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Abstract. Crowdsourced delivery platforms face the unique challenge of meeting
dynamic customer demand using couriers not employed by the platform. As a result, the
delivery capacity of the platform is uncertain. To reduce the uncertainty, the platform can
offer a reward to couriers that agree to be available to make deliveries for a specified period
of time, that is, to become scheduled couriers. We consider a scheduling problem that arises
in such an environment, that is, in which a mix of scheduled and ad hoc couriers serves
dynamically arriving pickup and delivery orders. The platform seeks a set of shifts for
scheduled couriers so as to minimize total courier payments and penalty costs for expired
orders. We present a prescriptive machine learning method that combines simulation optimi-
zation for off-line training and a neural network for online solution prescription. In computa-
tional experiments using real-world data provided by a crowdsourced delivery platform, our
prescriptive machine learning method achieves solution quality that is within 0.2%–1.9% of a
bespoke sample average approximation method while being several orders of magnitude
faster in terms of online solution generation.

History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in
Transportation Science and Logistics.

Funding: This workwas supported in part by the National Science Foundation [Grant 2145661].

Keywords: crowdsourced same-day delivery • machine learning • sample average approximation

1. Introduction
The rise of e-commerce has changed the landscape of
logistics over the last decade. Customers expect fast and
reliable delivery, often on the same day or even within a
few hours after placing an order. This trend is not
expected to change anytime soon as e-commerce revenue
is projected to increase approximately 48% from 2018 to
2023 (Clement 2019). With e-commerce comes an
increase in the need for reliable last-mile delivery sys-
temswith local stores often being used as fulfillment cen-
ters for online orders (Zebra Technologies 2019).

To accommodate the increase in e-commerce, retail
giants such as Amazon and Walmart have begun to
employ crowdsourced delivery capacity to serve
demand. Crowdsourced delivery refers to the use of
independent couriers to make deliveries rather than
company employees, similar to the use of independ-
ent couriers in personal transportation by companies
such as Uber and Lyft (Sampaio et al. 2019). Individu-
als acting as independent contractors to complete
work without direct employment is the key characteristic
of the emerging gig economy (Manyika et al. 2016). In a
survey by Zebra Technologies (2019), 87% of responding
companies said theywould utilize crowdsourced delivery

by 2028, a significant increase from the 30% that currently
make use of it.

This emerging and unique commercial landscape
has led to the appearance of third-party logistics (3PL)
companies that rely almost exclusively on crowd-
sourced delivery, so-called crowdsourced delivery
platforms. The key difference between traditional 3PL
companies and crowdsourced delivery platforms is
that traditional 3PL companies only face demand-side
uncertainty, whereas crowdsourced delivery plat-
forms face demand- and supply-side uncertainty as
couriers can opt in and out at their own discretion.
Alnaggar, Gzara, and Bookbinder (2021) describe four
methods by which crowdsourced delivery platforms
engage with couriers: pure self-scheduling, hybrid
and centralized scheduling, en route matching, and
bulletin board–type matching.

We consider a crowdsourced delivery platform that
uses both centralized scheduling (for scheduled cou-
riers) and decentralized bulletin board–type matching
(for ad hoc, unscheduled couriers). Specifically, we are
concerned with the construction of shifts for scheduled
couriers in the presence of dynamically arriving orders
and ad hoc couriers. This is a stochastic optimization
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problem in which demand and ad hoc courier forecasts
are used as input to create schedules that minimize the
expected cost. Traditional solution approaches often uti-
lize samplingmethods inwhich potential future scenarios
are generated and a deterministic version of the problem
is solved in order to create candidate solutions. These
solutions are then compared on their average perform-
ance over the set of scenarios, and the best is chosen.
For large-scale and high-dimensional problems, however,
generating good solutions or even evaluating these solu-
tions becomes computationally prohibitive. Additionally,
the platformmaywant/need to solve the problem several
times a day for multiple markets. Therefore, generating
high-quality solutions quickly is critical.

We propose a prescriptive machine learning (ML)
method for the courier-scheduling problem arising in
crowdsourced delivery. The main idea of our method
is to utilize the well-known sample average approxima-
tion (SAA) method off-line to create a set of solutions to
a diverse set of problem instances (i.e., demand and ad
hoc courier forecasts) and use a trained machine learn-
ing model to generate solutions to new forecasts online.
Thus, we bypass the computationally intensive optimi-
zation step and prescribe an approximate solution with
performance similar to that of the SAA method. We
summarize our contributions as follows:

• We introduce the crowdsourced delivery shift
scheduling problem (CDSSP). In an environment in
which orders and ad hoc couriers dynamically arrive
during the operating period (and in which different
orders have different origins and destinations and dif-
ferent ad hoc couriers have different starting locations
and start and end times), we seek to determine a set of
shifts for scheduled couriers so as to minimize total
courier payments and penalty costs for expired orders.
Distinct from the existing literature, we assume the ad
hoc couriers can choose which order/order bundle
they will serve (if any) based on their own preferences.

• We present a general prescriptive machine learning
method to generate CDSSP solutions from demand and
ad hoc courier forecasts. The method combines sample
average simulation optimization for off-line training
and neural networks for online solution prescription.

• In simulation experiments using real-world data
provided by a crowdsourced delivery platform, the pre-
scriptive machine learning method achieves solution
quality within 0.2%–1.9% of a bespoke SAA method
while being several orders of magnitude faster than the
SAAmethod in terms of online solution generation.

• Finally, our prescriptive method provides a general
approach to approximate solutions to optimization
problems via machine learning. Variations of our
method can be used in other application settings, spe-
cifically ones in which solutions to large stochastic opti-
mization problems need to be generated quickly.

The remainder of the paper is organized as follows.
In Section 2, we discuss relevant literature and high-
light the contribution of our paper. In Section 3, we
describe the problem of interest and introduce a for-
mal model for it. In Section 4 we present an SAA
based formulation and solution procedure for the
CDSSP. In Section 5, we detail our prescriptive
machine learning method. In Section 6, we present
simulation experiments using real-world data to vali-
date our approach. In Section 7, we provide a discus-
sion of our results and main findings.

2. Literature Review
In the following, we discuss relevant literature in
terms of the application area and methodological
approach. Specifically, we review work surrounding
the area of crowdsourced and same-day delivery in
Section 2.1 and literature encompassing stochastic
optimization (namely, the sample average approxima-
tion method) and the emerging field of prescriptive
analytics in Section 2.2. Additionally, we highlight
how our work differs from and expands upon the
existing literature in each section, respectively.

2.1. Applications
The work in this paper falls into two main application
areas: same-day and crowdsourced delivery.

2.1.1. Same-Day Delivery. Klapp, Erera, and Toriello
(2018) study the same-day delivery problem for a single
depot with a single vehicle in which multiple dispatch
epochs occur over the course of a service day. The deci-
sion maker must then decide whether to dispatch a
vehicle at each dispatch epoch with the objective of
minimizing operating costs and penalty costs of unserved
service requests. Klapp, Erera, and Toriello (2018) use
a dynamic programming approach to solve the deter-
ministic variant and utilize this method to construct
an optimal a priori policy for the stochastic case. Addi-
tionally, it is shown that fully dynamic policies can
outperform a priori ones, and some dynamic heuris-
tics and solution bounds are presented. Stroh, Erera,
and Toriello (2021) study a similar same-day delivery
problem, also from a single depot, but consider the
aforementioned case in which a single vehicle is dis-
patched multiple times per day and a case in which a
large fleet of vehicles is managed such that each
vehicle is only dispatched once per day. Stroh, Erera,
and Toriello (2021) also use continuous approximations
to model these same-day delivery variants and lever-
age their approximation model to answer tactical sys-
tem design questions. Voccia, Campbell, and Thomas
(2019) consider a same-day delivery problem as a mul-
tivehicle dynamic pickup and delivery problem with
time constraints whose objective is to maximize the
number of delivery requests served. Voccia, Campbell,
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and Thomas (2019) model the problem as a Markov
decision process (MDP) and utilize a dynamic sample
scenario approach to solve instances of the problem. At
each decision epoch, future scenarios are sampled from a
distribution dependent on the current system state. These
deterministic scenarios are then solved, and one of the
solutions is chosen by use of a consensus function (simi-
lar to Bent and Van Hentenryck (2004), albeit a funda-
mentally different function). Using this sample scenario
approach demonstrates the value of anticipating future
demand requests. Ulmer (2020) considers a same-day de-
livery problem froma single depotwithmultiple vehicles
and studies the impact of dynamically deciding the price
to charge customers in addition to the route. The problem
is formulated as an MDP, and an anticipatory pricing
and routing policy is implemented that uses value func-
tion approximation. Ulmer (2020) then demonstrates that
such a policy results in higher revenue andmore custom-
ers served for a service day when compared with bench-
mark policies.

