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Abstract. Motivated by applications from gig economy and online marketplaces, we
study a two-sided queueing system under joint pricing and matching controls. The queue-
ing system is modeled by a bipartite graph, where the vertices represent customer or server
types and the edges represent compatible customer-server pairs. Both customers and serv-
ers sequentially arrive to the system and join separate queues according to their types. The
arrival rates of different types depend on the prices set by the system operator and the
expected waiting time. At any point in time, the system operator can choose certain cus-
tomers to match with compatible servers. The objective is to maximize the long-run aver-
age profit for the system. We first propose a fluid approximation-based pricing and
maximum-weight (max-weight) matching policy, which achieves anO( ��

η
√ ) optimality rate

when all the arrival rates are scaled by η. We further show that a two-price and max-
weight matching policy achieves an improved O(η1=3) optimality rate. Under a broad class
of pricing policies, we prove that any matching policy has an optimality rate that is lower
bounded by Ω(η1=3). Thus, the latter policy achieves the optimal rate with respect to η. We
also demonstrate the advantage of max-weight matching with respect to the number of
server and customer types n. Under a complete resource pooling condition, we show that
max-weight matching achieves O( ��

n
√ ) and O(n1=3) optimality rates for static and two-price

policies, respectively, and the latter matches the lower bound Ω(n1=3). In comparison, the
randomized matching policy may have anΩ(n) optimality rate.

Funding: This workwas supported in part by the National Science Foundation [Grant CMMI-2145661].
Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2021.2233.
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1. Introduction
Most queueing models consider a fixed set of servers
with sequentially arriving customers. In this paper, how-
ever, we consider a two-sided queueing system where
servers also arrive sequentially and then wait to be
matched with customers. Various applications of online
marketplaces and gig economy platforms can be mod-
eled as two-sided queues—for example, Uber and Lyft,
where passengers are matched with drivers; Uber Eats
and DoorDash, where customer orders are matched
with meal delivery couriers; and crowdsourced work-
force platforms, such as TaskRabbit, where tasks are
matched with contributors. Most of these platforms use
both dynamic pricing and dynamic matching as levers
to control themarketplaces.

Motivated by these applications, we consider a ca-
nonical model of two-sided queues with multiple
types of servers and customers. Each customer type is
compatible with a subset of server types. For example,
in the case of ride-hailing marketplaces, the types of
servers (drivers) and customers are determined by the

proximity of their current locations as well as other
factors such as the numbers of seats requested by pas-
sengers and the vehicle capacities. Our model as-
sumes a fairly general setting with arbitrary numbers
of customer and server types, with their compatibility
modeled by a bipartite graph.

At each point in time, the system operator posts a
price for each customer and server type. Then, custom-
ers and servers who are willing to accept the quoted
prices (after they factor in expected waiting costs)
will enter the system. Those who entered will wait in
queues separated by their types until they are matched
to a compatible counterpart type. After a customer-
server pair is matched, the pair will leave the queueing
system immediately to complete the service. The sys-
tem operator earns a profit that is equal to the differ-
ence between the price charged to the customer and
the price quoted to the server.

We formulate the system as a Markov decision pro-
cess (MDP) in the infinite time horizon. The operator
can vary the prices for different customer and server
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types as well as decide when to match and which
customer-server pair to match. The objective is to maxi-
mize the long-run average profit obtained by the sys-
tem operator.

There are several technical challenges to analyzing
such a stochastic system. The first challenge is the
curse of dimensionality in solving and analyzing the
MDP. As the number of customer or server types in-
creases, the dimension of the state space increases ex-
ponentially (even when the buffer size of each queue
is bounded). It is hence intractable to solve the exact
MDP for large-scale systems with multiple types. In
this paper, we propose several approximate policies
to obtain near-optimal solutions for the MDP.

The second challenge is that the stochastic behavior
of the two-sided queueing system is complicated by
the interplay between pricing and matching decisions.
Our proposed policies use dynamic pricing to ensure
the stability of the two-sided queue system, so the ar-
rival rates of customers and servers vary with the queue
lengths. As the queue lengths change, the matching de-
cisions among different types are adjusted dynamically,
which in turn, affects the system state and pricing deci-
sions. As a result, the queue lengths of different types
are intricately correlated. The system cannot be decom-
posed into a set of simple queue, and the pricing and
matching decisions cannot be decoupled and analyzed
separately. To solve this challenge, we use the Lyapu-
nov drift method to analyze the stochastic system as a
whole in order to bound the total queue length.

1.1. Summary of Results
We first present a fluid model for the two-sided
queueing system and show that the profit obtained by
the fluid model is an upper bound on the achievable
profit under any policy. Based on the fluid model, we
propose several pricing and matching policies.

In Section 3, we analyze the proposed policies in a
large-scale regime in which the arrival rates of all types
are scaled by a factor η→∞. We consider a static pric-
ing policy using the fluid solution combined with the
maximum-weight (max-weight) matching algorithm.
We show that the profit loss of this policy from the
fluid solution benchmark is O( ��

η
√ ) (Section 3.2). We

then propose a generalization of the fluid pricing
policy that uses two prices for each queue type (see
Kim and Randhawa 2017). For the two-price policy
combined with max-weight matching policy, we
show that the profit loss from the fluid solution
benchmark is reduced to O(η1=3) (Section 3.3). Further-
more, we prove that for a broad class of pricing poli-
cies, using any matching policy will result in a profit
loss lower bounded byΩ(η1=3) (Section 3.4).

In Section 4, we consider a large-system regime in
which both the number of server/customer types and

the arrival rates are scaled (n→∞,η→∞). We show
that the max-weight algorithm is delay optimal. In par-
ticular, max-weight matching minimizes the revenue
loss under fluid pricing and two-price policies among
all matching policies (Section 4.1). Under the complete
resource pooling condition, we characterize the profit
loss of max-weight matching; the profit loss scales as
O( ����

nη
√ ) for the fluid pricing policy and O((nη)1=3) for

the two-price policy (Section 4.2). Furthermore, we estab-
lish a lower bound showing that any pricing and match-
ing will incur a profit loss ofΩ((nη)1=3), so the two-price
max-weight policy is asymptotically optimal (Section
4.3). In contrast, if one directly applies the solution of the
fluid model as a state-independent randomized match-
ing policy, the profit loss scales as O(nη1=2) for the fluid
pricing policy andO(nη1=3) for the two-price policy.

In Online Appendix A, we further analyze the
structure of the MDP model and propose approximate
Dynamic Programming solutions. In some special
cases, we are able to show structural properties of the
optimal dynamic pricing policy. In addition, we pre-
sent an Linear Programming-based approximation
technique with a constraint generation algorithm to
solve the MDP efficiently.

1.2 Literature Review
1.2.1. Dynamic Matching. Dynamic matching mar-
kets have numerous applications, such as ride shar-
ing (Banerjee et al. 2017), e-commerce marketplaces
like Amazon.com or eBay, kidney exchange (Roth
et al. 2007, Anderson et al. 2017), and payment proc-
essing networks (Sivaraman et al. 2020). We will dis-
cuss previous work involving dynamic matching in
the context of two-sided queues.

Caldentey et al. (2009) and Adan and Weiss (2012)
considered bipartite matching for two-sided queues
on a first come, first served (FCFS) basis; each arriving
customer is matched to a compatible server who has
the earliest arrival time and has not been matched. Un-
der this matching rule, they analyzed steady-state
matching rates between certain customer and server
types. Furthermore, they deduced the necessary condi-
tions on the frequency of arrivals for stability of the sys-
tem and also derived the stationary distribution. Gur-
vich and Ward (2014) analyzed a general multisided
queuing system, which includes the two-sided queue-
ing system as a special case. Their objective was to mini-
mize holding cost in a finite horizon. They presented a
periodic review matching algorithm and showed as-
ymptotic optimality as arrival rates become large.

Hu and Zhou (2021) studied a two-sided matching
system similar to ours. Their goal is to maximize the
discounted reward obtained by matching customers
and servers in a finite horizon while accounting for
the holding costs. They study conditions such that a
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priority rule is optimal. In addition, they present a
matching algorithm based on fluid approximation and
show that it is asymptotically optimal. The main dis-
tinction of Hu and Zhou (2021) with our paper is that
they do not consider dynamic pricing. In addition, al-
though they use fluid approximation to generate static
(open-loop) matching decisions, we use the max-
weight algorithm to generate (closed-loop) matching
decisions that are adaptive to queue lengths. Chen and
Hu (2020) studied a dynamic pricing and matching
problem in which strategic customers and servers ar-
rive dynamically and have heterogeneous waiting
costs. Their paper assumes that all customers and serv-
ers are compatible and considers a greedy matching
policy on a first come, first served basis.
Dynamic matching problems were also studied in

the context of kidney exchanges, albeit in a nontwo-
sided setting in Anderson et al. (2017) and Akbarpour
et al. (2020). Pricing is usually forbidden in kidney ex-
changes because of ethical and legal reasons. These pa-
pers study the value of “batching” (i.e., holding com-
patible matching pairs in the hope that better matching
will arrive in future). However, both papers find that
batching in general does not provide significant benefit.

