

BIOTIC INTERACTIONS BETWEEN CONULARIIDS AND EPIBIONTS FROM THE SILURIAN WAUKESHA BIOTA

APRIL ARLENE MILLER¹, JOHN WARREN HUNTLEY¹, EVAN PELZNER ANDERSON¹,
SARAH MONIQUE JACQUET²

¹ Department of Geological Sciences, University of Missouri, Columbia, MO, 65211

² Department of Physical and Biological Sciences, Columbia College, Columbia, MO, USA, 65211

jacquets@missouri.edu

10 *RRH: INTERACTIONS BETWEEN SILURIAN CONULARIIDS AND EPIBIONTS*

11 *LRH: A. A. MILLER ET AL.*

ABSTRACT

14 Here we describe an epibiont association between conulariids and holdfast
15 producers, with attachment scars resembling those of the tubular epibiont, *Sphenothallus*,
16 from the Silurian (late Telychian Series) Brandon Bridge Formation, Wisconsin. The
17 conulariid population represents the most abundant sessile organisms in the Waukesha
18 Biota and consists of two species, *Conularia niagarensis* Hall, 1852 and *Metaconularia* cf.
19 *manni* (Roy, 1935). Attachment scars present on the conulariid test offer a unique glimpse
20 into the paleoecology of this Silurian benthic assemblage. However, body fossils of the
21 attached epibiont are scarce and have not been observed attached or near conulariid

22 **specimens. This study evaluates the identity and paleoecological relationship between the**
23 **conulariids and their enigmatic epibionts. Statistical analyses of attachment trace size,**
24 **frequency, and distribution on the conulariid test gives insight to the nature of their**
25 **symbiotic relationship. Our results did not find any significant support for a parasitic**
26 **relationship. However, commensalism cannot be ruled out and serves as an alternative**
27 **explanation for the relationship between these two organisms.**

28

29 INTRODUCTION

30 The sessile life mode of conulariids predisposed them to serve as a hard substrate for
31 colonization by epibiont or other holdfast-bearing organisms. Among the taxa reported attaching
32 to conulariids are cnidarians, principally *Sphenothallus* (Van Iten et al. 1996; John et al. 2010);
33 brachiopods, including orbiculoids and rhynchonelloids (Babcock and Feldmann 1986a; Van
34 Iten et al. 2016, 2018); edrioasteroids (Van Iten et al. 2018); other conulariids (Van Iten et al.
35 2016); microconchids (Brood 1995); and holdfast structures with unknown affinity (Babcock and
36 Feldmann 1986a, 1986b; Van Iten et al. 2018).

37 Within the Waukesha Biota, conulariids are among the few preserved sessile organisms
38 that could have served as a hard substrate in life (Miller et al. 2022). Though other sessile taxa
39 have been documented from the assemblage, they are rare, and include orbiculoid brachiopods
40 and a single specimen of *Sphenothallus* sp. (Wendruff et al. 2020). Whether either taxon was the
41 producer of the holdfasts on the conulariids remains to be determined. Conulariids and
42 *Sphenothallus* are well known to co-occur in similar paleoenvironments and geological
43 formations throughout the Paleozoic (Van Iten et al. 1992a, 1996, 2013, 2016; Brabcová and

44 Kraft 2003; Botting and Muir 2012), though this alone is not indicative of such an association for
45 the material documented herein.

46 Though epibiont associations with conulariids have been well documented, assessment of
47 the host/epibiont interaction, particularly the degree of aggregation and distribution across and
48 between individual hosts, has not previously been quantified. However, epibionts are purported
49 to have attached to their conulariid hosts to benefit from (1) better access to food suspended
50 higher in the water column; (2) opportunistic feeding from currents produced by the conulariid
51 (assuming both organisms are filter feeders) (Neal and Hannibal 2000); and (3) avoiding
52 predators on the seafloor surface (Sendino and Bochmann 2021).

53 The material herein presents an opportunity to investigate conulariid/epibiont dynamics
54 and infer the nature of their relationship. Based on the disruption of the ornament around
55 attachment surfaces and continued thecal growth we argue that the conulariid host and their
56 epibionts shared a long-term relationship. Possible explanations for such a relationship include
57 parasitism (i.e., a negative impact for the host but positive for the epibiont), mutualism (i.e., a
58 positive impact on both host and epibiont) and commensalism (i.e., no impact for host but
59 positive for the epibiont) (Zapalski 2011; Topper et al. 2014; Robin 2021). Due to the ambiguity
60 in identifying mutualism and commensalism based on fossil data (Zapalski 2011), we conducted
61 several analyses specifically to test for a parasitic relationship between conulariids and their
62 epibionts. The relationships between host size and shape relative to attachment scar presence and
63 abundance, as well as the distribution and size of the traces across the conulariid test were
64 examined. This work aims to address the following questions: (1) what is the most parsimonious
65 taxonomic affinity of the epibionts attached to conulariid specimens in the Waukesha Biota; (2)
66 how do abundance and spatial distribution of attachment scars relate to the host's body size or

67 shape; and (3) to what degree do the size and distribution of the attachment scars reflect epibiont
68 recruitment throughout conulariid ontogeny and the nature of their interaction?

69

70 METHODS

71 Geological Setting

72 The Silurian (Llandovery Series; late Telychian Stage) Brandon Bridge Formation and
73 associated basal Waukesha Lagerstätte crops out as a shallow, southward dipping unit in south-
74 east Wisconsin. The succession represents a mixed carbonate-siliciclasite transgressive sequence
75 package overlying a locally irregular, karstified ravinement surface of the Manistique Formation
76 that wedges out on the western side of the Michigan Basin (Kluessendorf and Mikulic 1996;
77 Grathoff and Moore 2002). The lithology and sequence stratigraphic context of the unit has been
78 documented in detail previously (Mikulic 1977; Mikulic et al. 1985a, 1985b; Kluessendorf 1990;
79 Kluessendorf and Mikulic 1996); Pulsipher et al. *in press*). The accumulation of soft-bodied
80 fossils within the Waukesha Lagerstätte has been attributed to anoxic conditions formed locally
81 within hydrodynamic traps across the irregular paleoscarp surface in conjunction with
82 entombment via microbial films (Kluessendorf 1990; Wendorff et al. 2020; Anderson et al.
83 2021).

84 A comprehensive systematic and taphonomic assessment of the two conulariid taxa—
85 *Conularia niagarensis* Hall, 1852 and *Metaconularia* cf. *manni* (Roy, 1935)—from the
86 Waukesha Biota has been provided by Miller et al. (2022) wherein the conulariids are reported as
87 a dominant constituent of the sessile fauna within the fossil assemblage, but among the few to
88 maintain evidence of biomineralization. Preservation of the conulariids is consistent with

89 minimal post-mortem transport, as evidenced by a conspicuous lack of theca breakage or
90 abrasion of fine external ornament, though the energy and duration of transportation has been
91 suggested as sufficient to remove or dislodge attached epibionts (Miller et al. 2022). Post-burial
92 taphonomic pathways demonstrate varying degrees of demineralization in response to changing
93 pH conditions followed by compression and kerogenization of the conulariid theca. The result is
94 a spectrum of taphomorphs from compressed forms with recrystallized thecae composed of
95 francolite to carbonaceous films and kerogenous patches left on impressions or molds of the
96 theca within the matrix (Miller et al. 2022).

