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Abstract
Partial differential equation (PDE)-constrained inverse problems are some of
the most challenging and computationally demanding problems in computa-
tional science today. Fine meshes required to accurately compute the PDE
solution introduce an enormous number of parameters and require large-scale
computing resources such as more processors and more memory to solve
such systems in a reasonable time. For inverse problems constrained by time-
dependent PDEs, the adjoint method often employed to compute gradients and
higher order derivatives efficiently requires solving a time-reversed, so-called
adjoint PDE that depends on the forward PDE solution at each timestep. This
necessitates the storage of a high-dimensional forward solution vector at every
timestep. Such a procedure quickly exhausts the available memory resources.
Several approaches that trade additional computation for reduced memory
footprint have been proposed to mitigate the memory bottleneck, including
checkpointing and compression strategies. In this work, we propose a close-
to-ideal scalable compression approach using autoencoders to eliminate the
need for checkpointing and substantial memory storage, thereby reducing the
time-to-solution and memory requirements. We compare our approach with
checkpointing and an off-the-shelf compression approach on an earth-scale
ill-posed seismic inverse problem. The results verify the expected close-to-
ideal speedup for the gradient and Hessian-vector product using the proposed
autoencoder compression approach. To highlight the usefulness of the proposed
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approach, we combine the autoencoder compression with the data-informed
active subspace (DIAS) prior showing how the DIAS method can be affordably
extended to large-scale problems without the need for checkpointing and large
memory.

Keywords: machine learning, autoencoder, inverse problems,
high performance computing

(Some figures may appear in colour only in the online journal)

1. Introduction

Modern supercomputers are an essential tool for today’s scientists and engineers, enabling
them to simulate larger and more complex systems than ever before. The availability of large-
scale computing resources has enabled numerous breakthroughs in scientific knowledge in
areas such as quantum computing (Doi et al 2019, Liu et al 2021c, Mandrà et al 2021), com-
putational chemistry (De Jong et al 2010, Kowalski et al 2021), drug discovery (Ge et al
2013, Schmidt and Hildebrandt 2017, Bharadwaj et al 2021, Sukumar et al 2021), biology
(McFarlane and Biktasheva 2008, Bukowski et al 2010), and plasma physics (Bhattacharjee
andWells 2021, Fedeli et al 2022).While the increased number of floating-point operations per
second has enabled larger and more challenging problems to be solved in reasonable amounts
of time, applications are increasingly becoming bottlenecked by limited memory of comput-
ing systems—especially those applications dealing with big data (Imani et al 2019, Denis
et al 2022).

There are at least three common approaches to mitigating this memory bottleneck: develop
new algorithms that require less storage (for example, using density functional theory to
approximate electron interactions rather than directly solving a many-body problem in
quantummechanics (Bickelhaupt and Baerends 2000)), utilize additional storage devices such
as hard drives to increase the amount of data that can be stored, and trade extra computation
for reduced storage requirements. Algorithmic improvement is always desirable, but is not
always possible. Additionally, solving a closely related problem with computational or storage
advantages may cause a loss in accuracy. Serializing data to disk was previously only a viable
solution for problems with high compute intensity. The high cost of reading from and writing
to disk can be hidden when sufficient computation is performed. However, recent advances in
storage technology, such as non-volatile memory (NVM), have made serialization approaches
more viable (Peng et al 2020). Indeed, NVM powers the large-memory nodes on Frontera,
the Texas Advanced Computing Center’s largest supercomputer at the time of writing. This
allows traditional DRAM to be used as an extra cache level (Wu et al 2017, Stanzione et al
2020). The last mentioned approach, trading computation for storage, includes checkpoint-
ing methods (Griewank and Walther 1997, Wang et al 2009, Zhang and Constantinescu 2023)
and sparse decomposition (Zhao et al 2020). More generally, this means storing the inputs
required to regenerate the desired output rather than storing the output directly (Akturk and
Karpuzcu 2018). In addition to saving time, it is shown in Akturk and Karpuzcu (2018) that
recomputation can have energy-saving benefits over storing and retrieving data.

One type of problem that calls for advanced big data management techniques is full-
waveform seismic inversion (FWI). As motivation, we give a high-level description of why
advanced data management techniques are required for FWI here, with a detailed description
in section 2. FWI is a partial differential equation (PDE) constrained inverse problem with
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dependencies on both space and time derivatives. The dependency on time leads to the gen-
eration of large amounts of data. With spatio-temporal measurements of the velocity field,
the inverse problem is to infer the underlying spatially varying material properties, namely
the acoustic wave speed. Typical inverse solution methods reframe the problem as a con-
strained optimization problem and use gradient-based methods to minimize an objective func-
tion. Employing the adjoint approach (Giles and Pierce 2000, Fichtner et al 2006) to compute
the gradient necessitates solving an adjoint PDE that is solved backward in time and depends
on the corresponding forward solution at each timestep. As a result, the entire solution history
of the forward problem is needed in reverse order to solve the adjoint equation. For large-
scale problems with high spatial resolution and many timesteps, storing the entire forward
solution history is unfeasible, thus requiring a different approach. As a quick back-of-the-
envelope calculation, consider a domain with 1 billion degrees of freedom and 2000 timesteps.
Using a 4th order Runge–Kutta (RK) scheme to integrate in time, there are 4 solutions to be
stored per timestep. Each solution has 6 fields—3 velocity fields and 3 strain fields (assuming
a velocity-strain formulation). This would require 384 TB to store in double precision. Perhaps
one of the most commonly used techniques for such a problem is to employ checkpointing.
Checkpointing is a technique whereby solutions are stored at only a few timesteps and the rest
discarded. The solution can then be recreated at any timestep by solving the forward problem
from the nearest previous checkpoint. While reducing memory requirements, checkpointing
effectively increases the computation requirements by 1 PDE solve per gradient evaluation.

An alternative approach employs compression to reduce the memory requirements com-
pared to full storage and computation requirements compared to the checkpointing case. Using
compression tomitigate the effects of limitedmemory or storage is not new. Compression tech-
niques have been used extensively in the audio and video processing community for decades
(Blesser 1969, Lewis and Knowles 1990). There are two kinds of compression: lossless com-
pression and lossy compression. Lossless compression is a class of techniques that are able
to exactly recover the original input data. The PNG image format is an example of a format
that employs lossless compression (Kaur and Choudhary 2016). The checkpointing strategy
can be viewed as lossless compression where information is encoded in the checkpoints, and
the physics model provides a decompression algorithm. On the other hand, lossy compression
allows for errors to be made in reconstructing the input data. The JPEG protocol is an example
of lossy compression in the image processing domain (Usevitch 2001).

Various compression techniques have also been proposed to aid in scientific computation.
Specific to the seismic inversion community, there are twomain avenues of compression: com-
pressing the source/receiver data (Habashy et al 2011) and compressing the forward solution
to avoid checkpointing. Source/receiver compression is useful in cases where large amounts
of data are available, such as when many shots are recorded. The gradient must be evaluated at
each shot; each requires the forward and adjoint PDEs solution, implying that the cost scales
linearly in the number of shots (Duarte et al 2020). The goal of source/receiver compression is
to find linear combinations of simultaneous sources and receivers that are (nearly) equivalent
to the original problem. When the number of linear combinations required to closely replicate
the original problem closely is small, the number of forward and adjoint solutions required
to compute a single gradient is much smaller, reducing both the memory footprint and the
computation time (Habashy et al 2011).