1.2.2. Dynamic Pricing for Queues. First, we discuss
the literature involving dynamic pricing in the context
of single-sided queues and then review those involv-
ing two-sided queues.

Low (1974a) is one of the earlier works studying dy-
namic pricing in a single-sided queue. The paper con-
sidered price-dependent customer arrivals with a finite
buffer; the rewards include the payment by customers
and holding costs incurred by the operator. Mono-
tonicity of the optimal pricing policy is showed. It
was later extended to infinite buffer capacity in Low
(1974b). Chen and Frank (2001) considered a queuing
model with customers who are sensitive to both wait-
ing time and price. They presented structural proper-
ties on optimal pricing decisions and monotonicity of
optimal bias function. In the context of network serv-
ices like call centers, Paschalidis and Tsitsiklis (2000)
considered a system with finite total resource. They
consider price dependent customer arrivals belonging
to diverse types differing in resource requirements.
The objective is to find a pricing policy to maximize
revenue. They show multiple structural properties,
like concavity of value function and monotonicity of
optimal policy.

Kim and Randhawa (2017) considers a single-server
queuing system and studies the benefit of dynamic
pricing over static pricing. They assume that the cus-
tomers are delay sensitive and consider a revenue
maximization objective. They present a static pricing
policy and a two-price policy, and they also provide
the rate of convergence of these policies. Our two-

price policy considered in Section 3.3 is motivated
by the results from Kim and Randhawa (2017). The
method of Kim and Randhawa (2017) involves apply-
ing the Taylor series expansion to the revenue function
and then, bounding the expected steady-state queue
length. The main distinction of Kim and Randhawa
(2017) with our paper is that they consider a single-
server queue, whereas we consider a network of two-
sided queues with matching decisions. It is nontrivial to
generalize the method presented in Kim and Randhawa
(2017) to a two-sided queueing network, as an exact anal-
ysis of the steady-state distribution is intractable because
of the complex interaction among different queues. In
addition, unlike the single-server setting in Kim and
Randhawa (2017), matching decisions play a critical role
in our model and cannot be decoupled from the pricing
decisions. Aside from establishing asymptotic rates with
large arrival rates, we also complement the result in Kim
and Randhawa (2017) by showing the advantage of two-
price pricing (when combined with appropriate match-
ing policies) for large network sizes.

The joint problem of dynamic pricing and matching
was also studied by Özkan and Ward (2020) under
the objective of maximizing the number of successful
matches. They proposed an asymptotically optimal
pricing and matching policy with large arrival rates.
The differences with our work are that they proposed
static policies based on the fluid model and analyzed
the system for a finite time horizon.

A two-sided queueing model with both customer
and server arrivals is studied by Nguyen and Stolyar
(2018). They consider a setting where the arrival rate
of the servers can be controlled. However, the focus in
Nguyen and Stolyar (2018) was to establish system
stability and process-level convergence, whereas the
objective in our model is to maximize profit.

Several recent papers have studied dynamic pricing
in the context of ride-hailing systems (Besbes et al. 2021,
Yan et al. 2020, Hu et al. 2021). Banerjee et al. (2017, 2018)
studied a closed queuing network, where the number of
cars in the system is a constant and the customers aban-
don the system if they are not matched immediately.
Banerjee et al. (2017) considered a state-independent
pricing policy and prove the approximation ratio with
respect to optimal pricing policy. Banerjee et al. (2016)
proposed a state-dependent pricing policy and argue
that the benefit of dynamic pricing is in the robustness of
the performance of the system.

In sum, most of the previous work on dynamic
matching either is in the context of single-sided
queues or is not coupled with revenue optimization.
Of the few that consider both of these, the matching
policy considered is an open-loop policy. On the other
hand, we consider all of these aspects and show the
asymptotic optimality under closed-loop matching
policies.
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1.2.3. Max-Weight Algorithm. In this work, we apply a
max-weight matching algorithm to two-sided queuing
systems. This algorithm was first proposed by Tassiu-
las and Ephremides (1992) in the context of communi-
cation networks. After that, the max-weight algorithm
and the back-pressure algorithm, which is a generali-
zation of the max-weight algorithm, were studied in-
tensively in the literature. The book by Srikant and
Ying (2014) provides an excellent summary. The per-
formance of the max-weight algorithm in the context
of a switch operating in heavy traffic has been studied
by Maguluri and Srikant (2016). The back-pressure al-
gorithm was used in the context of online ad matching
in Tan and Srikant (2012) and in the context of ride
hailing in Kanoria and Qian (2019).

Heavy traffic analysis of the max-weight algorithm
in the context of a single-sided queue has a long line of
literature. One analysis approach is based on fluid lim-
its, diffusion limits, and reflected Brownian motion
(RBM) (Harrison 2013). In this approach, the queueing
process is studied under an appropriate scaling, and
the corresponding limiting fluid or diffusion process is
shown to converge to a lower-dimensional RBM. This
phenomenon is called state space collapse (SSC). If the
RBM is single dimensional, then it is called complete
resource pooling (CRP). Examples on this line of work
to study SSC under the max-weight algorithm in the
context of single-sided queues are Williams (1998),
Stolyar (2004), and Gamarnik and Zeevi (2006). In this
paper, we employ another approach based on the
Lyapunov drift method developed by Eryilmaz and
Srikant (2012) and later used by Maguluri and Srikant
(2015) for switch systems. We generalize the Lyapunov
function for two-sided queues and analyze the max-
weight algorithm under the CRP condition similar to
that in Gurvich and Whitt (2009) and Shi et al. (2019).

1.3. Notation
Throughout the paper, vectors are denoted by boldface
letters. Functions applied on vectors are defined entry-
wise; for example, F(l) is defined to be (F(λ1), : : : ,
F(λm)). For any two vectors a ∈ R

n and b ∈ R
m, we de-

note the concatenated vector of dimension n + m by
(a,b). We denote the n-dimensional vector with all
ones by 1n and the n-dimensional vector with all zeroes
by 0n; we omit the subscript n if the sizes of these vec-
tors are clear from the context. If x and y are of the same
dimension, we use 〈x,y〉 to denote the inner product
and x ◦ y to denote the Hadamard product (i.e., entry-
wise product). Any inequality x ≤ y is also defined en-
trywise. We use the superscript “s” to denote variables
related to servers and the superscript “c” for variables
related to customers. We use e(c)j and e(s)i to represent
unit vectors with a one for type j customer and type i
server, respectively, and all zeroes otherwise.

2. Model
We represent the types of customers and servers by a
bipartite graph G(N ∪M,E), where N is the set of server
types with |N |� n, M is the set of customer types with
|M |�m, and E is the set of edges representing custom-
er and server types that are compatible with each oth-
er (see Figure 1). A pair (i, j) ∈ E if and only if a type j
customer can be served by a type i server. Each node
in the bipartite graph is a queue of customers or
servers waiting to be matched with any one of the
compatible counterparts. Our convention is to refer to
incoming customers as demand and incoming servers
as supply.

At each point in time, the system operator posts a
price for each customer and server type. Customers
willing to pay the quoted prices, as well as servers
who are willing to provide their service at the posted
prices (i.e., wages), are admitted to the system. Thus,
the system operator can vary the prices to control the
arrival rates of customers and servers. Customers and
servers then wait in queues until they are matched.
The FCFS discipline is employed for each queue sepa-
rately, but it may not hold among different types of
customers and servers. After a customer is matched
with a compatible server, we assume that they depart
from the system instantaneously to complete the ser-
vice process. The system operator’s objective is to find
a joint pricing and matching policy under which the
system is stable (positive recurrent) and the long-run
average profit is maximized.

We assume that customers and servers arrive ac-
cording to nonhomogeneous Poisson processes. For
each server type i ∈N, there exists a supply curve
μi : R+ → R+, such that if the system operator sets a

price p(s)i and the expected waiting time is w(s)
i , the

resulting arrival rate is μi

(
p(s)i − s(s)i w(s)

i

)
, where the

constant s(s)i is the unit waiting cost of server type i.
Similarly, for each customer type j ∈M, there exists a
demand curve λj : R+ → R+, such that if the system

operator sets a price p(c)j and the expected waiting time

Figure 1. Bipartite Graph Representation for Two-Sided
Queues
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is w(c)
j , the resulting arrival rate is λj p

(c)
j + s(c)j w(c)

j

( )
,

where s(c)j is the unit waiting cost of customer type j.
We make the following assumption on the supply and
demand curves.

Assumption 1. The supply curves μi : R+ → R+ (∀i ∈N)
are strictly increasing and twice continuously differentia-
ble. The demand curves λj : R+ → R+ (∀j ∈M) are strictly
decreasing and twice continuously differentiable.

