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Abstract—Modeling and prevention of cascading failure in
power systems are important topics of research. We propose a
dynamic cascading failure model that considers realistic inter-
dependencies between power and communication networks used
for system monitoring and control in power grids. In this model,
power line outages do not immediately disconnect communication
links, whereas communication nodes have battery backup that
starts depleting after considerable load shedding in the collocated
bus or bus outage. When a communication node’s battery is fully
depleted, the node disconnects from the cyber layer, potentially
reducing the observability and controllability of the power grid.
A centralized optimal preventive controller (OPC) to minimize
load shedding is proposed for cascade mitigation, which is
applied selectively on fully observable and controllable islands.
The OPC considers AC power flow equations, multiple hard
constraints, and treats overloading of lines as soft constraints.
The results of Monte-Carlo simulations on the IEEE 118-bus
and the 2, 383-bus Polish systems demonstrate that the proposed
OPC is effective in mitigating cascading failures. Finally, we
demonstrate that our recently proposed Backward Euler method
with Predictor-Corrector can reduce the average simulation time
by approximately 9 – 26-folds compared to the Trapezoidal
method with acceptable accuracy.

Index Terms—Cascading failure, Dynamic model, Cyber-
physical power grid, Optimal preventive control, Trapezoidal and
Backward Euler methods.

I. INTRODUCTION

DUE to the complexity and interdependence of power sys-
tem and communication network for system monitoring

and control, it is important to develop methods for predicting
and mitigating the impact of coupled cascading failures in such
cyber-physical systems. One such approach is the development
of time-domain simulation tools that can accurately model the
behavior of coupled power and communication systems under
various contingencies, and conducting statistical analysis for
cascading failures with different initial outages.

The ground truth for cascading failures in such complicated
networks can only be obtained through a detailed dynamic
model involving a set of nonlinear differential and algebraic
equations (DAEs). However, studying cascading failures in
cyber-physical systems like power grids is challenging since it
requires long-term simulations that go beyond typical planning
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studies lasting only around ≈ 20 – 30 s. Due to computational
complexity such studies have been proven to be elusive, and
have forced the research community to use Quasi-Steady-
State (DC-QSS, AC-QSS) models [1], which despite recent
improvements [2], cannot capture many of the phenomena in
the dynamic models [3].

The primary goals of this paper are the formulation of a
dynamic model for complex power grids incorporating the
realistic interdependent cyber and physical networks therein,
and the development of an effective methodology for optimally
mitigating cascading failures in such grids. Furthermore, we
aim to employ an efficient time-domain simulation approach
that facilitates statistical analysis of such complex models.

A. Literature on Cascading Failure in Cyber-Physical Grids
Despite the significant research interest in cascading failure

of the physical layer of power systems, only a few papers
[4]–[13] have addressed the unique challenges posed by rep-
resenting cascading failure in the interdependent cyber and
physical layers of power grids. To the best of our knowledge,
none of these works [4]–[13] consider a dynamic model, which
represents the realistic behavior of power systems.

(1) Modeling of cascading failure in cyber-physical power
grids: The purpose of papers [4], [6] is to examine how
interdependencies and structural characteristics of communi-
cation networks impact cascading failures in power grids.
The authors found that increasing interdependency leads to
a greater robustness against cascading failures. In [7], [8],
stochastic models of cascading failures are proposed that
consider the interdependency between cyber and physical
layers of power networks. The authors of [9] studied the
effects of wind power uncertainty and penetration levels on the
vulnerability of an interdependent system to cascading failures.
An interdependent Markov-chain framework was proposed in
[10] and tested to study cascading failures in power systems.
References [4], [9] used DC-QSS models, whereas [6] used
AC-QSS models. References [7], [8] have used approximated
linearized PF. The authors of [11], [12] proposed DC-QSS
model for cascading failure simulation and control in coupled
power-communication systems.

Using a DC-QSS model in [13], authors highlight that large-
scale cascading failures in power systems can lead to outages
in the interconnected communication network, disrupting the
monitoring and control of the power system. Reference [5]
addresses the challenge of topology estimation in power
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grids that involve interconnected cyber and physical networks,
particularly in the context of cascading failures. The authors
formulate two optimization problems to tackle this issue: one
for island estimation and another for line outage detection in
the estimated island. It is worth noting that although the model
is primarily based on the DC-QSS model, the authors have
also conducted testing and verification using the AC power
flow model.

Regarding the interdependency modeling in existing liter-
ature [4]–[13], different types of stochastic interconnections
between the physical and cyber layers of power grids have
been considered in [4], [6], [7], [9], [10], [13]. Another
group [5], [8], [11], [12] examines deterministic modeling
of interdependencies under certain assumptions. For instance,
in [8], authors assume that the failure of a communication
node leads to the failure of the corresponding power node, as
the power node cannot receive information from the control
center. Similarly, when a power node fails, the corresponding
communication node fails. On the other hand, studies by [5],
[11], [12] assume that an outage of a power bus causes the
outage of corresponding communication node. However, it
should be noted that an outage in the communication node
does not directly result in a power bus outage; rather, it limits
the controllability and observability of the system.

(2) Prevention of cascading failure in cyber-physical power
grids: Papers [5], [11]–[13] propose optimal mitigation of
cascading failure in power grids with interdependent cyber and
physical layers. The authors of [11], [12] design a communi-
cation network for supervisory control and data acquisition
(SCADA) system in a power grid consisting of power line
carrier communication (PLCC) links and non-PLCC links
(e.g., microwave) under a budget constraint with the aim
of maximizing the demand served during coupled cascade
propagation. Reference [13] proposes a preventive control
approach based on optimal generation and load reduction
using a modified DC optimal power flow (OPF), which takes
into account a progressively reducing controllability due to
communication failures. However the approach in [13] (also
other papers) assumes accurate knowledge of the system
topology (Ybus), i.e., full observability of breaker statuses. To
fill this gap, [5] performs topology estimation as the size of
observable regions of islands and the number of observable
breaker statuses continue to reduce over time. Additionally,
[5] focuses on the impact of grid estimation on preventive
control of cascading failure.

B. Gaps in Literature

The following are gaps in existing cascading failure models
for power grids with interconnected cyber and physical layers:

1) Physical layer model: None of the existing works [4]–[13]
consider dynamic models, which are necessary to accu-
rately capture the ground truth during cascading failure.

2) Cyber layer model: In absence of dynamic models there is
a lack of explicit representation of time. As a result, the
temporal decay of battery backup has not been modeled in
the literature, which is essential to determine the status of
the communication nodes over time.

