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Background: We performed a systematic review that identified at least 9,000

scientific papers on PubMed that include immunofluorescent images of cells from

the central nervous system (CNS). These CNS papers contain tens of thousands

of immunofluorescent neural images supporting the findings of over 50,000

associated researchers. While many existing reviews discuss different aspects of

immunofluorescentmicroscopy, such as image acquisition and staining protocols,

few papers discuss immunofluorescent imaging from an image-processing

perspective. We analyzed the literature to determine the image processing

methods that were commonly published alongside the associated CNS cell,

microscopy technique, and animal model, and highlight gaps in image processing

documentation and reporting in the CNS research field.

Methods: We completed a comprehensive search of PubMed publications using

Medical Subject Headings (MeSH) terms and other general search terms for

CNS cells and common fluorescent microscopy techniques. Publications were

found on PubMed using a combination of column description terms and row

description terms. We manually tagged the comma-separated values file (CSV)

metadata of each publication with the following categories: animal or cell model,

quantified features, threshold techniques, segmentation techniques, and image

processing software.

Results: Of the almost 9,000 immunofluorescent imaging papers identified

in our search, only 856 explicitly include image processing information.

Moreover, hundreds of the 856 papers are missing thresholding, segmentation,

and morphological feature details necessary for explainable, unbiased, and

reproducible results. In our assessment of the literature, we visualized current

image processing practices, compiled the image processing options from the

top twelve software programs, and designed a road map to enhance image

processing. We determined that thresholding and segmentation methods were

often left out of publications and underreported or underutilized for quantifying

CNS cell research.

Discussion: Less than 10% of papers with immunofluorescent images

include image processing in their methods. A few authors are implementing

advanced methods in image analysis to quantify over 40 different CNS

cell features, which can provide quantitative insights in CNS cell features

that will advance CNS research. However, our review puts forward that

image analysis methods will remain limited in rigor and reproducibility

without more rigorous and detailed reporting of image processing methods.
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Conclusion: Image processing is a critical part of CNS research that must be

improved to increase scientific insight, explainability, reproducibility, and rigor.

KEYWORDS

image processing, brain cells, fluorescent imaging, cell biology, thresholding,

segmentation, data science

1. Introduction

Immunofluorescent imaging is one of the most common ways

to acquire cell images and quantify cell features (Im et al., 2019). A
2021 study showed that over 22% of figures from a PubMed search

included some form of a photograph, which often were microscopy

or fluorescent images (Jambor et al., 2021). A 2020 study analyzing
image methods in biomedical research noted that image processing

methods are rarely published in detail (Marqués et al., 2020). In
central nervous system (CNS) research, fluorescent images are

commonly used to make discoveries in cellular and subcellular
mechanisms (Im et al., 2019), disease progression (Barretto et al.,

2011; Lin et al., 2018), and brain mapping (Kerman, 2008), among
many others. However, as we demonstrate in the results of our

systematic review, <10% of papers using fluorescent images of the

central nervous system (CNS)mention image processing to support
image analysis of CNS cells.

Once images are acquired with a fluorescent microscopy

technique, image processing most commonly occurs in two
ways: image enhancements for qualitative visualization or applied

algorithms for cell feature quantification. Examples of cell
feature quantification include measures for staining intensity,
cell count, or specific cell area. To increase the interpretability
of cell feature analyses, image processing techniques necessitate
detailed methodologies for reproducible, unbiased, accurate, and
high throughput cell image analyses. Since even a simple
brightness enhancement is often necessary to visualize cells, all
publications, including immunofluorescent images, should publish
the appropriate image processing parameters; otherwise, results
of quantified cell features can be significantly skewed (Lee and
Kitaoka, 2018). However, publications using immunofluorescent
cell imaging often include minimal detail about image processing
methodologies, often disregarding brightness adjustments, image
processing algorithms, and image acquisition parameters in
written methodologies. Researchers recognize issues related to
the reproducibility and repeatability of immunofluorescent and
immunohistochemical images (Bennett et al., 2009; Lee and
Kitaoka, 2018; Manuel et al., 2018; Miura and Norrelykke, 2021),
yet there is little to no literature that provides an in-depth
assessment of image processing practices and methods reporting in
CNS research.

We provide a review of the current state of image
processing practices in CNS research. We first highlight a
severe underreporting of image processing methods (Figure 1).
In PubMed, we mined CNS papers that use fluorescent imaging
(Figure 1A) and then further constrained our search to return
papers that included any reference to image processing (Figure 1B).
To obtain digestible insights from the mined papers, we tagged

features from each paper including animal model, software,
and quantified cell features (Figure 1C). We created visualizable
groupings by reorganizing our tagged variables to be sorted by cell
type rather than by publication, which enables cross-publication
comparison of methods (Figure 1D).

Our high-level visualization of the major CNS cells—neurons,
glia, and vascular cells—with common immunofluorescent
imaging techniques shows the widespread application of
each imaging method in CNS research (Figure 1E). As
immunofluorescent imaging and computational analysis methods
grow in popularity, this review provides a timely guide for
improved reporting of immunofluorescent image acquisition,
processing, and publishing to address existingmethodological gaps.
To facilitate a move to more rigorous reporting of image processing
methods for immunofluorescent images, we provide a road map to
guide researchers in documenting image processing steps.