Because λj and μi are strictly monotone, their in-
verse functions exist, and we denote them by Fj :
R+ → R+ (∀j ∈M) and Gi : R+ → R+ (∀i ∈N), respec-
tively. In addition, we define the revenue and cost
functions as r(c)j (λj)¢λjFj(λj) for all j ∈M and

r(s)i (μi)¢μiGi(μi) for all i ∈N. We make the following
assumption on the revenue and cost functions.

Assumption 2. The revenue function r(c)j (λj) is concave
(∀j ∈M). The cost function r(s)i (μi) is convex (∀i ∈N).

The concavity assumption on revenue function fol-
lows from the economic law of diminishing marginal
return; as the system operator increases the customer
arrival rate λj, the marginal revenue dr(c)j (λj)=dλj de-
creases, which implies that the revenue function
r(c)j (λj) is concave. This assumption is often assumed
in the revenue management literature (Gallego and
Van Ryzin 1994, Kim and Randhawa 2017). We as-
sume that the marginal cost dr(s)i (μi)=dμi increases
with μi because it becomes harder to recruit servers
when we try to increase server arrival rate. This im-
plies that the cost function r(s)i is convex.

For those customers and servers waiting in queues,
the system operator uses matching controls to govern
the queueing process. At any given time, suppose q(s)i
is the number of type i servers waiting in queue and

q(c)j is the number of type j customers waiting in
queue. We denote the vector of all queue lengths by
q � (q(c)j , ∀j ∈M, q(s)i , ∀i ∈N). We denote the number
of type i servers to be matched to type j customers by
yij. The set of feasible matching decisions is

Y(q)¢ y ∈ Z
nm
+

∣∣∣∣∣∑
n

i�1
yij ≤ q(c)j (∀j ∈M),

{

∑m
j�1

yij ≤ q(s)i (∀i ∈N), yij � 0 (∀(i, j) ∉ E)
}
:

We also define the projection of Y(q) to the queue-
length space as

X(q)¢ x ∈ Z
n+m
+

∣∣∣∣∣∃y ∈ Y(q) : x(s)i �∑m
j�1

yij (∀j ∈M),
{

x(c)j �∑n
i�1

yij (∀i ∈N)
}
: (1)

When a pair of customer and server is matched by the
system, they both depart from the system. Because a
customer is only compatible to a subset of server
types, the system operator may have an incentive to
hold some customers or servers in queue in order to
achieve better matches in future.

2.1. Example: Ride Hailing
An application of the two-sided queueing model is in
ride-hailing systems. In such a system, the customer
and server (drivers) types, as well as the matching
compatibility graph, are determined by their geo-
graphical locations. A simple example with three re-
gions is shown in Figure 2. (Here, we ignore issues
such as vehicle capacity and number of seats requested
by customers, which can be accounted for by creating
additional customer and server types.) Based on the
price and the waiting time quoted to customers, only a

Figure 2. ARide-Hailing Systemwith Three Regions

(a) (b)

Notes. (a) Geographical locations. (b) Bipartite graph. We assume that riders can only be matched to cars in their own region or any neighboring
regions. The two-sided system generated from themap is shown in panel (b).
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fraction of them who open the app will book a ride,
which determines the customer arrival rate. Similarly,
based on the price quoted to the drivers, they will
choose whether to provide service. Thus, the arrival
rates of customer and drivers depend on price and
wait time and are governed by the demand and supply
curve of each region. After a customer confirms the
price and books a ride, the system operator can deter-
mine which driver (from what region) should be
matched to the customer. If a driver accepts the ride re-
quest, then they immediately become unavailable for
any other ride requests (departing from the system).
After the ride is complete, the car becomes available
again, possibly in a different region. A simplifying as-
sumption in our model is that we treat a driver who
completes the service and reenters the system the same
as a new arrival.

2.2. Continuous Time MDP Formulation
We now formulate the system operator’s decision
problem as a continuous time Markov decision
process (CTMDP) and specify its states, actions,
transition rates, and rewards. The system state is
represented by the queue lengths of all customer
and server types q ∈ Z

n+m
+ . The actions of the CTMDP

include both pricing and matching decisions. The
matching decision must satisfy x ∈ X(q) defined by
Equation (1). For the pricing decision, in order to le-
verage Assumption 2, it is more convenient to use
arrival rates (l,m) rather than prices as the control
variables. In particular, for customer type j ∈N, set-
ting the arrival rate to λj is equivalent to setting the
price to p(c)j � Fj(λj) − s(c)j w(c)

j (q). Similarly, for server
type i ∈M, setting the arrival rate to μi is equivalent
to setting the price to p(s)i � G(s)

i (μi) + s(s)i w(s)
i (q). Thus,

the action is a tuple z¢(l,m,x) ∈ R
2(m+n). Given this

action, the transition rate from state q to state q+
e(c)j − x (i.e., having a new arrival of type j customer)

is λj (∀j ∈M), and a reward of p(c)j is received upon
the new arrival. The transition rate from state q to
state q+ e(s)i − x (i.e., having a new arrival of type i

server) is μi (∀i ∈N), and a cost of p(s)i is paid upon
the new arrival. The system operator’s objective is to
find a pricing and matching policy such that the
long-run average profit earned by the system opera-
tor is maximized. We restrict our attention to poli-
cies that make the system stable in the long run,
which is defined as follows.

Definition 1. A joint pricing and matching policy is
said to be stable if the continuous time Markov chain
induced by this policy has a positive recurrent com-
municating class that contains the state q � 0.

Remark 1 (Average Waiting Time). It is technically chal-
lenging to analyze the exact waiting time w(s)

i (q) and
w(c)

j (q) because thewaiting time of one typemaydepend
on the queue lengths of all the types as well as the policy
andmatching policy used by the system operator. Addi-
tionally, in some applications, real-time queue-length in-
formation may not be visible to all market participants
(Zohar et al. 2002). Therefore, we make a simplifying as-
sumption that the waiting time perceived by the custom-
ers and servers is the long-run average waiting time.
That is, we assume

p(c)j � Fj(λj) − s(c)j E[w(c)
j (q)] ∀j ∈M,

p(s)i � G(s)
i (μi) + s(s)i E[w(s)

i (q)] ∀i ∈N:

The scheme of announcing the long-run average wait-
ing time to (impatient) customers is commonly as-
sumed in the literature (Zohar et al. 2002, Armony
et al. 2009). Additionally, in the large-scale setting that
will be considered in the following sections, approxi-
mating real-time estimated waiting time with the
long-run average waiting time will only result in a
negligible error term of a higher order (see Kim and
Randhawa 2017, section 6.1 for a similar argument).

2.2.1. Equivalence to Holding Cost Models. The mod-
el assumes that customers and servers are sensitive to
both prices and waiting costs when they decide to en-
ter the queueing system. We now consider an alterna-
tive model, where customers and servers only react to
prices, whereas the system operator pays additional
holding costs for market participants waiting in
queues. In particular, in this alternative model, the
states, actions, and transition rates remain the same.
Given a state q and an action z � (l,m,x), the reward
function is defined as

R(q,z)¢∑m
j�1

λjFj(λj) −
∑n
i�1

μiGi(μi) −
∑m
j�1

s(c)j q(c)j

−∑n
i�1

s(s)i q(s)i , (2)

where s(c)j and s(s)i are the customers’ and servers’ im-
patience parameters, respectively, introduced in the
original model. The following result shows that the
two modeling approaches are indeed equivalent.

Proposition 1. For any given control policy, the delay-
sensitive model and the holding cost model have the same
long-run average profit.

The proof of Proposition 1 follows an application of
Little’s Law and can be found in Online Appendix
A.1. The advantage of considering the holding cost
model is that the reward function R(q,z) does not ex-
plicitly depend on the waiting time. Hence, we use
the holding cost model in the rest of the paper.
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2.3. Discrete Time MDP Formulation by
Uniformization

Instead of analyzing the CTMDPdirectly, we use thewell-
known uniformization technique (e.g., Puterman 1994,
chapter 11) to obtain an equivalent discrete time Markov
decision process (DTMDP), which will simplify our analy-
sis. The uniformized process works as follows. We first
choose a uniformization parameter cdefinedhere.