Several other works have already explored using compression to mitigate high adjoint-
induced memory requirements (Cyr et al 2015, Boehm et al 2016, Kukreja et al 2019, 2022).
Those works demonstrate that data can be compressed without negatively affecting the inverse
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Figure 1. Autoencoder architecture with deep neural networks.

solution and that compression can be faster than forward simulation. Several techniques of
compressing in space, as well as spline interpolation techniques for compression in time, were
proposed in Boehm et al (2016). Results for a variety of off-the-shelf compression algorithms,
including extensive results using the ZFP compression algorithm (Lindstrom 2014), were
given in Kukreja et al (2019). Each paper demonstrates how different compression techniques
can solve seismic inverse problems on simple domains with large amounts of data. That is, the
inverse problem is not ill-posed, and regularization techniques are not required. While perturb-
ations to the gradient due to compression may minimally affect the inverse solution in the case
of large data, it is unclear whether such approaches will be viable in solving ill-posed prob-
lems with limited data. Additionally, these approaches have limited compression capabilities,
limiting the maximum problem size that can be solved.

Meanwhile, the scientific and technology communities have seen an explosion in the
applications of machine learning techniques. Deep learning, in particular, has found fruitful
application in enabling progress in speech recognition (Kamath et al 2019), computer vision
(Esteva et al 2021, Bjerge et al 2022), and accelerating innovation in scientific computation
(Kates-Harbeck et al 2019, Reichstein et al 2019). One emerging approach is to use an autoen-
coder architecture to perform data compression (Hinton and Salakhutdinov 2006, Cheng et al
2018, Liu et al 2021b). An autoencoder is simply a deep neural network that approximates the
identity map, as shown in figure 1. The output at some intermediate layer can be extracted as
a representation of the input and is referred to as the latent representation, which resides in
the latent space (Dillon et al 2021). Autoencoders are typically decomposed into two separate
networks: an encoder, which consists of the layers from the input to the latent space and a
decoder, which is a network that maps the latent space back to the original dimension. Here,
we discuss only the dimension of the inputs and latent space, not the dimension or complex-
ity of the autoencoder. To achieve a compressed representation, the latent space must have a
dimension strictly smaller than the input. Compared to traditional dimension reduction meth-
ods, autoencoders can be viewed as a nonlinear version of principal component analysis (PCA)
or singular value decomposition (Ladjal et al 2019, Kneer et al 2021, Phillips et al 2021). In
the simplest case of a single-layer encoder and single-layer decoder with linear activation, the
autoencoder learns the same compression as PCA. That is, the single-layer linear autoencoder
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projects the input data onto the same lower dimensional subspace that PCA identifies, though
the representation is different (Baldi andHornik 1989, Ladjal et al 2019). The actual PCA basis
vectors can be obtained from the weights of the trained encoder, showing the two are equi-
valent (Plaut 2018). The advantage of a deep autoencoder with nonlinear activations is that it
can often achieve lower reconstruction error for the same dimension latent space compared to
PCA (Liu et al 2021a, 2021b), enabling higher feasible compression ratios in an application.

While autoencoders have empirically demonstrated impressive compression ratios and low
error rates, there is no theory that we are aware of at this time bounding the error of an autoen-
coder. However, a practical method of bounding the error of an autoencoder is to compute
and store some form of the residual between the desired output (ytrue) and the actual output
(ypred), i.e. r= ytrue − ypred. Various techniques of approximately representing this residual vec-
tor have been proposed such as compressing r with an off-the-shelf algorithm when ∥r∥> tol
for some tolerance, tol (Liu et al 2021a, Lee et al 2022) or storing only the elements ri of r
where |ri|> tol (Abu Alsheikh et al 2014, Liu et al 2021b).

We propose a novel autoencoder approach for compressing the forward solution to address
the problems of additional expensive PDE solves required by the checkpointing approach and
the limited compression capability of off-the-shelf compression techniques. We show empir-
ically that this compression method is faster than the checkpointing method while achieving
comparable solution accuracy. In addition to showing that a trained autoencoder has memory
and computational advantages over existing methods, we develop an efficient data generation
and training procedure based on the Bayesian inversion formulation that enables our approach
to maintain its advantages, even when including the cost of training the autoencoder. While
variations of autoencoders are often used for generative modeling (Kingma andWelling 2013),
and others assign a physical interpretation to the latent space (Goh et al 2019), we use the auto-
encoding capabilities of the autoencoder architecture to allow the training process to find the
most effective compressed latent representation for seismic input data. We provide a math-
ematical description of the FWI problem and the inverse problem in section 2. Two autoen-
coder compression variants are proposed in section 3 along with a detailed explanation of
autoencoder architecture, training data selection, and normalization. We show in section 4 that
machine learning can be leveraged to accelerate the solution of seismic inverse problems in
very high dimensions, even in the ill-posed case with few measurements. Through numerical
experiments, we show that this approach is faster than the checkpointing approach and as fast as
the state-of-the-art off-the-shelf compression approach, ZFP (Lindstrom 2014), while achiev-
ingmuch higher compression ratios.We then extend the data-informed active subspace (DIAS)
regularization method (Nguyen et al 2022) to nonlinear problems and show that autoencoder
compression can enable the affordable application of the DIAS prior to large-scale inverse
problems.

2. Full-waveform inversion

A simplified model of the earth’s seismic properties considers the acoustic wave equation. In
velocity-strain form, this gives rise to a system of first-order PDEs. We choose the velocity-
strain form because of its close relation to the acoustic–elastic wave equation (Wilcox et al
2015). This enables simultaneous derivation of gradients and Hessians for both acoustic,
elastic, and acoustic-elastic formulations. Additional computational and mathematical advant-
ages can be found inWilcox et al (2015). Following the setup given in Bui-Thanh et al (2013),
the acoustic wave equation is given by,
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ρ
∂v
∂t

−∇
(
ρc2e

)
= g, (1a)

∂e
∂t

−∇ · v= 0, (1b)

where ρ= ρ(x) is the density, c= c(x) is the acoustic wave speed for which we are inverting,
g= g(x, t) is a forcing function, v= v(x, t) is the velocity vector, e= e(x, t) is the trace of the
strain tensor (dilatation), and x denotes the spatial coordinate in the domain Ω. We specify
initial conditions for the velocity and dilatation fields

v(x,0) = v0 (x) and e(x,0) = e0 (x) , x ∈ Ω. (2)

Lastly, we impose traction-free boundary conditions

e(x, t) = 0, x ∈ Γ = ∂Ω, t ∈ (0,T)

with final time T. The three components of the velocity vector field and the three diagonal com-
ponents of the strain tensor field, used to compute the dilatation, will be collectively referred to
as the state variables in the rest of this paper. It is the state variables that need to be compressed
and decompressed.

In this work, we consider the inverse parameter estimation problem—inferring the wave
speed c(x) from sparse measurements of the velocity, d. Since we consider the setting with
limited measurements, the inverse problem is ill-posed, and regularization is required. The
inverse problem can be formulated as the optimization problem

u∗ := arg min
u

1
2
∥F (u)− d∥2Γ−1

noise
+

1
2
∥u− u0∥2Γ−1

prior
(3)

where u is referred to as the parameter of interest (PoI),F is the parameter to observable map
(PtOmap), Γnoise is the noise covariance matrix of the observations d, u0 is the initial guess and
Γprior characterizes the regularization. In the Bayesian setting (Kaipio and Somersalo 2006),
u0 and Γprior are interpreted as the prior mean and prior covariance matrix, respectively. While
we consider full waveform inversion in the deterministic setting, it is convenient to consider
the problem in the Bayesian framework and only work toward estimating the maximum a
posteriori (MAP) point. The statistical framing of the MAP problem allows us to choose reg-
ularization via the selection of a prior distribution rather than ad-hoc and allows for a trivial
extension of our proposed compression approach to quantifying uncertainty. In our case, the
PoI is the acoustic wave speed mapped to our observations, d, by solving the acoustic wave
equation and observing the velocity field only at the receivers. Let u≈ c be the discretized
acoustic wave speed that we will numerically estimate. Then

F := BA

whereA is the solution of (1) and B is an observation operator, extracting the velocity field at
receiver locations.