2. Methodology

2.1. Literature search

We completed a comprehensive search of PubMed publications
using Medical Subject Headings (MeSH) terms and other general
search terms for CNS cells and common fluorescent microscopy
techniques (Supplementary Tables 1, 2)—[MeSH] beside the
term indicates a MeSH term; otherwise, the term is a general
use term. For each section of the table, publications were
found on PubMed using a combination of column description
terms and row description terms. For the first search, we
combined terms for different types of CNS cells with terms
for fluorescent microscopy using the Boolean operator AND.
The PubMed search terms used for cells: “Motor Neurons”
[MeSH], “Sensory Receptor Cells” [MeSH], “Interneurons”
[MeSH], “Multipolar”, “Neurons” [MeSH] AND “Multipolar”,
“Neurons” [MeSH] AND “Unipolar”, “Neurons” [MeSH]
AND “Bipolar”, “Neurons” [MeSH] AND “Pseudo-unipolar”,
“Microglia” [MeSH], “Astrocytes” [MeSH], “Oligodendrocytes”
[MeSH], “Ependymal Cells” [MeSH], “Endothelial Cells” [MeSH],
“Pericytes” [MeSH], and “Muscle, Smooth Vascular” [MeSH]. All
cell terms were individually combined with the search terms for
different types of fluorescent microscopy: “Microscopy, Confocal”
[MeSH], “Microscopy, Fluorescence” [MeSH] AND “General
Fluorescent Microscopy”, “Microscopy, Fluorescence” [MeSH]
AND “Widefield”, “Microscopy, Fluorescence, Multiphoton”
[MeSH], “Microscopy, Fluorescence” [MeSH] AND “Light
Sheet”, “Microscopy, Fluorescence” [MeSH] AND “Total
Internal Reflection”, “Microscopy, Fluoresence” [MeSH] AND
“Super Resolution”. For search consistency, no additional terms
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FIGURE 1

A graphical representation of the overall methodology of this review. (A) An overview of the PubMed search CNS cells and fluorescent microscopy

combinations in publications. (B) A repeated search from part A with additional image processing terms returns 1/10th of the original search. (C) A

representation of manual feature extraction from each publication. (D) Feature rearrangement and organization by cell type rather than specific

publication after manual extraction. (E) Reorganization of features that enables visualization of feature prevalence and connections via multiple

microscopy methods.
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were added to clarify motor neuron and sensory receptor
neuron location in the CNS or peripheral nervous system
(Supplementary Tables 1–3).

A set of additional search terms were added for the combination
of all cell search terms with the terms “Microscopy, Confocal”
[MeSH] and the “Microscopy Fluorescent” [MeSH] AND “General
Fluorescent Microscopy”. We first repeated the confocal and
general fluorescent microscopy searches with all cell types and
another search term “Image Processing, Computer-Assisted”
[MeSH]. Then we repeated the search with either “Threshold”
or “Segment” terms added to the search. Finally, all of the cell
search terms with the “Microscopy, Confocal” [MeSH] and the
“Microscopy Fluorescent” [MeSH] AND “General Fluorescent
Microscoy” search combination were searched with the simple term
“image” and either “threshold” or “segment”.

A comma-separated value (CSV) of all returned publications
for each search was saved and included as supplemental
information available on Zenodo with the https://doi.org/10
.5281/zenodo.7651627. Zenodo files are saved in the format
“Date_supplementary table #_Search Term1 _Boolean_Search
Term N” and contain the PMID, publication title, Authors,
Citation, First Author, Journal/Book, Publication Year,
Creation Date, PMCID, NIHMS ID, and DOI for each
returned paper.

2.2. Feature tagging

With a start date of January 1st, 2010, we separated all
publications returned from the literature search using: (1) the
MeSH term for confocal microscopy, (2) the CNS cell word
or term, (3) and the MeSH term for image processing. The
year 2010 was selected since the Fiji distribution of ImageJ–
the most popularly used image processing software—was first
publicly presented in 2010 and published in 2012 (Schindelin
et al., 2012); at this time, computational image processing
techniques were becoming more frequent, shown by a peak
in the publication count in Supplementary Figure 1. We then
manually tagged the CSV metadata of each publication with
the following categories: animal or cell model, quantified
features, threshold techniques, segmentation techniques, and image
processing software. We compiled a table of each CNS cell
(rows of the table) and, under each category (columns of the
table), included all tagged features and references to related
publications. After compiling the table, we alphabetized each cell
(Supplementary Table 3).

2.3. Treemaps

We used Excel to create treemaps, diagrams of hierarchical
data that apply nested rectangles to represent the numerical value
of the unique group. Each treemap is sized so the boxes scale
down from the largest group, represented by the Sensory neurons
imaged with confocal microscopy that include the MeSH term for
image processing.

2.4. Sankey diagram

Sankey diagrams were created with Plotly in Python. The
number of papers tagged with a specific feature determines the size
of the nodes. The links–the paths between nodes—are sized for the
number of papers tagged that include the features at both ends of
that link. The unspecified or unmentioned feature categories and
links were colored yellow in Plotly.

2.5. Software comparison table

Software programs included in more than one publication
are described in Table 1. Thirty-nine of the 52 software programs
were only cited once within the search. Of the other 13 software,
ImageJ—including the FIJI distribution—was the most common,
followed by Imaris, MATLAB, Amira, and Adobe Photoshop. With
Adobe Photoshop, we only considered citations that explicitly
stated that Adobe Photoshop was used to adjust features of
images, including but not exclusionary to features such as
brightness, contrast, and color adjustment. We did not include
Adobe Photoshop if it was only used for figure creation without
image adjustment.