Definition 2. Suppose there exist constants lmax ∈ R
m
+

and mmax ∈ R
n
+ such that for any price vector p ≥ 0 we

have, l(p) ≤ lmax and m(p) ≤ mmax . Let c be any cons-
tant such that c ≥ 〈1m,lmax 〉 + 〈1n,mmax 〉:

The uniformized DTMDP is endowed with the
same state q and action z � (l,m,x) as the CTMDP.
Let Z(q) � [0,lmax ] ∪ [0,mmax ] ∪ X(q) be the set of fea-
sible actions for queue length q ∈ R

m+n
+ . In the unifor-

mized DTMDP, there is at most one customer arrival
or one server arrival in each period. The state transi-
tions from q to q+ e(c)j − x with probability λj=c

(∀j ∈M); it transitions from q to q+ e(s)i − x with prob-
ability μj=c (∀i ∈N). Otherwise, no arrival happens in
this period, and the state remains at qwith probability
1− (〈1m,l〉 + 〈1n,m〉)=c. The expected reward in one
period is given by R(q,z)=c. Let q′ be the state in the
next period. The Bellman equation of the DTMDP is

h(q) + γ

c
� max

z∈Z(q)
R(q,z)

c
+E[h(q′) | q,z]

{ }
, ∀q ∈ Z

n+m
+ ,

(3)

where

E[h(q′) | q,z] �∑m
j�1

λj

c
h(q+ e(c)j − x) +∑n

i�1

μi

c
h(q+ e(s)i − x)

+ 1−∑m
j�1

λj

c
−∑n

i�1

μi

c

( )
h(q): (4)

In the equation, the solution γ is the optimal long-run
average profit, and h(q) is the bias function associated
with state q (∀q ≥ 0). (Note that the optimal solution
of the uniformized DTMDP satisfies the Bellman
equation because we require the optimal policy to be
stable (see Definition 1).) The term E[h(q′) | q,z] is the
expectation of the bias function h after one transition
in the uniformized process. The expectation is taken
with respect to the one-period transition probabilities
conditional on the state q and the action z.

In Online Appendix A, we present additional analysis
of the uniformized DTMDP. We show the monotonicity
structure of the optimal pricing policy in the single-link
queueing system (i.e., m � n � 1). Unfortunately, as the
number of customer and server types becomes large,
solving the DTMDP becomes intractable because of the
curse of dimensionality. We propose two approximation
methods to obtain near-optimal solutions to the DTMDP.

The firstmethod is based on fluid approximation. The re-
mainder of the paper primarily focuses on this approach.
The second method uses value function approximation.
We defer details of the second method to Online Appen-
dix A, as the remaining parts of the paper do not rely
on it.

2.4. Max-Weight Matching Policy
In the following sections, we will extensively use the
max-weight matching policy, so we provide its defini-
tion here. Suppose the system has state q, and the
set of feasible matches is X(q) (see Equation (1)). The
policy chooses thematchingdecision x to be the solution of

arg max
x∈X(q)

〈q,x〉{ }
: (5)

In other words, under the max-weight policy, when
there is either a customer or a server arrival, a match
will be made if any of the compatible types has a non-
empty queue, and we will always match the arriving
customer/server to the compatible type with the most
customers/servers waiting in queue. Otherwise, if all
the compatible counterparts’ queues are empty, then
the arrival is inserted into the queue of its own type.

The max-weight matching policy, originally proposed
by Tassiulas and Ephremides (1992), is extensively stud-
ied in the queueing literature. This literature is reviewed
in Section 1.2. Apart from the queueing literature, in our
model specifically, there is also an alternativeway tomoti-
vate the max-weight matching policy through the qua-
dratic value function approximation of theMDP. Suppose
the bias function in Equation (4) is approximated by h(q)
≈ 〈1,q2〉; then, the optimalmatching policy of theDTMDP
will be very close to the max-weight policy defined in
Equation (5).OnlineAppendixA.3 contains a detaileddis-
cussion of the value function approximationmethod.

Algorithm 1 (Max-Weight Matching Policy)
input: current queue length q(k), new arrival a(k) {k
is a decision epoch}
initialization: y(k) � 0
for i ∈N do

if a(s)i (k) � 1 andmaxj:(i,j)∈Eq
(c)
j > 0 then

choose j∗ ∈ argmaxj:(i,j)∈Eq
(c)
j (breaking ties

arbitrarily)
set yij∗ (k) � 1

end if
end for
for j ∈M do

if a(c)j (k) � 1 andmaxi:(i,j)∈Eq
(s)
i > 0 then

let i∗ ∈ argmaxi:(i,j)∈Eq
(s)
i (breaking ties arbitrarily)

set yi∗j(k) � 1
end if

end for
output:matching decision y(k)
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3. Asymptotically Optimal Policies in the
Large-Scale Regime

3.1. Fluid Model and Large-Scale Regime
We consider a fluid approximation of the queueing sys-
tem where random arrivals are replaced by determinis-
tic arrival processes. The fluid model is a deterministic
optimization problem maximizing the long-run average
profit. Suppose customers arrive with constant rates l
and servers arrive with constant rates m. Let χij be the
average rate of type i server matched to the type j cus-
tomer for all (i, j) ∈ E. The fluidmodel is defined as

γ∗ � max
l,m,x

〈F(l),l〉 − 〈G(m),m〉 (6a)

subject to λj �
∑n
i�1

χij, ∀j ∈M, (6b)

μi �
∑m
j�1

χij, ∀i ∈N, (6c)

χij � 0, ∀(i, j) ∉ E, χij ≥ 0, ∀(i, j) ∈ E: (6d)

We denote an optimal solution to the fluid problem
by (l∗,m∗,x∗).

To interpret the fluid model, note that Equations
(6b) and (6c) are the balance equations for the number
of customers and servers matched. Equation (6d)
specifies that matching is only allowed among com-
patible customer-server pairs. Intuitively, it is easy to
see that these constraints are necessary because if the
balance equations do not hold, then some customer or
server types will keep accumulating over time. Thus,
the optimization program Equation (6) serves as an
upper bound on the achievable profit under any pricing
and matching policy that makes the system stable.
This is formally shown in the following proposition.
The proof can be found in Online Appendix B.1.

Proposition 2. The optimal value of the fluid problem
Equation (6) is an upper bound on the long-run expected
profit under any policy that makes the system stable.

In the remainder of this section, we analyze the
two-sided queueing system in a large-scale regime
where the arrival rates of all customer and server
types are simultaneously scaled by a factor of η ∈ N.

Definition 3 (Large-Scale Regime). Consider a family
of two-sided queueing systems associated with the
same bipartite graph G(N ∪M,E) parametrized by
η ∈ N. For the ηth system, the demand and supply
curves satisfy Fη(ηl) � F(l) for all 0m ≤ l ≤ lmax and
Gη(ηm) � G(m) for all 0n ≤ m ≤ mmax.

The large-scale regime is commonly assumed in the
dynamic pricing and matching literature (Gurvich and

Ward 2014, Özkan and Ward 2020), which ensures that
supply and demand are balanced as the system scales
up. According to Definition 3, it is easily verified that
the fluid solution to the ηth scaled system is given by
ηl∗ and ηm∗, where l∗ and m∗ are the optimal solution
of the unscaled fluid model Equation (6).

Definition 4 (Profit Loss). The profit loss (denoted by
Lη) of a policy is the difference between the optimal
value of the (scaled) fluid model, denoted by γη

∗ , and
the long-run average profit (including the penalty in-
curred because of waiting) under that policy.

The optimal value of the ηth fluid model is γη
∗ � ηγ∗.

Therefore, if the profit loss of a policy is sublinear in η,
namely Lη � o(η), we say the policy is asymptotically
optimal in the large-scale regime.

3.2. Fluid Pricing Policy
Based on the fluid model, we propose a static pricing
policy defined as follows:

λj(q) � λ∗
j if q(c)j < qηmax

0 otherwise
∀j ∈ M,

{

μi(q) � μ∗
i if q(s)i < qηmax

0 otherwise
∀i ∈ N:

{
(7)

Here, qηmax denotes the maximum queue buffer size; it
is a parameter that depends on η, which will be speci-
fied later.

The main intuition of the fluid pricing policy is the
following. When all queues are below their maxi-
mum buffer capacity qη, the profit rate of the fluid
pricing policy is exactly equal to ηγ∗. If any customer
queue is full, say q(c)j � qηmax, then all future arrivals
to queue j will be rejected until at least one customer
waiting in queue j is matched. Thus, a fraction of
revenue is lost because of customer rejections. More
specially, let γη be the long-run average profit of
the fluid pricing policy (excluding waiting costs).
Let I(s)(qηmax) be a (vector) indicator function repre-
senting whether server queues are at the maximum
capacity, and let I(c)(qηmax) be a (vector) indicator
function representing whether customer queues are
at the maximum capacity. Then, we have

Lη � γη
∗ − (γη − 〈s,E[q]〉)

� η(〈F(l∗),l∗〉 − 〈G(m∗),m∗〉)
− 〈F(l∗),ηl∗ ◦ (1−E[I(c)(qηmax)])〉
− η〈G(m∗),m∗ ◦ (1−E[I(s)(qηmax)])〉 + 〈s,E[q]〉

� η 〈F(l∗), (l∗ ◦E[I(c)(qηmax)])〉
(

−〈G(m∗), (m∗ ◦E[I(s)(qηmax)]〉
)
+ 〈s,E[q]〉, (8)
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where the first equality follows from Definition 4 and
the second equality uses the definition of the fluid
pricing policy. As a result, Equation (8) shows that the
profit loss of the fluid pricing policy depends on the
parameter qηmax. If we increase the buffer capacity
qηmax, then the probability of dropping customers/
servers will reduce (i.e., E[I(qη

max)] will decrease).
However, increasing the buffer capacity will lead to
increasing in the expected queue lengths, which will
increase the penalty incurred because of waiting.
Thus, we choose buffer capacity to balance the trade-
off in order to minimize the overall profit loss. Precisely,
we will see that choosing qηmax ~

��
η

√
will result in

E[I(qη
max)] ~ η−1=2 and E[〈1m+n,q〉] ~ ��

η
√

, which attains
the optimal profit loss.

