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Abstract

This work unifies the analysis of various randomized methods for solving linear
and nonlinear inverse problems with Gaussian priors by framing the problem
in a stochastic optimization setting. By doing so, we show that many random-
ized methods are variants of a sample average approximation (SAA). More
importantly, we are able to prove a single theoretical result that guarantees the
asymptotic convergence for a variety of randomized methods. Additionally,
viewing randomized methods as an SAA enables us to prove, for the first time,
a single non-asymptotic error result that holds for randomized methods under
consideration. Another important consequence of our unified framework is
that it allows us to discover new randomization methods. We present various
numerical results for linear, nonlinear, algebraic, and PDE-constrained inverse
problems that verify the theoretical convergence results and provide a discus-
sion on the apparently different convergence rates and the behavior for various
randomized methods.
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1. Introduction

Solving large-scale ill-posed inverse problems that are governed by partial differential
equations (PDEs), though tremendously challenging, is of great practical importance in science
and engineering. Classical deterministic inverse methodologies, which provide point estimates
of the solution, are not capable of accounting for the uncertainty in the inverse solution in a
principled way. The Bayesian formulation provides a systematic quantification of uncertainty
by posing the inverse problem as one of statistical inference. The Bayesian framework for
inverse problems proceeds as follows: given observational data d € R¥ and their uncertainty,
the governing forward problem and its uncertainty, and a prior probability density function
describing uncertainty in the parameters u € R”, the solution of the inverse problems is the
posterior probability distribution 7 (#|d) over the parameters. Bayes’ Theorem explicitly gives
the posterior density as

s (u|d) X Tlike (d|u) X Tprior (u)

which updates the prior knowledge myior (#) using the likelihood ik (d|u). The prior encodes
any knowledge or assumptions about the parameter space that we may wish to impose before
any data are observed, while the likelihood explicitly represents the probability that a given
set of parameters # might give rise to the observed datad.

Even when the prior and noise probability distributions are Gaussian, the posterior need not
be Gaussian, due to possible nonlinearity embedded in the likelihood. For large-scale inverse
problems, exploring non-Gaussian posteriors in high dimensions to compute statistics is a
grand challenge since evaluating the posterior at each point in the parameter space requires a
solution of the parameter-to-observable map, including a potentially expensive forward model
solve. Using numerical quadrature to compute the mean and covariance matrix, for example, is
generally infeasible in high dimensions. Usually the method of choice for computing statistics
is Markov chain Monte Carlo (MCMC), which judiciously samples the posterior distribution,
so that sample statistics can be used to approximate the exact ones.

The Metropolis-Hastings algorithm, first developed by Metropolis et al (1953) and then
generalized by Hastings (1970), is perhaps the most popular MCMC method. Its popularity
and attractiveness come from the ease of implementation and minimal requirements on the
target density and the proposal density (Robert and Casella 2005, Haario er al 2006). The
problem, however, is that standard MCMC methods often require millions of samples for
convergence; since each sample requires an evaluation of the parameter-to-observable map,
this could entail millions of expensive forward PDE simulations—a prohibitive proposition.
On one hand, with the rapid development of parallel computing, parallel MCMC methods
(Wilkinson 2005, Brockwell 2006, Byrd 2010, Strid 2010, Wang 2014) are studied to acceler-
ate the computation. While parallelization allows MCMC algorithms to produce more samples
in a shorter time with multiple processors, such accelerations typically do not improve the mix-
ing and convergence of MCMC algorithms. More sophisticated MCMC methods that exploit
the gradient and higher derivatives of the log posterior (and hence the parameter-to-observable
map) (Duane et al 1987, Neal 2010, Beskos et al 2011, Girolami and Calderhead 2011, Bui-
Thanh and Ghattas 2012, Martin et al 2012, Bui-Thanh and Girolami 2014, Cui et al 2014,
2016, Petra et al 2014) can, on the other hand, improve the mixing, acceptance rate, and con-
vergence of MCMC. Another sample-based family of approaches that provide uncertainty
quantification and are well-suited for parallelization on large clusters is the various forms of
Stein variational gradient descent (Liu and Wang 2016, Han and Liu 2018, Zhuo et al 2018,
Chen and Ghattas 2020). Of related interest are particle filter methods such as those found in
Carpenter et al (1999), Van Der Merwe et al (2000), Soto (2005), Yang et al (2013 )that evolve
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particles through a dynamical system over time, updating both an estimate of the state and
uncertainty.

One approach to addressing the computational challenge in high-dimensional statistical
inverse problems pose is to use randomization, either to reduce the dimension of the optimiza-
tion problem used in estimating the maximum a posteriori (MAP) point (Le et al 2017), or to
aid in sampling from the posterior distribution (Wang et al 2018). Several methods have been
proposed which utilize randomization to accelerate the solution of inverse problems (Avron
et al 2013, Iglesias et al 2013, Le et al 2017, Wang et al 2017, 2018, Chen et al 2020a). As the
main contribution of this paper, we derive unified results of randomized inverse approaches
that apply to a broad class of linear and nonlinear inverse problems not only in the asymp-
totic regime, but also for the non-asymptotic setting. The asymptotic convergence and a non-
asymptotic error bound of various existing methods follows immediately as special cases of
the general result.

2. A unified analysis of randomized inverse problems through a sample
average approximation (SAA) lens

For the remainder of this paper, we will use lower case letters for scalar quantities («), boldface
lower case letters for vectors (u) and boldface upper case letters for matrices (A). Further, we
will use superscript lower case letters to denote sample index and subscript uppercase letters
to denote the total number of samples, i.e. X' is the ith sample and uy is a quantity depending
on N samples. Lastly, descriptions or method names will be in uppercase superscripts, such as
uMAP which is u at the MAP point, for example. This should be clear from the context.

Therefore, let u,uy € R". The posterior measure v in this case has the density 7 (u|d) with
respect to the Lebesgue measure:

™ (uld) X Tike (d|u) X T prior (u), (1)

where the likelihood is given by mj (d|u) o< exp (—® (u,d)) = exp(—3 Hd—]—'(u)”iz_l)
and the prior by Tprior o exp(— [[u — uOH%,] ). Here, F (u) is known as the parameter-to-
observable (PtO) map, an evaluation of which typically requires a solution of the forward
model (e.g. partial differential equations) governing the underlying physics. Note that this
form assumes that both the likelihood and prior are Gaussian distributions. The maximum a
posteriori (MAP) problem reads

1 1
WM = argmin 7 (wiuo,d) = 5 |d = F @) 5o+ 5w —wolpr, @)

where T' € R"*" is the prior covariance matrix and 3 € R¥*¥ is the noise covariance matrix.
Though we derive (2) from the Bayesian formulation, this optimization problem also arises in
the deterministic setting as a regularized inverse problem, though often the standard /,-norm is
used in the purely deterministic setting. The methodologies discussed here then clearly apply
in the deterministic setting with the restriction to /;-norms, though it is more instructive to
consider the Bayesian interpretation.

To the end of the paper, we denote by E the expectation with subscript as the random vari-
able with respect to which the expectation is taken. When the random variable is clear from
the context we simply omit the subscript for brevity. Let o, €,d, and A be finite dimensional
independent random variables with bounded second moments such that:

Elo]=0, Elee']=%"", E[6]=0, E[A\T]=T"" 3
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Let us define £ = [0,€,0 ,)\]T € E with joint probability distribution 7 = 75 X T X 7§ X
7. Consider the following stochastic cost function:

Te (w;u0,d,€) : f||s d+o—F(u 7H)\T(u—u0—6

Nliz+ I

(d+0' F(u )) el {d+o—Fu))

T2
+%(u—u0—5)T)\)\T(u—uo—6). (€))
Define

J (wyug,d) =B, [Te (u;u0,d,£)],
and the SAA of _# to be

1 & .
=D Je (wiuo.d.8) (5)
j=1

where &/ are i.i.d. samples from 7. Assume that both 7 and /N have a minimum and let us
define

uMAP .= argmlnj and u%[AP = arg min _Zy. ©6)

Below we study asymptotic and non-asymptotic convergence of ft%AP to uMAP,

2.1. Asymptotic convergence analysis for inverse problems

Theorem 1 (Asymptotic convergence of randomized nonlinear inverse problems).
Assume that F () is such that J¢ is a convex, twice continuously differentiable function in u
for almost every &, and measurable*. Then the following hold true:

(i) Minimizing J is equivalent to minimizing J in the sense: argmin, J = argmin, ¢.