In the work detailed here, dynamic pricing, routing,
and dispatch policies are studied in the context of
same-day delivery in which all assume the presence of
a fixed fleet of vehicles (potentially a single vehicle)
available for the entirety of a service day. In this paper,
we study how to choose the size of a crowdsourced
fleet by deciding schedules prior to the service day.
This type of courier (i.e., those that are available for set
shifts and whose routes are directly controlled by the
crowdsourced delivery platform) are hereby referred to
as scheduled couriers. We also consider the presence of
ad hoc couriers that arrive stochastically and may serve
delivery requests from a bulletin board–like posting by
the crowdsourced delivery platform.

2.1.2. Crowdsourced Delivery. Cao, Olvera-Cravioto,
and Shen (2020) consider a last-mile shared delivery
problem that utilizes both ad hoc and scheduled cou-
riers to serve demand based on a formulation of the
discrete sequential packing problem. However, they
assume that the ad hoc couriers make deliveries for
the first part of the service day, whereas scheduled
couriers serve all unserved packages at the end of the
day. Additionally, ad hoc couriers are assumed to
arrive according to a constant rate over the course of
the planning period. Gurvich, Lariviere, and Moreno
(2019) study the impact of self-scheduling couriers on
the profitability of a delivery platform and the associ-
ated service level given to customers. Self-scheduling
couriers are a type of crowdsourced couriers that
announce their arrivals and elect to work for a fixed
period of time in which the crowdsourced delivery
platform creates routes for them. Ad hoc couriers,
however, arrive at the platform and select which
orders they would like to serve from a list. Yildiz and
Savelsbergh (2019) model on-demand meal delivery

platforms and investigate questions surrounding the
service level and capacity of these platforms, such as
the relationships among service area size, delivery
offer acceptance probability, profitability, etc. Lee and
Savelsbergh (2015) study the adjacent field of dynamic
ridesharing in which traveling individuals are matched
based on their origin–destination (O-D) pairs to share
transport, essentially a pickup and delivery environ-
ment. They specifically investigate the usefulness of
having a fleet of dedicated couriers employed concur-
rently with private individuals with spare capacity in
order to meet a minimum service guarantee to riders.
Dayarian and Savelsbergh (2020) study same-day
crowdsourced delivery in which in-store customers are
used to serve demand along with a dedicated fleet of
couriers. They solve this problem in a similar fashion to
the previously mentioned works on same-day delivery
by implementing dynamic dispatch strategies via a roll-
ing horizon approach. Arslan et al. (2019) consider a
dynamic pickup and delivery problem with ad hoc
couriers and study dynamic routing and assignment
policies formulated as a matching problem and solved
exactly with a rolling horizon approach. Santini et al.
(2022) introduce the probabilistic traveling salesman
problem with crowdsourcing and propose a solution
algorithm that makes use of simulation, Monte Carlo
approximation, and machine learning, and it has simi-
larities to our solution approach. However, in addition
to solving a different problem (routing versus schedule
planning), their work uses ML to approximate the
objective function, whereas our work goes one step fur-
ther and uses ML to prescribe solutions. Alnaggar,
Gzara, and Bookbinder (2021) review the different
approaches that crowdsourced delivery platforms use
to recruit and utilize couriers and provide an in-depth
review of the existing literature, whereas Savelsbergh
and Ulmer (2022) explore the literature and future
research directions surrounding the main novel aspect
of crowdsourced delivery: uncertain delivery capacity.

Finally, the work of Ulmer and Savelsbergh (2020)
is the most relevant to our paper. Ulmer and Savels-
bergh (2020) consider a dynamic crowdsourced deliv-
ery environment for a single depot with the goal of
constructing shifts for scheduled couriers. Ulmer and
Savelsbergh (2020) use the term “unscheduled couriers”
to refer to couriers that can enter the system at any
time by announcing their availability and can leave
the system at any time after that and be offered deliv-
ery tasks during that period, which the courier may
accept or reject. This is similar but fundamentally dif-
ferent from ad hoc couriers that can see the full list of
orders and make a selection according to their own
utility. The problem in Ulmer and Savelsbergh (2020)
is solved for a given planning horizon instance via a value
function approximation approach. We complement the
work of Ulmer and Savelsbergh (2020) by proposing a
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prescriptive machine learning method that can generate
solutions online quickly by generating planning horizon
instance/solution pairs off-line and training a machine
learning model. Thus, we bypass the more intense com-
putation requirements of the underlying solution method
while maintaining comparable solution quality. We also
consider a more general model setting with multiple
depots.

2.2. Methods
2.2.1. SAA. Introduced by Kleywegt, Shapiro, and
Homem-de-Mello (2002), the SAA method is used for
stochastic discrete optimization problems. The objec-
tive, minimizing the expected cost, is approximated by
drawing K independent and identically distributed
(i.i.d.) samples from a given distribution and solving
the deterministic variant of the given problem over
this set of realizations. Supported by promising
convergence results as K grows large, SAA and its
variants continue to be utilized in the field of trans-
portation and logistics (see, e.g., Verweij et al. 2003;
Schütz, Tomasgard, and Ahmed 2009; Long, Lee, and
Chew 2012; Li et al. 2016; Alnaggar, Gzara, and Book-
binder 2020). The SAA method is discussed in more
detail in Section 4. In this paper, we employ the SAA
method as a component in our solution method and
as a means of evaluating the quality of our solutions.

2.2.2. Prescriptive Analytics. The problem setting of
our paper is related to Bertsimas and Kallus (2020).
Their paper considers a stochastic optimization prob-
lem with historical observations with unknown joint
probability distributions and features. Essentially, Bert-
simas and Kallus (2020) construct a conditional proba-
bility distribution Y | X � x (in the form of a weight
function), where X�x are predictive features from a
data set of N observations, by using machine learning.
This conditional distribution is then used to generate
samples given a new observation x, and the determinis-
tic variant of the stochastic problem is solved with these
samples. Whereas this method has improved solution
quality over a uniform weight function or simply using
the N observed yi’s directly, the computational per-
formance remains unimproved. The scale of instances
grows large quickly as the sample size increases, and
high-dimensional problems make it difficult to effi-
ciently generate optimal solutions. In our paper, we
assume an estimate of this conditional probability dis-
tribution Yx :�Y | X � x is known (e.g., constructed via
machine learning/forecasting on a set of historical
data). The main contribution is that we prescribe solu-
tions to our conditional stochastic optimization prob-
lem directly from Yx by using a machine learning
model trained on the instance/solution pairs to a math-
ematical programming model, reducing the online
computation time drastically.

3. Problem Description
We study a scheduling problem faced by a delivery
platform that utilizes both scheduled and ad hoc crowd-
sourced couriers. Prior to an operating period, the plat-
form creates shifts to offer to crowdsourced couriers. If
couriers choose to sign up for a shift at this stage, they
become scheduled couriers and are managed by the
platform during the operating period. Additionally,
orders can be served by ad hoc couriers who arrive
dynamically over the operating period. Fundamentally,
we want to determine the optimal number of scheduled
couriers required at each time during the operating
period (to be covered by shifts) to serve orders that
arrive dynamically while accounting for the uncertain
availability of ad hoc couriers so as to minimize the total
cost of scheduled couriers, ad hoc couriers, and expired
orders (i.e., orders that cannot be served by their prom-
ised delivery time). We refer to this problem as the
Crowdsourced Delivery Shift Scheduling Problem
(CDSSP) and provide a more formal definition as
follows.

3.1. Model
Let T � [0,T] be a given operating period (e.g., one
day) during which customers in a service area place
orders (see Figure 1). The operating period is divided
into a set of equal-size smaller periods P � {1, 2, : : : ,P}
(e.g., each period is 30 minutes).