Theorem 1. Suppose a family of two-sided queues is given
by the bipartite graph G(N ∪M,E) parameterized by η.
The profit loss Lη under the fluid pricing policy Equation
(7) and max-weight matching (Algorithm 1) is O( ��

η
√ ),

where qηmax � γ
��
η

√
for any positive constant γ.

The proof of Theorem 1 can be found in Online Ap-
pendix B.2. In addition, it can be shown that the
O( ��

η
√ ) profit loss rate cannot be improved using any

fluid pricing policy. The proof of the proposition is
presented in Online Appendix B.3.

Proposition 3. For a family of single link two-sided queues
parametrized by η, any fluid pricing policy will have a profit loss
Lη that is at leastΩ( ��

η
√ ).The choice of qηmax � γ

��
η

√
for any pos-

itive constant γ provides the optimal profit loss rateΘ( ��
η

√ ).

3.3. Two-Price Policy
A main drawback of the fluid pricing policy is that the
prices are not adaptive to changes in the system state.
In this section, we consider another policy that uses
two different prices for each customer/server type.
The proposed two-price policy is built on the two-
price policy in Kim and Randhawa (2017) for single-
server queues. Our contribution lies in a joint analysis
of two-price and dynamic matching policies in a mul-
titype queueing network.

The two-price policy can be viewed as a generaliza-
tion of the fluid pricing policy.We introduce additional
parameters u ∈ R

m
+ , f ∈ R

n
+, and ση > 0, which govern

the arrival rates of the customers and servers, respec-
tively, when the queue length is greater than a certain
threshold τ

η
max . The two-price policy is defined as

λj(q) � ηλ∗
j if q(c)j ≤ τ

η
max

ηλ∗
j −θjσ

η otherwise
∀j ∈M,

{

μi(q) �
ημ∗

i if q(s)i ≤ τ
η
max

ημ∗
i −φiσ

η otherwise
∀i ∈N:

{
(9)

The policy sets a threshold τ
η
max for all customer and

server types. It uses the fluid arrival rates when queue
lengths are below this threshold and then reduces the
arrival rates by θjσ

η outside this threshold for type j
customer. Similarly, the policy reduces the server ar-
rival rates outside the threshold by φiσ

η for type i
server. Here, τηmax , ση, u, and f are parameters that
will be specified later. (Our convention is to use super-
script η to denote any parameter or quantity that is as-
sociated with the ηth scaled system.) Intuitively, for
any type of customer/server, if we increase ση, the
queue length will have a larger negative drift when it
exceeds the threshold τ

η
max , so the expected queue

length E[〈1m+n,q〉] will be smaller. However, if ση are
too large, the arrival rates outside the threshold τ

η
max

will be far from the optimal fluid arrival rates, which
will result in a larger profit loss. Thus, there is a trade-
off between the expected queue length and profit loss.
For the matching algorithm associated with the two-
price policy, here we use the max-weight matching al-
gorithm as defined in Equation (5). (Other matching
algorithms will be considered in Section 4.2.) The fol-
lowing theorem provides a bound on the asymptotic
performance of the two-price policy as η tends to
infinity.

Theorem 2. Consider a family of two-sided queues parame-
trized by η represented by the bipartite graph G(N ∪ M,E).
The profit loss Lη under the two-price policy Equation (9)
and the max-weight matching (Algorithm 1) is O(η1=3) for
any τηmax ≤ η1=3, ση � η2=3 and constants u > 0m,f > 0n.

The theorem shows that the profit loss of the two-
price policy is O(η1=3), which is better than the O( ��

η
√ )

loss in the fluid pricing policy. The proof of the theo-
rem contains two main steps. The first step is to show
that the system is stable under the two-price policy and
that the expected queue lengths are bounded. We also
give an upper bound of the expected queue lengths
(Lemma 1). The second step in the proof is to estimate
the profit loss Lη (Lemma 2) by applying the Karush-
Kuhn-Tucker (KKT) conditions of the fluid problem.

Lemma 1. For a system of two-sided queues operating un-
der the two-price policy and the max-weight matching algo-
rithm parameterized by η, the system is positive recurrent
for any u > 0m, f > 0n, ση > 0, and τ

η
max > 0. The expected

queue lengths are bounded by

E 〈u,q(c)〉
[ ]

+E 〈f,q(s)〉
[ ]

≤ τηmax

∑m
j�1

θjP[q(c)j > τηmax ] +
∑n
i�1

φiP[q(s)i > τηmax ]
( )

+ η

ση
〈1n,m∗〉 + 〈1m,l∗〉( ):
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Lemma 2. For a system of two-sided queues operating
under the two-price policy and the max-weight matching
policy, for any u > 0m, f > 0n, and τmax η > 0, we have∑

j∈M
F′j (λ∗

j )λ∗
j + Fj(λ∗

j )
( )

θjP[q(c)j > τηmax ]

−∑
i∈N

G′
i (μ∗

i )μ∗
i +Gi(μ∗

i )
( )

φiP[q(s)i > τηmax ]

≤| E|2 max
i∈N, j∈M φi,θj

{ }ση
η
:

3.4. Lower Bound
In this section, we will obtain a lower bound on the
profit loss under a broad family of policies and thus,
establish that the O(η1=3) rate obtained by the two-
price policy in Theorem 2 is optimal. In particular, we
consider a family of pricing policies that have the fol-
lowing form:

λj � ηλ∗
j + fj

q
ηα

( )
ηβ ∀j ∈M, (10)

μi � ημ∗
i + gi

q
ηa

( )
ηβ ∀i ∈N: (11)

The motivation for this policy is as follows. The first
terms in Equations (10) and (11) (i.e., ηλ∗

j and ημ∗
i , re-

spectively) are static and result from the solution of
the fluid model; the second terms account for dynamic
adjustments as the queue length changes. We assume
the adjustment terms can be further decomposed into
two terms: a function that rescales the queue length,
fj(·) or gi(·), and a term that determines the scaling of
price adjustments, ηβ, for some 1 > β > 0. As the
arrival rates are scaled up, the average queue length
will also increase. Thus, we rescale the queue length
in the functions fj(·) and gi(·) for all i ∈N and j ∈M by
ηα for some 1 ≥ α ≥ 0.

For our analysis, we assume the pricing policy to
satisfy the following conditions.

Condition 1.
a. There exist constants G ∈ R

m
+ and C ∈ R

n
+ such that |

fj q=ηα
( ) |≤ Γj for all j ∈M and | gi q=ηα( ) |≤Ψi for all i ∈N

for all q ∈ S and for all η ≥ 1.
b. 0 < α+ β ≤ 1.
c. There exist constants κ > 0 and δ > 0 such that for all

j ∈M, if q(c)j =ηα > κ, then either fj q=ηα
( )

< −δ or there ex-
ists i : (i, j) ∈ E such that gi q=ηα

( )
> δ for all η. Similarly,

for all i ∈N, if q(s)i =ηα > κ, then either gi q=ηα
( )

< −δ or
there exists j : (i, j) ∈ E such that fj q=ηα

( )
> δ for all η.

We now interpret the conditions. Condition 1(a) re-
quires the functions f and g to be bounded given appro-
priately scaling of the queue lengths q as η increases.
Condition 1(b) states that the rate of queue-length

rescaling (α) should not exceed the rate of rescaling
pricing adjustment terms (1− β). This condition is
needed so that the price adjustment terms are suffi-
ciently large to make the system stable. (In the special
case of a single-link system, this assumption is not
needed; the extension is presented later in Proposition
4.) Condition 1(c) states that if a queue is too long, we
should either decrease the arrival rate of this queue
or increase the arrival rates of those matched to this
queue.

Aside from the conditions, the pricing forms in
Equations (10) and (11) are fairly general because the
pricing function of any queue can depend on the en-
tire system state vector (q), and we do not make any
strong assumptions, such as monotonicity, continuity,
or differentiability, on functions f and g. Finally, we
emphasize that our analysis does not require any as-
sumption on the form of matching policies.

The two-price policy in Section 3.3 satisfies the con-
dition with

fj(q) � −θj1q(c)j >τmax
(∀j ∈ M),

gi(q) � −φi1q(s)i >τmax
(∀i ∈ N), β � 2=3: (12)

Now, we present the result on the lower bound.

Theorem 3. For a two-sided queue defined by a graph
G(N ∪M,E) operating under any pricing policy of the form
Equations (10) and (11) that satisfies Condition 1, if the re-
sulting system is stable, there exists a constant K(F,G, f ,g)
such that

Lη ≥ Kη1=3:

The details of the proof are deferred to Online
Appendix D.1. We present an intuitive explanation
of the rate in the lower bound.

