarization

It is evident from simulations that the majority of kinematic
stress generated in a lattice is localized in its hinges. The effect
of hinge width on the topological polarization exhibited by ‘as-
designed’ polarized and kinematically transformed ‘as-designed’
auxetic TTMMs is therefore studied systematically as shown
in Figure 6 and Figure S13 (Supporting Information). Simu-
lated indentations are performed on ‘as-designed’ auxetic lat-
tices that have been stretched into their polarized states and on
‘as-designed’ polarized lattices that serve as reference samples.
An intuitive observation is that lattice edges get stiffer with in-
creasing hinge width. However, a more profound realization is
that polarization and S.R. increase highly non-linearly with de-
creasing hinge width or increasing hinge slenderness, as we ap-
proach the theoretically-ideal free hinge. This is indirect yet com-
pelling evidence of the topological origins of the polar elastic-
ity observed in this work, as opposed to being a trivial conse-
quence of geometric asymmetries at the lattice edges, and com-
plements prior research on the effects of adding next nearest
neighbor bonds on topological modes[43] and parametric investi-
gations into the effects of hinge width on wave transport at finite
frequencies.[44] Our results appear to be material independent as
nearly identical results are obtained from simulations with hyper-
elastic (ED-32) and elastic-plastic (PCLDA-SMP)material proper-
ties (Figures S14 and S15, Supporting Information).

3. Conclusion

In summary, we demonstrate, for the first time, experimental
modulation of topological polar elasticity in a monolithic meta-

Figure 6. Effect of hinge slenderness on topological polarization. Simu-
lated edge indentation of lattices with varying hinge widths, reveal that
stiffness ratios increases highly non-linearly by nearly an order of magni-
tude with increasing hinge slenderness, from a saturated minimum value
≈1 for the widest hinges considered.

material made from a shape memory polymer. We establish a
kinematic strategy to program reversible global transformations
between two topologically distinct phases in a high-degree-of-
freedom Maxwell lattice with a Guest-Hutchinson mode with
only two simple uniaxial mechanical inputs. It is achieved
through a confluence of vector edge mapping, modified lattice
edge units and a novel jig design. The intrinsic shape memory
property of PCLDA stabilizes each lattice conformation without
a continuous input. The robustness of topologically protected po-
lar edge behavior against defects and sample fatigue is demon-
strated by reversibly switching the metamaterial over 10 cycles.
Our work reveals that topological polar elasticity is highly sensi-
tive to the kinematic stress history of the transformable sample.
Importantly, we demonstrate how polymer chain mobility can be
modulated to lock away generated stresses. Finally, we provide
indirect evidence of the topological nature of polar elasticity in
lattices with ‘real’ hinges by systematically studying the effects of
varying hinge width.

4. Experimental Section
Synthesis of Polycaprolactone Diacrylate (PCLDA): PCLDA was synthe-

sized according to the literature.[42] Specifically, 50 g of polycaprolactone
flakes (PCL, Mn = 10,000, Sigma–Aldrich) was added to 250 g of toluene
(Thermo Scientific) in a round bottomed reaction flask that was then
heated to 55 °C in a silicone oil bath and stirred using a magnetic stir
bar for 15 min until the PCL was completely dissolved, following which
the reaction flask was then lifted out of the oil bath but kept stirring. Tri-
ethylamine (3.233 g, TCI America) and acryloyl chloride (2.716 g, Sigma–
Aldrich) were measured out in separate vials and added to the flask in
order, very slowly and in a drop-wise manner. The reaction mixture turned
cloudy and was left stirring at 60 °C for 24 h. The flask was then removed
from the oil bath and the reaction products were filtered through a 0.22 μm

Adv. Sci. 2023, 10, 2302475 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2302475 (9 of 12)
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polyvinylidene fluoride membrane filter (PVDF, 47 mm Durapore, Sigma–
Aldrich) under vacuum, using a ceramic funnel, rubber adaptor and vac-
uum Erlenmeyer flask setup, to separate the unwanted salt byproduct. The
filtrate was then slowly poured into a beaker containing 800 mL of cold
methanol (Fisher Chemical), while stirring constantly using a glass rod.
The precipitated solid was filtered out and rinsed a few times with fresh
methanol to remove any residual toluene, followed by vacuum filtration
through a cellulose filter paper (Whatman Grade 1) several times. The ob-
tained off-white powder was collected and vacuum dried at room temper-
ature overnight. This dried powder was used as-is.