(i) ay** —> uMAP,

Proof. For the first assertion, consider only the first term of ¢ as the second term follows
analogously. We have

%Eﬂ {(d—ka’ —F@) e (d+ o — ]—'(u))}

— 3Brr. [(d4 0 - Flw) e @+ o~ Flu))]

: w. |(@+ 0~ F@) Exr, [e"] (@ + 0 — Flu))]

E,. [(d+a _Fw)'= d+o— f(u))]

2
1
"2
S F@)'S (@~ F) + By, [072 o). @)

4 Here, measurable is with respect to the o-algebra given by the product o-algebras of the deterministic (u,uo,d) and
random variables &.
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The final term in (7) is constant with respect to # and can be ignored, leaving only the first
term of 7. Applying the same procedure to the second term of _# shows that minimizing ¢
is equivalent to minimizing 7.

We invoke Shapiro et al (2009), theorem 5.4 to prove the second assertion. It is sufficient
to verify the following conditions:

(i) Je (u;u0,d,€) is random lower semicontinuous,
(i) for almost every & € B, J¢ (u;uo,d,§) is convex in u,
(iii) 7 (u;up,d) is lower semicontinuous in # and there exists a point # € R" such that
7 (u;up,d) < oo for all w in a neighborhood of u;
(iv) the set of optimal solutions of the true problem is nonempty and bounded; and
(v) the law of large numbers (LLNs) (Feller 1971, Durrett 2019) holds pointwise for _Zy.

Clearly, J¢ is a continuous function for every &, thus random lower semicontinuous as well.
By assumption, J¢ is also convex for almost every £. Due to the boundedness assumptions (3)
and the fact that 7 is a continuous and convex function, _¢# is also a continuous and convex
function. Furthermore, taking, for example, # = u; in (20) it is straightforward to see that
F (w;ug,d) < oo for any ball with finite radius centered at #. The last two conditions are
clear. O

While convergence of the randomized cost function to its expected value is obvious by
the LLNs, we prove here the convergence of extremum of the randomized cost function.
This does not hold in general, and the rigorous theory for such convergence is the so-called
I"'—convergence. I'—convergence theory (Maso 1993, Braides et al 2002) is the study of neces-
sary and sufficient conditions for the convergence of the extremum when the cost function con-
verges. Therefore, the novelty of theorem 1 is not in the proof that the cost functions converge,
but that the randomized cost functions yield solutions that asymptotically converge to the
solution of the non-randomized cost function. While we constructively prove I'—convergence
for (4), our result follows immediately under the much stronger assumption that the prior term
already exhibits I'—convergence and the likelihood term converges continuously based on the
results presented in Ayanbayev et al (2021). In fact, the cost functions themselves do not con-
verge as there is an additional bias term in expected value of the randomized cost function,
¥, compared to the deterministic cost function, J. However, this bias term is irrelevant as
is shown in assertion i of theorem 1. This is because the bias term does not depend on u and
disappears when computing the optimality condition via taking derivatives with respect to u.

Note that very mild constraints are placed on the random variables &—only those required
for the LLN to hold. This allows great freedom in designing a valid randomization scheme.
An important special case of this theorem occurs when we consider an inverse problem with a
linear parameter-to-observable map. When the forward map F (u) is linear, the convexity and
continuous differentiability assumptions are satisfied. While requiring convexity is a strong
assumption in general, this is not an insurmountable issue for regularized inverse problems.
Note that the Hessian of 7 is given by

V2T =ViFw)E ' (Fu)—d)+V,F @) 27V, F(u)+T7".

Thus the prior covariance matrix, I', can be chosen such that Vf,j is semi-positive definite.
Indeed, this is the major role that the prior covariance plays in regularizing the ill-posed inverse
problem.
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One practical shortcoming of theorem 1 is that the cost function J¢ is not composed of the
sample average of each variable (o, e, \,d) independently, but rather it is the sample average
with samples drawn from the joint distribution &. This will prove to have theoretical con-
sequences in deriving non-asymptotic error bounds as well as practical impacts when it comes
to implementing the randomization schemes. A more practical formulation would compute
the sample average of each random variable individually. Fortunately, (Shapiro et al 2009,
theorem 5.4) can be applied four times, once for each of o,¢€, A, d, to prove the asymptotic
convergence of the following randomized inverse solution:

Ni Ny N3 MNg

oMAP . 1 ) i . zk. sl
Uy .farg'fmnmzzzz‘% (u,uo,d, [0',517)\ ,5D. 8

i=1 j=1 k=1 I=1

This flexibility in deciding how samples will be drawn will aid in both non-asymptotic conver-
gence analysis and will provide great freedom in designing a variety of randomized methods
to solve inverse problems in section 5.

To alleviate some notational burden, let us define a few new quantities.

N N
1 i( T | i(yi\T
SN.ZN;E (eNT, LN.:N;)\ (AOT, (9a)
1 B LN
&N::N;U’, ‘SN::N;S' (9b)
Written in terms of norms, equation (8) becomes
o MAP 1 _ 1 < 12
Uy :argm1n§|\d+aNf]:(u)H§N+E||u7u076N||LN. (10)

Note that (10) is equivalent to (5) when at most one of € and o are randomized and at most one
of A and é are randomized. This is because the only difference between the two cost functions
is how samples of ¢ interact with samples of o and likewise, how samples of A interact with
samples of 4. To see this for the o-€ interaction, we compute the gradient of the misfit term
for each cost function, assuming Ny = N, = N. For (5), this is

~VF@)" ;{_ﬁ [e"s"T (d+o' — ]-'(u))} (11
and for (10),
(1SN 1 1L
—VF(u) (N;€’€’> d+N;o-’—]-'(u) . (12)
Subtracting (11) from (12),
(12) — (11) = VF ()" lzN:s"s"T O'i—lZN:o*/ . (13)
N N

When o is not randomized, then ! = ¢/ =0 Vi, Jj and the difference is 0. Likewise, when &
is not randomized, e'e’” = 3! and, assuming the samples o’ = o/ when i =j, (13) is also 0.
However, (13) is in general not 0.

(2]
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2.2. Non-asymptotic error analysis for nonlinear inverse problems

In addition to proving a general asymptotic convergence of randomized inverse problems,
it is also possible to derive a general non-asymptotic error bound with the slightly stronger
assumption that the random variables are subgaussian. Subgaussian random variables are ran-
dom variables whose moment generating function is bounded above by the moment generating
function of a Gaussian, i.e. a random variable X with E[X] = 0 is subgaussian with variance
proxy o if
2
E[tX] < exp (U;z> , VteR.

A thorough explanation of the mathematical formalism can be found in Vershynin (2018). Intu-
itively, subgaussian random variables have tails that decay at least as fast as a Gaussian, allow-
ing for the consideration of a much broader class of random variables than simply Gaussian.
Non-asymptotic error analysis is concerned with developing a bound that gives the probability
of making an error greater than some tolerance. That is, we are interested in the behavior of
the tails of a distribution and the subgaussian assumption enables us to derive such bounds.
The general form of this non-asymptotic bound is useful in that it is easy to identify the key
components that go into forming the bound—giving insight into the performance of various
methods by enabling easy simplification in the case that certain quantities are not randomized.
The derived bound gives a probabilistic worst-case for finite sample size N when all of the
above randomizations are implemented at the same time. By fixing some of the quantities,
e.g. letting o = 0, the given bound can be simplified in a straightforward manner—yielding a
more insightful bound.

Additionally, we follow the standard vector norm convention of |u|l_ :=
max (ju|,...,|u,|) and ||u||, :=>"_, |u;| for a vector u € R". Matrix norms are under-
stood to be induced norms (Trefethen and Bau III 1997). Due to the equivalence of norms in
finite dimensional spaces, all the results are also valid for other norms, albeit with different
constants that possibly depend on the dimension. We use w.p. as the abbreviation for with
probability. Before we can prove the general non-asymptotic error bound given in lemma 6, a
few intermediate results are needed.