Remark 2 (Intuitive Explanation of η1=3). The main rea-
son why the profit loss lower bound is of order
O(η1=3) is because of the trade-off between the ex-
pected queue length and the loss in revenue. Consider
a pricing policy that deviates from the fluid optimal
pricing policy by ε > 0; that is, for all q ∈ S, we have
| λj(q) −λ∗

j |< ε for all j ∈M and |μi(q) −μ∗
i |< ε for all

i ∈N. One can show that under such a policy, the ex-
pected queue length is of the order 1=ε and revenue
loss is of the order ηε2. Specifically, the queue length
can be coupled to that of an M=M=1 queue in heavy
traffic with parameter ε, whose mean queue length is
known to be of the order 1=ε by the Kingman’s bound.
The loss in revenue can be estimated by the Taylor
series expansion of the revenue function. As the arrival
rates under the given pricing policy is close to the opti-
mal fluid arrival rates, the first-order term vanished,
and the dominant term is of the second order (namely,
ηε2). The coefficient is this term is shown to be strictly
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positive by analyzing the tail probabilities. Therefore,
we have

E 〈1n+m,q〉[ ]
~
1
ε
, γη

∗ − γη ~ ηε2:

To achieve the optimal trade-off between expected
queue length and profit loss, we choose ε ~ η−1=3,
which results in the η1=3 profit loss in Theorem 3.

We can further relax Condition 1(b) in the special
case of a single-link system (m � n � 1) operating un-
der any two-price policy. The result is stated here, and
the proof can be found in Online Appendix D.2.

Proposition 4. For a family of single-link two-sided
queues parametrized by η, any two-price policy given by
Equation (9) with ση � ηβ for some β < 1 and τ

η
max � ηα for

some α ∈ R+ will have a profit loss Lη at least Ω(η1=3). The
choice of τη

max�1=3 and ση � η2=3 and any positive con-
stants u and f provides the optimal profit loss Θ(η1=3).

Before concluding this section, note that without
any further assumptions, the dependence of profit
loss Lη on the number of customer types n and the
number of server types m can be linear in the worst
case. To see this, if the system consisted of n-indepen-
dent single-link two-sided queues (i.e., the bipartite
graph is such that |M |�|N |� n and E � {(i, i) : i ∈M}),
then by Theorem 3, the profit loss Lη is trivially lower
bounded by nKη1=3. In the next section, we impose ad-
ditional conditions on the bipartite graph and show
tight lower and upper bounds on the profit loss in
terms of the system size.

4. Asymptotically Optimal Policies in the
Large-System Regime: The Superiority
of Max-Weight Matching

In this section, we present further insights into the
max-weight matching algorithm in a large-system re-
gime, in which both the arrival rates and the numbers
of customer and server types increase. First, we will
show that max weight is delay optimal. Under the fluid
pricing policy, max-weight matching minimizes the
probability of hitting the queue-length threshold
among all matching policies. Under the two-price
policy, max-weight matching minimizes the expected
sum of queue lengths among all possible matching pol-
icies. Second, we compare max-weight matchingwith a
randomized matching policy with probabilities speci-
fied by the fluid model and show that max weight has
smaller loss in terms of the number of customer/server
types. Third, we prove that the profit loss of max-
weight matching achieves a tight lower bound in the
large-system regime. Together, these results show the
superiority of themax-weight policy.

We start by establishing the state space collapse under
max-weight matching. State space collapse means that

all the customer queues are almost equal in length
and that all the server queues are almost equal in
length; hence, with high probability, only customers
or only servers are waiting in the system. This implies
that max weight ends up matching the maximum pos-
sible number of customer-server pairs, as only the ex-
cess customers/servers are waiting in the system. To
achieve the state space collapse, we propose a com-
plete resource pooling condition on the compatibility
graph. Similar conditions have been proposed for
single-sided queues (Gurvich and Whitt 2009, as-
sumption 2.4; Shi et al. 2019, definition 1).

Condition 2 (CRP). There exists an optimal solution (l∗,
m∗) to the fluid problem Equation (6) such that for all J(M
and for all I(N, it holds that∑

j∈J
λ∗
j <

∑
i:∃j∈J, (i, j)∈E

μ∗
i ,

∑
i∈I

μ∗
i <

∑
j:∃i∈I, (i, j)∈E

λ∗
j :

It is straightforward to verify that the CRP condition
implies the connectedness of the graph G(N ∪M,E).
The CRP condition also implies that the optimal solution
of the fluid problem is in the interior of the feasible re-
gion. The following lemma formalizes this observation.

Lemma 3. If Condition 2 is satisfied, there exists x∗ ≥ 0
such that χ∗

ij > 0 for all (i, j) ∈ E and (l∗,m∗,x∗) is an opti-
mal solution to the fluid problem Equation (6).

(All the proofs in this section can be found in Online
Appendix E.) The result is not surprising as it is
known in the heavy traffic literature (Eryilmaz and
Srikant 2012, Lange and Maguluri 2019) that if the ar-
rival rate is approaching a point on the boundary of
the capacity region in the interior of a facet, then the
system exhibits complete resource pooling.

However, the analysis of state space collapse for
two-sided queues does not follow immediately from
the literature of single-sided queues and is more in-
volved. We propose a Lyapunov function approach
and use the drift method to show state space collapse.
To simplify the analysis, in this section we restrict to a
setting where m � n, and there exists a perfect match-
ing in the graph G(N ∪M,E).
Condition 3. The graph G(N ∪M,E) has a perfect match-
ing. Without loss of generality, we assume that server type
i is connected to customer type i for all i ∈ [n].

In general, if m≠ n and if the condition is not satis-
fied, we show in Online Appendix E.6 that the pricing
and matching problem under a given general graph
can be reformulated as a problem under a new graph
where the condition is satisfied. Thus, the results in
the following propositions and the theorem can be ap-
plied (with minor modifications as shown in Online
Appendix E.6) even when the condition does not
hold.
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4.1. Delay Optimality of Max-Weight Matching
We first show the delay optimality of the max-weight
matching algorithm among all possible matching al-
gorithms under the fluid pricing policy.

Proposition 5. Under the fluid pricing policy with any
matching algorithm, we have

qηmax

∑n
j�1

λ∗
jP q(c)j � qηmax

[ ]
+∑n

i�1
μ∗
iP q(s)i � qηmax

[ ]( )

≥ 〈1n,l∗〉 + 〈1n,m∗〉
2n + 1=qηmax

:

Furthermore, under the fluid pricing policy with the max-
weight matching algorithm, if qηmax →∞ as η→∞, we
have

lim
η→∞qηmax

∑n
j�1

λ∗
jP q(c)j � qηmax

[ ]
+∑n

i�1
μ∗
iP q(s)i � qηmax

[ ]( )

� 〈1n,l∗〉 + 〈1n,m∗〉
2n

:

The proposition states that the max-weight algorithm
(asymptotically) minimizes the proportion of time
spent in the threshold state among all possible match-
ing algorithms, hence minimizing the revenue loss
caused by hitting the queue-length thresholds.

Similarly, the max-weight matching algorithm is
delay optimal under the two-price policy. The follow-
ing proposition states that the max-weight algorithm
(asymptotically) minimizes the expected total queue
length under the two-price algorithm among all possi-
ble matching algorithms.

Proposition 6. Under the two-price policy with u �f �
1n and any matching policy, the expected total queue length
satisfies

ση

η
E[〈12n,q〉] ≥ 〈1n,l∗〉 + 〈1n,m∗〉

2n
:

Furthermore, under the two-price policy with u �f � 1n
and the max-weight matching policy, if limη→∞ση=η � 0
and limη→∞σητ

η
max=η � 0, we have

lim
η→∞

ση

η
E[〈12n,q〉] � 〈1n,l∗〉 + 〈1n,m∗〉

2n
:

Notice that the queue-length bound in Proposition
6 is tighter than the bound in Lemma 1 because the
former requires the CRP condition (Condition 2),
whereas the latter does not require such condition. To-
gether, Propositions 5 and 6 establish the asymptotic
delay optimality of the max-weight algorithm.

4.2. Max-Weight Vs. Randomized Matching
In this section, we compare the max-weight policy with
a randomized matching policy (defined in Algorithm 2)

resulting from the fluid model. The randomized match-
ing algorithm matches an incoming arrival to compati-
ble types at fixed probabilities, which are determined by
the fluid solution x∗ (see Equation (6)). If some queues
are empty, the probabilities are rescaled proportionally
tomatch only nonempty queues. Unlike themax-weight
algorithm, the randomizedmatching algorithm does not
use information about the queue lengths (except for the
emptiness of the queues).