Characterization of Intrinsic Properties of the PCLDA-Based ShapeMemory
Polymer, PCLDA-SMP: The melting temperature (Tm) was characterized
via differential scanning calorimetry (TA Instruments DSC Q2000). Sam-
ple temperature was scanned from -10 to 100 °C with a ramping rate of 10
°C min-1 under N2. The elastic modulus of the bulk polymer was obtained
from tensile tests performed according to the ASTMD638 standard, using
dog bone specimens. The polymer’s shape memory effect was character-
ized by a dynamic mechanical analyzer (TA, Q800) in the controlled force
mode. A PCLDA-SMP sample (3 cm x 3 cm x 0.3 mm) heated above its
Tm was subjected to an applied stress of 0.3 MPa and then cooled be-
low its crystallization temperature. At this point the applied stress was
removed and the percentage of strain retention was observed. Upon re-
heating above Tm, the sample returned to its original zero strain state,
marking the end of one complete cycle. This process was repeated for at
least three cycles with≈99.8% shape fixity, indicating a robust shapemem-
ory performance. To characterize the material’s stress caching abilities, a
similar sample was tested under the instrument’s strain rate mode, with
an applied strain of 105%. The temperature ramping rate was fixed at 10
°C min-1.

Fabrication of theMetamaterial Lattices: The PCLDA-SMP lattices were
fabricated via a multi-step process (see Figure S1, Supporting Informa-
tion) to reliably manufacture samples with up to 128 mm-scale repeat-
ing units connected by microscale hinge ligaments. Specifically, 15g of
PCLDA powder, 0.386 g of pentaerythritol tetrakis(3-mercaptopropionate)
crosslinker (PETMP, Sigma–Aldrich) and 3.86 g of 1 wt% solution of 2,2-
dimethoxy-2-phenylacetophenone photoinitiator (DMPA, Sigma–Aldrich)
in toluene, were added to a glass vial (Figure S1a, Supporting Informa-
tion). The vial was capped and the mixture was heated to 75 °C (above
Tm) in an oven to melt the PCLDA powder. The mixture was stirred vigor-
ously to homogenize the components followed by degassing in a vacuum
oven for 10min. Amultilayer substrate was used in the fabrication process
as shown in Figure S1b (Supporting Information) comprising (from top to
bottom) an unpolished 6’’ silicon wafer as a micro-rough contacting sur-
face, a PTFE sheet that allowed easy removal/peeling off of any crosslinked
overflow and a glass sheet as a generic support layer/backbone. The thick-
ness of the cast film was controlled at 1 mm using a high-temperature sil-
icone rubber spacer (Mcmaster Carr) attached to the unpolished side of
a Si substrate using double-sided adhesive tape (Scotch Permanent Dou-
ble Sided Tape, 3M). The degassedmolten viscous PCLDA-SMP precursor
was cast onto the Si wafer and degassed at 75 °C in a vacuum oven for 1
h. A chrome photomask was brought into soft contact with the silicone
spacer and the molten precursor without trapping any air bubbles. The
cast film was then exposed to 160mJ cm−2 of 365nmUV light for 8s (New-
port model 97436-1000-1, Hg source) to pattern the lattice. The exposed
sample was allowed to cool to room temperature and crystallize before
being submerged in a bath of cold isopropanol (IPA, Fisher Chemical) for
12h. At that point, the photomask self-delaminated from the underlying
PCLDA-SMP film, and the silicone spacer was subsequently removed. The
sample was left to soak in IPA for another 24–48h to facilitate the complete
separation of the lattice from the underlying Si substrate. The patterned
sheet of PCLDA-SMP was then developed in a bath of hot toluene (60 °C)
for 1 h to completely dissolve all the unexposed/uncrosslinked PCLDA.
The crosslinked lattice would swell significantly, become transparent and
curl up into a cylinder. It was then removed from the hot toluene bath
and rinsed in a room-temperature toluene bath. The lattice was then flat-
tened and sandwiched between two PTFE mesh sheets (Stretchable high-
temperature PTFE plasticmesh 0.045“ x 0.025” openings,McMaster Carr).
The residual toluene in the developed lattice sample was then evaporated

overnight in an organic solvent vacuum oven at 75 °C. The sample was
cooled to room temperature and the lattice with its edge loops was lib-
erated from its ‘fabrication frame’ by cutting along predesigned cutting
lines using a sharp X-acto knife. Care was taken to not apply excessive ten-
sile forces on the lattice hinges during this process. The liberated lattice
was then mounted in a kinematic jig via its edge loops for transformation
and testing.