97

98 Morphometric Data

99 Conulariid specimens examined in the present study are housed in the invertebrate paleontology
100 collection of the University of Wisconsin-Madison Geology Museum (UWGM). Different
101 conventions exist for the terminology of conulariid morphologies, herein we use that employed
102 by Sinclair (1952), Moore and Harrington (1956), and Van Iten et al. (1996). Moreover, the
103 terminology used herein concerning modes of attachment to hard substrates follows the
104 conventions summarized in Bromley and Heinburg (2006). Of the total 40 conulariid specimens
105 measured, we analyzed 33 (excluding counterparts and folded specimens) to characterize body
106 size and shape. Among those analyzed, 562 attachment scars were measured on 20 conulariid
107 individuals. Specimens were examined and photographed using a GIGAMacro Magnify2
108 Robotic Imaging System with Canon EOS Rebel T6i DSLR to acquire gigapixel resolution
109 photomosaics with a T1 x1 and x3 Nikon objective. Morphological data of conulariid body size
110 and associated attachment scar dimensions and distributions were then measured using the free
111 image processing software package Fiji (Schindelin et al. 2012; <http://imagej.net>). Conulariid

112 body size was measured based on the maximum length from aperture to apex along the corner
113 groove and the maximum width of the aperture (Fig. 1A). Width measurements represent half the
114 perimeter of the aperture (equivalent to the width of two faces) rather than the true width across
115 one face due to the compression of the samples. For incomplete specimens on the apical end,
116 length was estimated based on the projected apical angle of the lateral corner grooves on either
117 edge of the specimen. The estimated width was based on the measured distance from the outer
118 edge of the corner groove at the aperture to the intersection with the projected corner groove based
119 on the apical angle (Fig. 1A). To examine the spatial distribution of the attachment sites across
120 conulariid individuals, the distance of each trace to the aperture was measured (Fig. 1B).

121 Attachment scar morphology exhibits two discernible types depending on whether they
122 are preserved on the internal or external surface. Those on the outer surface of the conulariid that
123 preserve on the calcium phosphate test have a shallow circular depression with an outer rim that
124 is fabric destructive relative to the external ornament (nodes, longitudinal striae, interspaces, and
125 transverse ribs), herein referred to as type 1 (Fig. 1C, 1D). Traces visible on the internal surface
126 of the conulariid take on two forms. Type 2a is the moldic counterpart of a type 1 depression and
127 instead exhibits a positive circular feature (Fig. 1E, 1F). Type 2b lacks a positive mold and rather
128 exhibits a faint circular feature often surrounded by a darker carbonaceous rim in the area outside
129 of fabric destruction. Trace dimensions were measured as the maximum diameter and the
130 maximum length perpendicular to the maximum diameter. For type 1 this is represented by the
131 extent of the circular depression; if this was not present the extent of the outer rim was used. For
132 type 2a, the diameter of the raised mold was measured. For type 2b, the faint circular feature was
133 measured; however, in the absence of this feature the extent of fabric destruction was measured
134 in its place (Fig. 1G, 1H).

135

Statistical Analyses

136 Analyses were conducted and figures were produced in *R* (*R* Core Team 2014; Version 1.2.1335)
137 using the packages *ggplot2* (Wickham 2016) and *vegan* (Oksanen et al. 2020). We conducted
138 correlation analyses and linear regression models to characterize conulariid size, shape, and
139 ontogeny. The first model compared \log_{10} -transformed conulariid length and width, the second
140 compared the geometric mean of \log_{10} -transformed length and width (as a body size proxy) to
141 apical angle, and a third compared the same body size proxy as the previous model with the
142 number of attachment scars.

143 Frequency distributions of the intensity of attachment scars on conulariid individuals
144 were examined to determine if the relationship between the epibiont and host was consistent with
145 that of a parasitic relationship. We performed a Wilcoxon test to determine the difference in
146 median body size between conulariids with and without traces. We also conducted a non-Metric
147 Multidimensional Scaling (NMDS) ordination on conulariid specimens using length, width,
148 apical angle, and the number of transverse ribs per centimeter to assess how body size and shape
149 relate to the number of attachment sites present. The NMDS reduced the data set to two
150 dimensions, used a Euclidean dissimilarity index, and was performed using the metaMDS
151 function in the *vegan* package (Oksanen et al. 2020).

152 Finally, correlation analyses were used to determine if the attachment scars show any
153 preference toward grouping on a particular area of the conulariid. The first analysis compared
154 trace size to the distance of the attachment site to the aperture. The second analysis conducted a
155 similar analysis except attachment site distance was expressed as a proportion of conulariid
156 length. The potential values of the latter range from zero (positioned at the apex) to 1.0
157 (positioned at the aperture). Raw data and *R* scripts are available in the Supplementary Material.

158

159

RESULTS

160 In sum, 32 specimens of *Conularia niagarensis* and 1 specimen of *Metaconularia* cf. *manni* were
161 included in statistical analyses, of which, 20 had attachment scars. Trace-bearing specimens have
162 between 9 and 47 attachment scars with a median value of 24.5. The maximum diameters of the
163 inner pit and outer rims are 0.59 mm and 1.62 mm, respectively depending on the expression of
164 the trace type identified. There is a significant and positive log-linear relationship between
165 conulariid length and width ($r_{Pearson} = 0.92, p < 0.001$) (Fig. 2A). The linear regression model
166 characterized the relationship between the two variables as $Width = 0.53 * Length + 3.86$.
167 Furthermore, *M. cf. manni* appears indistinguishable from the pattern dominated by *C.*
168 *niagarensis*. There is a significant and negative correlation between conulariid body size
169 (geometric mean of length and width) and apical angle ($r_{Pearson} = -0.45, p = 0.036$) (Fig. 2B). The
170 linear regression model characterizes this relationship as $Apical\ Angle = -0.145 * Geometric$
171 Mean + 27.51. The single specimen of *Metaconularia* cf. *manni* included in the model is
172 characterized by a much narrower apical angle than similarly sized *C. niagarensis* specimens and
173 we consider it to be an outlier.