Algorithm 2 (Randomized Matching (Nonempty Queues
First))

input: new arrival a(k), queue length q(k), the fluid
solution x∗ {k is a decision epoch}
initialization: y(k) � 0
for i ∈N do

if a(s)i (k) � 1 then
set yij(k) � 1 with probability

χ∗
ij1{q(c)

j
>0}∑m

j′�1χ∗
ij′1{q(c)

j′ >0}
for

all j ∈M.
end if

end for
for j ∈M do

if a(c)j (k) � 1 then
set yij(k) � 1 with probability

χ∗
ij1{q(s)

i
>0}∑n

i′�1 χ∗
i′j1{q(s)

i′ >0}
for

all i ∈N.
end if

end for
output:matching decision y(k)
We analyze the profit losses of these two matching

algorithms and its dependence on the number of cus-
tomer/server types n when η→∞. First, we consider
the fluid pricing policy. The theorem shows that even
though both max-weight and randomized matching
have O(η1=2) profit loss, max-weight matching is order
n1=2 better than randomized matching policy.

Theorem 4. Suppose a family of two-sided queues is given
by the bipartite graph G(N ∪M,E) parametrized by η. Un-
der the fluid price policy Equation (7) and randomized
matching policy (Algorithm 2), for qηmax � γη1=2, we have
Lη �O(η1=2). For any γ > 0, there exists (l∗,m∗,x∗) satis-
fying Conditions 2 and 3 such that

liminf
η→∞

Lη

η1=2
�Ω(n):

In addition, under the fluid price policy (7) and max-weight
matching (5) for qηmax �

�����
η=n

√
, we have

limsup
η→∞

Lη

η1=2
≤ n1=2

〈1n,l∗〉 + 〈1n,m∗〉
2n

max
j∈N Fj(λ∗

j )
(

+2 max
i∈N, j∈M

s(s)i , s(c)j
{ })

�O(n1=2):

Next, we compare the max-weight and randomized
matching algorithms for the two-price pricing policy.
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The theorem shows that both algorithms achieve
O(η1=3) profit loss, whereas max-weight is order n2=3

better than randomized matching.

Theorem 5. Suppose a family of two-sided queues is given
by the bipartite graph G(N ∪M,E) parametrized by η. Un-
der the two-price policy Equation (9) and randomized
matching policy (Algorithm 2), for ση � η2=3 and τ

η
max �

γη1=3, we have Lη �O(η1=3). For any choice of u > 0,
f > 0, and γ > 0, there exists (l∗,m∗,x∗) satisfying Condi-
tions 2 and 3 such that

liminf
η→∞

Lη

η1=3
�Ω(n):

In addition, under the two-price policy Equation (9) and
max-weight matching Equation (5) with u � 1n and f �
1n, ση � n−1=3η2=3, if limη→∞τ

η
max=η

1=3 � 0,we have

limsup
η→∞

Lη

η1=3
≤ ∑

i∈N

μ∗
iG

′′
i (μ∗

i )
2

+G′
i (μ∗

i )
( )(

−∑
j∈N

λ∗
j F

′′
j (λ∗

j )
2

+ F′j (λ∗
j )

( )

+maxi∈N,j∈M{s(s)i , s(c)j }
2

〈1n,l∗〉 + 〈1n,m∗〉( )
)
n−2=3

�O(n1=3):
4.3. Lower Bound
In this section, we prove a lower bound on the profit
loss for the large-system regime. We show that under
mild assumptions, any pricing and matching policy
has a profit loss of Ω((nη)1=3). In light of this lower-
bound result and the upper bound from Theorem 5,
the two-price max-weight policy achieves the optimal
rate for the large-system regime.

To prove the lower bound, we consider the follow-
ing problem instance. We assume that the numbers of
customer and server types are equal (i.e., n � m) and
that the bipartite matching graph is a complete graph.
Intuitively, the complete graph presents a best-case
scenario, as it provides with the maximum flexibility
to match any customer-server pairs. To define the sup-
ply and demand rate, we assume that there exist func-
tions F,G : R+ → R+ such that Fj � F for all j ∈M and
Gi � G for all i ∈N. It is easily verified that this prob-
lem instance satisfies the complete resource pooling
condition (Condition 2). We also assume that the unit
waiting cost is s � 12n. By symmetry, we can conclude
that the fluid solution (l?,m?) � (λ?1n,μ?1n) for some
λ? � μ? > 0. We show the following properties of the
optimal pricing and matching policy for this instance.

Proposition 7. Consider a two-sided queueing system de-
fined by a complete bipartite graph G(M ∪N,M ×N). As-
sume that n � m, Fj � F for all j ∈M, Gi � G for all i ∈N,

and s � 12n. Then, there exists an optimal policy
(l?(·),m?(·),x?(·)) that satisfies the following:

a. λ?
j1(q) � λ?

j2(q) and μ?
i1
(q) � μ?

i2(q) for all j1, j2 ∈M,
i1, i2 ∈N and q ∈ Z

2n
+ ;

b. l?(q1),m?(q1)
( ) � l?(q2),m?(q2)

( )
if 〈1n,q(c)

1 〉 � 〈1n,
q(c)
2 〉 and 〈1n,q(s)

1 〉 � 〈1n,q(s)
2 〉; and

c. 〈1n, x?(q)〉 � 2min 〈1n,q(c)〉, 〈1n,q(s)〉{ }
for all q ∈

Z
2n
+ .

Part (a) implies that the optimal prices are equal for
all the customer queues and server queues, respectively.
Part (b) implies that the arrival rates depend on the
state of the system q only through the total number of
customers and total number of servers in the system.
Both of these conclusions are intuitive as the problem
instance is defined symmetrically for all types. Lastly,
part (c) implies that the optimal policy will always
match the maximum possible number of customer-
server pairs. In particular, there is no incentive to hold a
compatible customer-server pair because of the com-
plete graph structure.

Motivated by the proposition, we restrict our-
selves to a family of symmetric pricing policies defined
as follows:

λ
η
j (q) � ηλ? + f

〈1n,q(c)〉 − 〈1n,q(s)〉
ηα

( )
ηβ ∀j ∈ M,

(13)

μ
η
i (q) � ημ? + g

〈1n,q(c)〉 − 〈1n,q(s)〉
ηα

( )
ηβ ∀i ∈ N:

(14)

The policy family is based on the one considered in
Section 3.4. However, we make two changes on Equa-
tions (10) and (11). We assume fj � f (∀j ∈M) and gi �
g (∀i ∈N) because the prices are symmetric for all cus-
tomer and server types by part (a); the policy depends
on the state q through the difference between total
customers and total servers, according to parts (b) and
(c). We impose some technical conditions on f and g.

Condition 4.
a. There exists a constant Γ, which may depend on n but

not on η, such that | f (z) |≤ Γ and |g(z)|≤ Γ for all z ∈ R.
b. 0 < α+ β < 1.
c. There exist constants κ,δ > 0, such that if z > κ, then

either f (z) < −δΓ or g(z) > δΓ. In addition, if z < −κ, then
either f (z) > δΓ or g(z) < −δΓ.

Condition 4(a) is analogous to Condition 1(a), im-
plying that f and g are bounded. Condition 4(b) is sim-
ilar to Condition 1(b). Lastly, Condition 4(c) is
adapted from Condition 1(c) using the properties
from Proposition 7. Now, we present the result on the
lower bound.
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Theorem 6. Consider a family of two-sided queues param-
etrized by η and n in the large-system regime. Under any
symmetric pricing policy satisfying Condition 4 and any
matching policy, we have

lim inf
η→∞

Lη

η1=3
� Ω(n1=3):

Remark 3 (Intuitive Explanation of n1=3). We prove the
lower bound by considering the complete graph in-
stance with symmetric demand and supply functions.
By Proposition 7, the optimal policy will match the
maximum possible number of customer-server pairs,
so only the excess customers/servers are waiting in
the system. Thus, the systemmimics a single-link two-
sided queue (m � n � 1) with customer and server
arrival rates given by 〈1,l〉 and 〈1,m〉, respectively.
Under the large-system regime where the number of
types is scaled by n and the arrival rate of each type is
scaled by η, the total arrival rates for customers and
servers are scaled by nη. The profit loss of any pricing
and matching policy is lower bounded by the cube
root of the total arrival rate (see Remark 2), so the profit
loss in the large-system regime is of order Ω((nη)1=3).
Meanwhile, because the max-weight matching policy
leads to state space collapse under the CRP condition,
the two-sided queueing system behaves like a single-
link system where all customer and server types are
pooled together, so the two-price max-weight policy is
able to achieve a tightO((nη)1=3) profit loss rate.

5. Numerical Experiments
5.1. Single-Link Systems
Our first experiment analyzes a single-link system
with one server type and one customer type. In this
case, the system state of the MDP is represented by a
single variable: namely, the difference between the
customer queue length and the server queue length (a
detailed discussion of this system is included in Online
Appendix A.2). We will solve the optimal policy of the
MDP and compare it with the fluid pricing policy and
the two-price policy.