Each order has the following characteristics:
tp order placement time
o pickup location (origin)
to order ready time
d delivery location (destination)
td delivery promise time
Some orders are known before the start of the oper-

ating period (tp� 0), that is, the static orders, and the
other orders are revealed dynamically (tp > 0) during
the operating period, that is, the dynamic orders. To
predict the dynamic orders, we assume that the plat-
form uses some predictive features X (e.g., weather
forecast, seasonality, promotions, special events),
which are observed before the start of the operating
period. Conditional on X�x, the number and charac-
teristics of dynamic orders are governed by a joint
probability distribution denoted by Yx. Ad hoc cou-
riers arrive randomly over the operating period
according to an arrival process W and are willing to
serve a subset of the realized but not yet served (or
assigned) orders according to a discrete choice model
(see Train 2009). More specifically, we assume that the
arrivals can be represented by a (potentially inhomog-
enous) Poisson arrival process (with known rate
parameters λp ∀p ∈ P); the choice of order(s) to serve
occurs instantaneously upon arrival (which implies
that there is no interaction between the actions of
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ad hoc couriers); and after serving the chosen orders,
the ad hoc courier leaves the system. We make the
aforementioned simplifying assumptions for ease of
presentation and analysis; however, our proposed sol-
ution approach can handle general arrival processes
and custom courier choice behavior.

LetN andA represent the sets of placed orders and ad
hoc courier arrival times realized in the operating period
T , respectively. Specifically, N is drawn from Yx, and A
is a sample path of an inhomogeneous Poisson arrival
processW dictated by its known rate parameters. Finally,
letN :� |N | denote the number of realized orders.

Suppose the delivery platform has a service-level tar-
get, which specifies that, if N orders arrive in T , then at
least αN of these orders must be served for some
α ∈ [0, 1]. Orders are served by scheduled and ad hoc
couriers according to a dynamic assignment and rout-
ing policy π. We treat π as an input parameter and
methods for optimizing π are beyond the scope of this
paper; however, our proposed method allows for any
general assignment and routing policy π.

Next, we describe how the platform decides how
many scheduled couriers are needed. We are con-
cerned with finding an optimal number of active
scheduled couriers for each period p ∈ P in order to
meet the forecast demand while accounting for the
presence of ad hoc couriers. Let z � {zp ∈ Z≥0, ∀p ∈ P}
be the decision vector corresponding to the number of
active scheduled couriers during the operating period.
Figure 2 provides an illustration of how the decision z
is affected by the shape of a demand forecast and the
presence of ad hoc couriers.

Naturally, the purpose of z is to be used as a basis for
the construction of shifts for scheduled couriers. We
have a set of potential shifts, each defined by a start and
end period, with index set S � {1, 2, : : : ,S}. The delivery
platformmust decide how to convert the scheduled cou-
rier requirement z to a set of shifts to offer to couriers.
Let u � {us ∈ Z≥0, ∀s ∈ S} be the decision of how many
of shift s to offer to couriers and γsp be an indicator

vector representing whether shift s covers period p.
Then, a schedule u is feasible for a scheduled courier
requirement z if

∑
s∈Sγspus ≥ zp ∀p ∈ P. Figure 3 illus-

trates a shift schedule u that covers the scheduled courier
requirement z of Figure 2.

In the setting considered in this paper, we assume
that there is a large pool of couriers who prefer being
a scheduled courier to being an ad hoc courier
because working as a scheduled courier offers reliable
pay regardless of how many orders the courier serves.
Therefore, each shift offered by the delivery platform
is guaranteed to be selected by a courier. Alterna-
tively, one can imagine a setting in which there is
some probability that a shift offered by the delivery
platform is left unfilled. The solution method pro-
posed later in the paper can accommodate such a set-
ting (by altering the simulation), but we focus on the
simplified setting in which couriers sign up for all
shifts offered. Specifically, shifts are offered to hedge

Figure 2. (Color online) Operating Period T Divided into P
Periods with an Example Demand Forecast Overlaying the
Associated Scheduled Courier Requirement z

Note. Observe that the ratio of scheduled and ad hoc couriers may
change over the course of the operating period.

Figure 1. (Color online) Illustration of a Rectangular Service Area with Orders fromMultiple Origins and Destinations and Two
Potential Pickup and Delivery Routes

Note. Specifically, a one-to-many case is shown inwhich a single originmay havemultiple destinations (e.g., a restaurant).
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against the uncertainty associated with order arrivals
and available ad hoc courier delivery capacity.

Let wp be the cost of having an active scheduled
courier in period p ∈ P; then, the cost of a shift sched-
ule u is

∑
p∈P

∑
s∈Swpγspus. Additionally, for a shift

schedule u, an order realizationN , and an ad hoc cou-
rier arrival realization A, we define the cost of expired
orders and ad hoc couriers as

c(u,N ,A) :� θ ·max(0,ne − �(1− α)N�) + η · na, (1)

where θ is the penalty cost for an expired order over
the α threshold, ne is the number of expired orders, η
is the unit cost of an order served by an ad hoc cou-
rier, and na is the number of orders delivered by ad
hoc couriers. Thus, ad hoc couriers are compensated
per order, whereas scheduled couriers are compen-
sated per time unit. The counts ne and na are deter-
mined by the order realization N , the ad hoc courier
arrivals A, and the assignment and routing policy π.
Finally, observe that, whereas the cost c(u,N ,A)
depends on shift schedule u, the cost indirectly and
more strongly depends on scheduled courier re-
quirement z. We observe too that two different shift
schedules u that both cover a scheduled courier
requirement z may incur different costs. For example,
two shift schedules with the same number of shifts
but with different shift start and end times may serve
different sets of orders and, thus, may have different
numbers of expired orders and/or orders served by
ad hoc couriers. As such, defining how to obtain a
shift schedule u from a scheduled courier requirement
z is important, but we focus on how to obtain z.

In sum, the elements of the CDSSP model include
• Parameters: service-level target α and assignment

and routing policy π.
• A set of ordersN—both static and dynamic orders;

the number and characteristics of dynamic orders are
drawn from the joint conditional distributionYx with x
a realization of the predictive features X.

• A set of ad hoc courier arrival times A, represent-
ing a random sample path of a Poisson arrival process
W (dictated by rate parameters λp for periods p ∈ P).

• Decision vectors z (the number of required sched-
uled couriers for each period) and u (the number of
couriers assigned to each shift).

The CDSSP is then a stochastic optimization prob-
lem in which we first decide the number of active
scheduled couriers in each period and then construct
an associated shift schedule to cover these require-
ments with the goal of minimizing scheduled courier
compensation and expected ad hoc courier and pen-
alty cost. We formulate the CDSSP as follows:

min
z,u

∑
p∈P

∑
s∈S

wpγspus + EN~Yx,A~W[c(u,N ,A)] (2a)

s:t:
∑
s∈S

γspus ≥ zp, ∀p ∈ P, (2b)

us ∈ Z≥0, ∀s ∈ S, (2c)
zp ∈ Z≥0, ∀p ∈ P: (2d)

Objective (2a) is to minimize the cost of scheduled
couriers and the expected ad hoc courier and penalty
cost. Constraint (2b) ensures that the number of sched-
uled couriers in each period is at least the number of
scheduled couriers required for that period. Finally,
(2c) and (2d) constrain the decision variables to non-
negative integers. In the next section, we detail the
SAA method that is employed to solve similar sto-
chastic optimization problems and highlight the key
assumptions and drawbacks of such a method in the
context of the CDSSP.

4. Sample Average
Approximation Method

The SAA method (Kleywegt, Shapiro, and Homem-
de-Mello 2002) presents an alternative formulation to
approximate stochastic optimization Problem (2). Sup-
pose we are given K i.i.d. order realizations N 1,N 2,
: : : ,N K and ad hoc courier arrival realizations A1,A2,
: : : ,AK. These realizations can be either obtained from
historical data or sampled from Yx and W. The SAA
problem is then formulated as

min
z,u

∑
p∈P

∑
s∈S

wpγspus +
1
K

∑K
k�1

c(u,N k,Ak) (3a)

s:t:
∑
s∈S

γspus ≥ zp ∀p ∈ P, (3b)

us ∈ Z≥0 ∀s ∈ S, (3c)
zp ∈ Z≥0 ∀p ∈ P: (3d)

Given the evaluated cost for each order realization
and ad hoc courier arrival realization, c(u,N k,Ak), (3)
is a deterministic problem, which is especially useful
when the expectation in the objective does not have a
closed form or is difficult to evaluate. Under some
regularity conditions, it can be shown that the optimal
solution to (3) converges to the solution of stochastic
optimization Problem (2) when K→∞. As such, the

Figure 3. (Color online) Potential Shift Schedule for the
Scheduled Courier Requirement zDepicted in Figure 2
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SAAmethod and its variants are often used in dynamic
vehicle delivery and crowdsourced delivery applica-
tions (e.g., Bent and Van Hentenryck 2004; Srour,
Agatz, and Oppen 2018; Voccia, Campbell, and Thomas
2019; Dayarian and Savelsbergh 2020; Liu, He, and
Shen 2020). In the following section, we present the
SAA–simulation optimization (SAA-SO) method,
which is a variant of the traditional SAA method that
utilizes simulation optimization to evaluate the cost of
expired orders and ad hoc couriers (c(u,N k,Ak)) for
each of the K realizations.