As in Bui-Thanh et al (2013), we choose the prior to be the PDE-based BiLaplacian which
encodes smoothness and anisotropy of the wave speed along with our certainty about our initial
guess. The BiLaplacian prior term 1

2 ∥u− u0∥2Γ−1
prior

is computed by solving the following elliptic

PDE:
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−α∇· (Θ∇u)+αu= s in Ω (4a)

α(Θ∇u) · n= 0 on ∂Ω (4b)

where n is the outward-facing unit normal on the boundary, ∂Ω. Γ−1
noise is the square of this

differential operator. Properties of this prior and further discussion can be found in Bui-Thanh
et al (2013). Finally, derivation of the discrete forward, adjoint, and gradient expressions for
a discontinuous Galerkin discretization can be found in Wilcox et al (2015).

3. Compression methods

There are a variety of ways that the state variables can be compressed. Each state variable is a
function of time and 3 space dimensions, resulting in 4 dimensions across which the state
can be compressed. Additionally, some relationships between the state variables might be
exploited to achieve higher compression ratios. In this work, we propose two compression
techniques that are amenable for implementation with autoencoders, treating each state vari-
able independently:

1. Compression in space, allowing the autoencoder to discover the 3D structure of the state
across multiple elements.

2. Compression in time on an element-by-element basis.

As a brief justification for pursuing only these two compression setups, let us make a few
notes. First, there is potential for scale mismatch between each state variable. Consider again
equation (1b). The time derivative of the dilatation is related to the divergence of the velocity
field. From this, we can see that there could be very large velocities, but no dilatation if the
velocity field is divergence-free. This makes it difficult to design a method that can garner any
correlation between the value of the velocity field at a given time step and the value of the
strains.

Secondly, we decided against pursuing methods requiring explicit specification of the fields
in three-dimensional coordinates. That is, we treat all the nodal coefficients equally, not expli-
citly taking advantage of the embedding of these nodal coefficients in 3-dimensional space.
While it is, in principle, possible to use something like a convolutional neural network with 3-
dimensional kernels (Ji et al 2012), we found two major difficulties: (1) convolutional neural
networks in 3D are rather slow, and (2) the nodes of our DG mesh are not equally spaced.
Although equally spaced nodes would enable the simple application of convolutional autoen-
coders, non-uniformly spaced nodal coordinates such as Gauss–Lobatto–Legendre enable
more accurate integration (Quarteroni et al 2010) and are a natural choice for node location
in a DG scheme. Sections 3.1 and 3.2, will present the implementations of the two proposed
autoencoder compression approaches.

3.1. Compression on a uniform mesh

Consider a box domain where Ω= [0,1]3. Such a domain may arise in reservoir exploration,
the example used in Kukreja et al (2019). Figure 2 shows the mesh on a box domain. While
the nodes are unevenly spaced, they occur in a regular pattern. This allows us to flatten a state
variable across multiple elements into a single vector for compression. Care must be taken to
partition the domain evenly across MPI ranks and to ensure that each rank stores the nodes in
the same spatial orientation, i.e. the elements are stacked the same way in memory on each
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Figure 2. (a) Coarse mesh on box domain showing the non-uniform spacing of the grid.
Different colors correspond to different MPI ranks. (b) Mesh of single MPI rank con-
sisting of 8 third-order elements.

rank. The autoencoder then has the freedom to identify the most relevant spatial correlation
in order to most accurately compress the data. Note that the order in which the elements are
stacked does not matter so long as it is the same across all ranks since a permutation can
be implicitly learned. With the same state layout on every rank, a single autoencoder can be
trained that compresses the local degrees of freedom on a single rank. Once trained, each rank
stores its own copy of the autoencoder, eliminating the need for any communication. The fact
that no communication is required is key to the scalability of our proposed approach.

There are a few competing factors that must be balanced in designing an autoencoder for
compression. The input vector should be:

1. Large enough so that a high compression ratio can be attained with low reconstruction error.
2. Small enough so that the autoencoder runs quickly.

The second item poses a particular challenge in the present case as the DG solver used
to solve the forward acoustic wave equation is highly tuned. Special care must be taken to
develop a method faster than checkpointing while maintaining sufficient accuracy. We found
empirically that an input dimension of 4096 adequately balanced these two constraints. This
corresponds to 8 elements per MPI rank with 3rd-order polynomials, resulting in 64 nodes per
element (43).

3.2. Compression on non-uniform mesh

While using an autoencoder for spatial compression is intuitive and simple to implement, there
are severe limitations to the practical applications of such an approach. First, each MPI rank
must have the same number of degrees of freedom arranged in exactly the same manner to
avoid padding or communicating ghost elements. This is because autoencoders that employ
dense hidden layers have a fixed input size. Unless extreme care is taken, the mesh must be
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Figure 3. A cross-section of the earth domain with h-adaptive mesh refinement. Notice
the non-uniform character of the mesh, with very small elements near the crust required
to resolve the seismic waves.

uniformly refined and have no hanging nodes. Such a restriction poses major challenges for
problems with a non-rectangular domain or when non-hexahedral elements are desired. To
mitigate these limitations, we propose compressing along the time dimension, treating each
element as an independent state. This method works seamlessly with h-adaptive mesh refine-
ment (refining the mesh geometry), though p-adaptivity (changing the polynomial order of the
element) remains challenging. For this work, we only consider algorithms with h-adaptivity.

To demonstrate the success of this approach, we consider solving a seismic inverse problem
on a spherical domain. We employ h-adaptive mesh refinement to ensure the seismic waves
can be resolved on each element with at least 3 nodes per wavelength. Figure 3 shows a cross-
section of the mesh. Hanging nodes that result from local mesh refinement pose no problem
for our proposed compression strategy since each node is considered independently.

The same constraints as discussed in section 3.1 apply in this scenario. Similar to the
box domain case, we found that an input dimension to the autoencoder of 4096 worked well
since we use a 4th-order RK explicit time stepping scheme (Quarteroni et al 2010), a 4096-
dimensional input vector results from using 3rd-order polynomials (64 nodes per element) and
16 timesteps, each with 4 RK stages.

3.3. Autoencoder architecture and training details

Any discussion of results obtained using deep learningwould be incompletewithout discussing
the architecture used to obtain the results. While the order of the data differs between space
compression and time compression methods, the same autoencoder architecture can be used
in either case since the input and output dimensions are the same. The difference between
the trained autoencoders for each compression method lies solely in the training data. Table 1
shows the architecture design of both the encoder and the decoder. All layers are ‘dense’ layers,
corresponding to an affine transformation followed by a nonlinear activation. We found the
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Table 1. Autoencoder architecture and hyperparameters used to train network.