Most commonly, image processing software programs are
different than the acquisition software programs used with
the specific confocal microscope that captured these images.
Discussion of acquisition software programs is outside of the
scope of the review, and acquisition software programs are
typically dependent on the specific company for the microscopy
instrument. We refer the reader to Hng and Dormann’s paper
about automatic confocal microscope performance evaluation
(Hng and Dormann, 2013), which discusses acquisition software
programs in the context of reproducibility and standardization.
For the papers explored to build Figure 3, those with the MeSH
terms “Microscopy, Confocal” and “Image Processing, Computer-
Aided” published since 2010, a total of 43 unique software
programs or coding languages were used. The range of software
programs used only for confocal fluorescent images of CNS cells
shows the large number of software programs that do exist
and can provide quantitative insights into cellular morphology
and features.

All associated quantified features were compiled into a table for
every software program tagged (Supplementary Tables 3, 4). The
different software programs and coding languages were sorted by
the total number of publications mentioning the specific software
program used for cell feature quantification. The software program
costs were found either on the website or through email inquiry;
we included a note if an email inquiry was necessary. Details
for costing vary depending on the information available without
obtaining a quote. Thresholding and segmentation techniques for
each software were found in the appropriate user manual and
using a “ctrl + find” method for “threshold” and “segment.”
Quantified features and associated references were found during
feature tagging. A limitation of our study is that some papers
use multiple software programs without clarifying which software
programs produced which results. In the case of multiple software
programs in one publication without clarification, we tagged the
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TABLE 1 Summary of commonly used software including costs and basic image processing features.

Software
name

Developer/
parent
company

# of
papers

Cost Thresholding methods Segmentation methods Quantified cell features

ImageJ National
Institutes of
Health

56 Free Options: Global, Local, Auto
(global histogram-derived)
Threshold. Auto Options: Huang,
Intermodesl, IsoData, Li,
MaxEntropy, Mean, MinError(l),
Minimum, Moments, Otsu,
Percentile, RenyiEntropy,
Shanbhag, Triangle, Yen (ImageJ
Docs Release 1.17.2)

Options: Multiple Methods:
Trainable Weka Segmentation,
Auto Thresholding, and Masking,
Manual Segmentation (ImageJ
Docs Release 1.17.2)

Area (Debertin et al., 2015; Hannibal et al., 2017), Cell Density
(Virgone-Carlotta et al., 2013; Jawaid et al., 2018), Count (Huang et al.,
2012; Li et al., 2013; Ferber and Tiram, 2014; Bendali et al., 2015; Debertin
et al., 2015; Sakita et al., 2016; Seidl and Rubel, 2016; Van Der Woude and
Smid, 2016; Žygelyte et al., 2016; Banerjee and Chaturvedi, 2017; Hannibal
et al., 2017; Wang et al., 2017; Jawaid et al., 2018; Santos et al., 2018),
Colocalization (Alcami and Marty, 2013; Li et al., 2013; Virgone-Carlotta
et al., 2013; Banerjee and Chaturvedi, 2017; Sousa-Valente et al., 2017),
Dendritic Diameter (Jawaid et al., 2018), Diameter (Sakita et al., 2016; Seidl
and Rubel, 2016; Hannibal et al., 2017), Feret’s Diameter (Herron and Miles,
2012), Intensity (Dibaj et al., 2010; Fernández-Alvarez et al., 2011; Masuda
et al., 2011; Smith et al., 2011; Hovis et al., 2012; Tapia et al., 2012; Trouche
et al., 2013; Sousa-Valente et al., 2017; Awadová et al., 2018; Chu et al.,
2020), Length (Seidl and Rubel, 2016; Van Der Woude and Smid, 2016),
Location (Chu et al., 2020), Nuclei Count (Trouche et al., 2013), Perimeter
(Sakita et al., 2016), Process (branch/dendrite) Count (Masuda et al., 2011;
Santos et al., 2018), Process (branch/dendrite) Length (Masuda et al., 2011;
Awadová et al., 2018; Santos et al., 2018), Process Extension (Masuda et al.,
2011), Puncta Size (Alcami and Marty, 2013), Puncta Intensity (Alcami and
Marty, 2013), Puncta Circularity (Alcami and Marty, 2013), Thickness of
Processes (branches/dendrites) (Sakita et al., 2016; Tavares et al., 2017),
Total Length of Processes (branches/dendrites) (Tavares et al., 2017), Sholl
Analysis (Tavares et al., 2017; Santos et al., 2018), Spheroid quantification
(Martin et al., 2013), Surface Area (Cain et al., 2011; Nagel et al., 2012;
Azaripour et al., 2018), Volume (Goldsmith et al., 2010; Cain et al., 2011;
Heinze et al., 2013; Van Der Woude and Smid, 2016; Awadová et al., 2018)

Imaris Oxford
Instruments

23 $13,000–
$45,000∗

Options: threshold cutoff, baseline
subtraction, background
subtraction, connective baseline
(Imaris Reference Manual V 5.5.0)

Options: FilamentTracer or
Segmentation “Wizards: (1)
AutoPaths (no loops) for a tree-like
filament or
Threshold (loops). (Imaris
Reference Manual V 5.5.0)