4.1. SAA-SO Heuristic
The usefulness of a traditionally implemented SAA
approach depends on the tractability of the determin-
istic variant of the problem and assumes that there
exists some algorithm to solve it efficiently. For large-
scale or high-dimensional instances of the CDSSP, the
existence of a closed-form expression for c(u,N k,Ak)
is unlikely. Evaluating the cost of expired orders and
ad hoc couriers c(u,N k,Ak) is difficult as the set of
expired orders and those selected by ad hoc couriers
depends on the assignment and routing policy π and
the choice model employed by ad hoc couriers. In
order to account for this, we utilize SO to evaluate
c(u,N k,Ak). Recalling Formulation (3), we note that
the shift decisions u are dictated by the required cou-
rier capacity z through Constraints (3b). As such, we
can evaluate the total cost for a fixed z by solving

g(z) :�min
u

∑
p∈P

∑
s∈S

wpγspus +
1
K

∑K
k�1

c(u,N k,Ak) (4a)

s:t:
∑
s∈S

γspus ≥ zp ∀p ∈ P, (4b)

us ∈ Z≥0 ∀s ∈ S: (4c)

The optimization problem for the CDSSP then
becomes

min
z

g(z) (5a)

s:t: zp ∈ Z≥0 ∀p ∈ P: (5b)

Our goal is to then solve (5) by exploring the solution
space of z efficiently. To gain intuition, we investigate
the general behavior of g(z) through the following
approximation. First, we approximate c(u,N k,Ak) as a
function of z by the following route assignment integer
program. We assume that the scheduled couriers’ start
location and ad hoc couriers’ arrival location are at the
center of the service region and both types of couriers
are not required to return. Additionally, scheduled cou-
riers serve demand along routes, whereas each ad hoc
courier can serve a single order. Let Rp denote the
index set of routes whose start (from the center of the
service region) and end times fall within period p ∈ P
and define R :� ⋃

p∈PRp. Let xr denote whether route r

is assigned to a scheduled courier, mip denote whether
order i is selected by an ad hoc courier in period p, and
li denote whether order i is unassigned and expires. We
have

cA(z,N k,Ak) :� min
x, l,m

θ · L+ η
∑
p∈P

∑
i∈N k

mip (6a)

s:t: L ≥ ∑
i∈N k

li − (1−α)Nk, (6b)

L ≥ 0, (6c)∑
p∈P

∑
r∈Rp

airxr +
∑
p∈P

mip + li � 1 ∀i ∈N k, (6d)

mip ≤ νip ∀i ∈N k, ∀p ∈ P, (6e)∑
i∈N k

mip ≤Mp ∀p ∈ P, (6f)

∑
r∈Rp

xr ≤ zp ∀p ∈ P, (6g)

li ∈ {0, 1} ∀i ∈N k, (6h)
mip ∈ {0, 1} ∀i ∈N k, ∀p ∈ P, (6i)
xr ∈ {0, 1} ∀r ∈R, (6j)

where Objective (6a) minimizes the penalty caused by
the unassigned (and, hence, expired) orders L over the
α service-level threshold plus the wage for the ad hoc
couriers; Constraints (6b) and (6c) define L and force it
to be nonnegative; Constraint (6d) ensures that each
job is present in at most one selected route, selected
by an ad hoc courier, or remains unassigned (the coef-
ficient air is one if order i is present on route r and zero
otherwise); Constraint (6e) ensures that ad hoc cou-
riers only select orders they are guaranteed to serve
on time for which the parameter νip (created from N k
and Ak) is one if order i is has a ready time prior to
period p and can be served before its deadline if
started by the end of period p (that is, from the center
of the service region to the pickup to the delivery);
Constraint (6f) makes certain that the number of
orders selected by ad hoc couriers in period p does
not exceed the number of ad hoc couriers that arrive
in that period (denoted by Mp, constructed from Ak);
Constraint (6g) guarantees the number of routes
selected in each period is less than the number of
scheduled couriers available during that period; and
finally, Constraints (6h)–(6j) are binary constraints on
decision variables x (which routes are selected by
scheduled couriers), m (which orders are selected by
ad hoc couriers in each period), and l (which orders
remain unassigned and expire.) Clearly, cA(z,N k,Ak)
is an upper bound on c(u,N k,Ak) as it is a restricted
case of our model. Specifically, we do not allow routes
of scheduled couriers to cross periods and restrict the
set of orders that can be served by an ad hoc courier.

Let c̃A(z,N k,Ak) be the cost of the associated linear
relaxation of (6). We can now approximate the cost of
a solution z to (5) with the following nested linear
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program (LP):

g̃(z) :�min
u

∑
p∈P

∑
s∈S

wpγspus +
1
K

∑K
k�1

c̃A(z,N k,Ak) (7a)

s:t:
∑
s∈S

γspus ≥ zp ∀p ∈ P, (7b)

us ≥ 0 ∀s ∈ S: (7c)

Claim 1. The function g̃(z) is convex in z.

Proof. First, note that the two terms of the objective
are independent as c̃A is a self-contained LP. We show
that both terms are convex in z by using strong dual-
ity and, hence, so is their sum. Consider the LP corre-
sponding to the first term of g̃(z) and let yp (∀p ∈ P) be
the dual variables corresponding to Constraint (7b).
By strong duality, we have

min
u≥0

{∑
p∈P

∑
s∈S

wpγspus, s:t:(7b)
}

�max
y≥0

{∑
p∈P

zpyp, s:t:
∑
p∈P

γspyp ≤
∑
p∈P

wpγsp ∀s ∈ S

}
:

The right-hand side of the equation is the maximum
of a linear function and clearly convex in z as the max-
imum of a convex function is also convex. As for the
term c̃A(z,N k,Ak), an almost identical argument is
used. Consider the LP relaxation of Formulation (6).
The objective of the dual is then the maximum over
an affine function of z, which is convex in z. w

We present this result as our rationale for employing a
variant of gradient descent in z. We do not have a guaran-
tee on the quality of approximation g̃(z), and as such, we
use the original formulations with integrality constraints.
Algorithm 1 details an approximate gradient directed
SAA-SO heuristic to solve an instance of the CDSSP.

Algorithm 1 (An Approximate Gradient Directed SAA-
SO Heuristic)
Data: N ←{N 1,N 2, : : : ,N K}, A ← {A1,A2, : : : ,AK},
Itermax
Result: Required capacity decision vector ẑ
Init: z, s.t. zp ← 0 ∀p ∈ P, ĉ ←∞, ẑ ← z
While non_improvement_steps < Itermax do

u← set_covering(z)
c,∇g← simulation(u,N ,A)
If c < ĉ then
non_improvement_steps← 0;
ĉ ← c;
ẑ ← z;
z← perturb(z,∇g);

else
non_improvement_steps← non_improvement

_steps+ 1;
z← perturb(z,∇g);

return ẑ.

Let us now explain Algorithm 1. Because of the
nonconvexity of g(z) arising from integrality con-
straints and the inherent gap between z and u, we
implement the following two modifications to gra-
dient descent:

1. We set Itermax to be the maximum number of con-
secutive steps with nonimproving cost allowed before
the algorithm terminates.

2. We use an approximate gradient ∇g found from
our K simulation runs to dictate the update of z.

Modification 1 is self-explanatory as it allows us to
escape local minima with an appropriately chosen
Itermax. Modification 2 is made to avoid the excessive
noise and computations of an empirically estimated
gradient. Specifically, let ep be a basis vector of length
P with a one in the pth position and zero in every
other. Then, empirically estimating the true gradient
∇g requires solving a set-covering problem and run-
ning K simulations for each of the P estimates. Addi-
tionally, the estimate contains noise as the cost of a
single order realization c(u,N k,Ak) is a function of u,
not z. The change in cost caused by altering z is
masked by potential changes in shift start and end
times, which may affect the difference in cost dispro-
portionately, especially for a large penalty cost θ.
Instead, we use an approximate gradient ∇g to dictate
our search direction. Let N :� {N 1,N 2, : : : ,N K} and
N e ⊆N be the set of all orders that expire for a given
u from the simulation evaluation. The pth position of
∇g is then the number of orders in N e whose ready-
to-delivery window ([to, td]) overlaps with period
p ∈ P. Intuitively, increasing z in periods with larger
numbers of expired orders has the potential to have
the most reduction in cost. As such, ∇g provides infor-
mation about the direction and step size to take at
each iteration, which we utilize in the perturb(z,∇g)
function. Furthermore, the construction of ∇g occurs
concurrently with our simulation evaluation step and,
thus, is significantly faster than constructing an empir-
ically estimated gradient, which requires additional
P – 1 simulation evaluations in each iteration.