Proposition 2 (Convergence of mean-zero subgaussian random vector). Let v/, for
i=1,...,N, be independent subgaussian random vectors in R" such that E[l/i] =0,
E[v (V)] =V, and E [(v))"v] < 0c. Denote the empirical mean o := L S V. Further;
let ((N,B) :=exp (—cﬁzN) for some B> 0 and c is a constant possibly depending on the
dimension n but not on N. Then

7|l gﬁHV%HOO w.p. at least 1 — ( (N, 3). (14)

Proof. Define v/ = V37!, where 7 ~ A (0,Z). Thus, T = LS T ~N(0,%). First
from’ (Gao et al 2022, theorem 1) we have

2
Pl > A1) < Pllrl, > A1) < exp<_f1)7

cn

5 While (Gao et al 2022, theorem 1) is derived for Gaussian random matrices, it also applies to subgaussian ran-
dom matrices because subgaussian random variables have the same bound for the expected value of their moment
generating function (see (Vershynin 2018, proposition 2.5.2) for the details).
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where c is an absolute positive constant. Therefore, abusing notation to consolidate the constant
terms, we have

P[nrnw > ﬁﬁ] < exp(—c)

since /N - T has identity covariance. Next, set § = %’ and note that

P[I7l, < B|v?

| = PUTI. <8 > 1-exp(—eBN),
and this concludes the proof. O

Note that we weaken the norm from /; to /... Due to the assumption of finite dimensional
random variables, all /, norms are equivalent. We however choose to state the results using /.
norms as the [, norm is more natural in the following propositions. In this way, we can simplify
the presentation of our final result, lemma 6. Additionally, using the /,,-norm is consistent with
infinite dimensional settings in the context of a Gaussian prior measure. Indeed, as shown in
Stuart (2010), a well defined Gaussian prior, and thus the Bayesian posterior (as it is absolutely
continuous with respect to the prior), has continuous samples almost surely. The MAP problem
that we consider in this paper in fact resides in a smaller subspace: the Cameron-Martin space,
which is continuously embedded in the space of continuous functions. On the other hand, using
an /; norm could be consistent with the Besov(1,1) prior (Saksman and Siltanen 2009).

All results could be stated with /; norms, but would be multiplied by constants depending
on the dimension. This dependence on the dimension is not unique to the /; norm, however,
since the probability of failure, , has the dimension of the problem in the constant c, as is
shown in the proof of proposition 2. Our theory, regardless of which /, norm is used, predicts
higher error rates and therefore slower convergence as the dimension of the problem increases.
This dependence of the error on the problem dimension can be seen numerically in figure 3.

Proposition 3 (Convergence of subgaussian random vector outer product). Let v be a
subgaussian random vector in R" such that E [l/i (Vi)T} =Vfori=1,...,N. Define Qy to be

the random matrix formed by stacking V' in the columns and scaling by 1/ V/N. It follows that
v — V|| < BVl wp. at least 1 —2¢ (N, 3) , (15)
where c is a constant depending on n but not on N.

Proof. This result follows from straightforward algebraic manipulation of (Vershynin 2018,
theorem 4.6.1). O

An additional fact needed to prove a non-asymptotic bound is that the product of three sub-
gaussian random variables is a-subexponential with « =2/3. The following discussion on
a—subexponential random variables is based on Sambale (2020). For a more compete treat-
ment of the topic, Sambale (2020) can be consulted.

It has been established that the product of two subgaussian random variables is subex-
ponential (Vershynin 2018, lemma 2.7.7). A centered random variable X is said to be a-
subexponential (or sub-Weibull (Vladimirova et al 2020, Zhang and Wei 2022)) if it satisfies

PlIX| > 5] < 2exp(—cB),
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forany 8 >0, a € (0,2], and some positive constant c. To show that a random variable satisfies
this condition, it is sufficient to show that the following Orlicz (quasi-) norm (Vershynin 2018,
Sambale 2020) is finite:

1X|,y,, == inf[8>0:Eexp((|X]/8)") <2] < oo. (16)
When « < 1, this is a quasi-norm since it does not satisfy the triangle inequality.

Proposition 4 (a-subexponential from product of three subgaussian random variables).
Let X1,X5,X3 be subgaussian random variables. Then Y = X1X,X3 is an a-subexponential
random variable with o = 2 /3.

Proof. It suffices to show that Eexp ((|Y\)2/ 3) < 2. Without loss of generality, assume
X4, = 1. Then Eexp (X?) <2 and we have

Eexp ((|Y|)2/3) :EexP((p(l 2/3 IXo| K& X3 ‘2/3)>

X x> X
< Eexp <; + TZ + ;) (Young’s inequality for 3 variables)

=Eexp <X12> exp (Xzz) exp (Xq )
B 3 3 3
IE1 [exp (X1%) +exp (Xo?) +exp (X3*)]  (Young’s inequality again)
2

<F3
<

O

Corollary 5. Let v € R" be a zero-mean random vector such that Evv™] =V with
a-subexponential entries. Define (,, (N, 3) := exp (—cﬁ“Naﬂ). Then

I
vt <7

The proof of Young’s inequality for 3 variables can be found at (j.j 2013) Note that while
inequality (17) has the dimension n in front of the exponential, this is fixed and the probability
of committing an error greater than a fixed tolerance still decreases exponentially in the num-
ber of samples N. Though the decaying is at the slower rate o< exp (fN“/ 2) compared to the
subgaussian error rate o< exp (—N), it is not surprising because subgaussian is a special case of
a-subexponential when o = 2 (Sambale 2020). With the preceding non-asymptotic error ana-
lysis tools, we are finally in position to state and prove a general non-asymptotic error bound
for the solution of randomized inverse problems.

1
oo

>1-2n(a (N, B). a7

Lemma 6 (Non-asymptotic error analysis for randomized nonlinear inverse problems).
Let vec (271) denote a vectorization of a matrix =L Define

P := [vec (2_1); vec (T7"); e; 2]

as a vector concatenating all four vectors vec (2_1) ,Vec (I‘_l) ,e and z, where X €
Rk T e R™" e € R¥, and z € R". Define the function

g(P;u) =V, F (u) [271 (F (u) —d) —e] +1r! (u—up) —2z.

Assume that the problem g (P;u) =0, with P as parameters and u as solution, is Lipschitz
well-posed (Latz 2020) with Lipschitz constant L, and we define G (P) as the solution u. Let

9
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PP = [vec(E=7"); vee (T 0; 0],

Py = [VCC (Sy); vec(Ly); Snon; LNSN] )
) 1 N . T .1 N ; iNT i
Py = lvec(SN); vec (Ly); N;El (51) o' N;’\I (X) 51] J

where Eloo"] = X and E[66"] = T. Then

HuMAP—z‘iMAPH <B£(||2*1|]oo+||F*‘||OO+(1+B)H2*% w+(1+B)Hr*% OO)

w.p. at least 1 —10¢ (N, 3), (18)

<BL(II= o+ Ir o+ =74+ L)
w.p. at least 1 —4C (N, 8) —2k(y/3 (N, B) —2n(y/3 (N, 3) . (19)

Proof. Noting that uMAF =G (PM*") and 2 =g (IO’N), we have by the Lipschitz well-

posedness assumption,

o

and

MAP _ ~MAP
Hu — il

HOO

e =] = o @ -g (B)] <2llp-Pu|
< LB =Sl + 07 =Ll +ISvawl oo + [|Exdn]| . )-
We can bound Sy&y (and similarly for Lydy) as follows
ISwonlle = [£7F (Bisvmt -7 +7) B Hon

<[z (tavmt-z)| =]+ [=

N
oo oo

Note that 2_%&1\, is the sample average of a mean-zero subgaussian random vari-
able with identity covariance and E[E%SNE%] = 7. Therefore, applying proposition 3 to
HE%SNE% fIH and proposition 2 to ’

1 . . .
Y2 &NH along with the union bound, we obtain
o0

ISnon|l o < (ﬁz + ) HEié w.p. at least 1 —3( (N, 3).

oo

The proof of the bound HLNSNHOO < (B*+8) HI‘_%

analogously. Applying proposition 3 to the terms ||SN —-x! ||Oo and ||LN -r! ||OO along
with the union bound, inequality (18) follows immediately.
o]

w.p. at least 1 — 3¢ (N, 3) follows

To prove the bound in (19) for , it is sufficient to bound ||e|| _ and ||z||

and -]
follow immediately from proposition 3. By proposition 4, &’ (si)Tai is a zero-mean, 2/3-
subexponential random variable with covariance >~!. Then by corollary 5,

according to the definition of Py since the bounds for ISy — »! HOO

P [Jlell. < 8]z~

OJ > 1-2kG3(N,B).
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Similarly, applying corollary 5 to |z|| . yields

Pzl < 8|7

OJ >1-2nG,3(N,f).