Encoder Decoder

Input dimension 4096 64
Output dimension 64 4096
# hidden layers 7 7
Neurons per hidden layer [512, 256, 256, 256, 128,

64, 64]
[128, 128, 256, 256, 256,
512, 4096]

Activation ELU ELU

Table 2. Training hyperparameters used to fit autoencoder weights and biases to data.

Precision float32

Optimizer LAMB (You et al 2019)
Initial learning rate 10−3

Learning rate decay lr= 0.5lr
applied every 5 epochs

Epochs 20
Batch size 512
# GPUs 2 × 2080Ti

exponential linear unit (ELU) to perform better than the rectified linear unit, hyperbolic tangent
(tanh), and sigmoid activations. The ELU activation function is given by

ELU(y) :=

{
ey− 1 if y< 0

y else.

Table 2 shows the relevant hyperparameters of the training process. Training took approxim-
ately 3 h using two Nvidia 2080Ti GPUs. The network hyperparameters reported here were
tuned by hand, though Bayesian hyperparameter optimization using the Keras tuner API gave
similar results. In terms of testing accuracy, we found the network to be insensitive to choice
of hyperparameters, with the dimension of the latent space (compression ratio) being most
important. It is intuitive that higher compression ratios lead to higher error.

As mentioned in section 3.1, it is difficult to design an autoencoder compression system that
both performs well in terms of accuracy and compression ratio while also being fast. Recall
that the evaluation of a single dense layer requires the computation of

σ (yW+ b) . (5)

Considering the first layer of the encoder,W1 ∈ R4096×512, y ∈ R4096 and b1 ∈ R512. There are
2097 152 entries in the matrixW1. Compare this to the second layer which has a weight mat-
rix W2 ∈ R512×256 and 131 072 entries. The first layer then has 16 times more entries in the
weight matrix than the second layer. Further layers of the encoder have even smaller weight
matrices. It is clear that the dominant cost in compressing a vector is the computation of the first
matrix-vector multiply, yW1. To mitigate this cost, we develop a hybrid sparse-dense architec-
ture whereby the first layer of the encoder and the last layer of the decoder are trained to be
95% sparse. Sparsity is achieved via the pruning API of the Tensorflow model optimization
package. In short, the specified layers are made progressively more sparse by permanently set-
ting the smallest magnitude weights to zero. The remaining weights of the network are then
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Table 3. Comparison of timings of fully dense architectures vs. hybrid sparse-dense
architecture for encoder and decoder for compressing/decompressing 864 vectors on a
single core of an Intel Xeon Platinum 8280 CPU.

Encoder Decoder

Fully dense 102 ms 140 ms
Hybrid sparse-dense 40 ms 79 ms

Table 4. Comparison of timings of fully dense architectures vs. hybrid sparse-dense
architecture for encoder and decoder for compressing/decompressing 864 vectors on
56 cores of 2 Intel Xeon Platinum 8280 CPUs on a single node of the Frontera
supercomputer.

Encoder Decoder

Fully dense 110 ms 160 ms
Hybrid sparse-dense 120 ms 117 ms

fine-tuned to account for the missing weights. This process is carried out iteratively until the
specified sparsity level is achieved. Since the magnitude of the weights are determined through
a stochastic gradient descent process, there is no guaranteed structure in the resulting sparsity
pattern. Indeed, we observe that the sparsity pattern appears random.

As an example, to show the improvement of the sparse-dense architecture over the fully
dense architecture, consider compressing a batch of 864 vectors, each with a size of 4096.
Since evaluating the neural network output requires nothing more than matrix-vector multi-
plications, vector additions, and element-wise application of an activation function, all 864
vectors can be processed simultaneously by stacking into rows. Then the input y has shape
(864,4096). Timing results for both the encoder and decoder on a single core of an Intel Xeon
Platinum 8280 CPU on Frontera are shown in table 3. We would then expect approximately a
50% speedup with the sparse-dense architecture over the fully dense architecture.

Unfortunately, the application setting is slightly different since all cores are used rather than
just a single core. Consider the same test case replicated on each CPU core simultaneously.
There are 56 cores across 2 sockets on a single node of Frontera. Since each task executes
independently with no communication, we might expect perfect scaling and for the test to
complete in the same amount of time. However, there are now more cores contending for data
with limited cache and memory bandwidth. Indeed, in the first case, 864 single precision input
vectors require only 14.2 MB to store. This easily fits in the 38.5 MB of L3 cache of a single
Intel Xeon Platinum 8280 (int). Furthermore, the weights of the fully dense encoder require
only 17.8 MB to store. The input data and the entire encoder can fit in the L3 cache! Since
the L3 cache is shared among all cores of this CPU, bytes must be streamed from the main
memory when all cores are running simultaneously. Table 4 shows the timings for the encoder
and decoder with the fully dense and hybrid sparse-dense architectures when running on all
cores.

Although there is still a significant advantage in using the hybrid architecture for the
decoder, the encoder evaluation proves to be faster using the fully dense architecture than
the hybrid architecture when all 56 cores are being utilized. We are unsure why this is the case
at the time of writing and further optimization is a topic for future investigation. However,
measuring the performance showed that we could achieve faster compression by using a fully
dense matrix for the first layer’s weights while optimizing the decoder’s evaluation time using
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a sparse matrix for the final layer. Because of the strict speed requirements, we do not utilize
any error bounding methods that require the computation and potential storage of a residual
vector (Abu Alsheikh et al 2014, Liu et al 2021a, 2021b, Lee et al 2022).

3.3.1. Training data. One common criticism of deep learning methods is that large training
datasets are often required for the DNN to perform well in practice. In the case of compres-
sion, other algorithms, such as those implemented in the ZFP package (Lindstrom 2014), do
not require training data. Even when deep learning methods may perform well on training
data, they may perform poorly in practice when the training dataset is not sufficiently large,
a concept referred to as generalization error. While this is true, we argue that training an
autoencoder is a one-time upfront cost. Further, data generation and training require consid-
erably fewer compute node hours than solving the inverse problem. In this section, we detail
the data generation process.

Consider a statistical interpretation where the training data y ∈ Rn, is drawn from some
distribution, π (y). Suppose a dataset of N samples DN =

{
y1, . . . ,yN

}
where yi ∼ π (y). Let

ΨDN (y) denote the output of the machine learning algorithm after being trained with dataset
DN. A common metric for evaluating the performance of any machine learning algorithm is
the generalization error. Given some loss function denoted L(Ψ(y) ,y), such as mean squared
error,

LMSE (Ψ(ytrue) ,ytrue) :=
1
n
∥ytrue −Ψ(ytrue)∥

2
2 ,

the generalization error for an autoencoder is Eπ(y)[L(Ψ(y) ,y)] (Nadeau and Bengio 1999).
The generalization error is the average loss over the entire distribution π (y).

Generalization error plays an important role in designing a data generation process. There
are two ways one can reduce the generalization error:

1. Increase the training dataset size by drawing more samples from π (y).
2. Choose π (y) so that it can be well-approximated with fewer samples.

The second method can be interpreted as choosing the most narrow distribution appropriate
for the application. We will explore how this option can be used to generate data for seismic
inversion. For typical machine learning applications, this may not be possible as we do not
know π (y). The Bayesian inversion setting makes this possible for our application, as we
discuss next.