Next, we explain the functions set_covering,simulation
and perturb. The set_covering function solves the follow-
ing formulation:

min
z,u

∑
p∈P

∑
s∈S

wpγspus (8a)

s:t:
∑
s∈S

γspus ≥ zp, ∀p ∈ P, (8b)

us ∈ Z≥0, ∀s ∈ S, (8c)
zp ∈ Z≥0, ∀p ∈ P: (8d)

This is equivalent to Formulation (3) without the SAA
term capturing the average cost of expired orders and
ad hoc couriers over K realizations. Thus, set_covering
constructs a minimum cost shift schedule for a given z
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(e.g., the current value of z in the algorithm). The
simulation function evaluates the SAA term for a given
shift schedule by simulating the events of K realizations
of demand and ad hoc courier arrivals. The details of
the simulation can be found in Section 6.2.2. Finally, the
perturb function alters the incumbent z according to the
approximate gradient ∇g. Specifically, it adds an addi-
tional courier to the period with the most expired
orders over the K realizations. For computational effi-
ciency, perturb may add couriers in multiple periods in
early iterations when there are many expired orders
(i.e., a larger step size) and only a single courier in a sin-
gle period as we approach the optimal value of the
objective.

4.2. Limitations
The SAA-SO method is defined for a specific distribu-
tion Yx (from which the dynamic order realizations
are drawn) and ad hoc courier arrival process W. In
practice, the delivery platform wants/needs to solve
instances of the CDSSP multiple times a day for multi-
ple markets, each of which is associated with a distinct
Yx and W. In the following section, we propose a pre-
scriptive machine learning method that conducts a
variant of the SAA method off-line and deploys a
trained machine learning model online to generate
solutions to the CDSSP quickly while maintaining a
similar solution quality to SAA.

Whereas we use small- to medium-sized instances
(on the order of 100 orders per day) to showcase our
prescriptive machine learning method, the main useful-
ness of this solution approach is on large instances
(e.g., those that are found in the meal delivery context
in large urban areas, where we may have thousands of
orders per day.) Even using the SAA-SO method to
solve for a single market is computationally demanding
for large instances as Ruszczyński and Shapiro (2003)
note that the minimum sample size to guarantee a solu-
tion is ε-optimal with probability at least 1−ω is

K ≥ 2σ2ln |D|
ω

(ε− δ)2 ,

where D is the size of the solution space, σ2 is the var-
iance of the objective function, and δ is some chosen
constant. As the variance and solution space increase
in the scale of the problem (i.e., size of the service
region, number of orders, number of ad hoc arrivals,
etc.), the required number of samples to guarantee
adequate solutions also increases, resulting in large
computation times. Therefore, the sheer number of
samples required may make SAA-SO impractical in
this context. Whereas these effects can be mitigated to
some degree by reducing the number of samples
drawn, the solution quality degrades. Our prescrip-
tive machine learning method, on the other hand, has

an online solution-generation component that is not
only orders of magnitude faster than SAA-SO, but the
online solution time is relatively constant in increasing
problem scale.

5. Prescriptive Machine Learning Method
In this section, we propose a prescriptive machine
learning method that addresses the shortcomings of the
SAA-SO method discussed in the previous section. The
proposed machine learning approach creates a trained
machine learning model that approximates a solution
algorithm to an optimization problem by training on a
data set of instance/solution pairs. Figure 4 illustrates
the method in the context of the CDSSP.

The method is composed of off-line (training) and
online (solution prescription) components. In the off-line
training, we first need to generate training samples, spe-
cifically, CDSSP instance/solution pairs. An instance of
the CDSSP is a distribution, Yx, from which potential
order set realizations, N , are drawn and an ad hoc
arrival rate vector, l, defining a Poisson process, W,
from which ad hoc courier arrival realizations, A, are
drawn. A solution to the CDSSP is a required scheduled
courier vector z, in which a set-covering problem is
solved over (after the fact) to generate a set of shifts u.
The instance of training set D are created from historical
data (see Section 5.1), and the associated solutions to the
instances are generated using the SAA-SO heuristic
(described in detail in Section 4.1), which utilizes SAA to
approximate the expectation in the objective of Formula-
tion (2) and SO to evaluate c(u,N k,Ak) for the k �
1, 2, : : :K samples. A machine learning model is then
trained on D. In the online component, the machine
learning model is used to construct solutions to instances
of the CDSSP. Thus, in online deployment, the machine
learning model bypasses the computationally expensive
SAA-SO heuristic while maintaining a comparable solu-
tion quality.

Recall that z � f (Yx,l), where f is the mapping that
transforms the distribution Yx and l into a solution z,
that is, f (·) represents the SAA-SO heuristic described
in the previous section. In this section, we describe
how to use machine learning to estimate the function
f (·) by an approximation f̂ (·) such that

z � f̂ (Yx,l) + ε, (9)

where ε is the approximation error term. In the follow-
ing sections, we describe our methods of (1) feature
selection, (2) training set generation, and (3) model
selection.

5.1. Feature Selection and Training
Set Generation

First, we use the ad hoc courier arrival rate parameters
l and the number of static orders directly. Next, as Yx
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contains a forecast for a demand realization N , it
encompasses information regarding the distributions
of the number and characteristics of orders. We
assume the characteristics of the static orders are
drawn from the same distribution as the dynamic
orders. We assume these are random variables with
probability density functions (pdfs) fit from empirical
data. As such, in our setting, Yx is composed of the
marginal distributions of the following independent
random variables: the number of dynamic orders that
arrive in operating period [0,T ], the placement time
of an order, and the distance from the origin to the
destination of an order. The fact that these random
variables are independent implies that we only need
to store their marginal distributions in Yx to generate
their realizations. Note that other scenarios with
increased complexity may involve random variables
that are correlated (e.g., delivery distance and prom-
ised delivery time). In such scenarios, Yx is composed
of the joint distributions of these variables.

We assume that we have access to the individual
pdfs of the aforementioned random variables. In order
to be used as input for machine learning models, this
information must be converted into vector form to be
used to create a training set. When creating a vector
representation, we can construct discrete approxima-
tions of the pdfs. For the placement time, this is
accomplished by selecting a fixed number of time bins
of equal length and constructing an approximate den-
sity histogram. That is, for each period p ∈ P, we have
a probability that a given order’s placement time falls
within it. Alternatively, for random variables that
approximately follow a specific parametric distribution,
we can use the parameters (e.g., mean and variance) of

said distribution to represent the random variable. For
both the expected number of dynamic orders and the
distance from the origin to the destination of orders,
the data we receive (detailed further in Section 6.1)
indicates that the distributions are approximately nor-
mal. As such we use the mean and the variance of these
random variables as input to the model.

The purpose of creating a training set is to provide
a training algorithm with observations of input/out-
put pairs to fit the model parameters of a machine
learning model. These observations have a major
impact on the quality of predictions for future obser-
vations. As such, the goal is to create a large and
diverse set of instance/solution pairs that are similar
to expected future observations.

Algorithm 2 (Training Set Generation)
Data:N ← {N 1,N 2, : : : }, nD
Result: Training set of size nD
Init: D, an empty data set
for 1, : : :nD do

N ← random_selection(N );
==N isa randomsubsetof N

Yx ← fit(N )
l ← random_generation()
z ← saa_so(Yx,l); == Algorithm 1
D←D⋃{(Yx,l,z)}

return D.