Using the union bound to combine the bounds on ||e|| ., and ||z|| ,, with the bounds previously
Sy —%7"||__ and [[Ly — '], inequality (19) follows. O

Lemma 6 provides a general strategy for analyzing the error of various randomized
methods. When a variable is not randomized, we simply drop the corresponding terms in
equations (18) and (19), and adjust the probability accordingly. For example, when we do
not randomize via A and &, (18) becomes

<se(|= | +aep s
w.p. at least 1 —5¢ (N, 3),

MAP o MAP

oo

and (19) becomes

MAP _ ~MAP

- <se(l= .+ [="2],)

w.p. at least 1 —2( (N, 3) — 2k(y 3 (N, ).

oo

Additionally, as will be discussed in section 4.2.1, the Lipschitz constant may be affected
by the choice of randomization strategy. By choosing to randomize only some variables, the
inverse solution may have lower worst-case sensitivity (Lipschitz constant). Note that since
we are mainly concerned with small deviations, it is sufficient to consider well-posed inverse
problems where the solution depends continuously on d everywhere and depends on P in a
locally Lipschitz manner in a neighborhood of [vec (X7'); vec (T™"); 0; 0]. Note that it is
unlikely for the solution to depend continuously on P everywhere since ! acts as regular-
ization. Otherwise, the original problem would not be ill-posed. In particular, the regularizing
role that '~ plays may cause the solution of the inverse problem to be especially sensit-
ive to perturbations of r- greatly increasing the (local) Lipschitz constant compared to the
case where I'"! is not randomized. This is clear from the linear case where the condition
number of the problem takes the place of the Lipschitz constant. It is well-known that the
choice of I'"! has a significant impact on the condition number (Chu et al 2011, Diao et al
2016). Lastly, note that in the linear case, standard perturbation theory for linear systems can

be used to find an explicit bound for the relative error in terms of the condition number of
AT A+

3. Rediscovery of randomized inverse methods and discovery of new methods

In this section, we derive several different known randomization schemes as special cases of (4)
and discover new randomization schemes. We begin with a brief survey of existing randomiz-
ation schemes and then show how our framework naturally rediscovers them in the following
sections. Table 1 gives a visual summary of the randomizations used by each existing method
as well as the enumeration of a few new randomization schemes that we will discuss. The
randomized maximum likelihood (RML) (Kitanidis 1995, Oliver et al 2008, Bardsley et al
2014), randomized MAP (RMAP) (Wang et al 2018), and randomize-then-optimize (RTO)
(Bardsley et al 2014) methods each aim to reduce the cost of generating samples from the
posterior by solving a series of inverse problems—ideally, one for each sample from the pos-
terior. In the linear case, these methods coincide (Wang et al 2018). However, for nonlinear

1
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Table 1. Tabular representation of randomization schemes. The top section including
RML, RMAP, RTO, RMA, and EnKF are rediscovered methods that exist in the lit-
erature. The bottom section gives a few new methods that are discovered through our
framework.

€e AT

RML
RMAP
RTO
RMA/LS v
EnKF v
v

SRR

NIENEENNNES

RMA + RMAP
RS v
ALL

\
-
-
-

problems, RMAP generates samples from a different proposal distribution than RTO, though
both papers propose Metropolization methods to generate bona fide samples of the posterior,
while the RML method accepts all samples directly.

In a similar manner, each step of the ensemble Kalman filter (EnKF) pushes random
samples through an (indirect) optimization process to provide an estimate of uncertainty
(Evensen 2003). While the EnKF is often used as part of an iterative process, either for data
assimilation (Houtekamer and Mitchell 1998, Evensen et al 2009) or for inversion (Elsheikh
et al 2013), we show that the EnKF update formula emerges from our framework for random-
ized inverse problems.

While the RML, RMAP, RTO, and EnKF all solve the inverse problem for multiple samples
and use the generated solutions to quantify uncertainty, there are other randomized approaches
within our framework that do not require solving many inverse problems. Such an existing
method is the randomized misfit approach (RMA) (Le ef al 2017). RMA, or left sketching
(LS), uses randomization to perform dimension reduction of the likelihood. It was shown in
Le et al (2017) that this approach can reduce the number of PDE solves required to solve PDE
constrained inverse problems, thus it accelerates the estimation of the MAP point.

Going beyond the randomized methods existing in the literature, three additional ran-
domizations will be discussed in detail: right sketching (RS) which randomizes the inverse
of the prior covariance matrix via )\)\T, the combination of RMA and RMAP, and using
the full randomization given in (4), which we denote ALL. The relationship between exist-
ing methods and new methods will be discussed, along with their relative strengths and
weaknesses.

For the rest of this section, we will explicitly write each of the random variables (subset
of £ =lo,e,0 ,)\]T) that the stochastic cost function depends on. To keep notation clean, we
will use J¢ to represent the stochastic cost function for all randomization schemes. To avoid
confusion, we put the random variables used in superscript and the number of samples in
subscript. For example, a method that only randomizes o and € with N samples will be denoted
uy €. We take the expected value of 7 with respect to the unrandomized variables (i.e. we are
not making SAAs). For example, if o is not randomized, we replace it with 0 in (4). Likewise,
we replace ee” with 7!, § with 0, and AX" with T'™! in (4) as appropriate. Additionally,
we will present each method in the general nonlinear setting, but we will also explicitly write
the sample average solution in the linear case as closed form solutions are available, yielding
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additional insights. To that end, we write two equivalent formulations of the MAP estimate for
linear inverse problems.

Proposition 7. When the PtO map is linear, i.e. F(u) = Au, the solution of the MAP prob-
lem (2) can be written in two forms:

w = (ATS AT T (ATS T ) (20a)
and
wy =g+ T A" (£ + AT A") ™ (d - Aug). (20b)

Proof. The first of these identities is derived directly from the optimality condition of (2).
Specifically,

VI=A"S ' A+T Nu-A"S"'d - T 'uy=0. 1)

The second formulation can be derived from u; using the Sherman-Morrison-Woodbury for-
mula (Deng 2011) under the conditions that ' ! and 7! are invertible. O

Remark 8. This last assumption concerning the invertibility of I' ™', while seemingly trivial in
light of the fact that T' ! is written as the inverse of a matrix, will be important in the following
discussion of randomization.

Additionally, let us define new random variables:
d :=d+o' and uf) =uy+4', (22)

where o and ' are the first and the third components of &’ defined in theorem 1. These quant-
ities will be useful in the following discussion. By the LLN we have

N N
1 i a.s. 1 i a.s.
N E d ;:)O—(j d and N E ug ;—_M:o—) Uup.

i=1 i=1

3.1 Randomizing via o and &

Assuming that the order of minimization and expectation can be interchanged®, we can write

argminE_ s [Te (w;u0,d,0,0)] =Ex_ x5 [argminjg (w;up,d,o,6)| . (23)
u

u

The SAA of the RHS can then be written
N
1 o
uRMAP . — 720 — N;argininjg (u;uo,d,0',8"). (24)
This randomization approach coincides with the RMAP approach (Wang er al 2018) when

E,, [00"] = and E., [66"] =T (also known as the RML (Kitanidis 1995, Oliver et al
2008, Bardsley et al 2014)). In the linear case, we can write

u]l\{/MAP _ 7Zua .8 7
N 4 ]
i—=

® The conditions under which the interchange is valid can be consulted in (Rockafellar and Wetts 1998, theorem
14.60).
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where, thanks to proposition 7,
(uRMAP)i N (ATE*1A+I‘*1)_1 [ATzfl (d+o')+T" <u0+5i)]
= (ATS AT ) T AT T )]

Since the SAA (24) of the right hand side of (23) converges to its expectation, the analysis
from section 2 applies.

Note that if only the MAP point #MA? is needed, then the RMAP approach is not use-
ful: in fact it is very expensive while only giving an approximate solution for «MA?. How-
ever, the approach could be appealing for Bayesian settings. By choosing E_ [O'O'T] =3

and E, [6 (ST] =T, each solution (uRMAP)l is a bona fide sample of the posterior distribution
in the linear case. For nonlinear cases, (uRMAP)l are biased samples of the posterior (Wang
et al 2018), but can be corrected via Metropolization (Bui-Thanh and Nguyen 2016, Chen
et al 2020b). Note that for linear inverse problems, the RMAP approach is the same as the
RTO approach in Bardsley ef al (2014) (see an explanation from Wang et al 2018). For non-
linear problems, the theory in section 2 proves that the sample average solution converges to
the MAP point. Typical Metropolization methods feature an accept/reject step where propos-
als are generated and then accepted or rejected as samples from the posterior based on some
criteria. With this in mind, our theory and the specific methods discussed can be considered as
simply ignoring the accept/reject step. There has been some recent work on this front showing
that the error incurred due to accepting all samples may not be significant and substantial com-
putational advantage can be achieved (Blatter et al 2022a, b). The RMAP method is embarrass-
ingly parallel and is well-suited for implementation on distributed computing systems. While
we could randomize the data and prior mean without exchanging expectation and optimization
and convergence would be maintained, such a method would be of little use because we would
obtain only an inaccurate approximation of #MAP while not reducing the cost of solving the
inverse problem.

3.2. Randomizing the likelihood via e

In this section we show that the RMA (Le et al 2017) is a special case of our randomization
in (4). Indeed, if we let € ~ 7. where E,_[e] =0 and E,_ [eeT] =3"! then

™A =4 = argminE_ [J; (u;u0,d,€)]
u

1 1
=argminE,_ [2 e (d—]-"(u))”i T3 [|u —uoHiul .