Area (Bayerl et al., 2016), Branch count (Althammer et al., 2020), Branch
Ends (Huang et al., 2021), Branch Order (Huang et al., 2021), Cell
Distribution Profiles Across Regions (Paul et al., 2014), Colocalization
(Pihlaja et al., 2008; Sosa et al., 2013; Testen et al., 2020), Count (Choi et al.,
2010; Sosa et al., 2013; Bendali et al., 2015; Bayerl et al., 2016; Miller and
Rothstein, 2016; Huang et al., 2021), Density (Bayerl et al., 2016), Distance
between Cells (Huang et al., 2021), Filament Length (Althammer et al.,
2020), Intensity (Bayerl et al., 2016), Intersections (Dando et al., 2019),
Length (Choi et al., 2010; Huang et al., 2021), Location (Choi et al., 2010),
Sholl Analysis (Althammer et al., 2020), Surface Area (Althammer et al.,
2020), Volume (Azaripour et al., 2018; Althammer et al., 2020)

MATLAB Mathworks 22 $50 base Coding language Coding language Coding language

Amira Thermo
Scientific

20 $4,000+
(Estimate)

Options: auto-thresholding or
multi-thresholding. specific
algorithms are not stated. (users
guide to Amira software 2019)

Options: multi-thresholding (users
guide to Amira software 2019)

Area (Williams et al., 2010), Cell coverage (Williams et al., 2010),
Colocalization (Virgone-Carlotta et al., 2013), Count (Choi et al., 2010;
Kelber et al., 2010; Elliott et al., 2015), Density (Virgone-Carlotta et al.,
2013), Distance between cells (Williams et al., 2010), Length (Choi et al.,
2010; Kelber et al., 2010; Virgone-Carlotta et al., 2013), Process
(Branch/Dendrite) Count (Elliott et al., 2015), Process (Branch/Dendrite)
intersections (Elliott et al., 2015), Sholl Radius (Virgone-Carlotta et al.,
2013), Volume (Kelber et al., 2010; Heinze et al., 2013)

(Continued)
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TABLE 1 (Continued)

Software
name

Developer/
parent
company

# of
papers

Cost Thresholding methods Segmentation methods Quantified cell features

Adobe
Photoshop

Adobe Inc. 15 $240/year Options: A threshold filter option
based on a user input single value
(Adobe Photoshop Elements User
Guide Updated in 2021).

Options: segmentation is possible
with a user-created workflow
(Adobe Photoshop Elements User
Guide Updated in 2021)

Image adjustments were made with Adobe Photoshop, but no features were
quantified.

Zeiss ZEN Zeiss 8 $2,611 per
license with
basic modules

Options: manual, histogram based,
size, shape, intensity, and ROI
based (Zen Blue Image Analysis
Guide 2016).

Options: Thresholding-Based (Zen
Blue Image Analysis Guide 2016)

Colocalization (Sousa-Valente et al., 2017), Intensity (Sousa-Valente et al.,
2017)

MetaMorph Molecular
Devices

7 $6,000+ base
price, $750+
yearly
upgrades,
$1,200 offline
analysis cost

Options: thresholding available in
region of interest selection,
Authothreshold, watershed
(Fundamentals of MemaMorph
Workshop Slides)

Options: watershed segmentation
(Fundamentals of MemaMorph
Workshop Slides)

Area coverage (Williams et al., 2010; Naguib et al., 2012), Colocalization (Li
et al., 2013), Count (Choi et al., 2010; Li et al., 2013; Bolea et al., 2014),
Distance between cells (Williams et al., 2010), Intensity (Ghiretti and
Paradis, 2011; Naguib et al., 2012), Length (Choi et al., 2010), Synapse
Density (Ghiretti and Paradis, 2011)

Volocity PerkinElmer 7 $6,230 base Options: manual threshold,
automatic threshold (OTSU
method). (Volocity User Guide V
22.0)

Volocity user guide does not
include the term “segment” or
“segmentation.” (Volocity User
Guide V 22.0)

Area (Bayerl et al., 2016), Axon length (Kemp et al., 2016), Cell density
(Bayerl et al., 2016), Colocalization (Ugbode et al., 2014; Wang et al., 2017),
Count (Bayerl et al., 2016; Kemp et al., 2016), Intensity (Bayerl et al., 2016;
Chu et al., 2020), Size (Kemp et al., 2016), Surface Area (Bagheri et al.,
2015), Volume (Bagheri et al., 2015; Bayerl et al., 2016; Chu et al., 2020)

Image-Pro
Plus

Media
Cybernetics

4 $5,775 Options: manual threshold,
automatic threshold (OTSU
method). (Image-Pro Plus Version
7.0)

Options: manual threshold based
segmentation and watershed
algorithm. (Image-Pro Plus
Version 7.0)

Axon length (Kemp et al., 2016), Colocalization (Kemp et al., 2016), Count
(Kemp et al., 2016), Vessel diameter (Tan et al., 2013)

Avizo Thermo
Scientific

3 $10,000+ Options: manual thresholding,
auto thresholding (choose criterion
based suited for data generally
factorization), hysteresis
thresholding (Thermo Scientific
Avizo Software 9 User Guide).

Options: manual, threshold-based
image segmentation with
multi-thresholding or interactive
thresholding, interactive top-hat
(Thermo Scientific Avizo Software
9 User Guide).

Segmentation was completed with Avizo, but no quantified features were
attributed to Avizo.

AutoQuant X3 Media
Cybernetics

2 $7,000 Options: manual threshold,
maximum/minimum thresholding
(Media Cybernetics, Inc. User
Manual Version X2)

OptiHistogram-BasedBased
Segmentation (Media Cybernetics,
Inc. User Manual Version X2)

Branch Ends (Huang et al., 2021), Branch Order (Huang et al., 2021), Count
(Huang et al., 2021), Distance between Cells (Huang et al., 2021), Length
(Huang et al., 2021)

Python Python
Software
Foundation

2 Free Coding language Coding language Coding language

Reconstruct – 2 Custom
software

– – –
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feature to each software program used for image processing in that
specific publication.