174 There is a significant positive correlation between conulariid body size and number of
175 attachment sites (Spearman rho = 0.61, $p = 0.0002$) (Fig. 2C). Note that there are no traces
176 present on small (geometric mean of length and width less than 10) conulariids while larger
177 specimens have a mix of conulariids with and without attachment scars (Fig. 2C). Frequency
178 distributions were plotted to show the density of attachment sites on the conulariids. Specifically,
179 the frequency distribution of the number of attachment scars on individual conulariids is strongly
180 right-skewed (variance:mean ratio is 16.2:1) (Fig. 3A). The Wilcoxon test suggests there is a

181 significant ($p = 0.005$) difference in median body size between conulariids with (21.6 mm) and
182 without (14.6 mm) attachment scars (Fig. 3B). This pattern holds when the single specimen of
183 *M. cf. manni* is removed, and only *C. niagarensis* is analyzed. In this case, the Wilcoxon test
184 suggests a significant ($p = 0.008$) difference in median body size between conulariids with (20.9
185 mm) and conulariids without (14.6 mm) attachment scars.

186 The NMDS of individual conulariid specimens comparing body size and apical angle has
187 a stress value of 0.030 (Fig. 3C). NMDS1 is interpreted as an inverse proxy of conulariid body
188 size (larger specimens with negative values and smaller specimens with positive values).
189 NMDS2 is interpreted as a proxy for shape that is positively correlated with apical angle
190 (relatively wider aperture with positive NMDS2 values, relatively narrower aperture with
191 negative NMDS2 values) and negatively correlated with density of ribs (lower density of ribs
192 with positive NMDS2 values and higher density of ribs with negative NMDS values).

193 The Pearson correlation analysis resulted in a significant positive correlation between
194 attachment scar size and distance to aperture ($r = 0.145, p = 0.0014, n = 562$) (Fig. 4A). There is
195 no significant correlation between the trace size and proportional position of the attachment site
196 ($r = 0.073, p = 0.112, n = 562$) (Fig. 4B). The smallest conulariids have small traces that are
197 relatively close to the aperture (Proportional Position of Attachment Site >0.5). Larger
198 conulariids have a broad range of trace sizes at low proportional positions (<0.5) and have very
199 few small traces (i.e., mostly larger ones) closer to the aperture (>0.5).

200

201 DISCUSSION

202 Trace Morphology and Epibiont Affinities

203 Our material shows three main types of attachment scar morphologies. Though invariably some
204 of the morphological variation observed relates to the vagaries of taphonomy, generally the
205 traces can be simply characterized as circular in nature with an outer rim. While no attached
206 epibiont body fossil has been observed in direct association with a conulariid, the most likely
207 epibiont would be found within the Waukesha Biota. We also think these attachment scars were
208 produced *syn-vivo* based on their presence on all faces of the conulariid test. In select specimens
209 (UWGM 2754 and 4006) we see both type 1 attachment traces on the outer test and type 2a or 2b
210 attachment traces on the opposing face. Furthermore, transverse rib ornamentation is disrupted in
211 type 1 attachment traces suggesting that the epibiont stayed attached to the conulariid theca for
212 an extended period of time, if not throughout both organisms' lives. Though raised bumps within
213 the host rock and underlying fossils could be microbially-induced gas escape structures, type 2a
214 attachment traces appear to be biologically induced structures and are produced antemortem
215 (Wendruff et al. 2020).

216 Attachment traces on conulariid specimens that resemble those seen on our material have
217 been described and figured without assigning an affinity, but could represent *Sphenothallus*
218 holdfasts (Van Iten et al. 2018, fig. 5C–E; Sendino and Bochmann 2021, fig. 11). Furthermore,
219 several studies have identified *Sphenothallus* attachment scars that bear a striking resemblance to
220 what we describe as type 1 attachment traces (compare Fig. 1C, 1D to: Bodenbender et al. 1989,
221 fig. 3; Neil and Hannibal 2000, figs 6, 7; Lerner and Lucas 2011, fig. 2; Zicha et al. 2020, fig. 3p,
222 3q; Bruthansová and Van Iten 2020, fig. 11a). *Sphenothallus* holdfasts and traces are often seen
223 without any body fossils still attached to the host organism (Lerner and Lucas 2011), though
224 phosphatic residues from the Silurian (Llandovery Series, early Aeronian Stage) Cape Schuchert
225 Formation, Washington Land, North Greenland reveal well-preserved specimens of

226 *Sphenothallus* sp. holdfasts, attachment discs, and basal portions of the tube (Peel 2021).
227 *Sphenothallus* holdfasts are characterized as conical with circular to elliptical outline ranging
228 between 0.3–2 mm in diameter (Bodenbender et al. 1989; Peel 2021). The underside of the
229 holdfast structure in loose phosphatic specimens shows a funnel-shaped smooth transition into
230 the tube interior (Peel 2021, fig. 2B, 2C, 2K, 2P). Holdfasts preserved *in situ* attached to the host
231 tend to lack the body tube, but show a raised phosphatic rim with a roughly circular pit in the
232 center (Bodenbender et al. 1989; Neal and Hannibal 2000, fig. 6), while attachment scars
233 attributed to members of the genus are also associated with circular outlines and interior
234 depressions. Our material is small, averaging 0.6 mm in diameter for the outer ring with the
235 center pit measuring 0.2 mm in diameter, which approximates dimensions of holdfast material
236 documented from the Cape Schuchert Formation (Peel 2021).

237 Orbiculoid and rhynchonellid brachiopods are also known to attach to conulariids (and
238 *vice versa*), however they often remain affixed after burial and consequently their attachment
239 scars are rarely observed. Brachiopod attachment scars appear as lopsided circular to ovular
240 depressions without any interior features (Zatoń and Wrzołek 2020, fig. 5B), unlike those
241 examined in our material that are characterized by an inner pit surrounded by an outer ring.
242 Attachment scars of unidentified brachiopods affixed to conulariid specimens were figured by
243 Bruthansová and Van Iten (2020, fig. 12A, 12B) which bear no resemblance to the traces seen on
244 our material. Furthermore, a figured conulariid specimen from the Skaneateles Formation,
245 Middle Devonian, Cazenovia, New York is preserved with subcircular pits that were the
246 attachment sites of orbiculoid brachiopods on the test face (Babcock and Feldmann 1986c, fig.
247 2I). However, these pits are very large, measuring 8–10 mm in diameter, far exceeding the
248 maximum dimensions of the Waukesha Lagerstätte material.

249 *Sphenothallus* is perhaps the most parsimonious candidate for producing the observed
250 traces, particularly given the overlapping dimensions and its contemporaneous occurrence within
251 the Waukesha Biota (albeit only a single specimen has been confidently figured; see Wendorff et
252 al. 2020, fig. 6C). The apparent absence of directly associated body fossils or holdfasts could be
253 justified as taphonomic bias. This may be explained by potentially three scenarios that are not
254 necessarily mutually exclusive. First, the epibionts were initially removed from the host through
255 abrasive processes as a consequence of pre-burial transportation. Second, the attachment
256 mechanism between the holdfast or attachment disc of *Sphenothallus* and adjacent theca
257 detached at some point during conulariid growth or was degraded relatively rapidly post-mortem.
258 Third, the very thin test of *Sphenothallus* was predisposed to enhanced demineralization pre- and
259 post-burial, which may assist in explaining the rarity of *Sphenothallus* body fossils in the
260 assemblage (Miller et al. 2022). Nevertheless, a soft-bodied organism cannot be ruled out, given
261 that several taxa, including algae, annelids, ciliates, hydrozoans, select bryozoans, and sponges
262 present in the modern day are known to adopt this epibiont habit (Waugh et al. 2004). This could
263 also account for the absence of a physical holdfast, which have been reported previously in
264 association with *Sphenothallus* (Mason and Yochelson 1985; Neal and Hannibal 2000).