The SAA of u®MA can be written as

N
1 .
utMA = = arg’fnin N 2_1 Te (usuo,d.€") (25q)

~ 2
d = Fiw)| + 3 lu—uolf, (25b)

1L
Zarg;nlanlez‘

where

Fi ::&:’T}" and cii :zgde.
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That is, the random samples, which can be combined into a random matrix, sketch the PtO map
and the data from the left. Rather than working with a potentially high dimensional misfit term,
the dimension of the problem is reduced by first multiplying through by a so-called sketching
matrix. Random sketching has been used extensively to reduce the cost of solving inverse
problems Clarkson and Woodruff (2017), Liu et al (2018), Chen et al (2020a). It was shown in
Le et al (2017) that sketching can reduce the number of required PDE solves for nonlinear PDE
constrained inverse problems. A review of randomized sketching from a statistical perspective
can be found in Raskutti and Mahoney (2016). Calculating the optimality condition in the
linear case results in

WA — (AT, [ee"| A+T ) (ATE,, [ee"]d+T o). (26)
By letting
A:=c"A and d:=£"d,

we can rewrite (26) as

uRMA — (IE,re [ATA} +I‘_l>_l (Eﬂs [/lT;l] +I‘_1u0)

3.3. Randomizing via o, and e’

If we combine the RMA and RMAP approaches into a single stochastic optimization prob-
lem, we discover a new method which we will denote RMA+RMAP. Specifically, consider
the problem directly arising from randomization of (4) and define the solution using the
RMA-+RMAP method to be

4RMARMAP . 0.¢,8

u =argminEr, xr, x5 [Te (su0,d,0,€,6)]

u

. 1 2
—argminEr, y . xrs [i HeT d+o f]-'(u))Her 5 =g ,5“%_,} ,
u

and the corresponding SAA solution

N
RMA+RMAP . o,8,86 .1 . D
uy =uy = argmin E Je (u,uo,d,o- NN )

u .
i=1

1SNl

Allowing for the interchange of optimization and expectation as in the RMAP approach
along with independent SAAs of each random variable, the following variant sequences also
converge.

. 4 2 A
el (d+o' —]—"(u))H2+ 3 |u—uo— &' ||i,} .

1< R i 1 i
e, Sy 4| 0o -+ s-olh] e

RMA+RMAP, _ | - A ;T ; 2 1 2
Uy = 47 2_drgmin E EHE (d+o f}'(u))quLEHuquf& i |-
=1 Y j=1

=

(28)
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We would like to point out (28) is perhaps the most intuitive way to combine RMA and RMAP.
Randomization of the noise covariance matrix acts as a random projection (LS) while the
randomized prior mean and data aid in sampling from the posterior. Note that (28) arises as
a variant of the loss function defined in equation (10) by exchanging the optimization and
expectation of only o and §. On the other hand, (27) would likely yield inaccurate results as
it is the sum of solutions where the PtO map and data have been projected onto a one dimen-
sional subspace: thus the prior dominates each solution. In the linear case, u%%AJrRMAPZ can be
written as

—1
M N

u[l\{]l)\l/tI/IA+RMAP2 _ %Z %Z (AJ')TAJ_,_I\A %Z(Aj)T(ei)Tdi + T ul)

i=1 j=1 j=1

Clearly we also have convergence to the MAP point of other combinations, such as random-
izing only one of the data or prior mean, but their enumeration here is omitted in the interest
of space.

3.4. Randomizing the prior via AXT

Here we propose a randomization scheme based on randomizing r' though A ~ 7 where
Ery [A]=0and E,, [AX"] =T"". Let

uBSY =y = argminE,, [J; (u;u0,d,\)]
u

. 1 1 2
=argminE,, [2 de}"(u)sz,, +3 AT (u —uo)|l,|- (29)

The reason for designating this method ‘RS_UT1" is due to its relationship with the RS approach
(see section 4.1). Then the SAA reads

N
1 .
u- = = argminNZJg (u;uo,d,€")
“ i=1
N
! 1 1 T 2
= argmmﬁzi |d — F(u)|[3-1 + > H()\ ) (u —uo)Hz. (30)
u .

In the linear case, the optimality condition yields the following solution
WU = (ATS T A, [AAT]) T (AT By [ANT ).

This approach can be thought of as sketching the prior from the left.

4. Optimize, transform, then randomize

An important observation about the methods discussed so far is that the linear settings are
solved using u; given in (20a). That is, to show the equivalence of the solution of the ran-
domized cost function to the solution of the corresponding method in the literature, one only
needs to consider the optimal solution (20a). Additionally, the SAA of the cost function is
exactly the same as replacing the expectations in form u; with their respective SAAs. The
next methods require form u; in (20b) to see the equivalence of the randomized solution and
the corresponding method given in the literature—where the Sherman-Morrison-Woodbury

16
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formula is applied to the optimality condition before making SAAs. As u; is only equivalent
to u; in the linear case, we will restrict the following discussion to linear inverse problems.

4.1. Randomizing via ww —revisiting AXT

Since we are now considering schemes derived from randomizing u,, we introduce a new
random variable, w, defined such that E [w] =0 and E, [wa} =T'. By taking advantage
of the asymptotic convergence of the SAA of E [wa] , we have

N
%Zwi (Awi)T ﬁ E. [waAT] =TA", (3la)
i=1
1 al ] i\T as
n Y (Aw) (Aw') " 5 By [AwwTAT] = ATAT. (31b)
i=1

Combining (20b) and (31) gives

N

v -
ulS = ul =up+ (;Zwi (.Awi)T> (E + %Z (Aw') (Awi)T> (d— Aug), (32)
i—1

i=1

which is the same as sketching the PtO map A from the right or sketching the transpose of the
PtO map from the left.

Lemma 9 (Asymptotic convergence of RS). Let uX’ be defined in (32) and assume that
Er, [)\)\T] (where A is defined in section 2) is invertible. Then

a.s.
ulS WX yMAP g N — oo,

Proof. Beginning with equation (2) and randomizing only I' ! through A, the optimality con-
dition is

W= (AS AL E,, [AAT]) T (ATS T A+ By [AA 1)

Since E [A)\T] is assumed to be invertible, this can be rewritten using the Sherman-
Morrison-Woodbury formula in the form u; as

u' =g+ (Eny [AXT]) 7 AT (B4 A(Eny [ANT]) A7) (@ Au).
Before making an SAA, note that

(Eey PAT)) ' = (07) " =T = ).
Then,

w=u" =uy+Er, [wwT| AT (S + AR, [ww'] AT) “(d - Aug).
Since matrix multiplication and matrix inversion are continuous functions,

WS RS =,

by the continuous mapping theorem (Van der Vaart 2000, theorem 2.3). O

17
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The key step here is recognizing that, asymptotically, sampling from 7 and solving using
form u; (20a) gives the same results as sampling from 7, and solving using form u, (200).
However, lemma 9 does not imply that u$ using form u; is equivalent to 3 using form u; for
a finite N. Indeed, when N < dim (u), u$ cannot be rewritten in the form u, since

Ien AT .
rank Nj_zlwf(wf) <N <dim(u).

This implies that the sample average of E . [wa] is not invertible, breaking an assumption
of lemma 9 and showing that uy; does not satisfy the optimality condition of (2). Here, it is
important that r'is invertible, otherwise u; # u, and the randomized schemes discussed
here have no hope of converging to u*.

4.2. Randomizing via o, 8, and ww"

If in addition to RS, we use (22) to randomize d and u in (32), and define

—1

i P T [y AT 1 j NT
(NS = w0 = w4 N;wj(/lw/) 2+N;(ij>(“4wj)

x (d — Aub)., (33)

we rediscover the well-known EnKF update formula for a single member of the ensemble
(Evensen 2003). Notice here that the sketching of A from the right is fixed for each random
sample d’ and u. In the language of the EnKF, the sample prior covariance matrix is fixed for
all members of the ensemble. Our framework recovers the update formula for a single step of
the EnKF for each member of the ensemble. The EnKF is often used in the data assimilation
community to propagate the state of a dynamical system while incorporating any measure-
ments. At each timestep, (33) is applied to each member of the ensemble. In the inverse prob-
lems community, the iterative technique using the EnKF is referred to as ensemble Kalman
inversion (EKI) (Iglesias et al 2013, Chada et al 2020). The EKI approach yields samples from
the posterior in the linear case after just a single application of (33) (Iglesias et al 2013).

As with RS, convergence to the MAP point only holds asymptotically, with special sens-
itivity to N, since the validity of (uf,NKF)l as an optimal solution of (2) requires N to be large
enough to ensure invertibility of all matrices involved. The reason for this can be understood
by investigating what RS (and thus the EnKF) is doing to the prior covariance matrix and
viewing this through the lens of regularization.