3) Interdependency model: In absence of realistic battery
backup model described above, existing QSS-based mod-
els used probabilistic approaches to determine the status
of communication nodes following outages in the cyber-
physical systems.

4) Preventive control model: All preventive control methods
found in the literature [5], [11]–[13] are based on DC-
OPF which ignore the effect of reactive power flow. A
realistic simulation of preventive control should consider:
(i) collecting data required as inputs for the optimization
problem, (ii) initiating calculation of optimal preventive
control for the fully observable islands, (iii) considering the
time-delay for convergence of the optimization problem,
and (iv) applying these commands to actuators for fully
controllable islands. Existing papers did not consider each
of steps (ii)-(iv).

C. Contributions of This Work

This paper:
1) introduces a dynamic cascading failure model for power

grids consisting of interdependent physical and cyber layers
with fiber-optic/wireless communication systems supported
by battery backup. This realistic model allows for a more
accurate representation of the behavior and impacts of
cascading failures in such complex systems.

2) considers a realistic interdependency model which takes
into consideration battery backup with temporal depletion
of battery energy.

3) proposes a centralized optimal preventive controller (OPC)
designed to mitigate cascading failures in islands with full
observability and controllability. Application of OPC in
other islands can have a negative impact on cascade mitiga-
tion as described later. OPC problem takes into account AC
power flow equations, multiple hard constraints, and line
overloading as soft constraint. It considers all the realistic
attributes mentioned under section I-B.

4) performs time-domain simulations of the dynamic model
using our previously proposed BEM-PC approach [3],
which is shown to significantly reduce the average sim-
ulation time compared to the traditional methods. Unlike
[3], where only the physical layer considered, this work
provides a more efficient tool for analyzing and evaluating
dynamic cascading failures in coupled power and commu-
nication networks.

5) presents exhaustive simulation results on the IEEE 118-bus
system and the 2, 383-bus Polish network that demonstrate
the efficiency, applicability, and scalibility of the proposed
model.

The proposed modeling and simulation framework is deter-
ministic in nature and does not take into account aspects like
probability of relay misoperation and breaker failure, which
are left to future work.

II. DYNAMIC MODEL OF CASCADING FAILURE IN
COUPLED POWER & COMMUNICATION NETWORKS

A. Modeling of Physical Layer: Power Network

The physical layer in the dynamic model of cascading
failure can be represented by a set of coupled nonlinear
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DAEs and inequalities to account for discrete relay actions,
as follows:

ẋ = f(x, V, z) (1)

0 = I(x, V, z)− YN (z)V (2)

0 ≻ h(x, V, z). (3)

where, the state vector of machines and the vector of real and
imaginary parts of nodal voltages are denoted by x and V ,
respectively. The status of relays is indicated by a vector of
binary variables z. The real and imaginary parts of injected
currents at buses are represented by vector I while the real
form of the network’s admittance matrix is denoted by YN .

The proposed dynamic model for physical layer includes a
fourth-order synchronous generator model with state variables
E

′

q , E
′

d, δ, ∆ω, as well as first-order governor and static exciter
models [14]. Both static constant power loads and dynamic
representation of synchronous condensers are considered in
the model. The synchronous condensers have similar models
as generators, except that they lack governors. The model also
includes appropriate relays, such as overcurrent (OC) relays,
out-of-step machine protection, undervoltage load shedding
(UVLS) relays, and pre-specified special protection schemes
(SPSs). Further details on the modeling of physical layer of
power grid can be found in section IV of [3].

B. Modeling of Cyber Layer: Communication Network

The cyber layer of power grid is composed of two primary
networks: SCADA and wide-area monitoring, protection, and
control (WAMPAC). SCADA utilizes redundant data measure-
ments from remote terminal units (RTUs) for topology and
state estimation, while WAMPAC uses phasor measurement
units (PMUs) as sensors and is experiencing a rapid growth
[5]. The WAMPAC’s PMU-based sensing offers advanced
power system monitoring and control functionalities, whereas
SCADA systems are limited in this regard due to slower
sampling rates (≈ 4 s, see page 160 of [15]) of RTUs. As
the cyber layer in power grid continues to evolve, it is crucial
to recognize the strengths and limitations of each network and
determine their appropriate use in ensuring efficient power
grid operations. Due to its significant potential and continuous
growth, this paper assumes WAMPAC network as part of the
cyber layer modeling.

A typical cyber layer of a power grid consists of a control
center (CC) connected to the communication nodes through
wireless (usually microwave) and fiber-optic links. The com-
munication nodes have different accessories including sensors,
e.g., PMUs in our case, which draw power from the substations
(i.e., buses) and are equipped with battery backup. The CC
receives measurements, performs state estimation, and runs
other algorithms for system operation. In our case, we focus
on OPC running at the CC and sending commands through
the communication network to generators and loads for power
output reduction and load shedding. The topology of the
communication network, the battery backup model, and the
interdependency model are described next. Throughout the rest
of the paper, we use ‘bus’ and ‘node’, respectively, to represent
a node in the power and the communication network. Let

Gp = (Vp, Ep) and Gc = (Vc, Ec) be the graphs representing
the physical and the cyber layers of power grid, respectively,
comprising bus set Vp, power line set Ep, nodes Vc, and
communication links Ec.

1) Topology of Communication Network: In our work, the
buses in Gp and the nodes of Gc are assumed to be collocated
(|Vp| = |Vc|), and |Ec| is a fraction of |Ep|, where | · | denotes
cardinality of a set. It should be noted that our proposed
cyber-physical cascading failure model is not limited to the
specific communication network topologies described next.
These topologies are just examples used for our studies.

In line with [13], the CC is situated at a bus with the
highest betweenness centrality (BC) of Gp. To conduct a
comprehensive study, we analyze various topologies for the
communication network as follows:
• Topology (1): The minimum spanning tree of Gp is used as
Gc, which is given by G1

c = (V 1
c , E

1
c ).

• Topology (2): The graph G1
c is a subgraph of this topology.

Let us define the degree of redundancy in Gc as β = |Ec|
|Ep| .

To construct the communication network for this topology
with a given degree of redundancy β (higher than that of
Topology (1)), we propose the following steps.
Step (1): Create a replica of Gp and call it G0

c = (V 0
c , E

0
c ).