265 Conulariid Size and Epibiont Abundance

266 Trends in conulariid shape and size are inherent to their growth habit—centripetal accretion (Van
267 Iten 1992)—involving gradual thickening of two macrolamella zones on the inner surface of the
268 periderm (Ford et al. 2016). Marginal accretion is produced by progressive mineralization of the
269 test along weakly to non-mineralized lamellae close to the apertural margin (Mergl et al. 2016).
270 Based on the specimens measured herein, we observed a strong positive correlation between
271 length and width (Fig. 2A). Though this might initially suggest isometric growth, caution is

272 required when interpreting this result as it is influenced by the method used to measure width,
273 equating to two faces, as opposed to one. Moreover, the body size (geometric mean of length and
274 width) scales negatively with apical angle, implying the angle becomes narrower and therefore
275 that the rate of aperture expansion reduces throughout ontogeny (Fig. 2B). This is more
276 suggestive of allometric growth.

277 Determining the morphological trends of the host throughout ontogeny is relevant to
278 understanding the relationship between the host and epibiont throughout their respective
279 lifecycles. Assuming smaller conulariids correspond to younger individuals we hypothesize that
280 individuals with attachment scars are, in general, larger than those without them, and our results
281 support this pattern (Fig. 3B). Among specimens with attachment scars present, larger specimens
282 (i.e., with a body size greater than 10 mm, Fig. 2C) tend to possess more epibionts. This suggests
283 that larger and presumably older specimens have more attachment scars, which would be
284 consistent with the accumulation of parasites or epibionts throughout ontogeny (Huntley and
285 Scarponi 2021). Frequency distributions corroborate this finding. The distribution of attachment
286 sites among the conulariid population is strongly right skewed (Fig. 3A) with the many of
287 conulariids lacking attachment scars while those possessing traces display a wider distribution
288 (Fig. 3B). Other host-sclerobiont associations demonstrate comparable trends that have been
289 explained by a prolonged availability of substrate and greater surface area for settling larvae on
290 larger hosts as opposed to smaller ones (Webb and Schneider 2013). This type of distribution is
291 also common among macroparasites (Shaw and Dobson 1995; Wilson et al. 1998) but is not
292 definitive of a parasite-host interaction.

293 The NMDS ordination shows that conulariids without attachment scars tend to have
294 narrower apical angles (Fig. 3C). This suggests that individuals with a smaller apical angle and

295 body size are less likely to be colonized. Of the specimens examined, ~60% possessed
296 attachment scars, which represents a moderate frequency of encrustation. However, given that
297 approximately 40% of the conulariid specimens examined remained epibiont-free with potential
298 space for attachment, there must have been limiting factors within the environment on epibiont
299 recruitment (e.g., turbidity, depth, energy) (Taylor 2016). Furthermore, colonization methods
300 employed by the epibiont likely impacted their settlement among the conulariid population,
301 including such factors as the size of the larva, use of chemical signaling, and preferences in
302 surface microtopography (Agostini et al. 2017; Bruthansová and Van Iten 2020). In our case,
303 without knowing exactly what the epibiont is, it is problematic to infer the methods of
304 recruitment. Nevertheless, we can infer the pattern of epibiont recruitment would have generally
305 followed the patterns noted above (Carrera 2000; Taylor 2016; Agostini et al. 2017; Bruthansová
306 and Van Iten 2020).

307 We must also be cautious in the interpretation of our data, as taphonomic and sampling
308 biases could underrepresent the number of epibionts on individuals. For instance, the 2D
309 compression of the conulariid specimens usually limits our sample set to one half (or two faces)
310 of the organism. Moreover, prior dissolution of the theca during preservation or mechanical
311 breakage of the test during sampling will further remove morphological data (Miller et al. 2022).
312 Notably, the best-preserved examples of attachment scars are observed as type 1 traces on
313 phosphatic test material, though frequently these show a very thin layer of phosphate or the
314 underlying matrix compared to uncolonized test surface, suggesting the theca was particularly
315 thin at the site of the scar. This may be a consequence of etching of the adjacent theca beneath
316 the epibiont attachment in conjunction with increased proclivity towards pre-and post-burial
317 dissolution (Bromley and Heinburg 2006).

319 To determine the motive behind attachment, we assessed the relative position and distribution of
320 the attachment sites across the host (Fig. 4A, 4B). A major assumption made in the interpretation
321 of these results was that the attaching epibiont was the filter/suspension-feeding organism
322 *Sphenothallus*, competing for resources in a kleptoparasitic fashion. As such, we hypothesized
323 that young *Sphenothallus* would preferentially settle close to the aperture to gain access to the
324 strongest feeding currents—a characteristic of kleptoparasitism (Morris 1981; Iyengar 2008;
325 Zhang et al. 2020). Given this long-term, *syn-vivo* association, as the conulariid grows,
326 *Sphenothallus* must grow to stay close to the aperture of the conulariid to maintain access to the
327 feeding current. Older *Sphenothallus* would be larger with correspondingly large basal
328 attachments that would be located closer to the apex compared to new, ontogenetically younger
329 *Sphenothallus* settling near the aperture. In this case, we would expect to see a positive
330 correlation between *Sphenothallus* basal attachment size and distance from the aperture.
331 Moreover, we would expect to see few small/young *Sphenothallus* far from the growing margin.

332 The results of our analyses found a significant correlation between the distance from the
333 aperture and the size of the associated attachment scar (Fig. 4A), though not for trace size and
334 proportional distance (Fig. 4B). Given the significant correlation has a very low *r* value and is
335 based on a very large sample size, even the statistical significant test may not reflect much true,
336 ecological significance. Consequently, the weak relationship between these two variables
337 suggests that conulariids and *Sphenothallus* may not have shared a kleptoparasitic relationship.
338 Indeed, in larger conulariid specimens, few small attachment scars are found near the aperture, as
339 would be expected with kleptoparasitism. Instead, conulariids and *Sphenothallus* could share a
340 commensal relationship in which *Sphenothallus* was using the conulariid theca as an attachment

341 surface to feed independently. However, testing for commensalism is presented with several
342 challenges.