One limitation we noted is the MeSH term PubMed search
left out many papers citing some of the more popular software.
For example, the authors use image processing implemented in
Python in their own work to study microglia morphology with
fluorescent confocal microscopy (Joseph et al., 2020; Wood et al.,
2021; Nguyen et al., 2022), yet none of the author’s own papers
were returned in the search. As another example, CellProfiler is
a popular, open-source cell analysis platform that only got one
citation through our search, yet, when we completed a PubMed
search of all papers citing the CellProfiler software, over one
hundred papers were returned (Mcquin et al., 2018). Most of the
papers returned include the phrase “CellProfiler” in the title or
abstract, alluding to the use of the platform being a major purpose
of the paper. While our CellProfiler search does exhibit limitations
of our MeSH term labeling approach of PubMed papers, our review
still demonstrates a representation of the use of image processing
documentation in papers analyzing immunofluorescent cells of the
CNS. Possibilities for the search limitation include journal-specific
tagging, field-dependent tagging or reporting, lack of reporting
within publications, and differences in what is defined as “image
processing” in the field.

3. Prevalence of fluorescent cell
imaging methods

The quality of the images acquired via fluorescent microscopy
affects image processing and image analysis, particularly
quantification of image or cell features. In our review, we
focus on papers that use immunofluorescent imaging achieved
through antibody-based staining protocols to label specific target
antigens with a fluorescent dye. Several recent reviews discuss
the optimization of staining parameters and stain selection,
including Farhoodi et al. (2019), and other reviews discuss
optimizing imaging parameters and image quality for different
microscopy methods (Jost and Waters, 2019; Boehm et al., 2021;
Larsen et al., 2023). We will briefly focus on understanding
the wide variety of fluorescent microscopes, which is helpful in
grasping the complexities of cellular image processing. The most
popular fluorescent imaging techniques for imaging cells of the
CNS are general fluorescent microscopy, confocal microscopy,
fluorescent widefield microscopy, multiphoton microscopy,
light sheet microscopy, total internal reflection microscopy
(TIRF), and super-resolution microscopy (Richardson, 2017). The
various fluorescent microscopy techniques offer advantages and
disadvantages concerning economic cost, resolution, and imaging
of specific cellular and tissue structures, but cost and accessibility is
often a deciding factor in which instrumentation is used. Although
outside the scope of this review, we refer the reader to Renz (2013),
who provides an excellent history of fluorescent microscopy,
Hammer et al. (2021) who published community-driven metadata
approaches for light microscopy, and Sanderson et al. (2014) who
published a comprehensive review for comparison and contrast of
fluorescent microscopy techniques.

We performed a quantitative assessment of the prevalence of
different fluorescent microscopy techniques for imaging CNS cells.

We assessed the PubMed library for different combinations of CNS
cells and fluorescent microscopy. To explore major patterns across
cells and microscopy techniques, we organized our findings into
a Supplementary Table 1 of publication prevalence and a multi-
level pie chart (Figures 2A, B). From the papers returned in our
search, confocal microscopy is the most prevalent fluorescent
imaging technique for CNS cells, exceeding general fluorescent
microscopy publications by about 500 total publications—a 13%
difference. Together, the combination of confocal and general
fluorescent microscopy comprise over 96% of all CNS papers using
immunofluorescent cell imaging. For easier reference, we broke the
remaining 4% of articles into a separate pie chart (Figure 2B), where
multiphoton is the most prevalent type.

Across all microscopy types, we noted three general outcomes:
First, endothelial cells and vascular smooth muscle cells are imaged
more often with general fluorescent microscopy. Second, when
looking at the sub-classifications of neurons, it is about ten times
more common for neurons to be published with their functional
classification than their morphological classification, regardless of
microscopy type. The only exception is the bipolar neuron which
has one hundred more publications than any other morphological
classification. Third, out of the 9,000 evaluated articles, endothelial
cells, followed by astrocytes, are the cells most broadly imaged
by all fluorescent imaging techniques. Astrocytes ranked third in
our search for total immunofluorescent publications yet showed
the broadest range of immunofluorescent microscopy techniques
used to image these cells. Astrocytes may exhibit a wider spread
of published fluorescent microscopy methods since they have a
complex architecture targeted uniquely with different microscopies
(Barcia et al., 2013).

Beyond breaking down the immunofluorescent imaging trends
of different cells of the CNS, the outer layer of our multi-level pie
chart (Figure 1A) shows the sparsity of immunofluorescent papers
that include image processing. Of the 8,845 articles returned in
our search for CNS cells with immunofluorescent imaging, only
856 also included image processing. The 90% decrease in papers
indicates an area for improvement to either publish more detailed
methods about image processing or gain more information from
images with image processing techniques. Intrigued by the gap in
published CNS papers with immunofluorescent imaging and image
processing, we created treemaps of papers published with different
combinations of search terms (Figure 1C). The largest group in
each treemap is the group that includes the type of microscopy,
the sub-group cell classification, and the MeSH term for image
processing. Our treemaps show that sensory neurons imaged with
confocal microscopy and tagged with the MeSH term for image
processing have the most publications. However, the number
of publications that include a searchable term for threshold or
segment, two commonly used image processing methods, sharply
drops off for all groups, with most cell sub-group classifications
having <10 total papers including image processing terms.