Step (2): Determine the set of candidate links to be elimi-
nated from G0

c , which is given by E0
c −E1

c . Then calculate
the number of links to be eliminated from E0

c −E1
c , which

is given by N t
l = (1− β)× |E0

c |.
Step (3): Sort the buses in G0

c based on their BC values from
lowest to highest BC. Next, begin disconnecting the links
that belong to the set E0

c−E1
c starting from the ones adjacent

to the node with the lowest BC. Continue the process of
disconnection for nodes with progressively higher BC values
until the number of disconnected links become equal to N t

l .
The resulting graph serves as communication network G2

c .
Since the number of available links is constrained, in

Topology (2), we assign a progressively higher importance to
nodes with higher BC values. The intuition behind this is that
in the communication network, more information will pass
through a node with higher BC. However, we do not claim
any advantages or novelty in designing the communication
network in this manner. It is simply an approach that gives
us a given degree of redundancy β, which by no means is
claimed to be optimal as that is not the focus of this paper.
For our study, we made the assumption that all links in the
communication network are either wireless communication
links or fiber-optic channels, with backup power coming from
battery energy storage system in the nodes. The realistic
battery backup model is proposed in the following section.

2) Battery Backup for Communication Nodes: In this paper,
we consider a realistic battery backup model with temporal
depletion of battery energy for each node in the communi-
cation network. As mentioned earlier, each communication
node is collocated with a bus and draws its power from the
grid under normal condition. It is important to note, in our
model each load bus represents an aggregation of substations
supplying aggregated loads. Therefore, the extent of load
shedding experienced at a bus can indicate the severity of the
outage and indirectly reflect the degree to which a multitude
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Figure 1: Interdependency across different layers of a representative coupled power-communication system. States (1) to (4) indicate snapshots
as time progresses. (1) Pre-outage system. (2) Outage of Bus i leading to the formation of two separate islands within the power network.
(3) Battery backup at communication node ĩ preserves the communication node’s functionality. Consequently, the power system maintains
full observability and controllability. (4) Battery depletion at node ĩ in the communication network results in disconnection of node ĩ. As a
consequence, one of the islands in the physical layer experiences a loss of observability and controllability.

of the substations in that aggregation has lost power supply
from the grid and are using battery backup. Taking this into
consideration, we propose the battery backup depletion time
to be a function of the ratio PLoad

P 0
Load

, where PLoad represents
the current active load at the bus and P 0

Load represents the
pre-disturbance active load. The node fails once the battery is
fully discharged.

Followings are different possible categories of a node in Vc

considering its collocated bus in Vp where PLoad and PGen

represent active power load and generation, respectively, in the
bus in Vp.
• Type (1)–PLoad ̸= 0, and PGen = 0: For nodes collocated

with this type of buses, we propose a battery decay charac-
teristic as follows.

Tbat = c1 + c2tanh
(
c3

PLoad

P 0
Load

)
; PLoad

P 0
Load

∈ [0, c4] (4)

where, Tbat represents the discharge time of the battery. In
(4), c1 denotes the duration for which the battery backup of
a node will sustain its operation in the event of an immediate
trip of the collocated bus. To achieve the desired behavior
for the battery discharge time, we have selected a function
that is concave in PLoad

P 0
Load

. As an example, a ‘hyperbolic
tangent’ function has been chosen. The model however is
not restricted to this function and one may choose a different
function to reflect different specifications and conservative-
ness of their battery decay model. The values of c2 and c3
can be chosen to ensure a desired progressively decreasing
slope for Tbat. Parameter c4 determines the threshold above
which none of the substations in the corresponding bus
are assumed to have lost power supply from the grid, i.e.,
if the ratio PLoad/P

0
Load exceeds c4, the battery for the

communication node will not undergo decay. In this paper,
we use c1 = 10, c2 = 150, c3 = 2.5, and c4 = 0.98. The
corresponding characteristic for Tbat is shown in Fig. 2.
Since the values of these user-defined constants depend on
the system specifications, researchers can determine them
according to their needs.

• Type (2)–P 0
Load = 0, and PGen = 0: For this type of node

we use Tbat = c1 as the battery support discharge time.
• Type (3)–PGen ̸= 0: The battery backup in node will never

fail, unless the generator trips. If generator is tripped in such

Figure 2: Battery support discharge time for node as a function of
the loading level in the collocated load bus.

bus, it will be treated as Type (1) or Type (2).
• Type (4)–CC: We assume that battery backup for CC will

never discharge (i.e., Tbat = ∞).
Remark on battery model:

The model becomes progressively more conservative as we
move from a concave to a convex characteristic, indicating a
reduction of battery energy storage capacity. For example, a
convex characteristic implies even a small fraction of loss of
load will lead to a shorter battery support discharge duration
compared to Fig. 2. In practice, substations are equipped with
reasonable battery backups and therefore a concave function,
although less conservative, is more realistic.
C. Modeling of Interdependency

We propose a deterministic cascading failure model for
power grids wherein certain interdependencies between the
physical and the cyber layer are considered, see Fig. 1.
Simulations of our dynamic model make it possible to update
the topologies of Gp and Gc and their interconnections with
high resolution due to explicit representation of time.
• Communication link – power line direct interdependency:

The failure of a power line does not immediately lead to the
failure of the corresponding communication link (if exists)
and vice-versa. This is because the communication links
are assumed to be based on fiber-optic and/or microwave
technology.

• Node – bus direct interdependency: If a bus fails first, the
collocated node fails after c1 s. If a node fails first, it does
not lead to a bus failure.

• Active power load – node direct interdependency: A loss of
active power load at a bus leads to a delayed node failure
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following (4). There is no direct interdependency between
a node outage and the active load at the collocated bus.

Indirect interdependencies: There are multiple indirect inter-
dependencies possible across bus, power line, node, and com-
munication link failures. A communication link/node failure
may lead to loss of controllability/observability of an island
and as a result may stop application of OPC. This can lead
to line overloading and tripping and UVLS. Line trippings
can lead bus outage and have a direct impact on node outage.
UVLS can also lead to a delayed node outage.