343 The argument for commensalism is often presented as follows: if the host tolerates large
344 numbers of symbionts, (1) they must be harmless (Browne and Kingsford 2005; Dvoretzky and
345 Dvoretzky 2009); (2) there is very little cost to the host (Goto et al. 2007; Lee et al. 2009); or (3)
346 there is a positive effect for the symbiont and an undetectable positive or negative effect for the
347 host in which a neutral effect is assumed (Mosher and Watling 2009; Torres-Martínez et al.
348 2021; Zapalski 2011). There are issues with each argument presented for commensalism in the
349 fossil record. For instance, the first argument is problematic because parasites can be tolerated by
350 the host in large quantities with no apparent effect (Miller et al. 2005; Zapalski 2011). It has also
351 been argued that commensal relationships can become parasitic as the interaction between host
352 and symbiont can fluctuate over time with external environmental influences (Miller et al. 2006;
353 Lee et al. 2009; Zapalski 2011). Our material is not evidently parasitic; hence we propose that a
354 commensal relationship is most appropriate, one in which there is a positive gain for the
355 epibionts and negligible detectable effect on the host organisms. Nevertheless, we concede this
356 interpretation is based on a lack of negative evidence, given the aforementioned limitations on
357 the interpretations of commensalism in the fossil record.

358

359 CONCLUSIONS

360 Numerous attachment scars are present in over half of the conulariid specimens sampled from
361 the Waukesha Biota, though the body fossils of the epibiont are scarce and have thus far eluded
362 preservation *in situ*. We suggest the attachment scars present on the conulariid test were

363 produced *syn-vivo* based on the presence of attachment sites on all conulariid faces and disrupted
364 transverse rib ornamentation which indicates a long-term living relationship between epibiont
365 and host. The attachment scars found on Waukesha conulariids bear a close morphological
366 resemblance to *Sphenothallus* scars described in published literature, though the physical
367 holdfast has not been found preserved. Principally, the presence of a circular to elliptical rim
368 with a centralized pit distinguishes the scars from other potential attaching organisms such as
369 orbiculoid brachiopods also found preserved in the Waukesha Biota. Concerning the nature of
370 the relationship between host and epibiont throughout their respective lifecycles, our analysis
371 found that larger conulariids, both in terms of size and apical angle, tend to have possessed more
372 attachment scars. Given the moderate rate of encrustation within the population, recruitment of
373 epibionts on the hosts was likely being impacted by other environmental or biological factors.
374 Frequency distributions are strongly right skewed indicating an aggregated distribution of
375 attachment scars among the conulariid population. This pattern is common among
376 macroparasites; however, it is not definitive of a parasite-host interaction. Assessment of the
377 relative position and distribution of attachment sites across the conulariid test did not find a
378 strong relationship between trace size and distance to the aperture. In the absence of strongly
379 significant evidence of a parasitic relationship, we consider commensalism an alternative
380 explanation for the relationship between conulariid and epibiont.

381

382 ACKNOWLEDGMENTS

383 We thank Carrie Eaton, Museum Curator of the University of Wisconsin Geology Museum for
384 access and loan of the specimens. Thanks to Stephanie Rosbach for helpful discussions and
385 advice on statistical methods. The manuscript also benefited from constructive suggestions and

386 comments made by Olev Vinn, Michal Zaton, and Associate Editor Rafal Nawrot. This research
387 was supported by National Science Foundation (NSF) Earth Sciences Sedimentary Geology and
388 Paleobiology (SGP) 1917031 (AAM and SMJ); NSF Postdoctoral Fellowship (EAR-PF)
389 1725762 (EPA); and NSF CAREER EAR-1650745 (JWH).

390

391 REFERENCES

392 AGOSTINI, V.O., RITTER, M.N., MACEDO, A.J., MUXAGATA, E., AND ERTHAL, F., 2017, What
393 determines sclerobiont colonization on marine mollusk shells?: PLOS ONE, v. 12(9), p.

394 1–27, <https://doi.org/10.1371/journal.pone.0184745>.

395 BABCOCK, L.E., AND FELDMANN, R.M., 1986a, Devonian and Mississippian Conulariids of North
396 America. Part A. General Description and *Conularia*: Annals of the Carnegie Museum, v.
397 55, p. 349–410.

398 BABCOCK, L.E., AND FELDMANN, R.M., 1986b, Devonian and Mississippian Conulariids of North
399 America. Part B. *Paraconularia*, *Reticulaconularia*, new genus, and organisms rejected
400 from Conulariida: Annals of the Carnegie Museum, v. 55, p. 411–479.

401 BABCOCK, L.E., AND FELDMANN, R.M., 1986c, The phylum Conulariida, in Hoffman A., and
402 Nitecki, M. H. (eds.), Problematic Fossil Taxa: Oxford University Press, Oxford, p. 135–
403 147.

404 BODENBENDER, B.E., WILSON, M.A., AND PALMER T.J., 1989, Paleoecology of *Sphenothallus* on
405 an Upper Ordovician hardground: Lethaia, v. 22(2), p. 217–225, [doi:10.1111/j.1502-
406 3931.1989.tb01685.x](https://doi.org/10.1111/j.1502-3931.1989.tb01685.x).

407 BOTTING, J.P., AND MUIR, L.A., 2012, Fauna and ecology of the holothurian bed, Llandrindod,
408 Wales, UK (Darriwilian, Middle Ordovician), and the oldest articulated holothurian:
409 *Palaeontologia Electronica*, v. 15(1), 9A, p. 1–28, [doi:10.26879/272](https://doi.org/10.26879/272).

410 BRABCOVÁ, Z., AND KRAFT, P., 2003, Study of conulariid and related phosphatic conical
411 exoskeletons from the Prague Basin (Czech Republic), in Albanesi, G.L., Beresi, M.S.
412 and Peralta, S.H. (eds.), Ordovician from the Andes: INSUGEO, Serie Correlación
413 Geológica, v. 17, p. 263–266.

414 BROMLEY, R.G., AND HEINBERG, C., 2006, Attachment strategies of organisms on hard
415 substrates: A palaeontological view: *Palaeogeography, Palaeoclimatology,*
416 *Palaeoecology*, v. 232, p. 429–453, [doi: 10.1016/j.palaeo.2005.07.007](https://doi.org/10.1016/j.palaeo.2005.07.007).

417 BROOD, K., 1995, Morphology, structure, and systematics of the conulariids: *GFF*, v. 117(3), p.
418 121–137, [doi:10.1080/11035899509546208](https://doi.org/10.1080/11035899509546208).

419 BROWNE, J.G., AND KINGSFORD, M.J., 2005, A commensal relationship between the scyphozoan
420 medusae *Catostylus mosaicus* and the copepod *Paramacrochiron maximum*: *Marine*
421 *Biology*, v. 146, p. 1157–1168, [doi:10.1007/s00227-004-1517-1](https://doi.org/10.1007/s00227-004-1517-1).