The pie charts and treemaps highlight trends that could benefit
from more exploration or better publication database labeling.
For example, combining multiple microscopy techniques to image
astrocyte and endothelial cells could enable deeper analysis of
unique aspects of the cells, cell subpopulations, or subcellular
components. At the same time, our visualized data provides
opportunities to researchers to identify areas of cell research
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FIGURE 2

Publication prevalence of image processing across microscopy techniques and cell types. (A) A multi-level pie chart showing the breakdown of

paper count for general fluorescent and confocal microscopy vs. others. The inner layer shows the paper count for each microscopy type. The

middle layers show the cell group and sub-group classification counts for each microscopy type. The outer layer shows the number of papers for

each type, including image processing. (B) A sunburst chart of the “Other” category from (A). The paper count determines the size of the sections of

the inner layer for each microscopy type. The size of the middle layer sections shows the paper count by cell group. Finally, the outer layer shows the

paper count by sub-group classification. (C) Treemaps depict the publication count for each cell group and sub-group cell classification for different

combinations of image processing terms. The left side of the key depicts the colors used for the general fluorescent microscopy publications, and

the right side depicts the colors used for the confocal microscopy publications. Each cell sub-group classification has a general fluorescent and

confocal microscopy treemap.
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FIGURE 3

Feature combinations in published immunofluorescent cell papers. The Sankey diagrams depict the combination of software, image processing

methods, quantified cell features, animal model, and cell sub-group classification for all major cell groups of the CNS for all papers using confocal

microscopy. The node height, boxes corresponding to a specific feature, is determined by the number of papers mentioning that feature. The edge

width, connecting line between two nodes, is determined by the number of papers that include the features from each of the connected nodes. The

yellow nodes and edges represent all papers that leave information unspecified or unmentioned.

that may benefit from further exploration with new microscopy
techniques. While the authors believe this provides a holistic look
at the field, limitations to the search method include that the
papers must be in the PubMed catalog and that papers must be
searchable by specific tags. For improved searchability, databases

like PubMed could add new categorical search terms, additional

labeling techniques, and improved back-labeling. To improve

the use of image analysis via, for example, moving from semi-
quantitative to quantitative analysis of CNS cells, researchers need

documented and detailed current image processing methodologies
for immunofluorescent images of CNS cells.

4. Current image processing
applications on CNS cells

Themost basic image processing step for fluorescent cell images
is a brightness, or contrast, adjustment, which involves shifting
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the upper and lower bounds of lightness in an image. Brightness
adjustments are most commonly applied whenever a fluorescent
image transfers from the acquisition software to visualization or
processing software. Beyond brightness adjustments, other image
processing techniques are common for quantifying cell features
such as cell count, area, or branching features. The more advanced
image processing techniques can include multiple algorithms with
tens of unique variable inputs that are not reproducible without
sufficient methodology described in a publication. Since brightness
adjustments are so common, the prevalence of immunofluorescent-
image containing papers mentioning image processing should
be similar to the prevalence of publications that mention CNS
cells and fluorescent microscopy. Yet, as we demonstrated in
our analysis of 9,000 CNS papers, there is a 10-fold decrease in
papers that describe image processing methods. Therefore, we
sought to further understand image processing publication habits
by conducting a deep dive into the papers published with confocal
microscopy, the most common type of fluorescent microscopy
(Figure 3).

4.1. Commonly published experimental and
cell features in image processing of CNS
cells

The defined set of experimental features are animal
models used, features quantified, image processing methods
of thresholding and segmentation, and software used. We included
animal models to show the wide application of fluorescent cell
imaging from cell lines to humans. Quantified cell features such as
count, area, or branch/process features were tagged and included
as they provided a reference to common analyses. We included
thresholding and segmentation methods to gain insight into
how advanced image processing methods were included within
publications. Finally, we included the software used to show the
wide variety of platforms and coding languages used in image
processing. The variety of both software and coding languages
complicates image processing reproducibility by introducing
additional variables while, conversely, offering more resources for
researchers to analyze fluorescent cell images.

Animal models are more common than cell line models as
the source for imaging with confocal microscopy, with mice as
the most common study animal returned in our search, followed
by rats. This is not surprising, seeing that rodent models are
one of the most common research specimens (Bryda, 2013). The
Sankey visualization (Figure 3) shows that sensory receptor cells are
studied the most widely across animal species ranging from insects
to fish andmammals.Meanwhile, endothelial cells are the only CNS
cell more commonly studied in cell lines than in animal models in
the 9,000 papers analyzed in this search.

By looking at the node sizes of quantified cell features, the
most common cell features published are count and intensity. It is
likely that count and intensity are the most easily accessed features
by researchers without requiring extensive image processing
procedures. Another consideration is that count can be completed
manually without automated processing, although automation
significantly increases throughput. The papers with robust feature

quantification show the possibility of increased cell quantification
from fluorescent images that could be applied to many of
the other papers cited. However, there are several barriers
that are keeping fluorescent imaging from “leveling” up to the
more in-depth analysis of fluorescent images, which include: (1)
expertise needed for high-quality imaging, (2) expertise needed
for robust and unbiased image processing, (3) software support
for consistent and detailed image processing methodologies, (4)
lack of reporting on specific variables for doing quantification, (5)
thresholding and segmentation barriers described in the Section
4.2, and (6) interpretation of the quantified features that maintain
scientific relevance without bias. Previous literature and our review
emphasize that with more robust and detailed image processing
reporting, there is potentially limitless possibility to increase
the amount of data gained from immunofluorescent images of
CNS cells.