In order to compress seismic data, we need to generate examples similar to the states that
will be seen in the application. One way to do this is to solve the acoustic wave equation and
save some of the data for training. However, it is still unclear which wave equation solutions
should be included in the training dataset. Should we try to train the autoencoder to compress
and decompress all possible solutions to the wave equation on a given domain? There are
clearly wave equation solutions that are not relevant to our application. Mathematically, the
challenge becomes defining the relevant distribution π (y). The Bayesian framework (Kaipio
and Somersalo 2006) helps us to choose a good distribution for generating data. Bayes’ formula
tells us

πpost (u|d)∝ πlike (d|u)πprior (u) . (6)

This can be interpreted as the likelihood, πlike(d|u), updating the prior density, πprior(u), based
on observed data, d, to produce the posterior density, πpost(u|d), (Scales and Tenorio 2001).
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The observations d are related to the states that will be compressed, denoted y here, through
an observation operator, i.e. d=By. Since the posterior density is the product of the likeli-
hood and the prior, the posterior density is non-zero only in locations where the prior density
is non-zero. That is, the posterior lies within the support of the prior. Therefore, we are only
interested in whether the autoencoder performs well in compressing states, y, that can be gen-
erated by samples from the prior. We can generate relevant examples of possible states by
solving the acoustic wave equation with the PoI (the wave speed) set to samples from the
prior. The autoencoder does not need to perform well on every possible state generated from
the wave equation. It only needs to work well on states generated by solving the wave equation
with parameters sampled from the prior. By solving the inverse problem using the Bayesian
formulation and training the autoencoder to compress states generated by samples from the
prior, there is no need to consider out-of-distribution errors in the autoencoder compression.
The optimizer, initialized to the prior mean, evolves the solution estimate toward the MAP
point, remaining within the support of the prior, which results in states that are in-distribution
for the autoencoder.

Algorithm 1. Data generation algorithm for training compression autoencoder

Input: number of samples, n; final time, T

1. for i = 1, . . . ,n do
2. c= random draw from prior
3. for t= 1, . . . ,T do
4. Solve acoustic wave equation for one timestep
5. Consolidate states, v, e, into compression data structure
6. if Data structure is full then
7. Write data structure to file
8. end if
9. end for

10. end if

With motivation from statistical learning theory and Bayesian inverse problems, we now
detail an algorithm for generating training data. The compression data structure is a vector that
stores the state variables in the order corresponding to the compression scheme. This setup
allows any order to be used and for training data to automatically have the correct ordering—
reducing the effort to set up the training pipeline. Algorithm 1 can generate large amounts of
data very quickly. Several terabytes can be generated in only a few minutes for the earth-scale
problem with an 11.2 million degree of freedom (DoF) mesh. We randomly chose whether to
write or discard the data structure to reduce the amount of data written to file. On 32 nodes of
Frontera, solving the wave equation and writing to file takes on the order of 1 min. With 10
draws from the prior, keeping only 0.1% of the data, we generated 50 GB of training data in
less than 1 h. The total cost of data generation is then O (10) node hours.

Finally, we discuss the normalization of the training data. The states have scales that vary
between 10−16 and 105 over the solution of (1). It would be difficult for an autoencoder to
accurately compress and decompress states with such widely varying scales, especially in
single precision. To reduce the burden on the autoencoder of learning the data scale, we nor-
malize the data between 0 and 1. This enables us to store the scale and offset of the data in
double precision while capturing the relative variation of the data in single precision. Consider
an arbitrary state vector that will be compressed, denoted y, following the notation in (5). Let
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ytrue be a consolidated state vector that will be compressed (state DoFs consolidated either in
space or in time). The input vector to the encoder, y, is then given by

r=max(max(ytrue)−min(ytrue) ,β)

y= (ytrue −min(ytrue))/r.

In order to avoid division by zero, r is set to be at least some tolerance, β. We choose β = 10−7.

4. Numerical results

In this section, we present numerical results showing the efficacy of our proposed autoencoder
compression approach for both spatial compression on the box domain problem (section 3.1)
and temporal compression on a spherical domain (section 3.2). We solve the inverse problem
for both box and earth domains using a Newton conjugate gradient method (Epanomeritakis
et al 2008, Yang 2009). In each conjugate gradient iteration, the action of the Hessian on a
vector is required, which entails solving two additional linearized PDEs, referred to as the
incremental forward problem and incremental adjoint problem. Expressions for these PDEs
in the case of the acoustic wave equation can be found in Bui-Thanh et al (2012). The incre-
mental forward problem relies on the solution of the forward problem at each timestep and
so requires decompression as well. The incremental adjoint problem requires the solution of
both the forward and incremental forward problems, and thus requires another decompres-
sion of the forward states. Empirically, we find that compression costs mostly offset the gains
of decompression. However, the states only need to be compressed once per Newton itera-
tion and are potentially decompressed many times. The cost of compression is amortized over
every evaluation of the adjoint, incremental forward, and incremental adjoint problems within
a single Newton iteration. While it is also possible to compress and decompress the incre-
mental forward problem, this paper does not explore it since each incremental forward solu-
tion is only re-used once, though such an approach may find use in extremely memory-limited
environments.

4.1. Results: compression in space

We demonstrate the compression in space approach on a cube domain with all sides of length
1 km. Five sources are located at 1 m depth and 1089 receivers are evenly spaced at the sur-
face, observing the velocity field for 3 s. The sources are Ricker wavelets in time, smoothed
by convolving with a narrow Gaussian in space. The source term for a source at x0 is then
given by

g(x, t;x0) = ρ(x)
1√
2πσx

e
−∥x−x0∥2

2
2σ2

x

(
1− (t− tc)

2

σ2
t

)
e
− (t−tc)

2

2σ2
t [0,0,−1]T .

In this case, we consider a wavelet centered at tc = 0.6 s with σt =
1
π and σx = 0.05.

A snapshot of the velocity magnitude is shown in figure 4(a). Following the setup in
section 3.1, we show both speedup and absolute error results compared to the checkpoint-
ing solution. While the true synthetic solution is our target, our compression strategy aims
to replace checkpointing to managing limited memory, not to change the inverse solution.
Therefore, the appropriate comparison is with the inverse solution computed using check-
points rather than the true solution. Similar to the earth problem, we invert for a variation in
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Figure 4. (a) Snapshot of velocity magnitude at 1.2 s (b) inclusion in background wave
speed.

Table 5. Speedup of the autoencoder compression algorithm compared to the check-
pointing solution. ∇ represents the gradient, and Hv represents a Hessian-vector
product. The speedup approaches the ideal speedup as the number of DoFs increases
while the relative error decreases.

Mesh DoFs Cores ∇ Speedup Hv Speedup Relative l2 Error, %

4096 1 1.06 1.20 1.7
32 768 8 1.19 1.26 0.7
262 144 64 1.17 1.22 0.6
2097 152 512 1.17 1.23 0.7
16 777 216 4096 1.22 1.27 0.4

the backgroundwave speed field. A box-shaped inclusion is introduced into the domain, shown
in figure 4(b), and is referred to as the anomaly.

To demonstrate the weak scaling of this method, we show results for several refinement
levels, each refinement increasing the total number of degrees of freedom by 8 times. Table 5
shows the speedup compared to the checkpointing solution. While the overall speedup may
not be very impressive, it is not the only objective of our proposed compression approach. As
we have discussed, the other objectives are reducing memory footprint and eradicating check-
pointing. Furthermore, there is a maximum speedup of 1.3× for the gradient since the times to
solve the forward problem, the adjoint problem, and evaluate the gradient are approximately
equal. That is, the cost of computing the gradient in the ideal case is 3 PDE solves, while the
checkpointing case requires 4 PDE solves. Thus, the speedup of 1.22 for the largest mesh in
table 5 is close to ideal.