We present Algorithm 2 as an example of how this
can be accomplished when given historical demand
realizations, each of which represents a set of orders
realized on a time horizon of length T. The goal is to

Figure 4. (Color online) Prescriptive Analytics Method for Rapid Solution Construction of Large-Scale Stochastic Programming
Problems

Behrendt, Savelsbergh, and Wang: Shift Scheduling in Crowdsourced Delivery
898 Transportation Science, 2023, vol. 57, no. 4, pp. 889–907, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

43
.2

15
.1

6.
10

0]
 o

n 
28

 D
ec

em
be

r 2
02

3,
 a

t 1
4:

03
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



generate nD instance/solution pairs ((Yx,l), z) for the
training set D. To generate each instance–solution
pair, we randomly select (with replacement) a subset
of realizations from the historical observations and fit
an approximate demand distribution to this subset.
Specifically, this fit(·) function fits approximate pdfs or
parameters for a given distribution for each attribute.
Next, we randomly generate a set of ad hoc courier
arrival rates l. As previously mentioned, the charac-
teristic pdfs in Yx are for both static and dynamic
orders. As such we generate the characteristic static
orders according to Yx. Ad hoc arrival rates and serv-
ice levels can simply be generated uniformly at ran-
dom over the desired domains of values. Afterward,
this overall distribution and set of auxiliary variables
are used as input to the CDSSP optimization model
and a solution is generated using Algorithm 1. The
distribution Yx (in vector form), l, and the associated
solution (z) are then stored in the training set D. This
procedure is repeated until our training set is of the
desired size. As we sample with replacement as
opposed to using the whole set of historical data, we
are essentially performing bootstrap sampling to cre-
ate our training set. In the simulation experiments
(Section 6.2.1), we provide the details of our vector
representation of Yx, discrete approximation of the
pdfs, and training set creation. In the following sec-
tion, we discuss the rationale behind the machine
learning models considered in this paper.

5.2. Model Selection
Our goal is to approximate the function f found by
the SAA-SO heuristic described in Section 4.1 by
some approximate function f̂ , illustrated in Equation (9).
For this purpose, we utilize artificial neural networks

(ANN), specifically multilayer feedforward networks.
The universal approximation theorem presented by
Hornik, Stinchcombe, and White (1989) (founded on
the classic Stone–Weierstrass theorem) asserts that mul-
tilayer feedforward networks are able to approximate
any measurable function to any degree of accuracy for
both single and multiple output cases. Consequently,
the result implies that, given sufficient training and
proper hyperparameters (e.g., hidden layer length and
width, activation functions), artificial neural nets pro-
duce desirable predictions.

This concept serves as motivation to implement and
test the efficacy of two main configurations of multi-
layer feedforward networks in the context of the
CDSSP. The first configuration is illustrated in Figure 5,
which depicts a multilayer feedforward network with
multiple outputs. In such a configuration, all entries of
z are prescribed concurrently given a single demand
forecast and set of auxiliary variables. We hereby refer
to this configuration as ANN.

Alternatively, in the second configuration illus-
trated in Figure 6, we construct a single output net-
work that prescribes a single entry of z and is
employed recurrently. In addition to the demand fore-
cast and auxiliary variables, we also have a fixed size
history set Hp to be used as input, and it contains
information regarding the prescriptions for the peri-
ods occurring before period p. We hereby refer to this
configuration as RANN. As the individual entries of z
are dependent on one another, explicitly including Hp
may result in increased performance over the multiple
output network. Note that, given a training set of nD
observations, the recurrent configuration then has nD ·
P training observations. In cases in which constructing
and maintaining a large training set is expensive, this

Figure 5. (Color online) Multilayer Feedforward Artificial Neural Network with Multiple Outputs
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property is especially useful. The outputs of the predic-
tions of the ANN and RANN are not guaranteed to be
integers. That is, each entry of z may be a real number.
As such, after predicting z, we apply a rounding func-
tion to ensure that we have integer values for the num-
ber of scheduled couriers to hire in a given period (in
our simulation experiments, we test the usefulness of
both traditional nearest integer rounding and a ceiling
function). In Section 6.2.1, we provide the details of the
specific implementation of the two aforementioned
multilayer feedforward network configurations.

6. Simulation Experiments
In this section, we discuss the simulation experiments
conducted to provide proof of concept for our pre-
scriptive machine learning method. We utilize real-
world data from a crowdsourced delivery platform to
construct instances of the CDSSP that are reflective of
the crowdsourced delivery domain. In the following
sections, we describe our specific implementation of
the proposed methods and present the computational
performance of said methods and the quality of our
solutions. We have included the data sets and source
code used in this paper in the Github repository found
at https://github.com/adambehrendt/Crowdsourced-
Courier-Scheduling.

6.1. Data Description, Processing, and
Assumptions

6.1.1. Demand. We received 177 days’ worth of real
demand data from a crowdsourced delivery platform
from July 2019 to January 2020. The demand data are

for a single market with a single vendor and four
unique pickup locations. For each order in the data
set, we were provided the ID of the pickup location,
the ready time, the delivery deadline, and the esti-
mated travel time from the origin to the destination.
Each order’s ready time was exactly on the hour (e.g.,
8:00 a.m., 9:00 a.m., etc.) with a one-hour delivery win-
dow. Less than 1% of these orders had a ready time
outside the range of 8:00 a.m. to 7:00 p.m. and, as
such, were removed from the data set. The average
number of orders on a given day was 42.05, and the
average estimated travel time from an origin to a des-
tination was 10.17 minutes. This is a relatively low-
volume market, and we scale the number of orders
(while preserving the relative distribution of ready
times) to test the usefulness of our methods on
medium-sized instances around three times this size
on the order of 120 orders per day (described further
in Section 6.3). In order to study the more interesting
case of continuous ready times, we augment the ready
times of the orders by adding a random number from
0 to 60 minutes for each order. Our processed ready
times then span from 8:00 a.m. to 8:00 p.m., and the
latest possible deadline is 9:00 p.m. As such, we have
a planning horizon of 13 hours, and the latest ready
time is guaranteed to occur no later than the 12th
hour. Additionally, order placement times were not
present in the data set, and we assume the placement
time of each dynamic order occurs a fixed 45 minutes
before the ready time or is 8:00 a.m. for all orders with
a ready time less than 8:45 a.m. As for static orders,
the placement time is exactly 8:00 a.m. regardless of

Figure 6. (Color online) Multilayer Feedforward Artificial Neural Network with a Single Output, Including Some Fixed-Size
History SetHp Containing Information Surrounding Predictions of Previous Periods
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the ready time. We assume the service level target is
100% (i.e., we receive some penalty for every expired
order), and ad hoc couriers’ choice behavior is to
select an order uniformly at random from the set of
orders belonging to the closest depot (i.e., minimize
their detour). In Section 6.2.1, we detail our approach
to training set generation, specifically how we fit dis-
tributions, dictate which orders are static or dynamic,
and generate ad hoc courier arrival times.

6.1.2. Ad Hoc Couriers. Ad hoc courier arrivals were
not present in this data set. As such, we consider cases
in which ad hoc couriers arrive according to either a
homogeneous or inhomogeneous Poisson process
with known rate parameters (which we assume can be
estimated from historical data). We discuss our specific
procedure for generating these arrivals in the follow-
ing section. We assume that the ad hoc couriers arrive
uniformly over the service region and abide by the fol-
lowing simple choice model. Recall that ad hoc drivers
are compensated per order with a fixed payout. A nat-
ural utility for ad hoc couriers is to minimize the total
travel time so as to maximize their earnings per hour.
However, this disregards any destination preferences
of the ad hoc couriers, which may be present, espe-
cially for serving jobs in a one-off fashion on a pre-
planned trip. As such, we model their behavior by
minimizing the empty miles they drive (that is, a cou-
rier selects an order that minimizes the distance from
the courier’s arrival location to the order’s pickup loca-
tion) and choose uniformly at random among orders
with the same empty miles. That is, each ad hoc cou-
rier selects uniformly at random from the set of orders
at the pickup location closest to the courier’s arrival
location that has active orders. If no orders are in the
system upon the arrival of an ad hoc courier, we
assume that the ad hoc courier leaves the system with-
out serving any orders. Upon completing an order,
the ad hoc courier also leaves the system as we assume
that an ad hoc courier only serves a single order.
We recognize that there are many variants of this sim-
ple choice model that may be reasonable in this or
other contexts with different compensation schemes.
However, our simple choice model takes into account
the random arrival locations of ad hoc couriers (by
minimizing empty miles) and introduces variation in
their choices (by randomly selecting among orders).
As such, we believe the uncertainty introduced by the
choice model is sufficient to be used as a means to test
the efficacy of the solution approaches detailed in
this paper.

6.2. Implementation
We consider period lengths of 30 minutes and, there-
fore, have p� 26 periods over the 13-hour planning
horizon. Additionally, we let the minimum courier

shift length be two hours and the maximum be six
hours. We describe how we predict the required num-
ber of couriers z and solve a set-covering problem to
construct courier shifts u.