III. CENTRALIZED OPTIMAL PREVENTIVE CONTROL FOR
CASCADING FAILURE MITIGATION

A. OPC Problem

Figure 3 shows the structure of the proposed OPC within
CC for cascade mitigation. The averaged values of active
power generations and those of nodal voltage magnitudes at
generator buses are used as inputs to the OPC to avoid the
effect of oscillations stemming from system dynamics. These
averaged values are determined from the most recent window
of length Tw

OPC s preceding the initiation of computations
in the OPC. The choice of Tw

OPC depends on the most
observable low frequency oscillations in the system. In a power
grid, electromechanical oscillations (also called ‘modes’) of
multiple frequencies can be observed typically in the range of
0.1− 2 Hz. However, not every oscillation frequency exhibits
itself with a high amplitude in measured signals. Higher the
observability of the mode, higher the amplitude. Therefore,
one needs to consider the window length Tw

OPC such that it is
close to an integral multiple of the time-period of the signal
depending on the highly observable modes. In this paper a
fixed Tw

OPC is used. This however can be adaptively changed
based on knowledge of evolving modal frequencies obtained
from the wide-area measurement systems. Additionally, the
latest known real and reactive loads, as well as the admit-
tance matrix of the island, are considered as inputs to the
optimization problem. We solve this problem exclusively for
fully-observable islands to avoid erroneous results that may
arise from inaccurate knowledge of the admittance matrix in
partially observable islands. Therefore, standard methods for
determining observability as routinely done in state estimation
[16] are used before solving the optimization problem.

The aims of the optimization problem are to minimize
branch overload and load shedding. Due to the potential
infeasibility of the optimization problem when using hard
constraints for line heating limits, soft constraints are used in-
stead. Subsequently, the user-defined overload variable, IOver,
is incorporated into the objective function with a weight of λ.
The OPC problem is formulated as:

minimize
PGen,PLoad,QLoad,vGen

−1TPLoad + λTIOver (5)

subject to:

|ILine| ≤ Imax + IOver, IOver ≥ 0 (6)

P pre
i,LoadQi,Load = Pi,LoadQ

pre
i,Load, ∀i ∈ load buses (7)

PGen −PLoad −P(v, θ) = 0 (8)
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Figure 3: Flowchart of BEM with Predictor-Corrector (BEM-PC) ap-
proach for cyber-physical systems with optimal preventive controller
(OPC). t = ti, i ∈ {0, 1, ..., n − 1}: instants of tiers of cascade. tf
shows earliest instance of oscillatory instability (if there exists any).
Trapezoidal method (TM) only applies to the subprocess (a).

QGen −QLoad −Q(v, θ) = 0 (9)

Pi(v, θ) =
nb∑
k=1

vivk(Gikcosθik +Biksinθik), ∀i (10)

Qi(v, θ) =
nb∑
k=1

vivk(Giksinθik −Bikcosθik), ∀i (11)

vmin ≤ vi ≤ vmax, ∀i (12)

0 ≤ PLoad ≤ Ppre
Load (13)

Pmin
Gen ≤ PGen ≤ Ppre

Gen (14)

Qmin
Gen ≤ QGen ≤ Qmax

Gen (15)

where, vectors are denoted in bold letters; |ILine| indicates
the vector of absolute values of elements of ILine ∈ Cp;
ILine and Imax show vectors of line currents and maximum
allowable current flows in lines, respectively; IOver denotes
the magnitude of overcurrent of lines; PLoad and QLoad

(Ppre
Load and Qpre

Load) show vectors of active and reactive
loads as decision variables and their input values to the OPC
problem, respectively; PGen and QGen are vectors of active
and reactive power generations; Pi and Qi denote active and
reactive power injections in bus i; θik = θi − θk where
θi is voltage angle of bus i; Gik and Bik are conductance
and susceptance of the line connecting buses i and k; Pmin

Gen

and Ppre
Gen are vectors of minimum allowable active power

generations and active power generations as inputs to the OPC
problem; similarly Qmin

Gen and Qmax
Gen are vector of minimum

and maximum allowable reactive power generations; and fi-
nally vmin and vmax are minimum and maximum allowable
voltage magnitudes in buses.

Constraint (6) is included to transform the line flow hard
constraint into a soft constraint; (7) maintains a predefined
power factor at bus i; (8)-(11) are the active and reactive
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power balance constraints at load buses; (12) reflects voltage
magnitude of buses should be within the allowable voltage
range; (13)-(14) ensures that the OPC solution does not
command to increase load and generation while ensuring they
don’t violate respective minimum values; (15) are constraints
for reactive power generation.

In our proposed cascade prevention controller, we leverage
the Extended OPF Formulation in MATPOWER [17]. The
OPC is a nonlinear programming (NLP) problem that is solved
using the fmincon routine.

Remark on the choice of parameter λ:
The parameter λ determines a trade-off between the allow-
able maximum overloading of lines and the load shedding
commanded by the OPC. A very large λ leads to more
‘weight’ on the second term of the objective function, and
would allow larger load shedding at the cost of small line
overloading. This will go against the objective of cascade
prevention with minimum load shedding. On the other hand, a
very small λ results in negligible load shedding while allowing
a higher line overloading, which will reduce the effectiveness
of OPC. Therefore, a balance needs to be developed by
appropriately choosing λ that will depend on the system under
consideration. In our case, λ = 100 × 1 (1 shows all-ones
vector) gave an acceptable tradeoff following an educated trial
and error under the above guideline.

B. Time-Synchronized Application of OPC Commands for
Cascade Mitigation

Following convergence, let the optimal values of the de-
cision variables be (P∗

Gen,P
∗
Load,Q

∗
Load,v

∗
Gen), which are

desired setpoints (also called OPC commands) for active
power generations, active and reactive loads, and voltage
magnitudes in PV buses, respectively. We limit the application
of OPC commands to fully-controllable islands that have
complete access to the actuators (generators and load buses
with nonzero loads) within the island. This requirement is
essential because partial application of OPC commands within
an island is likely to deteriorate its effectiveness.

In this paper, an observable/controllable island is defined as
one where every bus within the island possesses an operational
collocated communication node, establishing a connection to
CC via a network of communication links. Under the realistic
assumption that each communication node is equipped with
a backup battery, in cases where one or more buses within
the island experience failures, the co-located communication
nodes can be relied upon to transmit data packets to the CC.
This data transfer process ensures the CC receives accurate
information regarding the resulting sub-island’s Ybus configu-
ration, preserving our ability to monitor the island’s state. For
a visual representation of the interplay between the power and
communication systems, please refer to Fig. 1. Therefore, as
long as data is received from each node to CC, the island is
considered to be controllable. The controllability of an actuator
node is determined by the availability of data samples at the
latest instant from that node at CC.

Let TTime
OPC indicate the CPU-time for convergence of the

optimization problem in CC. Note that the dynamic simulation
of the cascading failure of the cyber-physical model runs in

parallel and as presented in Fig. 3, the desired setpoints are
communicated to the actuators in the model after TTime

OPC s
following the initiation of computations in OPC. Note that this
time synchronization with the dynamic simulation is important
to emulate realistic preventive control actions.