4.2. Thresholding and segmentation
underuse for quantifying CNS cells

Thresholding and segmentation enable enhanced cell
quantification techniques. While a lot can be gleaned from
fluorescent images of cells based on qualitative analysis of images,
every image of a cell holds a wealth of information beyond the
precursory glance. All quantified features from the literature
search containing the MeSH terms “Microscopy, Confocal” AND
“Image Processing, Computer-Assisted” are included in Figure 3
and Supplementary Table 3. The most prevalent quantified feature
was cell count, followed by volume, then surface area, then
length, intensity, colocalization, and cell density. Volume is used
specifically with 3D rendering from confocal z-stacks to measure
the entire fluorescent volume of a cell. Meanwhile, length can be
ascribed to the entire length of a single cell, subcellular features
such as branching, or the length of the soma. Intensity and
colocalizations are stain dependent. Intensity measures the signal
intensities of the stain, and colocalization measures the amount
of overlap between two stains of distinct color channels. An
important note for Figure 3 is that a few papers often would add a
significant number of quantified features to the list of features for
that specific cell type due to their own extensive analysis.

Thresholding for cell researchers is an incredibly important
and undervalued skill. Thresholding is the simplest method of
segmenting cells. Applying a threshold to a cell image is the
process of converting an image from grayscale to binary. The two
major groups of thresholds of relevance to this review are manual
thresholds and algorithmic thresholds. Manual thresholding is the
process of an individual user—often with high skill and expertise
in a specific cell type’s biology—adjusting the pixel cutoff for
binarization to produce the user’s interpretation of the “highest
quality” image. Manual thresholds can introduce significant bias
into samples and, without proper reporting of threshold values,
cause difficulties in reproducibility. Algorithmic thresholds aim to
reduce bias while improving image segmentation and thresholding
outcomes by using different mathematical and statistical models.
It is worth noting that even algorithmic thresholds can have a
bias based on the variable inputs used, the algorithm chosen, and
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changes in inputs and algorithms across experimental groups. With
proper reporting, the algorithmic method should be less biased if
applied identically across groups than manual thresholding and
therefore algorithm-based thresholding is a continually growing
area of interest for high throughput image processing.

Beyond thresholding as the simplest method to segment
cells, other segmentation methods include machine learning-
based segmentation, manual segmentation, and watershed-based
segmentation. Many researchers currently focus on improving
automatic segmentation methods for cell analysis, including
automated 3D cell detection in human-derived cardiospheres (Salvi
et al., 2019), nucleus-informed convolutional neural networks for
eukaryotic cell segmentation (Korfhage et al., 2020), and automated
watershed segmentation for cell nuclei annotation (Englbrecht
et al., 2021) as just a few examples among many others. Automatic
segmentation methods are necessary for high-throughput and
batch processing of large experiments with hundreds to thousands
of cell images. Batch processing and high-throughput analysis are
limited by a lack of easily applied methods, the time component
of accurate segmentation, and quantifiable characteristics to define
how well a segmentation took place. Thresholding and cell
segmentation are major bottlenecks in advanced cell quantification.

Both the threshold methodology and segmentation
methodology sections of our Sankey diagrams emphasize
both the underuse of these methods and the lack of published
information for reproducing results (Figure 3). The yellow coloring
highlights that across all types of cells, most papers in our search
do not report either segmentation or thresholding. Of those that do
use a thresholding or segmentation method, most of the publishing
details are unmentioned; often, only the software or only the
method is mentioned without enough detail included in the paper
to reproduce the results. Supplementary Table 3 provides further
information on which papers in our search used each method
to quantify specific cell features. Overall, not all images have to
undergo segmentation for quantification. Although thresholding
is a more common image-processing practice than segmentation,
the highest publication count, including the term “threshold,” is 10.
Even further, only two of the ten publications were returned if the
MeSH term “Image Processing, Computer-Assisted” was included
in the search, suggesting thresholding is not considered image
processing to either PubMed or the authors.

Covering all the different thresholding methods is not within
the scope of this review. For a more detailed guide, we
refer the reader to Aaron and Chew (2021) publication on
biological image processing workflows. For the field to overcome
the threshold and cell segmentation bottleneck, the authors
recommend a needed improvement in cell image processing
publishing documentation and standards. Based on the results
from our systematic review, improvements include requiring
standard publication methodologies for common image processing
techniques, consistently tagging publications using thresholding
with the MeSH term “Image Processing, Computer-Assisted,” and
providing enough image processing detail for an outside researcher
to reproduce images and results accurately. An extensive review
of fluorescent microscopy methods reporting was published by
Montero Llopis et al. (2021). Our recommendation is supported
by the fact that thresholding methods have been reviewed

in past articles, including a 1989 assessment of automated
thresholds (Sieracki et al., 1989) and Healy et al. (2018) threshold-
based segmentation comparison in glial cells. In Section 3, we
see that while these reviews contribute important knowledge
to the field, they have not made a significant impact on
changing image processing practices. Increased adaption of image
processing methods can likely only occur alongside improved
methodology reporting.

Even if a researcher can easily access another paper with a CNS
cell type of interest, researchers will still have difficulty following
the methodology for a quantification method if the software is
inaccessible. Deciding on the “best” image processing software for
an immunofluorescent cell quantification task can be a complicated
decision. Many software programs are available, as demonstrated
by the 52 outlined in Table 1 and Supplementary Table 4, and many
of the available software programs have similar capabilities. Some
other reviews already exist that compare and discuss software for
fluorescent cell image processing, such as a review of free software
tools from Hamilton (2009) and Wiesmann et al. (2015) review of
quantification in fluorescent microscopy images. Often, the “best”
software to use is that which is the most accessible and best fits the
expertise of the authors. In the next section, we cover topics related
to software choices, such as accessibility and necessary expertise.