Similarly, the Hessian-vector product computation has a maximum speedup of 1.5 (requir-
ing 4 PDE solves in the ideal case vs. 6 PDE solves with checkpointing), and the speedup
of 1.27, without compressing the incremental forward solve, for our compression approach
is already an achievement. Table 5 shows that the speedup approaches the ideal one, and the
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Figure 5. Inverse solutions on box domain using (a) checkpoints and (b) autoencoder
compression in space for the problem with 16 777 216 DoF mesh. The solutions have
the same color scale with the inclusion rendered as an isosurface at 1.67 km s−1.

relative error decreases as the number of DoFs increases. A cutaway of the inverse solution
with the largest mesh for both the checkpointing case and the autoencoder compression case
is shown in figure 5. The fact that the anomaly reconstructions are visibly indistinguishable is
due to a 0.4% difference.

4.2. Results: compression in time

While it is intuitive that seismic waves exhibit strong spatial redundancy and thus have high
compressibility, it is not immediately obvious that temporal compression schemes will yield
acceptable results. We test the temporal compression scheme presented in section 3.2 on the
earth-scale seismic inverse problem. We build upon the framework established in Bui-Thanh
et al (2012, 2013) to show that our proposed compression scheme is viable for large-scale
seismic inverse problems. The results shown here follow the setup of Case II from Bui-Thanh
et al (2013). There are 3 source locations in the Northern Hemisphere, one at the North Pole
and two placed at 90◦ increments along the equator. Here, we consider sources modeled
as Gaussian functions in space centered at the source location, x0, and a Gaussian in time
given by

g(x, t;x0) =
1√
2πσt

1

(2πσ2
x )

3/2
e
−∥x−x0∥2

2
2σ2

x e
− (t−tc)

2

2σ2
t

where σx = 36 km, tc = 60 s, and σt = 20 s. We place 130 receivers spaced at 7.5◦ increments
throughout North America, as shown in figure 6, measuring the velocity field. Additive noise
with a standard deviation of 0.002 is introduced into the data. The earth is modeled as a sphere
with a radius of 6371 km. Both the sources and receivers are buried at 10 km depth.

Coarse meshes cannot resolve the sufficiently high-frequency waves required to image the
earth effectively and thus may not be used. We found a maximum frequency resolution of
0.05 Hz sufficient to obtain good inversion results. Thus, the smallest domain size we consider
has a mesh with 11.2 million degrees of freedom. This corresponds to a discontinuous Galerkin
discretization with 174 481 elements using 3rd-order polynomials. We solve this problem on
64 nodes (3584 CPU cores) of Frontera, running for 10 h. Speedup results compared to the
checkpointing case are shown in table 6. Here, we report the average relative l2 error of the

16



Inverse Problems 39 (2023) 115009 J Wittmer et al

Figure 6. Three sources shown in green at the North Pole and along the equator. 130
receivers shown in red distributed in North America spaced 7.5◦ apart. Bui-Thanh et al
(2013), Copyright © 2013 Society for Industrial and Applied Mathematics. Reprinted
with permission. All rights reserved.

Table 6. Speedup of the autoencoder compression algorithm compared to the check-
pointing solution. ∇ represents the gradient, and Hv represents a Hessian-vector
product. Timing results were obtained by running on 64 nodes (3584 CPU cores) of
the Frontera supercomputer.

Mesh DoFs ∇ Speedup Hv Speedup Relative l2 error, %

11 166 784 1.05 1.17 0.02

solution obtained using autoencoder compression to the solution obtained using checkpoint-
ing. Similar to the box domain, there is greater speedup in the Hv product computation than
the gradient computation due to paying the cost of compression during the gradient solve. The
difference in speedup between the box problem and the earth problem is likely due to variable
per-process problem size induced by the non-uniform spherical mesh and related cache con-
tention issues. As mentioned in section 3, cache effects can greatly impact the performance of
the compression algorithm.

To demonstrate the scalability of the autoencoder compression approach, we solve the same
problem on a refined mesh with 139 227 136 DoFs. The full state vector (3 velocities and
3 strains) then has 835 362 816 DoFs. This problem was solved on 256 nodes of Frontera
(14 336 CPU cores). Table 7 compares the autoencoder compression results to the checkpoint
solution. We find a slight reduction in gradient speedup and a slight increase in the spee-
dup of the Hessian-vector product compared to the coarse mesh solution detailed in table 8.
One possible reason for the decrease in gradient computation speedup is the larger problem’s
increased per-process work. The smaller problem with 11 million mesh DoFs has an aver-
age of 4681 mesh DoFs per process, while the larger problem has an average of 9711 mesh
DoFs per process. We explored the effects of limited cache size on the timing of autoencoder
compression in section 3 and found that compression is more sensitive to cache effects than
decompression, at least for our implementation. It is, therefore, not surprising that the speedup

17



Inverse Problems 39 (2023) 115009 J Wittmer et al

Table 7. Inverse results for the earth-scale seismic inverse problem with higher mesh
refinement, solved on 14 336 CPU cores. The gains from decompression over resolv-
ing from checkpoints for computation of the gradient are completely offset by the cost
of compression. However, this cost is paid once, and the Hessian-vector product has a
similar speedup as seen on a smaller problem in table 8.

Mesh DoFs ∇ Speedup Hv Speedup Relative error %

139 227 136 1.00 1.18 0.06

of the gradient computation, which includes the cost of compression, is reduced when each
process is responsible for compressing a larger amount of data. While speedup is desired in
all computations, there is an order of magnitude more Hessian-vector products than gradient
computations required to compute the MAP solution, with O (100)Hv products and O (10)
gradient evaluations. The overall cost is dominated by Hv products, and so the observation
that the gradient computation sees no speedup from compression has little impact on the total
computation time.

Having shown that autoencoders are a viable compression technique for accelerating seis-
mic inverse problems, we now compare our results to the state-of-the-art off-the-shelf compres-
sion technique proposed for seismic inversion in Kukreja et al (2019).While other off-the-shelf
packages have been proposed, the most comprehensive results in the literature are given for
the ZFP compression package (Lindstrom 2014), especially in the seismic inversion literature
(Kukreja et al 2019, 2022). Therefore, we compare our autoencoder approach’s speed, accur-
acy, and compression ratio to the ZFP compression package. While the ZFP package does not
require normalization, we tried both with and without normalization and found that normaliz-
ing the states before compressing was necessary to obtain accurate results. Table 8 shows the
inversion results using ZFP compression for several required accuracies. The relative errors for
all methods are still quite small, though we can see that the autoencoder compression performs
similarly to ZFP compression with error tolerance 10−3. This is as expected, since the average
pointwise absolute error of the trained autoencoder evaluated on the validation set (withheld
from training) was on the order of 10−3. As shown in figure 7, all solutions are visually sim-
ilar. This replicates the findings of Kukreja et al (2022) that the FWI solution is relatively
insensitive to compression errors. While autoencoder compression does not show a significant
speed advantage over ZFP, there is a substantial difference in compression ratio, and hence,
memory footprint. Considering ZFP with η = 10−3 which has nearly equivalent accuracy, the
compression ratio of ZFP is 11.2. On the other hand, the autoencoder compression algorithm
achieved a compression ratio of 128—11 times higher than ZFP.