The P∗
Gen commands are used as setpoints of mechanical

power inputs of generators. The P∗
Load and Q∗

Load commands
are sent to respective load buses to perform load shedding.
The v∗

Gen commands are sent to generator excitation systems
augmented by a proposed integral-controller – see Fig. 15 in
Appendix. As shown in Fig. 15, the integral control makes
the voltage reference tracking possible. We have shown in our
case studies that the performance of OPC deteriorates without
voltage tracking.

Remarks on OPC:
1. As described in the Introduction section, the state-of-art
in OPC for cascade prevention is based on DC power flow,
which assumes a ‘flat’ voltage provide and does not consider
reactive power. On the other hand, our approach is based
on AC power flow, which does not have such limitations
and can accommodate constraints (7), (9), (12), and (15).
In addition, the proposed integral control action in excitation
systems is new in our method. Therefore, the effectiveness and
competitiveness of state-of-art OPC is fundamentally limited
compared to our approach.
2. The objectives of our proposed OPC and the security-
constrained optimal power flow (SCOPF) [18] differ from each
other. SCOPF determines generator dispatch in absence of any
load shedding with the objective of minimizing generation cost
subject to security constraints. In contrast, OPC determines
generator dispatch and their terminal voltages with the ob-
jective of minimizing overloading in lines and load shedding,
subject to multiple constraints.

Remark on use of SCADA:
This paper assumes WAMPAC network as part of the cyber
layer, where PMUs are assumed to be installed in all buses of
the system. We acknowledge that our research focuses on a
futuristic power grid, since today’s power system is dominated
by SCADA. For using SCADA systems for OPC proposed
in this paper, sampling rate should be higher, say at least 1
Hz. This will allow a bare minimum number of samples in
the window of size Tw

OPC = 5 s used in the paper. Even
in that case, the OPC performance is expected to be worse
compared to that from WAMPAC. To improve the performance
of SCADA-based OPC, new approaches might be needed.
Therefore, the analysis with SCADA is outside the scope of
this work, and will be considered in a future paper.

IV. TIME-DOMAIN SIMULATION PROCESS

At the outset, we recommend that readers refer to [3] for de-
tails of dynamic simulations of cascading failures, particularly
the BEM-PC approach. The time-domain simulations for cas-
cading failures involve the formation and independent solution
of Initial Value Problems (IVPs) on sets of DAEs (1)-(3). An
event refers to any discontinuity that arises from a discrete
change in the system, such as a relay action resulting in a
change in the values of the z vector. Two approaches exist for
solving IVPs in power systems - partitioned and simultaneous
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[14], [19]. For this purpose, we use the simultaneous approach
with implicit integration method, which is more efficient for
simulations with variable time-step.

In the dynamic simulation of cascading failures in complex
power grids with coupled cyber and physical layers, it may not
be necessary to capture detailed transient oscillatory behavior
of the system, as long as: (i) the model can accurately capture
the cascade propagation path and end results as in ground
truth, and (ii) the model is suitable for statistical analysis. In
this context, using large time steps would be desirable to speed
up the simulation. However, the integration method must be
robust enough to handle large time steps and avoid divergence,
while producing accurate end results. To this end, we apply
our newly-proposed BEM-PC [3] to solve the IVPs. Results
in [3] indicate that BEM-PC is suitable for statistical analysis
and can replicate end results as in Trapezoidal method (TM)
with high accuracy. In this paper, we refer the results obtained
by TM as ‘ground truth’.

A. Simulation Approach

The flowchart in Fig. 3 illustrates the simulation approach
utilizing BEM-PC for conducting cascading failure simula-
tions in cyber-physical power systems. The approach includes
OPC to optimize cascade mitigation. Although the proposed
model is parallelizable, for the purposes of this paper, all
simulations were implemented serially.

Subprocess (a) – Cascading failures simulation and opti-
mal preventive control: This subprocess involves conducting
cascade simulations using variable time-step BEM with a stiff
decay property [20] that enables the use of large steps to ac-
celerate dynamic simulations by disregarding fast oscillations
in the exact time-domain trajectories. The cascading failure
is triggered by inducing initial node outages and tripping of
connected lines to those buses in the power network at time t0.
Following each event, IVP(s) are solved with a known initial
condition (x0, V0, z0) for each island. The appropriate relays
are modeled in the cascade simulations, resulting in a series
of events during severe contingencies such as line tripping,
out-of-step machine tripping, and load shedding.

During the time-domain simulations, the optimal control
time t = kTC is repeatedly checked, where TC is a pre-
determined fixed interval between two consecutive instants
of initiating OPC calculations and k is an integer. In other
words, the optimal control time is the time instant for initiating
OPC calculations. If it is reached, the OPC is calculated
using (5)-(15), as described in III. The OPC is conducted
only on fully observable islands every TC s. The value of
TC should be chosen based on a multitude of factors like the
typical convergence time of OPC, generation ramp rates, and
effectiveness of OPC among others. For example, the first two
factors will restrict the minimum value of TC while the third
factor will determine it’s maximum value. Therefore, system
planners should determine this value based on offline studies.
In addition, subprocess (a) repeatedly checks if the appropriate
time to apply OPC commands has been reached for those
islands with converged OPC, and then the appropriate com-
mands are communicated to the power network’s actuators.
Simulations in subprocess (a) are terminated if (i) steady-state

is attained in the time-domain simulation, and no anticipated
relay action or pending application of OPC is observed, or (ii)
an island blackout is detected.

Predictor-Corrector Approach: This subprocess addresses
the hyperstability issue of BEM. More particular, BEM con-
verges to the unstable equilibrium of the system in presence
of oscillatory instability, which leads to a stable simulation
result. The predictor identifies oscillatory instability based
on eigendecomposition of the system matrix at the post-
disturbance unstable equilibrium obtained as a byproduct of
BEM. The corrector uses right eigenvectors to identify the
group of machines participating in the unstable mode. This
helps in applying appropriate protection schemes as in ground
truth. Since BEM-PC is not the main focus of this work, we
refer the readers to our paper [3] to avoid repetition.