4.2.1. RS from the left as randomized regularization. ~ Consider again the form u; given
in (20a):

w = (AT AT T (ATS a4 T ).

While the randomized prior (30), RS (32) and EnKF (33) methods still fall under the asymp-
totic analysis given in section 2.1 for linear inverse problems, a practical and theoretical issue
arises due to the regularizing role that T™" plays. The inverse of the prior covariance, I'"",
can be considered to be a regularization operator when viewed through the lens of determ-
inistic inverse problems and is indeed equivalent to a Tikhonov regularization strategy (Engl
et al 1989). In the deterministic setting, the role of regularization is often to ‘damp out’ highly
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oscillatory modes caused by the rapidly decaying spectrum of .A—modes that are highly pol-
luted by noise. While asymptotic analysis (see theorem 1) establishes the convergence of these
aforementioned methods, it is incapable of explaining why these methods could fail for finite
sample size N. This is where non-asymptotic analysis shines. Indeed, lemma 6 shows that the
successful (small error) probability requires quite a large number of samples. According to
remark 4.7.2 of Vershynin (2018), the number of samples required to accurately estimate the
covariance matrix is proportional to /3> where n is the dimension of the matrix and 3 is the
tolerance. This is not surprising from a regularization point of view as the sample covariance
needs to closely approximate the true covariance in order to adequately perform its role as a
regularizer.

As a concrete example, consider the simple case where I' ! =aZ with a>0. Letting

7%A = USV" be the SVD of the whitened PtO map, the first term of u; can be written
(VSVT 4T = (V(S*+aZ) V") = VDV,

where D is the diagonal matrix with the ith diagonal element given by D; = . Comparing

SZ+
to the case of no regularization, we can see that the inverse of the prior covariance shifts the
spectrum of ATX ! A upward by the constant «.. Furthermore, upon inverting, o > 0 ensures

that the denominator of &—— + is not too close to 0, keeping the inverse solution from blowing

up as Si,- — 0. Now, con51der the RS_U1 randomization of I'"' proposed in (30)—the same
randomization as RS when viewed in the u; form (sketching the prior from the left):

I '=E., [A\"] =

> (X

i=1

2\~

As we saw before, this randomization converges as N — oo, but the convergence rate
O(1/+/N) of a SAA is notoriously slow. So how does this slow convergence affect the reg-
ularization strategy? Clearly when N < dim (u), the regularization is not full rank and there
may be dim (z) — N modes of ATX ™' A left unregularized, assuming the random matrix has
linearly independent columns. Even in the case when N > dim (u), slow convergence of the
SAA leaves modes underregularized leading to oscillatory solutions as seen in figures 12(d)
and (e) for the 1D deconvolution problem. This can also be seen explicitly in figure 1(a) where
the spectrum of the sample average inverse covariance is plotted against the spectrum of the
true prior inverse covariance for various N.

In figure 1(a), we consider the case where I' = Z and dim(u) = 1000. Because randomiz-
ing the inverse of the prior covariance results in a poor performing regularizer, solutions using
RS or a single step of the EnKF exhibit highly oscillatory behavior when choosing N to be
of reasonable size, at least for the identity prior. In problems where a decaying prior spec-
trum is desirable, randomization of the prior has a less pronounced effect on the quality of
the inverse solution. For example, the advection-diffusion PDE constrained inverse problem
detailed in section 5.3 with the BiLaplacian prior shows good results with RS. The similarity
of the sample average spectrum to the spectrum of the true prior inverse covariance can be
seen in figure 1(b) for the BiLaplacian prior. Additionally, problems where the PtO map has a
slowly decaying spectrum as in the x-ray tomography problem (section 5.2) may also be less
sensitive to inaccurate approximations to I' !

Lest we give the impression that all hope of obtaining high quality inverse solutions is
lost when randomizing the prior covariance with few samples, there is extensive research
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Figure 1. Convergence of spectrum of the sample average approximation of the inverse
prior covariance for the case where I' = Z € R'%%%10% (3) and T" is the BiLaplacian
(b). When N =100, there are fewer samples than the dimension of the parameter and
some modes are left completely unregularized. Even when there are more samples than
the dimension of the parameter, this does not guarantee acceptable convergence for
SAA. This shows that the sample average of the inverse prior covariance converges
slowly to the true inverse prior covariance. However, when the spectrum of the inverse
prior covariance decays, the sample average approximation more closely matches the
true inverse prior covariance with fewer samples.

into methods of modifying the sample covariance matrix of the EnKF to address the rank-
deficiency problem. While such methods do not fall under our framework for asymptotic con-
vergence, it is nonetheless useful to mention them here, though we defer to the references
for detailed treatment. The two main approaches are localization and covariance inflation.
Localization addresses the issue of spurious long-range correlations induced by having few
random samples and is performed by element-wise multiplication of the sample prior covari-
ance matrix by a sparse covariance matrix ensuring locality of the correlations (Petrie 2008,
Pourahmadi 2011, Farchi and Bocquet 2019). The second approach of covariance inflation
adds a full-rank covariance matrix to the sample covariance matrix at each iteration of the
EnKF to prevent ensemble collapse and solve the rank-deficiency problem (Anderson 2007,
Whitaker et al 2008, Elsheikh et al 2013, Schillings and Stuart 2017). In the limit of infinite
samples, however, these approaches are not guaranteed to recover the MAP point.

5. Numerical results

In this section we show numerical results for a variety of inverse problems demonstrating
the asymptotic convergence of various methods. As the possible number of randomized vari-
ants would be unnecessarily burdensome to enumerate, we will focus on a few key methods:
RMA (25), RMAP (24), the combination of RMA and RMAP (28), RS (32), the EnKF (33),
and randomizing everything (10) (listed as ALL). It is important to keep in mind that we are
not advocating for or against the use of any particular method. The purpose of this section is
two-fold: to serve as numerical validation of the asymptotic convergence of each method and
to provide practical insight into the behavior of each method on a variety of problem types as
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we show no one scheme is best for all problems. In particular, we find empirically that meth-
ods randomizing I'~! such as RS, the EnKF, and ALL generally have very poor performance
and require many more samples than the dimension of the problem in order to provide suitable
results for several problems. The reason for this has been discussed at length in section 4.2.1.
These methods do however exhibit asymptotic convergence to the MAP solution as predicted
by our theoretical results.

To explore the performance and convergence of the various methods, we consider a vari-
ety of prototype problems with different characteristics. The 1D deconvolution problem with
scaled identity prior covariance is a relatively simple inverse problem that provides easily
digestible visualizations of the convergence for each method. X-ray tomography is a mildly
ill-posed two dimensional imaging problem with fewer observations than parameters. The
fact that it is only mildly ill-posed exposes interesting effects in the context of randomization.
We also show the convergence of each method for a linear time dependent PDE-constrained
inverse problem with PDE-based prior covariance on a domain with a hole. Finally, we con-
clude with an example demonstrating convergence on a non-linear elliptic PDE-constrained
inverse problem.

In problems with more than one randomization, such as EnKF and RMA+RMAP, each
expectation can be approximated by a separate sample average. However, exploring the effect
of choosing a different number of samples for each random variable is outside the scope of this
paper and serves only to obscure the asymptotic convergence property that we aim to show in
this section. Therefore, all methods assume that the number of random samples is the same for
all random variables, i.e. N = N = N, = N3 = Ny. In addition, the relative errors presented are
with respect to uMAP, not the true solution, emphasizing the errors induced by randomization
rather than errors due to other effects. This is due to the fact that the theory presented shows
convergence to uMAP,

5.1 1D Deconvolution problem

Deconvolution, the inverse problem associated with the convolution process, finds enormous
application in the signal and image processing domains (Kundur and Hatzinakos 1996, Ryan
and Debbah 2007, Swedlow 2013). For demonstration, we consider the 1D deconvolution
problem with a 1-periodic function given by:

fx) =sin(2mx) 4+ cos(2mrx) x€10,1].