We also compute the error in the gradient for the autoencoder compression technique and
compare this to the gradient errors due to using the ZFP package. Figure 8 shows the angle in
degrees between the true gradient computed using checkpointing and the gradient computed
using compression. As expected, the error increases with the compression tolerance for the
ZFP compression algorithm. The gradient error of ZPF becomes larger than the error induced
by autoencoder compression between η = 10−3 and 10−2—corresponding to higher relative
error as seen in table 8. The autoencoder gradient has slightly higher error than the ZFP gradient
with tolerance 10−3, and performs similarly in terms of l2 relative error, as seen in table 8.

4.3. DIAS regularization with autoencoder compression

As a capstone result, we show how our proposed autoencoder compression approach can be
combined with the DIAS regularization (Nguyen et al 2022) approach on the earth-scale
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Figure 7. Comparison of inverse solutions obtained using autoencoder and ZFP com-
pression packages with various compression tolerances, η. Results are shown at 130 km
depth on the same color scale.

seismic inverse problem. While the DIAS algorithm has the benefit of only applying regu-
larization in the inactive subspace, speed is not one of its strengths. Simply estimating the
active subspace for a nonlinear inverse problem requires numerous samples of the gradient—
each evaluation of which requires 2 PDE solves. In the case of large-scale seismic inversion,
each gradient evaluation can take several minutes on dozens of compute nodes. We propose
to combine the DIAS regularization algorithm with autoencoder compression to alleviate the
high cost and memory footprint of checkpointing in estimating the active subspace. Since we
have already discussed the speedup and memory footprint gained by the autoencoder com-
pression at length above, we will focus on the solution quality using DIAS plus autoencoder
compression in the following.

Let us briefly recap the DIAS regularization. We will focus on the DIAS-F (see Nguyen
et al 2022, section 4) variant, which uses the full data misfit and only applies regularization in
the inactive subspace. First, the active subspace is estimated via,

[
W1 W2

][Λ1 0
0 Λ2

][
WT

1

WT
2

]
= C :=

ˆ
∇u f(u)∇u f(u)

T
πprior (u)du, (7)

where f := 1
2 ∥F (u)− d∥2Γ−1

noise
, W1 are the eigenvectors of C corresponding to the active sub-

space, andW2 are the eigenvectors corresponding to the inactive subspace. As in section 3.3.1,
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Figure 8. Angle between the true gradient and the gradient computed using compres-
sion. Between η = 10−3 and 10−2, the ZFP gradients become worse than the gradients
computed using autoencoder compression.

Table 8. Comparison of ZFP and autoencoder compression for various compression tol-
erances. There is no significant difference in the speedup of the autoencoder compres-
sion vs. the ZFP compression. However, the autoencoder can achieve a much higher
compression ratio (and hence, a much smaller memory footprint) while maintaining
solution accuracy. Relative l2 error is computed with respect to the checkpoint solution.

Method ∇ Speedup Hv Speedup Relative l2 error, % Compression Ratio

Autoencoder 1.05 1.17 0.02 128
ZFP, η = 10−5 1.0 1.09 0.02 7.2
ZFP, η = 10−4 1.05 1.16 0.02 8.4
ZFP, η = 10−3 1.05 1.16 0.02 11.2
ZFP, η = 10−2 1.06 1.17 0.05 17.6

πprior(u) is the prior probability density from the Bayesian formulation of the inverse problem.
The DIAS solution is then defined to be

uDIAS = argmin
u

1
2
∥F (u)− d∥2Γ−1

noise
+

1
2

∥∥WT
2 (u− u0)

∥∥2
(WT

2ΓpriorW2)
−1 , (8)

that is, it is a Tikhonov solution with regularization acting only on the inactive space.
For large-scale problems, it is infeasible to compute and store the large matrix W2 since

the active subspace tends to be much smaller than the inactive subspace. To avoid explicitly
computing and storing the potentially large matrix W2, it can be shown using Schott (2016),
theorem 5.8 that
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∥∥WT
2 (u− u0)

∥∥2
(WT

2ΓpriorW2)
−1 = ∥P2 (u− u0)∥2(P2ΓpriorP2)

† (9)

where P2 :=W2W
T
2 = I −W1W

T
1 is a projection matrix onto the inactive subspace and

(P2ΓpriorP2)
† denotes the pseudoinverse.

Lest we conclude that we have a free lunch in computing the regularization term arising
from the active subspace prior viaW1, one more challenge remains. Note that we need to apply
not the prior covariance but its (pseudo-)inverse. That is, we need to compute (P2ΓpriorP2)

†.
There are several factors at play here.

1. Γprior is often a sparse matrix, while P2ΓpriorP2 is very likely a dense matrix.
2. We must invert the dense matrix P2ΓpriorP2 using the pseudoinverse.
3. This matrix is in the dimension of the parameter, n.

For cases where it is feasible to form and invert P2ΓpriorP2, it is also feasible to simply
computeW2 explicitly. Then we can work with the lower dimensional form given in (8) which
still involves inversion, but of a lower dimensional, full rank matrix. For cases where this is
not feasible, we need to develop more sophisticated techniques for computing or estimating
P2ΓpriorP2.

The first thing one might try is to find an identity that allows us to break the projection out
of the pseudoinverse, leaving Γprior by itself. We might hope that

(P2ΓpriorP2)
†
= P2Γ

−1
priorP2,

but this is unfortunately not the case, as we show using Schur complements. Decompose the
prior covariance as

Γprior =

[
WT

1ΓpriorW1 WT
1ΓpriorW2

WT
2ΓpriorW1 WT

2ΓpriorW2

]

and the inverse prior covariance as

Γ−1
prior =

[
WT

1Γ
−1
priorW1 WT

1Γ
−1
priorW2

WT
2Γ

−1
priorW1 WT

2Γ
−1
priorW2

]
.

Using Schur complements gives

WT
2Γ

−1
priorW2 =

[
WT

2ΓpriorW2 −WT
2ΓpriorW1

(
WT

1ΓpriorW1
)−1

WT
1ΓpriorW2

]−1
. (10)

While the inverse can be expanded using the Sherman–Morrison–Woodbury formula, the
important observation is that the second term,

WT
2ΓpriorW1

(
WT

1ΓpriorW1
)−1

WT
1ΓpriorW2

is not necessarily 0, except when Γprior is scaled identity. Thus, making the approximation
(P2ΓpriorP2)

†
= P2Γ

−1
priorP2 incurs some error in the general case. Even though there is some

error, it becomes necessary from a practical perspective to use the approximate form P2Γ
−1
priorP2

for large-scale problems.
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Figure 9. The DIAS solution does not differ noticeably from the MAP solution for the
seismic inverse problem. Results are shown for mesh with 11 166 784 DoFs.

Before the DIAS algorithm can be applied to the seismic inverse problem, we must first
define an algorithm for applying DIAS to nonlinear inverse problems. One advantage of using
the active subspace to define the data-informed subspace is that the active subspace is formed
from the global average of the outer product of the gradient. This would indicate that the DIAS
algorithm can be applied naively to nonlinear inverse problems:

uDIAS = argmin
u

1
2
∥F (u)− d∥2Γ−1

noise
+

1
2
∥P2 (u− u0)∥2(P2ΓpriorP2)

−1 . (11)

However, the fact that the gradient samples are computed from draws of the prior biases the
active subspace toward the directions in which the misfit function f is most sensitive near the
prior mean, u0.