We assume a supply curve given by p1 � λ0:5 and a
demand curve given by p2 � 4μ−0:5. With these supply
and demand curves, the optimal profit of the fluid
model is 3.08 when λ � μ � 4=3, p1 � 1:15, and p2
� 3:46. We then calculate the optimal pricing policy of
the long-run average cost MDP using relative value it-
eration. Figure 3 shows the optimal pricing policy un-
der three different values of the penalty coefficient (s),
as well as the optimal price of the fluid model. The re-
sult shows that the optimal customer price is always
above the server price, and both prices are increasing
with the queue-length difference. Intuitively, if the sys-
tem has more customers, the customer price should be

increased to reduce the customer arrival rate, and the
server price should be increased to increase the server
arrival rate. This observation verifies Proposition EC.1
in Online Appendix A.2. As s increases, more weight is
given to the waiting cost (or equivalently, customers
and servers become more sensitive to delays), so the
price increases more steeply as the numbers of custom-
ers and servers waiting in the system increase. Figure 4
shows the stationary distribution and the mean of
queue length for different values of the penalty coeffi-
cient (s). As expected, when s increases, the queue
length is more concentrated around zero.

Furthermore, we simulate the profit loss under the
fluid pricing policy and two-price policy and compare
it with the theoretical result presented before and also
with the exact solution obtained by solving the MDP.
The result is presented in Figure 5. The profit loss un-
der the fluid pricing policy has an order of

��
η

√
, and

that under the two-price policy has an order of η1=3,
verifying Theorems 1 and 2. Also, observe that the
profit loss under the two-price policy is not much

Figure 3. (Color online) Optimal Pricing Policies Under Dif-
ferent Values of Penalty Coefficients

Figure 4. (Color online) Stationary Distribution of Queue
Length Under Different Penalty Coefficients
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different from that of the optimal profit loss, demon-
strating the effectiveness of a two-price policy.

5.2. Systems with Multiple Types
Next, we analyze the general two-sided queues with
multiple customer and server types. We examine
the profit losses under the following four different
algorithms.

1. FP +MWrepresents the fluid pricing (Equation (7))
andmax-weightmatching (Equation (5)) policy.

2. FP+ Rand represents the fluid pricing (Equation (7))
and randomizedmatching (Algorithm 2) policy.

3. TP + MW represents the two-price policy (Equa-
tion (9)) with max-weight matching (Equation (5)).

4. TP + Rand represents the two-price policy (Equa-
tion (9)) with randomized matching (Algorithm 2).

In this numerical experiment, we first consider a
setting where the number of servers and the number
of customers are equal (m � n) and where CRP condi-
tion (Condition 2) is satisfied. We assume the compati-
bility graph is given by

E � {(i, j) ∈ [n] × [n] : j ∈ {i + k} ∪ {(i + k − n)+},
k � 0, 1, 2, 3}:

The demand and supply curves are given by

Fj(λj) � 2 − λj=2, ∀j ∈ [m], and
Gi(μi) � μi=2 ∀j ∈ [n],

respectively. We assume the unit holding cost is s � 1.
The parameter of the fluid pricing policy is set to
qηmax � 2

�����
η=n

√
: The parameters of the two-price policy

are chosen to be τηmax � 0 and ση � η2=3n−1=3.
We report the profit loss for η ∈ {10,100,500,1, 000,

2, 000, 5, 000,10,000} when m � n � 6 in Figure 6. We
find that when η is larger, the profit loss of TP + MW
grows the slowest, followed by the profit loss of TP +
Rand, FP + MW, and FP + Rand. This result confirms

the advantage of the two-price policy over the fluid
pricing policy, as well as the advantage of the max-
weight matching policy over the randomized match-
ing policy. Figure 7 shows the same plot in logarithmic
scale. Note that the slope of the log-log plot in Figure 7
can be interpreted as the order of profit loss with re-
spect to η. The fitted slopes of FP +MW and TP +MW
are 0.51 and 0.33, respectively. This is consistent with
Theorems 1 and 2, which state that FP +MW and TP +
MW have the orders of profit loss with respect to η of
O(η1=2) and O(η1=3), respectively. Figure 7 shows that
FP +MWand FP + Rand yield the same order of profit
loss with respect to η of approximately 1/2. Moreover,
the two-price policy combined with either max-weight
matching or randomized matching yields the same
order of profit loss with respect to η of approximately
1/3. That is, choosing max-weight or randomized
matching does not affect order of profit loss with re-
spect to η.

Figure 5. (Color online) Performance of Two-Price and Fluid
Pricing Policy Comparedwith the Exact Solution

Figure 6. (Color online) Profit Losses Under FP+MW, FP +
Rand, TP + MW, and TP + Rand for Different η When
m � n � 6

Figure 7. (Color online) Log-Log Plot of Profit Losses Under
FP +MW, FP + Rand, TP +MW, and TP + Rand for Different
ηWhenm � n � 6
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Our next experiment investigates how the profit
loss changes with the number of customer and server
types. We first consider a setting when the types of
two sides are balanced (m � n). Figure 8 shows the
profit loss for n ∈ {4, 6, 8, : : : , 20} when η � 10,000 (a
large η is chosen so that the asymptotic trend becomes
clear). Figure 9 shows the same plot in logarithmic
scale. It can be observed that the profit losses when
a pricing policy is combined with the randomized
matching policy grow faster than those when a pric-
ing policy is combined with the max-weight matching
policy as n increases. In other words, the max-weight
matching policy performs better than the randomized
matching policy. Figure 9 suggests that the orders of
profit loss with respect to n of FP + MW and FP +
Rand are 0.49 and 1.18, respectively, which are close
to those predicted by Theorem 4. Moreover, the orders
of profit loss with respect to n of TP + MW and TP +

Rand are 0.34 and 1.28, respectively, which are close
to those predicted by Theorem 5. Clearly, in both
cases, the max-weight algorithm performs much bet-
ter than the randomized matching algorithm for
large n.

We also consider the setting where the number of
server queues and the number of customer queues are
not equal. Specifically, we assume that the number of
server queues is twice as many as the number of cus-
tomer queues (i.e., m � 2n). The compatibility graph is
given by

E � {(i, j) ∈ [2n] × [n] : j ∈ {i+ k} ∪ {(i+ k− n)+}, k � 0, 1}:

The demand and supply curves are assumed to be

Fj(λj) � 6 − λj, ∀j ∈ [m] and
Gi(μi) � μi, ∀i ∈ [n],

respectively. The parameters of pricing policy are sim-
ilar to the previous case when m � n.

We report the profit loss for η ∈ {10,100,500,
1, 000,2, 000,5, 000,10, 000} when m � 8 and n � 4 in
Figure 10. The result shows that when η is larger, the
profit loss when using the two-price policy grows sig-
nificantly slower, compared with when using the fluid
pricing policy. Moreover, we can observe that in this
case, the benefit of the max-weight matching policy
over the randomized matching policy when combined
with any pricing policy is negligible. The same plot in
logarithmic scale (shown in Figure 11) shows that the
fitted orders of profit loss with respect to η of FP +
MW and FP + Rand are 0.49 and 0.48, respectively,
and that those of TP + MW and TP + Rand are 0.33
and 0.32, respectively. This observation confirms the
results from Theorems 1 and 4 as well as the results
from Theorems 2 and 5, which state that the orders of

Figure 8. (Color online) Profit Losses Under FP +MW, FP+
Rand, TP + MW, and TP + Rand for Different n When η �
10,000

Figure 9. (Color online) Log-Log Plot of Profit Losses Under
FP +MW, FP + Rand, TP +MW, and TP + Rand for Different
nWhen η � 10,000

Figure 10. (Color online) Profit Losses Under FP+MW, FP
+ Rand, TP + MW, and TP + Rand for Different η When
m � 8 and n � 4
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profit loss with respect to η of FP + MW and FP +
Rand are 1/2 and that those of TP + MW and TP +
Rand are 1/3, respectively. Figure 12 shows the profit
loss for n ∈ {4, 6, 8, : : : , 20} and m � 2n when η � 10,000.
Figure 13 shows the same plot in logarithmic scale.
These figures show the superiority of the max-weight
policy over the randomized matching policy dis-
cussed in Section 4.2.

6. Conclusion
In this paper, we present a model of dynamic pricing
and matching for two-sided queueing systems. The
system is formulated as a Markov decision process,
and a fluid approximation model is considered. We
presented a fluid pricing and max-weight matching
policy and showed that it achieves O( ��

η
√ ) optimality

rate. Furthermore, we proposed a dynamic pricing
and max-weight policy, which achieves O(η1=3) opti-
mality rate. We also show that this scaling of O(η1=3)

matches the lower bound for a broad family of poli-
cies. We also demonstrate the advantage of max-
weight matching over randomized matching. Under
the complete resource pooling condition, we show
that max-weight matching achieves O( ��

n
√ ) and

O(n1=3) optimality rates for static and two-price poli-
cies, respectively, where n is the number of customer
and server types. In comparison, the randomized
matching policy may have anΩ(n) optimality rate.
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