422 BRUTHANOVÁ, J., AND VAN ITEN, H., 2020, Invertebrate epibionts on Ordovician conulariids
423 from the Prague Basin (Czech Republic, Bohemia): *Palaeogeography, Palaeoclimatology,*
424 *Palaeoecology*, v. 558, p. 109963, [doi:10.1016/j.palaeo.2020.109963](https://doi.org/10.1016/j.palaeo.2020.109963).

425 CARRERA, M. G., 2000, Epizoan-sponge interactions in the Early Ordovician of the Argentine
426 Precordillera: *Palaios*, v. 15(4), p. 261–272, [https://doi.org/10.1669/0883-1351\(2000\)015<0261:ESIITE>2.0.CO;2](https://doi.org/10.1669/0883-1351(2000)015<0261:ESIITE>2.0.CO;2).

428 DVORETSKY, A.G., AND DVORETSKY, V.G., 2009, Some aspects of the biology of the amphipods
429 *Ischyrocerus anguipes* associated with the red king crab, *Paralithodes camtschaticus*, in
430 the Barents Sea: Polar Biology, v. 32, p. 463–469, [doi:10.1007/s00300-008-0541-x](https://doi.org/10.1007/s00300-008-0541-x).

431 FORD, R.C., VAN ITEN, H., AND CLARK II, G.R., 2016, Microstructure and composition of the
432 periderm of conulariids: Journal of Paleontology, v. 90(3), p. 389–399,
433 [doi:10.1017/jpa.2016.63](https://doi.org/10.1017/jpa.2016.63).

434 GRATHOFF, G.H., AND MOORE, D.M. 2002. Characterization of the Waukesha Illite: a mixed-
435 polytype illite in the Clay Mineral Society repository: Am Mineral., v. 87(11–12), p.
436 1557–1563, [doi:10.2138/am-2002-11-1205](https://doi.org/10.2138/am-2002-11-1205)

437 GOTO, R., HAMAMURA, Y., AND KATO, M., 2007, Obligate commensalism of *Curvemysella paula*
438 (Bivalvia: Galeommatidae) with hermit crabs: Marine Biology, v. 151(5), p. 1615–1622,
439 [doi:10.1007/s00227-006-0518-7](https://doi.org/10.1007/s00227-006-0518-7).

440 HUNTLEY, J.W., AND SCARPONI, D., 2021, Parasitism and host behavior in the context of a
441 changing environment: The Holocene record of the commercially important bivalve
442 *Chamelea gallina*, northern Italy: PLOS ONE, v. 16, p. 1–21,
443 [doi:10.1371/journal.pone.0247790](https://doi.org/10.1371/journal.pone.0247790).

444 IYENGAR, E.V., 2008, Kleptoparasitic interactions throughout the animal kingdom and a re-
445 evaluation, based on participant mobility, of the conditions promoting the evolution of
446 kleptoparasitism: Biological Journal of the Linnean Society, v. 93(4), p. 745–762,
447 [doi:10.1111/j.1095-8312.2008.00954.x](https://doi.org/10.1111/j.1095-8312.2008.00954.x).

448 JOHN, D.L., HUGHES, N.C., GALAVIZ, M.I., GUNDERSON, G.O., AND MEYER, R., 2010, Unusually
449 preserved *Metaconularia manni* (Roy, 1935) from the Silurian of Iowa, and the

450 systematics of the genus: *Journal of Paleontology*, v. 84(1), p. 1–31, [doi: 10.1666/09-025.1](https://doi.org/10.1666/09-025.1).

452 LEE, J. H., KIM, T. W., AND CHOE, J. C., 2009, Commensalism or mutualism: conditional
453 outcomes in a branchiobdellid–crayfish symbiosis: *Oecologia* 159(1), 217–224.
454 [doi:10.1007/s00442-008-1195-7](https://doi.org/10.1007/s00442-008-1195-7)

455 LERNER, A.J., AND LUCAS, S.G., 2011, Allochthonous *Sphenothallus* (Cnidaria) from a
456 Lacustrine Lagerstätte, Carboniferous of New Mexico, USA: New Mexico Museum of
457 Natural History and Science, Bulletin, v. 53, p. 86–89.

458 MERGL, M., FERROVÁ, L., AND FRÝDA, J., 2016, Armoured test of Early Devonian
459 *Mesoconularia* (Conulariida) from the Prague Basin (Czech Republic): probable
460 adaptation to increased predation pressure: *Bulletin of Geosciences*, v. 91(3), p. 561–581,
461 [doi:10.3140/bull.geosci.1601](https://doi.org/10.3140/bull.geosci.1601)

462 MIKULIC, D. G., 1977, A preliminary revision of the Silurian stratigraphy of south-eastern
463 Wisconsin. In: Nelson K.G, editor. *Geology of Southeastern Wisconsin. 41st Annual Tri-*
464 *State Field Guidebook*. Milwaukee: University of Wisconsin-Milwaukee, p. A6–A34.

465 MIKULIC, D.G, BRIGGS, D.E.G, AND KLUESSENDORF, J., 1985a, A new exceptionally preserved
466 biota from the Lower Silurian of Wisconsin, U.S.A.: *Philosophical Trans Royal Soc*
467 London, v. 311, p. 75–85, [doi:10.1098/rstb.1985.0140](https://doi.org/10.1098/rstb.1985.0140).

468 MIKULIC, D.G, BRIGGS, D.E.G, AND KLUESSENDORF, J., 1985b, A Silurian soft-bodied biota:
469 *Science*, v. 228(4700), p. 715–717, [doi:10.1126/science.228.4700.715](https://doi.org/10.1126/science.228.4700.715).

470 MILLER, A.A., JACQUET, S.M., ANDERSON, E.P., AND SCHIFFBAUER, J.D., 2022, Conulariids from
471 the Silurian (late Telychian) Waukesha Lagerstätte, Wisconsin: Historical Biology, v. 00,
472 p. 1–21, <https://doi.org/10.1080/08912963.2021.2017917>.

473 MILLER, M.R., WHITE, A., AND BOOTS, M., 2005, The evolution of host resistance: Tolerance and
474 control as distinct strategies: Journal of Theoretical Biology, v. 236(2), p. 198–207,
475 <https://doi.org/10.1016/j.jtbi.2005.03.005>.

476 MILLER, M.R., WHITE, A., AND BOOTS, M., 2006, The evolution of parasites in response to
477 tolerance in their hosts: the good, the bad, and apparent commensalism: Evolution, v.
478 60(5), p. 945–956, <https://doi.org/10.1111/j.0014-3820.2006.tb01173.x>.

479 MOORE R.C., AND HARRINGTON H.J., 1956. Conulata. In: Moore R.C., editor. Treatise on
480 invertebrate paleontology, Part F, Coelenterata, F54-F66. Kansas: University of Kansas
481 Press, Boulder, Colorado and Lawrence, p. 498.