6.2.1. Machine Learning. The features used as input
to our machine learning models include a discrete
probability distribution of time segments in which
order ready times fall, the mean and variance of the
travel times from origin to destination, the mean and
variance of the number of dynamic orders that arrive
on the planning horizon, and the number of static
orders. We consider time segments of 15 minutes for
the ready time probability distributions over the
12-hour period in which order ready times can fall.
As such, we have 53 features describing the demand.
As for ad hoc courier arrivals, we consider both
homogeneous and inhomogeneous Poisson arrival
processes and, hence, have a single additional fea-
ture λ in the homogenous case and a feature vector
of size 26 for the inhomogenous case. The off-line
training portion of our proposed method involves
the training set generation and the actual training of
the model. The majority of the effort required for the
off-line training (in terms of computing time) is due
to the generation of the training set because we exe-
cute the SAA-SO algorithm for each data point,
which can be expensive depending on the instance
size and the number of samples. The model training,
on the other hand, does not depend much on the instance
and sample size and generally takes a few hours.

6.2.1.1. Bootstrap Training Set Generation. As pre-
viously mentioned, we have 177 historical observations
of demand (sets of orders over a time horizon). Using
this set of historical data N � {N 1,N 2, : : : ,N 177} and a
desired training set size of nD � 104, we generate a
training set D by implementing Algorithm 2. As such,
we now define the random_selection, fit and random_
generation functions we use. The function random_
selection performs bootstrap sampling in which we first
uniformly select a random integer from 0 to 177 as the
number of historical observations to use and then sam-
ple this number of observations with replacement. This
allows us to create a training set much larger than that
of the set of historical observations and reduces the
probability of overfitting our models to a single set of
observations. The function fit then constructs the afore-
mentioned features from this subset of observations;
however, we scale the observed number of total orders
by a factor of three. We now use random_generation to
construct a partition of static and dynamic orders and
generate the ad hoc courier rate parameters l. First, we
decide which orders are static or dynamic. We create a
partition by the following procedure. Let μ be the mean
of the total number of orders in each observation of the
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given subset (scaled by a factor of three). Let β be the
proportion of orders that are static, which we draw uni-
formly at random from [:25, :5]. We then record the
number of static orders as �β ·μ� and the mean number
of dynamic orders as μ− �β ·μ�. We let the variance of
the number of dynamic orders be the variance of the
total number of orders; however, in practice, one esti-
mates this value by using a given partition directly. For
homogeneous ad hoc courier arrivals, we let λmax � 2
(per period, 26 for the entire time horizon) and draw a
rate parameter λ uniformly between zero and λmax. For
inhomogeneous ad hoc courier arrivals, we draw rate
parameters λp uniformly between zero and λmax for
each. Again, we set λmax � 2.

6.2.1.2. Hyperparameter Selection. We complete a
simple exhaustive hyperparameter search for the
ANN and RANN. Figure 7 depicts the results of our
search in terms of the out-of-sample mean squared
error. We performed K-fold cross-validation on the
data for homogenous and inhomogeneous arrivals.
Each hyperparameter setup was implemented, and
the models were trained for a fixed number of training
epochs, after which the out-of-sample error was aver-
aged. The figure on the left shows the efficacy of the
number of layers and the number of nodes per layer
(we used the same number of nodes for each layer).
As such, we implement both our ANN and RANN
with two hidden layers and 100 hidden nodes each.
Whereas both arrival cases have similar average per-
formance results, we note that the best performing
models (as each training replication begins from a dif-
ferent random seed) for each hyperparameter configu-
ration tend to be for the homogenous arrival case,
which aligns with the slightly better performance we
observe in the results presented in Section 6.4. The

figure on the right shows the training error of the
RANNwhen using different history sizes (the number
of prior periods used as input). We see that the maxi-
mum history size yields the lowest out-of-sample
error for the inhomogenous arrivals case and the sam-
ple error remains constant for different history sizes
for the homogenous case (which is what we expected).
As such, we implemented a history size of 25 for the
RANN for both homogeneous and inhomogeneous
arrivals. Finally, two additional inputs we used in
the recurrent configuration are the current sum of z
up until the period being predicted (

∑p−1
i�0 zi when pre-

dicting zp) and the index of the current period
being predicted.

6.2.2. Simulation. In order to evaluate the cost func-
tion c(u,N k,Ak) for a given schedule u and order real-
ization N k, we implement an agent-based and event-
driven simulation. Agent based refers to the fact that
we model couriers and orders as individual entities.
Event driven signifies that the simulation clock is man-
aged through chronological discrete events. We can
then explicitly define an assignment and routing pol-
icy π by detailing the decisions of the delivery plat-
form at each event. We are concerned with when a
courier shift starts, a courier shift ends, a new order
arrives, an ad hoc courier arrives, and the end of the
time horizon has been reached. As previously men-
tioned, the optimization of π is beyond the scope of
this paper, and we treat π as input to the simulation.
For this reason, we implement a heuristic policy based
on a cheapest_insertion function (formally defined in
Algorithm 3). This function captures the fundamental
operation, that is, deciding the least cost insertion of
an order in a route, and is used to generate and
update routes.

Figure 7. (Color online) Training Error in Relation to Hidden Layers, Number of HiddenNodes, and History Size
(in the Recurrent Case)
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Algorithm 3 (Cheapest Insertion Operation)
Data: Route r visiting n + 1 locations, pickup location
o with time window [eo,vo], delivery location d with
time window [ed,vd]
Result: Cost of insertion, update route r̂
Init: insertion_list, an empty list to store feasible inser-

tions and their cost
for i � 1, : : : ,n do

if feasible_insertion(o, r, i) then

r̂,Δo ← insert(o, r, i);
==edits route; records change in cost

for j � i, : : : , n+ 1do
if feasible_insertion(d, r̂, j) then
r̂, Δd ← insert(d, r̂, j);
c � Δo +Δd;
insertion_list:append(c, r̂);
r̂ ← remove(d, r̂, j);

else
pass;

else
pass;

returnminimum cost entry of insertion_list.

Let r be an existing route of length n composed of a
sequence of pickup and delivery locations for which
locations are labeled by their position in the route.
Location i has a feasible time window (in which
pickup/delivery can occur) defined as [ei,vi]. (In our
implementation, for pickup locations, we set e to the
ready time of the associated order to and v to +∞, and
for delivery locations, we set e to −∞ and v to the
delivery time promise of the associated order td.)
Finally, let ti,j be the travel time from location i to loca-
tion j. For route r, we define the following recursion:

T̂j :� T̂ j−1 + tj−1,j +max{0, ej − (T̂j−1 + tj−1,j)},
∀j � 1, 2, : : : ,n,

where T̂j is the time that the courier serving route r
leaves location j. We let T̂0 be the current time and
location index 0 be the current location of the courier
serving route r with feasible time window [−∞, +∞].
We can now verify the feasibility of any route r by
checking the simple condition T̂j ≤ vj (∀j � 1, 2, : : : ,n).
As such, the function feasible_insertion(location,
route, index) returns true if a location is feasibly
inserted into a route at a given index and false other-
wise. Similarly, the insert function executes the speci-
fied insertion and records the cost. As such, for a
given order with pickup location o and delivery loca-
tion d, Algorithm 3 evaluates the cost of all possible
insertions into a route and returns the cheapest such
insertion. Naturally, this algorithm can be used for
route construction when used sequentially. Addition-
ally, if there are multiple routes, we can use Algorithm 3

as a subroutine to determine which route is the cheapest
to insert a given order.

Let us now explain the assignment and routing
logic that takes place over the course of the simula-
tion for a specific demand realization N k and ad
hoc courier realization Ak. As previously mentioned,
a subset of orders is static (tp�0), and the other
orders are dynamic (tp > 0). When the simulation
clock is greater than or equal to the order placement
time of an order, we consider that order realized.
Recall that our simulation is event-driven. We repeat
the following procedure at each event time (denoted
by t).

1. The set of expired orders and the set of active cou-
riers are updated. We perform a termination check.
That is, if t exceeds the length of the time horizon T,
then the simulation terminates and returns the set of
expired orders.

2. All orders realized at time t are attempted to be
inserted into the current courier routes (not including
empty routes of new couriers, which are handled in the
next step). As such, we iterate through a list of these
orders, which is organized in order of nondecreasing
delivery time promise. For each individual order, we
call the cheapest_insertion function for each courier
route and insert the order into the route that has the
smallest change in cost.

3. The set of unassigned orders realized before time
t (i.e., excluding the orders from the previous step) are
attempted to be inserted into the courier routes of cou-
riers whose shift start time is exactly t in the same
manner as the previous step. In doing so, we avoid
attempting to insert an order into a given courier
route more than once as it is impossible for an order
to be inserted into a route for which it was already
deemed infeasible.