B. Some Important Aspects of Implementation

In this section, we present some important aspects regarding
the implementation of both TM and BEM-PC methods. For
both methods we utilize: (i) full Newton’s method, (ii) ana-
lytical Jacobian matrix calculation during Newton iterations,
(iii) sparse calculations/data storage, (iv) Matlab’s most com-
prehensive inversion routine for Jacobian inversion in time-
domain simulations, as depicted in the flowchart in [21],
(v) variable time step integration, (vi) an adaptive center-of-
inertia (COI) reference frame proposed in [3] for the efficient
convergence of Newton iterations, and finally (vii) identical
methods for OPC (presented in section III).

Some other important aspects include:
1. Variable step-size in integration: To improve the speed of
the time-domain simulations, we utilize adaptive time step-
size control based on local truncation error (LTE) [22] for
TM and a separate strategy for BEM-PC, see [3]. The variable
time approach allowed for larger time steps when the solution
was not varying rapidly, leading to a more efficient simulation
process.
2. Stopping criteria: We incorporated the following stopping
criteria in our simulations for an island: i) the speed variations
of machines in a predetermined window length falls below a
certain threshold and no future relay actions and application
of OPC commands are expected, or ii) a complete collapse is
observed.
3. Software platform: We constructed the proposed model from
the first principles in Matlab [23]. For initialization of time-
domain simulations, we utilized MATPOWER [17] for power
flow solutions.

V. CASE STUDIES

In this section, the simulation results of proposed dynamic
model, as well as the effectiveness of the proposed cascade
mitigation approach in interdependent cyber-physical power
systems, are illustrated using the IEEE 118-bus system and
the Polish network during the winter peak of 1999-2000 [17].
Two types of numerical integration methods (traditional TM
and newly proposed BEM-PC [3]) are used in the dynamic
simulations of the proposed model and a comparison of the
results are presented.
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Figure 4: BEM-PC vs TM with OPC-75% vs without OPC results for a case in IEEE 118-bus test system – time-domain plots of machine
speed (f ) and rotor angle (δ) for G45.

Table I: (a) End of cascade error, (b) path agreement measure, and (c) run time in TM w.r.t. BEM-PC: IEEE 118-Bus System

No-OPC OPC–MST
mean min max median mean min max median

error in buses 0.982 0 48 0 1.127 0 86 0
state of machines 0.454 0 24 0 0.522 0 38 0

lines 1.462 0 73 0 1.801 0 128 0
maximum |v|, pu 0.009 0 0.090 0.003 0.015 0 0.190 0.004
error in ∠v, deg. 1.509 0 35.390 0.065 1.588 0 34.735 0.111

f,Hz 0.127 0 5.933 8.1e-5 0.130 0 8.553 1e-4
R 0.957 0 1 1 0.937 0 1 1

runtime ratio 9.041 0.191 74.584 8.763 10.267 0.146 74.004 9.140
OPC–75% OPC–ideal

mean min max median mean min max median
error in buses 1.147 0 90 0 1.145 0 105 0
state of machines 0.541 0 38 0 0.532 0 47 0

lines 1.876 0 128 0 1.820 0 153 0
maximum |v|, pu 0.019 0 0.182 0.008 0.021 0 0.153 0.010
error in ∠v, deg. 1.429 0 30.270 0.177 1.394 0 29.176 0.191

f,Hz 0.058 0 6.178 2e-4 0.057 0 5.251 2e-4
R 0.933 0 1 1 0.923 0 1 1

runtime ratio 12.565 0.156 159.301 10.596 12.917 0.175 64.645 11.938

Figure 5: Fraction of cases with line outage ≥ x at the end of cascade:
IEEE 118-bus system.

Table II: Improvement in end of cascade average demand loss (%)
and number of line outages through proposed OPC in TM and BEM-
PC w.r.t. no-OPC model: IEEE 118-bus system

Improvement in MST 75% Ideal
Demand TM 5.681 10.166 19.421
loss % BEM-PC 6.133 10.354 18.478
Line TM 11.143 20.331 37.604
outage BEM-PC 11.967 20.598 35.819

Figure 6: Fraction of cases with % demand loss ≥ x at the end of
cascade: IEEE 118-bus system.

The IEEE 118-bus system consists of 118 buses, 54 ma-
chines, and 186 branches, while the Polish system is a large-
scale network with 2, 383 buses, 327 machines, and 2, 896
lines. Synthetic dynamic data are generated for both models.
Cascades are triggered with 2 and 3 initial node outages,
respectively, for the IEEE 118-bus and Polish systems. These
initial outages are sufficient to create long-term cascading
sequences in these networks. Relay characteristics and other
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physical layer modeling parameters are used as in [3].
We consider the following scenarios: (i) a no-OPC scenario,

in which the optimal preventive controller is deactivated; (ii)
an OPC-ideal scenario, which assumes that communication
nodes never fail due to infinite battery backup; (iii) an OPC-
MST scenario, which employs Topology (1); and (iv) an OPC-
q% redundancy scenario, which employs Topology (2) with
q = 100β.

For OPC, we utilized λ = 100×1 (1 shows all-ones vector),
TC = 30 s, and Tw

OPC = 5 s. To determine TTime
OPC for the

IEEE 118-bus system, we use the actual CPU-time of the
optimization algorithm employed in OPC. However, for the
Polish system the actual CPU-time is too long due to a limited
computational power at our end. We consider a dedicated
and powerful computer hardware in CC that can achieve
TTime
OPC = 1 s for all converged cases of OPC. We perform

Monte-Carlo simulations with 500 random initial node outages
across five servers with a 2.2 GHz Intel Xeon Processor, 20
CPUs per server, and 128 GB of RAM in PSU’s ROAR Collab
facility [24]. The TM based dynamic simulation is assumed
to reflect the ground truth and is used as the benchmark.
A. IEEE 118-bus system

Figure 4 depicts time-domain simulations of rotor angle and
speed of machine G45 for a generic case in the IEEE 118-
bus system. The simulations compare the results of BEM-PC
with and without OPC against TM with and without OPC. In
cases with OPC, we employed a communication network that
has a 75% degree of redundancy with the power system. The
results show that BEM-PC and TM with OPC were able to
serve ∼ 79% of the demand at the end of the cascade, while
BEM-PC and TM without OPC served only ∼ 59% of the
demand. This indicates that the proposed OPC approach was
effective and confirms the ability of BEM-PC in tracking TM.
Furthermore, BEM-PC with OPC is ∼ 16 times faster than TM
with OPC, while BEM-PC without OPC is ∼ 10 times faster
than TM without OPC, confirming the efficiency of BEM-PC.
The last two observations are not shown in Fig. 4.