482 MORRIS, S.C., 1981, Parasites and the fossil record: Parasitology, v. 82(3), p. 489–509,
483 doi:10.1017/S0031182000067020.

484 MOSHER, C.V., AND WATLING, L., 2009, Partners for life: A brittle star and its octocoral host:
485 Marine Ecology Progress Series, v. 397, p. 81–88, doi:10.3354/meps08113.

486 NEAL, M.L., AND HANNIBAL, J.T., 2000, Paleoecologic and taxonomic implications of
487 *Sphenothallus* and *Sphenothallus*-like specimens from Ohio and areas adjacent to Ohio:
488 Journal of Paleontology, v. 74(3), p. 369–380, doi:10.1017/S0022336000031644.

489 OKSANEN, J., BLANCHET, F.G., FRIENDLY, M., KINDT, R., LEGENDRE, P., MCGLINN, D., MINCHIN
490 P. R., O'HARA, R.B., SIMPSON, G.L., SOLYMOS, P., STEVENS, M.H.H., SZOECS, E., AND

491 WAGNER, H., 2020, vegan: Community Ecology Package, R package version 2.5–7,
492 <https://CRAN.R-project.org/package=vegan>.

493 PEEL, J.S., 2021, Holdfasts of *Sphenothallus* (Cnidaria) from the early Silurian of western North
494 Greenland (Laurentia,): GFF, v.143(4), p. 384–389,
495 [doi:10.1080/11035897.2021.1979642](https://doi.org/10.1080/11035897.2021.1979642)

496 R CORE TEAM, 2017, R: A language and environment for statistical computing, R Foundation for
497 Statistical Computing, Vienna, Austria, URL: <https://www.R-project.org/>.

498 ROBIN, N., 2021, Importance of data on fossil symbioses for parasite-host evolution. *In* De Baet,
499 K., and Huntley, J. (eds.), The Evolution and Fossil Record of Parasitism: Coevolution
500 and Palaeoparasitological Techniques: Topics in Geobiology, v. 50, Springer, Cham, 565
501 p. [doi: 10.1007/978-3-030-52233-9_2](https://doi.org/10.1007/978-3-030-52233-9_2)

502 SCHINDELIN, J., ARGANDA-CARRERAS, I., FRISE, E., KAYNIG, V., LONGAIR, M., PIETZSCH, T.,
503 PREIBISCH, S., RUEDEN, C., SAALFELD, S., SCHMID, B., TINEVEZ, J.Y., WHITE, D.J.,
504 HARTENSTEIN, V., ELICEIRI, K., TOMANCAK, P. AND CARDONA, A., 2012, Fiji: An open-
505 source platform for biological-image analysis: Nature Methods, v. 9, p. 676–682,
506 [doi:10.1038/nmeth.2019](https://doi.org/10.1038/nmeth.2019).

507 SENDINO, C. AND BOCHMANN, M.M., 2021, An exceptionally preserved conulariid from
508 Ordovician erratics of Northern European Lowlands: PalZ, v. 95, p. 71–84,
509 [doi:10.1007/s12542-020-00534-7](https://doi.org/10.1007/s12542-020-00534-7).

510 SENDINO, C., AND DARRELL, J., 2009, History of Conulariid Research: Journal of the
511 Palaeontological Society of India, v. 54(2), p. 121–133.

512 SHAW, D.J., AND DOBSON, A.P., 1995, Patterns of macroparasite abundance and aggregation in
513 wildlife populations: a quantitative review: *Parasitology*, v. 111(S1), p. S111–S133,
514 [doi:10.1017/S0031182000075855](https://doi.org/10.1017/S0031182000075855).

515 SINCLAIR, G.W. 1952. A classification of the Conularida: *Fieldiana Geology*, v. 10, p. 135–145.

516 TAYLOR, P.D., 2016, Competition between encrusters on marine hard substrates and its fossil
517 record: *Palaeontology*, v. 59(4), p. 481–497, <https://doi.org/10.1111/pala.12239>.

518 TOPPER, T.P., HOLMER, L.E., AND CARON, J.B., 2014, Brachiopods hitching a ride: an early case
519 of commensalism in the middle Cambrian Burgess Shale: *Scientific Reports*, v. 4, p.
520 6704, [doi:10.1038/srep06704](https://doi.org/10.1038/srep06704).

521 TORRES-MARTÍNEZ, M., VINN, O. AND MARTÍN-AGUILAR, L., 2021, Paleoecology of the first
522 Devonian-like sclerobiont association on Permian brachiopods from southeastern
523 Mexico: *Acta Palaeontologica Polonica*, v. 66(1), p. 131–141,
524 [doi:10.4202/app.00777.2020](https://doi.org/10.4202/app.00777.2020).

525 VAN ITEN, H., 1992, Microstructure and growth of the conulariid test: implications for conulariid
526 Affinities: *Palaeontology*, v. 35(2), p. 359–372.

527 VAN ITEN, H., COX, R.S., AND MAPES, R.H., 1992, New data on the morphology of *Sphenothallus*
528 Hall: implications for its affinities: *Lethaia*, v. 25(2), p. 135–144, [doi:10.1111/j.1502-3931.1992.tb01378.x](https://doi.org/10.1111/j.1502-3931.1992.tb01378.x).

530 VAN ITEN, H., FITZKE, J.A., AND COX, R.S., 1996, Problematical fossil cnidarians from the Upper
531 Ordovician of the north-central USA: *Palaeontology*, v. 39, p. 1037–1064.

532 VAN ITEN, H., MUIR, L.A., BOTTING, J.P., ZHANG, Y.D. AND LIN, J.P., 2013, Conulariids and
533 *Sphenothonallus* (Cnidaria, Medusozoa) from the Tonggao Formation (Lower Ordovician,
534 China): *Bulletin of Geosciences*, v. 88(4), p. 713–722, [doi:10.3140/bull.geosci.1400](https://doi.org/10.3140/bull.geosci.1400).

535 VAN ITEN, H., MUIR, L., SIMÕES, M.G., LEME, J.M., MARQUES, A.C., AND YODER, N., 2016,
536 Palaeobiogeography, palaeoecology and evolution of Lower Ordovician conulariids and
537 *Sphenothonallus* (Medusozoa, Cnidaria), with emphasis on the Fezouata Shale of
538 southeastern Morocco: *Palaeogeography, Palaeoclimatology, Palaeoecology*, v. 460, p.
539 170–178, [doi:10.1016/j.palaeo.2016.03.008](https://doi.org/10.1016/j.palaeo.2016.03.008).

540 VAN ITEN, H., GUTIÉRREZ-MARCO, J.C., MUIR, L.A., SIMÕES, M.G., AND LEME, J.M., 2018,
541 Ordovician conulariids (Scyphozoa) from the Upper Tiouririne Formation (Katian),
542 eastern Anti-Atlas Mountains, southern Morocco: *Geological Society, London, Special
543 Publications*, v. 485, p. 177–199, [doi:10.1144/sp485.5](https://doi.org/10.1144/sp485.5).