Kinematic Transformation: The PTFE jigs (as shown in Figures S7 and
S12, Supporting Information) used to prescribe the kinematic transfor-
mation of the TTMM lattices were laser cut from 1/8’’ thick chemical-
resistant slippery Teflon PTFE sheets (McMaster Carr) tominimize friction
between the lattice and the surface of the jig and assembled using 2-56
screws and knurled thumb nuts. By compensating for laser kerf, the vec-
tor slots were laser cut in the PTFE jig with sufficiently tight tolerances to
ensure a sliding clearance fit. The lattices were mounted in their jigs using
1 mm diameter stainless steel linear motion shafts (McMaster Carr) that
were first cut down to size using a handheld Dremel rotary tool equipped
with a 420 cut-off wheel. Both ends of each linear rod were capped off
by laser cut, friction fit ‘end caps’. L–R slotted guides convey solitary ap-
plied mechanical inputs at each edge to the linear rods while accommo-
dating their relative sliding as the lattice dilates in the auxetic phase and
then shears in the polarized phase. The guides were outfitted with locking
screws to temporarily fix a given lattice configuration, especially during the
heating and cool down stages of the transformation process. Most lattice
samples were fabricated in their auxetic configurations and as-such, the
first kinematic transformation involved heating the samples above their
Tm and ‘stretching’ them into their topologically polarized configuration.
This stretching step was broken down into two distinct displacements (uLx
and uRx ) applied to the left and right guides, respectively. While these dis-
placements could be applied simultaneously, they were instead usually
prescribed sequentially for ease ofmanual operation, with care being taken
to displace the left edge first followed by the right edge during the auxetic-
to-polarized transformation. Note that this sequence was reversed during
the polarized-to-auxetic ‘compression’ transformation. This was to ensure
the lattices were not stretched excessively which would have caused their
slender 100 μmhinge ligaments to either fail plastically or catastrophically.
At times, once the target-phase-specific edge unit positions had been pre-
scribed using the jig, local conformational defects would arise, due to local
stiction between the intrinsically soft (above its Tm) and extrinsically com-
pliant PCLDA-SMP lattice and the smooth jig surface, despite the use of a
low surface energy material such as PTFE and even lubricating silicone oil
(Polydimethylsiloxane, Thermo ScientificTM Catalogue No. AC163850025,
viscosity = 500 mPa.s at 25 °C). Fortunately such defects could be cor-
rected quite easily with a gentle nudge, allowing the stuck lattice unit to
‘relax’ to its equilibrium position. The transformed lattices were allowed
to cool to room temperature prior to mechanical testing.

Static Mechanical Testing: Edge stiffness of the PCLDA-SMP TTMM
lattices was measured from quasi-static indentation using an Instron
Model 68SC-2 universal testingmachine equipped with aModel 2350-50N
load cell. A custom laser-cut PTFE indenter was held in a Model 2716-016
manual wedge action grip connected to the load cell. The lattice + kine-
matic jig was held in a Model 2710-113 screw side action grip. Indentation
tests on the laser cut Elite Double 32 lattices were performed using an In-
stron Model 5564 equipped with a 2.5N load cell (Model 2525-815). The
PTFE indenter was held in Model 2712-101 micro-pneumatic side action
grips connected to the load cell and the lattice-kinematic jig assembly was
held in Model 2712-020 pneumatic side action grips. All tests were per-
formed under displacement control up to a maximum indentation depth
of 2mm at a rate of 2mmmin-1. The force-displacement (f-d) data was ap-
propriately truncated and re-normalized to compensate for baseline loads
associated with friction and initial self-truing of minor misalignments be-
tween the indenter and the jig. All values of edge stiffness and S.R.s were
measured from F–d data corresponding to indentation depths less than
0.5 mm.

Finite Element Modeling: FEM simulations were performed in
ABAQUS 6.24/CAE 2020 (Dassault Systèmes Simulia Corp.) using
ABAQUS/Standard. The properties of the PCLDA-SMP polymer were de-
scribed by an elastic-plasticmaterialmodel with Young’smodulus, E= 132
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MPa and a Poisson’s ratio, 𝜈= 0.48. Post-yield stress-strain data from ten-
sile tests was included in the material model. We modeled the mechanical
response of the ED-32 elastomer using an incompressible Gent model[45]

with a strain energy density functionW given by,

W = −
𝜇Jlim
2

ln
(
1 −

I1 − 3
Jlim

)
(1)

where μ represents the small strain shear modulus, Jlim was a material
parameter related to the limiting value of stretch and I1 = tr (FTF), where
F was the deformation gradient. An ABAQUS user subroutine (UHYPER)
described in the literature[46] was then used to define the hyperelastic be-
havior of ED-32 in our simulations. All simulation material parameters
were informed by the tensile test data (Figure S2, Supporting Informa-
tion). All lattice variants were discretized with CPS4 4-node bilinear plane
stress quadrilateral elements and indented under displacement control.
‘Hard’ surface-to-surface contact with a nominal friction coefficient value
of 0.3 and separation after contact being allowed, precluded any local pen-
etration/overlap of mesh elements. As far as possible, lattice geometries
were seeded with a sufficiently fine local mesh so as to have at least three
mesh elements span the width of their finest features, that is, the 5μm -
500μm wide hinges.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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