The domain is divided into n = 1000 sub-intervals. The kernel is constructed as (Mueller and
Siltanen 2012):

U(x) = C, (r+a) (x—a)?,

where a = 0.235 and the constant C,, is chosen to enforce the normalization condition (Mueller
and Siltanen 2012). Synthetic observations are generated with 5% additive Gaussian noise. We
choose to randomize using the Achlioptas distribution (Achlioptas 2003, Le et al 2017), an
example of an [—percent sparse random variable with / = 2/3 and entries in {—1,0,1} with
equal probability. The reconstructed functions obtained by different randomization approaches
are shown in figure 12 and the relative errors are given in table 2. It can be seen that the RS
and EnKF methods give the least accurate results as evidenced in table 2. This is because
randomizing the inverse of the prior covariance results in poor performance as a regularizer,
providing numerical confirmation of the discussion in section 4.2.1. Other methods perform
reasonably well. While not all methods perform equally well, all methods converge as more
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MAP

Table 2. Relative error for various randomized methods compared to the u solution
for 1D deconvolution.
Relative error (%)
Method N=10 N=100 N=1000 N=10000 N =100000
RMAP 7.74 2.39 0.80 0.25 0.07
RMA 355 4.2 1.8 0.42 0.18
RMA+RMAP 417 9.0 1.7 0.80 0.15
RS 917 295 106 314 9.8
ENKF 896 352 100 31.9 9.7
ALL 158 33875 844 333 9.3
1D Deconvolution
102 4
101 4
= RMAP
10° 5 s RMA+RMAP
5101 e ENKF
2 — AL
<
~©1072
1073 4
‘0t 102 10 106 10°
N

Figure 2. Relative error plot for 1D Deconvolution problem with Achlioptas random
variable.

samples are taken and this is consistent with our asymptotic convergence results as seen in
figure 2.

According to lemma 6, the probability of committing an error greater than some tolerance,
say 3, depends on the number of degrees of freedom, or mesh size, denoted n. This arises
from the fact that a factor like % is buried inside the constant c¢. Additionally, recall that we can
move constants between the probability of failure, ¢ (N, 3), and the tolerance by relabeling the
tolerance as was done in proposition 2 to move % into (. That is to say, by letting 8 = nfy,
we can move the mesh dependence onto the tolerance rather than the probability of failure.
Therefore, as the mesh is refined and there are greater degrees of freedom, our theory predicts
that greater errors will be made with a fixed probability of failure. This is indeed the case as
is shown in figure 3 the relative error between the EnKF solution as a function of number
of samples is shown for several mesh sizes. As the mesh is refined, we still see asymptotic
convergence toward the MAP point, though the relative error value is higher for more refined
meshes. Each of the other randomized methods exhibit similar behavior, validating the non-
asymptotic error analysis given in section 2.2.
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Figure 3. Shown here is the relative error between the EnKF solution as a function of
number of samples, N, and the MAP solution for the 1D deconvolution problem. As the
mesh degrees of freedom, n, increases, so does the error. This behavior is predicted by
lemma 6.

Table 3. Relative error for various randomized methods compared to the #™AF solution
for the x-ray tomography problem.
Relative error (%)

Method N=10 N=100 N =1000 N =10000 N =50000
RMAP 6.44 6.44 6.44 6.44 0.04
RMA 94.17 74.95 39.42 31.07 4.02
RMA+RMAP 96.64 77.94 40.35 30.89 4.02
RS 191.87 373.07 176.02 51.87 22.43
ENKF 324.27 352.58 178.58 52.25 21.97
ALL 95.12 71.30 80.50 60.36 23.60

5.2. X-ray tomography

In x-ray tomographic imaging, X-ray projections of an object are captured at multiple angles
and the inverse problem is to recover the internal structure of the object from the projection
data (Mueller and Siltanen 2012). We consider the canonical phantom image of size 64 x 64
pixels with 45 measurement angles uniformly divided over the range [0, 7r]. With this number
of measurement angles, the PtO map has shape 64 x 45 by 64 resulting in fewer observa-
tions than parameters (pixels). A scaled identity prior covariance is once again considered.
Measurements are corrupted with 1% additive Gaussian noise.

The results are shown in figure 13 while table 3 and figure 4 show the relative error for differ-
ent methods. Two observations are in order. First, results show asymptotic convergence of all
methods, though convergence is noticeably slower for RMA and RMA-+RMAP than in previ-
ous problems. This occurs because x-ray tomography is only a mildly ill-posed inverse problem
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Figure 4. Relative error plot for x-ray tomography problem.
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Figure 5. The singular values of the parameter-to-observable map for an x-ray tomo-
graphy problem decay rapidly at first and then slowly until the last few singular vectors.
This shows that the effective rank of the PtO map is close to the minimum dimension.

with the spectrum of the PtO map decaying slowly after an initial fast decay (figure 5). This
means that the effective rank of the PtO map is close to the dimension of the data in the case
presented. While mildly ill-posed problems are usually easier to work with, this can present
a challenge for randomized methods, particularly methods such as RMA that randomize the
misfit term. Recall that for any two matrices X and Y, rank(XY) < rank(X). By projecting the
misfit term onto a lower dimensional subspace, important information is lost in the case where
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A is has effective rank close to the dimension of the data. This indicates that such a method is
better suited for problems that are severely ill-posed.

The second observation is that the error for randomized prior methods initially increases
then decreases as the number of samples increases. In previous problems, we have used a direct
linear solver to find the solution to the stochastic optimization problem. In this problem, we
use an iterative conjugate gradient (CG) solver to showcase how solver choice interacts with
the randomized approaches. The main difference that can be seen here between a direct solver
and an iterative solver such as CG is that a direct solver will invert possibly tiny eigenvalues of
an ill-conditioned matrix while an iterative solver will often stop early, depending on the con-
vergence parameters set, acting as an iterative regularizer (Hanke and Nagy 1996, Piccolomini
and Zama 1999, Landi et al 2016). This effect is particularly pronounced on the randomized
prior methods such as RS and EnKF where the low rank randomized prior causes the iterative
solver to stop earlier with fewer samples. This causes the error of RS and EnKF to increase
initially until the regularization has sufficient rank, then the methods converge asymptotically
to uMAP, In the case of x-ray tomography, full-rank regularization is not needed due to the
mildly ill-posed nature of the problem.

5.3. Initial condition inversion in an advection-diffusion problem

We now consider a linear inverse problem governed by a parabolic PDE based on the method
used in UT Austin and UC Merced (2017). The parameter to observable map (advection-
diffusion equation) maps an initial condition # € L?(2) to pointwise spatio-temporal observa-
tions of the concentration field y(x, ¢). The advection-diffusion equation is given by:

yi—rAy+V-Vy=0 inQx(0,7),
y(,0)=u in{, (34)
kVy-n=0 ondQ x (0,7),
where,  C R? is a bounded domain, x > 0 is the diffusion coefficient, 7 > 0 is the final time.

The velocity field V' is computed by solving the following steady-state Navier—Stokes equation
with the side walls driving the flow:

1
—oo ATV +T-VF=0 i,
V=0 inQ, (35)
v=g on 0f2.

where ¢ is the pressure, and Re is the Reynolds number. The Dirichlet boundary condition g €
R? is prescribed as g = [0, 1] on the left side of the domain, and g = [0,0] elsewhere. Velocity
boundary conditions are not prescribed on the right side of the boundary. The values of the
forward solution y on a set of locations {x,x2,...,x,} at the final time T are extracted and used
as the observation vector d € R¥ for solving the initial condition inverse problem. Synthetic
observations are generated by corrupting this observation vector with 1% additive Gaussian
noise. The observation data and the velocity profile used in the study are shown in figure 6.
Upon discretization, the operator A maps the initial condition u € R” to the observation d €
Rk,

In addition, we define the prior covariance matrix to be the PDE-based BiLaplacian prior
defined as:

I=(61++V-(6V))*, (36)

25



Inverse Problems 39 (2023) 075010 J Wittmer et al

Velocity profile Observation at T=3s
- N LN e 1.0 0.6
SRR s s
> > > »
NeCTES
*$:* > 0.8 0.5
> >

v
v
v

ooyt

0.6

aany

0.4

£
AR w e ass

0.2

<
ST AT AL
<

Pt DR Dr o R i

A et e et TG T 0.0 0.0

Figure 6. The velocity profile and observation data used for inversion.

Table 4. Relative error for various randomized methods compared to the #™AF solution
for 2D linear advection-diffusion initial condition inverse problem.
Relative error (%)

Method N=10 N=100 N =1000 N =10000
RMAP 5.02 1.96 0.49 0.15
RMA 53.38 15.16 5.30 1.15
RMA+RMAP 80.14 14.48 7.05 1.30

RS 59.58 26.78 7.33 5.06
ENKF 74.09 18.76 7.10 5.43
ALL 91.58 197.66 193.25 9.66

where, § governs the variance of the samples, while the ratio 7 governs the correlation length.
0 is a symmetric positive definite tensor to introduce anisotropy in the correlation length.

Following UT Austin and UC Merced (2017), a mixed formulation employing P2 Lag-
range elements for approximating the velocity field and P1 elements for pressure is adopted
for solving (35) to obtain the velocity field. The computed velocity field is then used to solve
the advection-diffusion equation, (34). P1 Lagrange elements are used for the variational for-
mulation of the advection-diffusion equation.