4.3. Determining the “best” software for
image processing CNS cells

The most popular software platform for immunofluorescent
cell image processing is ImageJ—we lumped together both the
basic software and the FIJI implementation. ImageJ is supported
by the National Institutes of Health and is an open-source,
lightweight software that can be downloaded on most computers
and laptops with a friendly graphical user interface (Schindelin
et al., 2012; Schneider et al., 2012). The open-source nature and
popularity of ImageJ contribute to an infrastructure of tutorials:
a simple Google search of “YouTube “ImageJ”” returns 973,000
results, and “YouTube “ImageJ Tutorial”” returns 3,840. Price and
available training are likely contributing factors to ImageJ’s overall
popularity. The second most popular software is Imaris, which
has a hefty price tag of at least $13,000 for the base software and
$45,000 for a single license for the cell segmentation packages used
in many of the papers cited in this review. Beyond the original
license purchase, Imaris—and many other software programs—
may require regular maintenance fees, as well. Imaris requires an
expensive computer with solid-state drives and multiple graphical
processing units (GPUs). It is a large economic burden for a single
lab to purchase andmaintain the Imaris license. Therefore, themost
common way to access software like Imaris is through an imaging
core facility. The benefits of such a high price tag are an enhanced
graphical user interface (GUI) and speedy processing with the
purchase of the necessary supporting computer infrastructure,
often accompanied by personalized tech support for specific data
and analysis needs.

For labs with coding or data science expertise, another option
is to use a coding language for personalized algorithm deployment.
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BOX 1 Roadmap to enhancing cell quantification with improved image processing.

Image processing enhances the analysis capabilities of immunofluorescent cell images. The five simple steps below are a guide to getting more out of cell images with

image processing.

Step 1: Select a stain and fluorescent microscopy method

• Store images in the highest quality image format and preserve metadata from acquisition—preferably use a lossless file format such as the equipment specific file

format, PNG, or TIFF files rather than JPG, which compresses the file. Rigano et al. (2021) and Ropelewski et al. (2022) provide reviewers of metadata specifications.

• Determine a file naming and storing structure before acquisition to make analysis easier and refrain from using spaces in file names.

Step 2: Determine features to quantify

• Figure 3 provides a reference to features that can be quantified for different CNS cell types.

• Ensure the desired feature is accurately captured by the selected staining and microscopy method.

Step 3: Select a software

• Table 1 provides an overview of the software, including cost, function, and previous use in the literature.

◦ Assess the amount of time available to learn a new software.

◦ Assess software and training available in imaging cores at your university or research institute.

• Confirm the selected software can quantify your features of interest.

Step 4: Select thresholding or segmentation methods

• Begin with the simplest method offered by your selected software and work toward a more advanced method as your expertise and application matures.

• Save intermediate images of all major steps for visual reference that the algorithm is working the way you intend.

• Select one algorithm and set of inputs for your entire experimental set to reduce bias and image processing variation.

Step 5: Record and publish methodological variables

• Record software information, including the version and distribution.

• Record every input to the software, from opening the image to the final results.

Researchers have the most control over the relevant variables in
their analysis if they can write their own code. From our review,
MATLAB and Python are the most cited coding languages in
CNS cell publications. For both languages, many open-source
packages exist for different aspects of image processing. Unlike
Python, MATLAB does have a cost associated with its use, although
the cost of MATLAB is significantly lower than Imaris and even
lower with a student or academic license. Meanwhile, Python a
has a similar advantage to ImageJ in that it is free, tutorials are
abundant, and most code is open-source. The downside to using
a coding language to write or access code is that it does take a
higher amount of skill level and can take more time than a well-
written GUI. Well-written packages with GUIs built-in Python
like CellProfiler do exist, which integrate a cell-specific software
with a build-it-yourself solution. In general, the scientists analyzing
cells will have the best understanding of what expertise is on the
research team and which options are available. If CNS researchers
with expertise in immunofluorescent cell imaging become more
frequent users of advanced image processing techniques for
cell analysis, then new data and analysis can enable further
understanding of CNS cells and their role in physiology, health,
and disease.

5. Conclusion and future directions

Image processing is key to increasing insight from the
thousands of CNS cell papers that already use immunofluorescent
imaging. However, our systematic review showed that <10%
of papers with immunofluorescent images include image
processing in their methods. We showed that image processing
of immunofluorescent CNS cell images is underreported. Our
deeper analysis of the wide variety of models, features, software,
and methods used for imaging CNS cells provides an assessment
of current practices in image processing and also a resource
to find gaps in areas of application of image processing, and
in areas for improvement within cell analyses and microscopy

practices. Our assessment documented the most common cell
analysis software and their quantification capabilities, creating
a reference to CNS cell researchers to identify cell features and
the most effective image processing methods for cell feature
analysis. We also graphically represented the relationship between
different microscopy techniques to highlight opportunities
for future experiments combining microscopy methods to
capture unique aspects of CNS cells. Given the disconnect
between the prevalence of immunofluorescent imaging of CNS
cells and the reporting of imaging processing, we conclude
with a guide for improving image processing (Box 1). By
implementing improved image processing practices in current
research and publishing detailed and rigorous imaging processing
methods, the CNS cell research field can increase the impact
and quantitative data outputs of immunofluorescent CNS
cell images.
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