Figures 5 and 6 illustrate the frequency of occurrence of
the number of line outages and demand loss at the end of
a cascade exceeding a certain level in various scenarios for
coupled power-communication network simulations using TM
and BEM-PC. The results demonstrate the effectiveness of
the proposed cascade mitigation approach described in section
III. The OPC-ideal scenario significantly reduces demand loss
and the number of line outages at the end of a cascade.
Additionally, even OPC-75% and OPC-MST, which employ
less conservative topologies of the WAMPAC network, can
effectively mitigate the propagation of cascades in the IEEE
118-bus test system. Furthermore, the results of TM and BEM-
PC are consistent across all scenarios, as shown in Figs 5 and
6. Some minor disparity can be observed between BEM and
TM for very large number of line outages and demand loss,
especially for OPC-ideal cases.

Based on 500 Monte-Carlo simulations, Table I presents a
comprehensive comparison of the accuracy of BEM-PC w.r.t.
TM in terms of errors in the status (connected or disconnected)
of buses, machines, and lines at the end of a cascade event. The

Table III: Improvement in end of cascade average demand loss (%)
and number of line outages through proposed OPC in TM and BEM-
PC w.r.t. no-OPC model: IEEE 118-bus system - without integral-
controller

Improvement in MST 75% Ideal
Demand TM 0.666 2.579 10.442
loss % BEM-PC -1.181 1.122 9.666
Line TM 1.245 5.197 20.390
outage BEM-PC -1.906 2.816 18.956

table also shows the maximum errors in the voltage magnitude,
voltage angles of buses, and system frequency. Despite the
presence of some outliers that result in an increase in average
error values, BEM-PC is able to replicate the exact end-result
of TM for most of contingencies. The path agreement measure
(R) [3], [25] compares dependent branch outages (tripped
lines after initial disturbance, excluding initial disconnections
to trigger the cascade) in the corresponding contingencies in
TM and BEM-PC where value of R = 1 indicates complete
agreement in dependent line outages and path of cascade in
two approaches. Different measures for R in Table I show that
the models have almost complete agreement in the cascade
path. Generally, as we move from the no-OPC scenario to
the OPC-ideal scenario, errors tend to increase. Finally, the
runtime ratio measures in the table indicate that BEM-PC is,
on average, ≈ 9− 13 times faster than TM.

The results in Table II underscore the effectiveness of the
proposed OPC in mitigating cascading events, as evidenced
by the significant improvement in both demand loss and the
number of line outages. These values represent the average
of differences between end-of-cascade demand loss (%) and
number of line outages in scenarios with OPC w.r.t. no-
OPC obtained from the exhaustive simulations. Moreover, a
comparative analysis of BEM-PC and TM approaches shows
that they yield similar end results, further validating the
accuracy of proposed BEM-PC approach for dynamic sim-
ulations of coupled power-communication networks. Finally,
Table III presents similar results to those in Table II for
the proposed models without integral controllers designed for
the application of OPC commands. This table highlights the
importance of including integral controllers in the models.

B. Polish system

We conducted simulations for the coupled power-
communication network using the IEEE 2, 383-bus Polish
system to observe the impact of our proposed OPC described
in section III. To this end, we compare the accuracy of
BEM-PC w.r.t. TM based on 500 Monte-Carlo simulations
for different scenarios including no-OPC, OPC-MST, OPC-
85%, and OPC-ideal. The results are presented in Figs 7 and
8, which respectively show the frequency of occurrence of
the number of line outages and demand loss at the end of a
cascade exceeding a certain level x. The results highlight the
importance of redundancy in the cyber layer and demonstrate
the effectiveness of the proposed cascade mitigation approach.
The OPC-ideal scenario, which employs an ideal WAMPAC
network, is shown to significantly reduce demand loss and
the number of line outages at the end of a cascade w.r.t. no-
OPC case. It is worth noting that the effectiveness of OPC
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Figure 7: Fraction of cases with line outage ≥ x at the end of cascade:
Polish system.

Figure 8: Fraction of cases with % demand loss ≥ x at the end of
cascade: Polish system.

is visible for contingencies resulting in demand losses higher
than 2%, as shown in Fig. 8. However, when x = 1 − 2%
range is considered in Fig. 8, we observe a counter-intuitive
trend. This can be attributed to the impact of load shedding
commanded by OPC, which does not take place in the no-OPC
scenario. Furthermore, this phenomenon is more pronounced
in the OPC-ideal case compared to OPC-MST and OPC-85%.
This can be explained by the presence of a higher number
of fully observable and controllable islands in the OPC-ideal
scenario. Nevertheless, Fig. 7 illustrates that the proposed OPC
exhibits consistent effectiveness in reducing line outages for
all cases. Furthermore, the results of TM and BEM-PC are
consistent across all scenarios, as shown in Figs. 7 and 8.

Table IV compares various error measures at the end of
cascade for BEM-PC w.r.t. TM for various scenarios. These
indicate that for almost all of the cases, BEM-PC is able to
accurately mimic the end results of cascade as in TM. The
R measures in this table demonstrate that the models have
a high degree of agreement in the cascade path. Finally, the
runtime ratio indicates that on average BEM-PC is ≈ 22− 26
times faster than TM. Finally, the effectiveness of the proposed
OPC in mitigating cascading events is underscored by the
results presented in Table V, which reveal a considerable
improvement in the number of line outages.

Remarks on BEM-PC:
1. In this work, we have generated significantly more severe
cascading failure events compared to [3] to demonstrate the

effectiveness of the proposed OPC approach. This has been
achieved by reducing the line current ratings by 10% in IEEE
118-bus system and 5% in the Polish system compared to [3].
This is a probable cause for a slightly lower accuracy observed
in the BEM-PC results w.r.t. TM, as compared to the findings
presented in [3].
2. We skip the presentation of BEM-PC performance results
in cases of oscillatory instability in this paper, as these have
already been comprehensively studied in [3].

Remark on interdependent cyber-physical systems:
For Polish system in Figs 7 and 8, the OPC-ideal scenario
shows significant improvement in line outage and demand loss
at the end of cascade w.r.t. the no-OPC scenario. In contrast,
the non-ideal OPC scenarios show limited improvement com-
pared to the scenarios without preventive control. This signifies
the importance of considering realistic interdependent cyber
and physical layers in the cascading failure model.