544 WAUGH, D.A., FELDMANN, R.M., CRAWFORD, R.S., JAKOBSEN, S.L., AND THOMAS, K.B., 2004,
545 Epibiont preservational and observational bias in fossil marine decapods: *Journal of
546 Paleontology*, v. 78(5), p. 961–972, [doi:10.1666/0022-3360\(2004\)078%3C0961:EPAOBI%3E2.0.CO;2](https://doi.org/10.1666/0022-3360(2004)078%3C0961:EPAOBI%3E2.0.CO;2).

548 WEBB, A.E., AND SCHNEIDER, C.L., 2013, Ecology of an encrusting fauna on *Desquamatia*
549 (Atrypida, Brachiopoda) from Cedar Valley formation (Givetian, Devonian) of Iowa,
550 USA: *Palaeogeography, Palaeoclimatology, Palaeoecology*, v. 377, p. 102–109,
551 [doi:10.1016/j.palaeo.2013.03.015](https://doi.org/10.1016/j.palaeo.2013.03.015).

552 WENDRUFF, A.J., BABCOCK, L.E., KLUESSENDORF, J. AND MIKULIC, D.G., 2020, Paleobiology
553 and taphonomy of exceptionally preserved organisms from the Waukesha Biota

554 (Silurian), Wisconsin, USA: Palaeogeography, Palaeoclimatology, Palaeoecology, p. 546,

555 [doi:10.1016/j.palaeo.2020.109631](https://doi.org/10.1016/j.palaeo.2020.109631).

556 WICKHAM, H., 2016, *ggplot2: Elegant Graphics for Data Analysis*: Springer-Verlag, New York,

557 55 p.

558 WILSON, K., BJØRNSTAD, O.N., DOBSON, A.P., MERLER, S., POGLAYEN, G., READ, A.F., AND

559 SKORPING, A., 1998, Heterogeneities in macroparasite infections: patterns and processes,

560 *in* Hudson, P.J., Rizzoli, B.T., Heesterbeek, H., and Dobson, A.P. (eds.), *The Ecology of*

561 *Wildlife Diseases*: Oxford University Press, Oxford, p. 6–44.

562 ZAPALSKI, M.K., 2011, Is absence of proof a proof of absence? *Comments on commensalism:*

563 *Palaeogeography, Palaeoclimatology, Palaeoecology*, v. 302(3–4), p. 484–488,

564 [doi:10.1016/j.palaeo.2011.01.013](https://doi.org/10.1016/j.palaeo.2011.01.013).

565 ZATOŃ, M., AND WRZOŁEK, T., 2020, Colonization of rugose corals by diverse epibionts:

566 dominance and *syn vivo* encrustation in a Middle Devonian (Givetian) soft-bottom

567 habitat of the Holy Cross Mountains, Poland: *Palaeogeography, Palaeoclimatology,*

568 *Palaeoecology*, v. 556, p. 109899, [doi:10.1016/j.palaeo.2020.109899](https://doi.org/10.1016/j.palaeo.2020.109899).

569 ZHANG, Z., STROTZ, L.C., TOPPER, T.P., CHEN, F., CHEN, Y., LIANG, Y., ZHANG, Z., SKOVSTED,

570 C.B., AND BROCK, G.A., 2020, An encrusting kleptoparasite-host interaction from the

571 early Cambrian: *Nature Communications*, v. 11(2625), p. 1–7, [doi:10.1038/s41467-020-16332-3](https://doi.org/10.1038/s41467-020-16332-3).

573 ZICHA, O., BRUTHANSOVÁ, J. AND KRAFT, P., 2020, Epibionts on shells in the Šárka Formation: a

574 sparsely occupied niche in the lower to middle Darriwilian (Oretanian, Ordovician) in the

575 Prague Basin (Czech Republic): Palaeogeography, Palaeoclimatology, Palaeoecology, v.
576 550, p. 109401, [doi:10.1016/j.palaeo.2019.109401](https://doi.org/10.1016/j.palaeo.2019.109401).

577

578 **FIG. 1.**—Measurements on *C. niagarensis*. **A**) UWGM 3021 showing measurements for length
579 (white) and width (yellow) and apical angle (black). **B**) UWGM 2754 showing measured
580 distance of the attachment scar center to the aperture. **C–H**) Examples of attachment sites in *C.*
581 *niagarensis* showing corresponding measurements of maximum diameter (white) and length
582 perpendicular to maximum diameter (yellow). **C–D**) Type 1 attachment scars on the exterior face
583 of the conulariid test showing a small inner pit with a larger outer ring. **C**) UWGM 4011. **D**)
584 UWGM 4006. **E–F**) Type 2a attachment scars on the exterior mold of the conulariid test
585 expressed as a raised protrusion. **E**) UWGM 3185. **F**) UWGM 3054. **G–H**) Type 2b attachment
586 scars on the interior surface of the conulariid test showing a shallow circular depression with a
587 dark carbonized rim. **G**) UWGM 3172. **H**) UWGM 3966. Scale bars A and B = 2mm, C–H = 0.5
588 mm.

589

590 **FIG. 2.**—Results for a correlation analyses and linear regression models characterizing
591 conulariid size, shape, and ontogeny. **A**) Relationship between conulariid length and aperture
592 width. The x- and y-axes are \log_{10} plots. **B**) Relationship between body size and apical angle of
593 face. The x-axis is a \log_{10} plot. Blue line = linear regression model. **C**) Correlation analysis
594 showing the relationship between conulariid body size and the number of attachment scars on
595 each specimen. The x-axis is a \log_{10} plot.

596

597 **FIG. 3.—Results for the distribution of the intensity of attachment scars on the conulariid**
598 **test to determine the nature of the relationship between host and epibiont. A)** Frequency
599 distribution of attachment scars on conulariids. The variance:mean ratio of the number of
600 attachment scars is 16.3. **B)** Frequency distribution of conulariid body size. Stacked bars are
601 color-coded to indicate the presence or absence of attachment scars. The median size values of
602 the two groups are shown by thin vertical lines. **C)** Results of a non-metric multidimensional
603 scaling (NMDS) ordination of individual *C. niagarensis* specimens for which measurements of
604 the following were available: Length, Width, Apical Angle, and Ribs per cm. Size of circle
605 corresponds to the number of traces on each specimen (n = 23). Small red circles indicate the
606 position of the original variables in the nMDS-defined space and serve as a key to its
607 interpretation.

608

609 **FIG. 4.—Results for correlation analyses used to determine if there is a preference for**
610 **epibiont grouping on the conulariid test. A)** Compares attachment scar size and actual distance
611 of the attachment site to the conulariid aperture. The x- and y-axes are \log_{10} -transformed. **B)**
612 Compares attachment scar size to the proportional position of the attachment site to the
613 conulariid aperture. The x-axis is log transformed.

614