Recalling that the goal of the DIAS algorithm is to remove regularization in directions
that the data are more informative and that the DIAS solutions are likely closer to the usual
Bayesian solution than to the prior mean for a well-chosen prior, we propose a two-step
algorithm:

1. Approximately solve the usual MAP problem for uMAP using the full prior:

uMAP = argmin
u

1
2
∥F (u)− d∥2Γ−1

noise
+

1
2
∥u− u0∥2Γ−1

prior
. (12)

2. Compute the active subspace centered at uMAP and, with the initial guess uMAP, solve the
DIAS problem:

uDIAS = argmin
u

1
2
∥F (u)− d∥2Γ−1

noise
+

1
2
∥P2 (u− u0)∥2P2Γ

−1
priorP2

.

Even with acceleration via autoencoder compression, the cost of gradient evaluations is still
high. We estimate the active subspace using 30 gradient samples and take the active subspace
to have dimension 5. The difference between the DIAS and the MAP estimate is small in this
case. Compared to the true solution, theMAP estimate has an average relative error of 0.3293%
while theDIAS refined solution has average relative error of 0.3291%. This is reflected visually
in figure 9.
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5. Conclusions

In this paper, we proposed an autoencoder compression algorithm to mitigate the high stor-
age requirements for solving large-scale time-dependent PDE-constrained inverse problems.
We show the feasibility and scalability of this approach against the popular checkpointing
strategy for a seismic inverse problem on both a simple box domain with uniform refine-
ment and a complex spherical domain with adaptive mesh refinement and a nonconform-
ing mesh. We present a data generation procedure based on the Bayesian formulation that
provides a problem-focused data generation scheme to effectively train the autoencoder. We
proposed two separate autoencoder compression algorithms for spatial and temporal domains.
The scalability of each algorithm was shown, providing a clear close-to-ideal speed advantage
on large-scale problems compared to the traditional checkpointing approach and a substantial
improvement in the compression ratio of the state-of-the-art floating point compression pack-
age, ZFP.While there are clear advantages of using autoencoders to perform compression, care
must be taken in their implementation for an advantage over the checkpointing approach. As
an important application of the proposed autoencoder algorithm, we combined the proposed
autoencoder compression approach with the DIAS prior showing how the DIAS method can
be affordably extended to large-scale problems without the need for checkpointing and large
memory.

Ongoing work is to apply our approach to implicit code such as SPECFEM3D Globe
(Komatitsch and Tromp 2002), and in this case, we expect an order of magnitude reduction in
computational time. Note that we have limited ourselves to acoustic wave inversion, but more
realistic seismic inversion must solve elastic wave or coupled elastic-acoustic wave equations.
Part of our work is to investigate if our approach still works in this more realistic regime, and
to develop extensions when it does not. Lastly, we aim to incorporate on-the-fly fine-tuning to
the machine learning model to further improve the compression capability and adaptability to
new settings.

Data availability statement

The data cannot be made publicly available upon publication because they are not available in
a format that is sufficiently accessible or reusable by other researchers. The data that support
the findings of this study are available upon reasonable request from the authors.

Acknowledgments

We would like to thank Georg Stadler for his many correspondences and helpful advice on
stably solving the forward and inverse problem in large scale runs; Jau-Uei Chen for sharing
his insight on the discontinuous Galerkin method; Sheroze Sheriffdeen and Hwan Goh for
their many discussions on autoencoders, compression, and HPC; and the Texas Advanced
Computing Center (TACC) at the University of Texas at Austin for providing HPC resources
that contributed to the results presented in this work. URL: http://www.tacc.utexas.edu. This
research is partially funded by the National Science Foundation Awards NSF-OAC-2212442,
NSF-2108320, NSF-1808576 and NSF-CAREER-1845799; and by the Department of Energy
Awards DE-SC0018147 and DE-SC0022211.

23

http://www.tacc.utexas.edu


Inverse Problems 39 (2023) 115009 J Wittmer et al

ORCID iD

Jonathan Wittmer https://orcid.org/0000-0002-7538-5932

References

Abu Alsheikh M, Poh P K, Lin S, Tan H-P and Niyato D 2014 Efficient data compression with error
bound guarantee in wireless sensor networks Proc. 17th ACM Int. Conf. on Modeling, Analysis
and Simulation of Wireless and Mobile Systems pp 307–11

Akturk I and Karpuzcu U R 2018 Trading computation for communication: a taxonomy of data
recomputation techniques IEEE Trans. Emerg. Top. Comput. 9 496–506

Baldi P and Hornik K 1989 Neural networks and principal component analysis: learning from examples
without local minima Neural Netw. 2 53–58

Bharadwaj K K, Srivastava A, Panda M K, Singh Y D, Maharana R, Mandal K, Singh M, Singh D,
Das M, Murmu D et al 2021 Computational intelligence in vaccine design against COVID-19
Computational Intelligence Methods in Covid-19: Surveillance, Prevention, Prediction and
Diagnosis (Springer) pp 311–29

Bhattacharjee A and Wells J 2021 Preface to special topic: building the bridge to the
exascale—applications and opportunities for plasma physics Phys. Plasmas 28 090401

Bickelhaupt F M and Baerends E J 2000 Kohn-sham density functional theory: predicting and
understanding chemistry Reviews in Computational Chemistry (Wiley) pp 1–86

Bjerge K, Mann H M R, Høye T T, Sankey T and Ahumada J 2022 Real-time insect tracking and
monitoring with computer vision and deep learning Remote Sens. Ecol. Conserv. 8 315–27

Blesser B 1969 Audio dynamic range compression for minimum perceived distortion IEEE Trans.
Audio Electroacoust. 17 22–32

Boehm C, Hanzich M, de la Puente J and Fichtner A 2016 Wavefield compression for adjoint methods
in full-waveform inversion Geophysics 81 R385–97

Bui-Thanh T, Burstedde C, Ghattas O, Martin J, Stadler G and Wilcox L C 2012 Extreme-scale UQ for
Bayesian inverse problems governed by PDEs SC’12: Proc. Int. Conf. on High Performance
Computing, Networking, Storage and Analysis (IEEE) pp 1–11

Bui-Thanh T, Ghattas O, Martin J and Stadler G 2013 A computational framework for
infinite-dimensional Bayesian inverse problems part I: the linearized case, with application to
global seismic inversion SIAM J. Sci. Comput. 35 A2494–523

Bukowski R, Sun Q, Howard M and Pillardy J 2010 BioHPC: computational biology application suite
for high performance computing J. Biomol. Tech. 21 S23

Cheng Z, Sun H, Takeuchi M and Katto J 2018 Deep convolutional autoencoder-based lossy image
compression 2018 Picture Coding Symp. (PCS) (IEEE) pp 253–7

Cyr E C, Shadid J and Wildey T 2015 Towards efficient backward-in-time adjoint computations using
data compression techniques Comput. Methods Appl. Mech. Eng. 288 24–44

De Jong W A, Bylaska E, Govind N, Janssen C L, Kowalski K, Müller T, Nielsen I M B, van
Dam H J J, Veryazov V and Lindh R 2010 Utilizing high performance computing for chemistry:
parallel computational chemistry Phys. Chem. Chem. Phys. 12 6896–920

Denis A, Jeannot E and Swartvagher P 2022 Modeling memory contention between communications
and computations in distributed HPC systems IPDPS-2022-IEEE Int. Parallel and Distributed
Processing Symp. Workshops p 10

Dillon B, Plehn T, Sauer C and Sorrenson P 2021 Better latent spaces for better autoencoders SciPost
Phys. 11 061

Doi J, Takahashi H, Raymond R, Imamichi T and Horii H 2019 Quantum computing simulator on a
heterogenous HPC system Proc. 16th ACM Int. Conf. on Computing Frontiers pp 85–93
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