The observation vector d is computed at time ¢ = 3 s with m = 200 observation points. For
this problem, there are n =2868 degrees of freedom. The diffusion coefficient is £ =0.001
and the parameters of the BiLaplacian prior (36) are § =8, y=1,and © =T.

The MAP solution #MA? is shown in figure 8. The condition number of I'"" is of the order
of 10°. The results of different randomization schemes are shown in figure 14 in the appendix.
Table 4 and figure 7 give the relative error with respect to uMAP. As expected, RMAP gives
the most accurate results followed by LS and the RMA. In contrast to the previous examples
considered, the RS and EnKF approaches gives reasonably good results as evident from table 4
and figure 14 in the appendix.

This is due to the faster convergence of the randomized prior covariance to the true prior
covariance for the BiLaplacian prior. This also points to the fact that care should be exer-
cised when choosing a randomized method for a particular problem. For inverse problems
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Figure 7. Relative error plot for 2D linear advection-diffusion initial condition inversion.

True solution P solution RS,N=100

Figure 8. From left to right are true solution, uMA? solution and right sketching solu-
tion for linear advection-diffusion initial condition inverse problem. With only 100 ran-
dom samples, right sketching can obtain a reasonably good initial condition reconstruc-
tion (26% relative error). This behavior indicates the fast convergence of the randomly
sampled prior inverse covariance to the true prior inverse covariance.

where a prior with a decaying spectrum is desirable, the EnKF or RS approach may perform
well.

5.4. Nonlinear parameter inversion in a steady-state heat equation

To show the convergence of various methods for nonlinear inverse problems, we consider
a nonlinear PDE constrained parameter inversion problem. In the previous section, we con-
sidered an initial condition problem where the data depended linearly on the parameter, even
though the statement of the problem itself was rather involved. Now we consider a simple
to state but extremely ill-posed nonlinear inverse problem. Given a steady-state temperature
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Table 5. Relative error of MAP solution for various randomization schemes compared
MAP

to the u solution.
Relative error (%)

Method N=10 N =100 N =1000 N =5000
RMAP 19.50 14.66 16.39 16.17
RMA 24.97 8.12 4.19 3.08
RMA-+RMAP 17.51 17.82 16.27 16.49
RS 47.06 110.88 107.46 14.44
ENKF 20.82 18.26 17.54 19.55
ALL 26.13 15.63 19.45 19.62

distribution T (x,y) and boundary conditions, invert for the conductivity everywhere in the
domain. The governing equations are given by

V- (e"VT) =f inQ,
T(x,0) =2(1 —x),
T(x,1) =2x,
VT -n=0 ondQ\{y=0,y=1}.

While this equation is linear in the temperature distribution 7', the (log-) thermal conductivity
that we are inverting for, k, appears non-linearly. That is, the parameter-to-observable map is
nonlinear. The heat equation makes for an excellent test problem for inverse solvers since the
dependence of the steady-state temperature distribution on the conductivity is rather weak.

We again follow a mixed formulation where the temperature distribution is modeled using
P2 Lagrange elements and the parameter is modeled with P1 Lagrange elements. With a mesh
size of 64 x 64 elements, this results in discrete variables y € R!®%*! and x € R*??>, The BiL-
aplacian prior defined in (36) is also used here with § = 0.5, v =0.1, and the anisotropic dif-
fusion tensor

0, sin” o (61 — 6,)sinacos

0= (6, — 6,)sinacos 6, cos? ’

e
where 6; = 2.0, 6, = 0.5 and o = 7 /4. Lastly, we consider an inhomogeneous case where
f = 50sin* (wx)cos? (y).

A few remarks are in order to understand the rather unimpressive results in table 5 and
figure 10. First, recall that the results shown here are for an extremely difficult problem. The
inverse of the diffusion equation is notoriously ill-posed, as it amounts to the inverse of a com-
pact operator. That is, small perturbations in the data can lead to drastically different inver-
sion results. Indeed, we show an even more difficult problem where the task is to infer 4225
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Figure 9. The true log-conductivity (x) and 100 sparse observations. Observing the
temperature distribution only in the lower half of the domain makes inverting for the
log-conductivity in the entire domain a more difficult task.
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Figure 10. Relative error plot for nonlinear elliptic parameter inverse problem.

parameters from only 100 measurements which are recorded in only half of the domain
as shown in figure 9. With so few measurements, adding noise to the data as in RMAP,
RMA+RMAP, ENKEF, and ALL may not lead to desirable results.
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Figure 11. Solutions to the nonlinear diffusion inverse problem for two different meth-
ods. Visually, these methods give nearly identical results compared to the ™4 solution
even though numerically, they have relative error ~20%.

Secondly, while there is still ~20% error for these methods, the MAP estimate for each
of these is still reasonably good visibly as seen in figure 11. The high relative error is in part
due to the small norm of the #MAP solution. Simply shifting the parameter up by a constant
changes the norm of the denominator in the relative error formula

relative error := Huf\,meth0d> - uMAPH / HuMAPH .

In addition to the numerical relative error, it is important to consider the ‘eyeball norm’.
Figure 11 shows that the estimated solutions are still quite close to the #™AP solution,
especially given the extreme ill-posedness. Despite this shortcoming of data-randomization
methods, recall that the main advantage of additively randomizing the data and prior
mean is to aid in sampling from the posterior. In other words, we are most inter-
ested in accelerating uncertainty quantification, not getting the SAA MAP estimate error
down to machine precision. These randomization schemes may still find use in such
applications. Comprehensive visual results can be found in figures 15 and 16 of the appendix.

6. Conclusions

By viewing the randomized solution of inverse problems through the lens of stochastic pro-
gramming and the SAA, we developed a unified framework though which we can analyze the
asymptotic convergence of randomized solutions of linear inverse problems to the solution
obtained with its deterministic counterpart. This framework allowed us to prove the asymp-
totic and non-asymptotic convergence of the minimizer of a general stochastic cost function to
the minimizer of the expected value of the stochastic cost function. Several well-known meth-
ods for introducing randomness into linear and nonlinear inverse problems were recovered as
special cases of this general framework. Viewing the solution to randomized inverse problems
through the lens of the SAA also allowed us to prove a novel non-asymptotic error analysis
that applies to all randomized methods discussed. We also show that while all of the methods
presented converge asymptotically, the results can be quite poor if an insufficient number of
samples are drawn. While this observation is easily understood through our non-asymptotic
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error analysis, it is not possible from an asymptotic view point. In particular, we showed that
randomizing the prior covariance matrix may not be a good idea for certain priors due to the
regularizing role that the prior plays in the solution of inverse problems. This is due to the
potentially slow convergence of random matrices to their expected value, depending on the
spectrum of the expected value matrix.

The convergence of all schemes was shown numerically for a variety of linear and nonlinear
inverse problems, including 1D and 2D problems governed by algebraic and PDE constraints.
Through these sample problems, we explored the performance of 6 methods, 3 rediscoveries
and 3 new methods, numerically studying the convergence of each method to the MAP point.
The results indicate that the RMAP approach has the fastest convergence. While this is evid-
ent from the numerical studies, each sample of the RMAP method requires the solution of an
inverse problem, making the overall cost of the RMAP method potentially very high. While
the main contribution of this work is in unifying the theory of convergence to the MAP point,
we note that the utility of RMAP, RMA-+RMAP and EnKEF, is in generating (approximate)
samples from the posterior as shown in other cited works. The variety of sample problems con-
sidered shows the varying performance of each algorithm and explores the sensitivity of each
method to different problem features, such as the poor performance of RMA on the x-ray tomo-
graphy problem. These numerical observations along with the asymptotic and non-asymptotic
theory combine to give practitioners the tools to design new randomized methods for solv-
ing inverse problems or to choose the most appropriate existing method for their particular
problem.
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Appendix. Figures

1D Deconvolution Problem
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Figure 12. Solutions to 1D deconvolution problem with mesh size n = 1000 using vari-
ous randomization schemes with scaled identity prior. This prior works sufficiently well
for those randomization schemes that do not randomize the prior covariance (RMAP,
RMA, RMA+RMAP), but performs poorly for RS, EnKF, and ALL which randomize
the prior covariance. Random sampling is performed via an Achlioptas (2/3—sparse)

random variable.
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Figure 13. Solutions for various randomization approaches for an x-ray tomography
problem with Gaussian random variables.
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Figure 14. Solutions for various randomization approaches for a linear advection-
diffusion initial condition inverse problem with Gaussian random variables.
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Figure 15. Solutions for various randomization approaches for a nonlinear diffusion
parameter inversion problem with Gaussian random variables.
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meter reconstructions until N = 10000 samples, the state in the lower half of the domain,
where the 100 measurements are taken, look similar to all the other methods.
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