C. Effect of latency and time skew

As described at the beginning of Section II-B1, we are
assuming the WAMPAC is available for the entire system.
Let us focus on the following facts regarding time skew and
latency in WAMPAC networks.
1. Time skew from clock drift error: PMUs measure volt-
ages and currents and output measured data at typically 60
samples/s. Each sample is time-stamped through a global
positioning system (GPS) clock with microsecond precision.
So, any clock drift error and related time-skew would be
negligible.
2. Data communication and latency buildup: The time-
stamped measurements are then communicated to local phasor
data concentrators (PDCs), which then communicate the data
to regional PDCs (also called super PDCs). There could be
another hierarchy of super PDCs, which finally send the data to
CC where the central PDC will process the data. In the process
of sending data packets from multiple PMUs, the latency
varies in a stochastic manner. It also depends on factors like
congestion. Therefore, when data from individual PMUs arrive
at the PDC location, the data packets with the same time stamp
do not arrive at the same time. The PDC waits for all samples
with the same time stamp to arrive. It then ‘synchronizes’ them
and sends it forward. Unfortunately, PDCs contribute a lot to
the delay as well.
3. Typical latency studied for closed-loop control application:
Latencies of the order of hundreds of milliseconds have been
studied in literature on near real-time control applications
of WAMPAC, see for example [26]–[30]. In line with the
literature in this area, we have considered a 500 ms maximum
end-to-end latency in our study.
4. Modeling the impact of latency and time skew: As described
earlier, typical time skew is of the order of microseconds,
which is negligible compared to the inter-sample interval of
1/60 s. Therefore, this will not cause error during the time-
synchronization of samples at the PDC in CC. Since the effect
of time skew is negligible, following this synchronization, a
500 ms maximum end-to-end latency of each batch of samples
from all PMUs can be modeled by time-shifting the moving
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Table IV: (a) End of cascade error, (b) path agreement measure, and (c) run time in TM w.r.t. BEM-PC: Polish System

No-OPC OPC–MST
mean min max median mean min max median

error in buses 0.143 0 16 0 0.218 0 23 0
state of machines 0.189 0 4 0 0.143 0 4 0

lines 0.157 0 15 0 0.297 0 30 0
maximum |v|, pu 0.001 0 0.043 1e-4 0.001 0 0.125 1e-4
error in ∠v, deg. 0.129 0 15.407 0.002 0.200 0 22.864 0.003

f,Hz 0.013 0 0.300 4e-5 0.011 0 0.300 4e-5
R 0.991 0.666 1 1 0.974 0.464 1 1

runtime ratio 26.045 0.627 74.512 24.348 22.845 0.645 79.092 21.646
OPC–85% OPC–ideal

mean min max median mean min max median
error in buses 0.143 0 16 0 0.096 0 6 0
state of machines 0.132 0 4 0 0.046 0 2 0

lines 0.197 0 15 0 0.197 0 12 0
maximum |v|, pu 1.6e-3 0 0.078 2e-4 0.004 0 0.150 3e-4
error in ∠v, deg. 0.121 0 15.407 3.4e-3 0.142 0 6.751 0.014

f,Hz 0.012 0 0.328 5e-5 0.007 0 0.328 3e-5
R 0.977 0.5 1 1 0.974 0.5 1 1

runtime ratio 22.310 0.579 72.710 21.948 24.711 0.619 71.526 25.122

Table V: Improvement in end of cascade average demand loss (%)
and number of line outages through proposed OPC in TM and BEM-
PC w.r.t. no-OPC model: Polish system

Improvement in MST 85% Ideal
Demand TM 0.712 1.297 7.713
loss % BEM-PC 0.710 1.297 7.721
Line TM 23.766 41.140 243.716
outage BEM-PC 23.834 41.164 243.772

Figure 9: Latency of 500 ms is considered for OPC data input.
Fraction of cases with line outage ≥ x at the end of cascade in
IEEE 118-bus system.

window of data used in OPC by 0.5 s in the past while
retaining the window size.

We have studied the impact of latency on OPC performance
in IEEE 118-bus system. Figures 9 and 12 show the frequency
of occurrence of the number of line outages and demand loss
at the end of a cascade exceeding a certain level for TM and
BEM-PC. A qualitative comparison of these results with those
in Figs 5 and 6 indicate that the impact of the latency is barely
noticeable.

Boxplots in Figs 10 and 11 show the central tendency of the
differences in line outages between the cases with 0.5 s delay
and no delay for TM and BEM-PC, respectively. It can be
seen that the median difference is zero and only a few outliers
are observed. This observation is similar in the context of %
demand loss comparison shown in Figs 13 and 14.

Figure 10: For TM: Boxplots of the difference in line outages at the
end of cascade in IEEE 118-bus system between 500 ms delay and
0 ms delay.

Figure 11: For BEM-PC: Boxplots of the difference in line outages
at the end of cascade in IEEE 118-bus system between 500 ms delay
and 0 ms delay.

VI. CONCLUSION AND FUTURE WORK

This paper presented a dynamic cascading failure model
that considers realistic interdependencies in power grids with
physical and cyber layers. The model considered delay in
disconnection of communication nodes following bus outages
and load sheddings due to the depletion of battery backup in
those nodes. The proposed centralized OPC was most effective
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Figure 12: Latency of 500 ms is considered for OPC data input.
Fraction of cases with % demand loss ≥ x at the end of cascade in
IEEE 118-bus system.

Figure 13: For TM: Boxplots of the difference in % demand loss at
the end of cascade in IEEE 118-bus system between 500 ms delay
and 0 ms delay.

Figure 14: For BEM-PC: Boxplots of the difference in % demand
loss at the end of cascade in IEEE 118-bus system between 500 ms
delay and 0 ms delay.

in majority of cases under the ideal communication scenario
with infinite battery backup while the generator exciters were
equipped with voltage tracking integral control. As expected,
its effectiveness went down with realistic cases considering
finite battery backup. This highlighted the importance of in-
cluding interdependent cyber and physical layers in a realistic
manner. In addition, application of BEM-PC accelerated the
Monte-Carlo simulations by a factor of ≈ 9 − 13 for IEEE
118-bus system and ≈ 22 − 26 for Polish network w.r.t. the
TM-based simulations. Future work can focus on extending the

proposed approach for including topology estimation problem
for the partially observable islands, and applying OPC on the
estimated islands. This can lead to the more efficient cascade
mitigation approach than it was proposed in this paper.
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APPENDIX
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Figure 15: Top: Static exciter model. Bottom: Integral-Controller
model. When OPC is active, v∗ref = v∗Gen, where v∗Gen is an element
of the vector v∗

Gen.
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