4. The number of ad hoc couriers that arrive at time t
and their locations are recorded. Each ad hoc courier
selects an order uniformly at random from the set of
available orders belonging to the closest depot (that
has active orders). If no orders are available at time t,
then the ad hoc courier is assumed to leave the plat-
form and not serve any orders.

5. The time until the next event is calculated, denoted
by δ. The location of each active vehicle is then updated
based on this δ, the next location of their route, and
whether they must wait at the location.

This simulation is used to evaluate c(u,N k,Ak) and
represents a routing and assignment policy π in which
the use of scheduled couriers is prioritized over the
use of ad hoc couriers.

6.3. Solutions Methods
The solution methods we evaluate in the following
results section are

• SAA-SO heuristic (with varying sample size K).

Behrendt, Savelsbergh, and Wang: Shift Scheduling in Crowdsourced Delivery
Transportation Science, 2023, vol. 57, no. 4, pp. 889–907, © 2022 INFORMS 903

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

43
.2

15
.1

6.
10

0]
 o

n 
28

 D
ec

em
be

r 2
02

3,
 a

t 1
4:

03
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



• Prescriptive ANN model (with both rounding and
ceiling postprocessing tested).

• Prescriptive RANN model (with both rounding
and ceiling postprocessing tested).

• Expected scenario (ES) heuristic.
We describe the first three solution approaches in

Section 5 with implementation details in Sections 6.2.1
and 6.2.2. In order to illustrate the benefits of the
SAA-SO heuristic and the prescriptive methods, we
also present and evaluate a heuristic that generates
solutions based on a single expected scenario, which
we refer to as the ES heuristic. This heuristic does not
rely on sampling or gradient-based methods and, as
such, has a much faster off-line training component.
Let ẑ be a solution to the ES heuristic. Specifically, we
construct ẑ by first generating an expected scenario.
That is, for a given demand distribution Yx and ad
hoc arrival rate vector l, we estimate the expected
number of ready orders in each period by multiplying
the total number of expected orders (static plus
expected dynamic) by the proportion of orders
expected to be ready in that period. For ad hoc arriv-
als, we simply use the expected number of arrivals
directly from l. Additionally, we let d be the mean
distance from origin to destination in Yx. As such, we
generate a solution ẑ for an instance (Yx,l) by calcu-
lating

ẑp � 1
C
· d · (E[ready orders in p]−E[ad-hoc arrivals in p)

∀p ∈ P, (10)

where C is a tuning parameter that represents the
approximate amount of time that a scheduled courier
spends driving in a period. We then round the result-
ing vector ẑ to have an integer solution. Before
deploying this equation online, we use our training
set to search for an optimal value of C. For each obser-
vation in the training set, we generate an expected
instance to test the solution generated for a given C
with explicit simulation. This expected instance takes
the expected number of orders and ad hoc arrivals
and assumes they are spread uniformly over their
respective periods while generating O-D pairs with
distances consistent with the forecast provided in
each Yx. As an example, we show the results of the

search for a homogeneous arrivals training set in Fig-
ure 8. Based on these results, the value of C would be
set to 15.

In the following section, we deploy the aforemen-
tioned solution methods online for the testing set and
discuss results.

6.4. Results
We created training sets for both the homogeneous
and inhomogeneous arrival cases each of size nD � 104.
Recall that each training sample corresponds to one
operating period (i.e., a day). We used 90% of the
instances in each set for training and 10% of the instan-
ces for testing purposes. For the testing sets, we evalu-
ate each respective solution on a set of 200 realizations
drawn from the conditional order distribution Yx and
ad hoc courier arrival process W. We use cost parame-
ters wp � 10 (∀p ∈ P) (scheduled courier wage per
period), na�20 (payout to ad hoc couriers per order),
and θ�200 (penalty cost of an expired order under the
service-level target), respectively. For the following
results tables, “Gap %” is the difference in the total
cost of a specific solution method and the method in
the first row of the table divided by the total cost of the
first row of the table and then multiplied by 100. Tables

Figure 8. (Color online) Search for Best Performing C on a
Homogeneous Arrivals Training Set

Table 1. Change in Cost of the SAA-SO Method for Varying Number of Samples (Homogene-
ous Arrivals)

Sample size Total cost Gap % Scheduled cost Ad hoc cost Expired cost

K � 50 3,475.05 — 2,444.74 224.98 805.32
K � 25 3,544.66 +2:0% 2,415.41 229.12 900.13
K � 10 3,657.67 +5:3% 2,371.37 235.11 1,051.19
K � 5 3,682.46 +6:0% 2,274.58 254.46 1,153.43
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1 and 2 show how the solution quality of the SAA-SO
method changes with different values of K. For the
homogeneous arrivals case, K�50 performs the best
with the solution quality degrading as K decreases as
expected. In general, we see a similar trend in the inho-
mogeneous arrival case. The K�25 case, however, per-
forms slightly better (< 1%) than K�50, which indi-
cates that the number of samples required to meet the
maximum solution quality is met by K�25, and this
observation is due to randomness.

Tables 3 and 4 detail the average costs of the ML
solutions (trained on SAA-SO with K� 50) for the
homogeneous and inhomogeneous arrival cases. In
both cases, the ANNwith a ceiling function applied to
the output performs the best and had average total
costs within 0.2% and 1.9% of the best performing
SAA-SO heuristic solution for the homogeneous and
inhomogeneous cases, respectively. Our ML method
performs better in the simpler case of homogeneous
arrivals, most likely because of the uniform rate of
arrivals for ad hoc couriers. In the inhomogeneous
case, the more irregular arrival pattern coupled with
the random choice model introduces more variance in
the solutions generated by the SAA-SO heuristic,
making them more difficult to predict. Furthermore,
we observe that ANN outperforms RANN and “ceiling”
outperforms “rounding.” The latter was expected as the
ceiling function results in a larger number of required
scheduled couriers and, thus, avoids ad hoc courier and
order expiration costs. Using a ceiling function to post-
process the results tends to avoid underestimating the
number of couriers required for a given period. Whereas
the additional scheduled courier cost tends to be higher
than the scheduled courier cost of the SAA-SO solution,
it avoids large expiration penalties, which can be
incurred when having too few scheduled couriers. The

best performing ML models outperform the ES heuristic
in both the homogeneous and inhomogeneous cases.
The ES heuristic provides a solution based on an
expected scenario. For cases with high variance (such as
the one we consider), this can perform even worse than
SAA-SO with very few samples (see Table 1, K� 5). This
result is not surprising because the expected scenario
becomes less indicative of the overall distribution as the
variance increases. Finally, the ES-heuristic performs bet-
ter in the case of inhomogeneous order arrivals (12.7%
away from the best SAA-SO solution versus 16.7% for
the homogeneous case). This is most likely because λp is
known for each period, whereas the homogeneous case
only has a single parameter. This allows Equation (10) to
better account for the presence of ad hoc couriers. When
compared with the homogeneous case, note the slightly
increased cost of ad hoc couriers in the inhomogeneous
case and the significantly reduced expired order cost,
indicating a more efficient usage of the existing ad hoc
couriers. However, the best ML model (ANN with ceil-
ing function) still outperforms the ES heuristic by more
than 10% in this case.

Figure 9 illustrates the difference in average online
solution time between the SAA-SO heuristic and our
prescriptive machine learning method (for both types
of ML models). Specifically, these times do not include
the training of the model, but include the creation of
the required scheduled capacity z and the construction
of courier shifts u. Notably, the most computationally
expensive step of the online deployment of the pre-
scriptive method is the set-covering problem. The SAA-
SO times include realization generation and Algorithm
1. Expected numbers of orders of 100, 200, and 300
were tested with standard deviations equal to one
fourth that. Additionally, we also let K �N=4 represent
the increasing number of samples required as the

Table 2. Change in Cost of the SAA-SO Method for Varying Number of Samples (Inhomogeneous Arrivals)

Sample size Total cost Gap % Scheduled cost Ad hoc cost Expired cost

K � 50 3,384.03 — 2,424.87 237.04 722.13
K � 25 3,357.50 −0:8% 2,419.46 237.62 700.42
K � 10 3,498.31 +3:4% 2,351.96 247.45 898.91
K � 5 3,684.30 +8:9% 2,289.53 256.78 1,137.99

Table 3. Average Costs for Homogeneous Arrivals over for the SAA-SO Heuristic and
Different ML Model Configurations of Our Prescriptive Method

Method Total cost Gap % Scheduled cost Ad hoc cost Expired cost

SAA-SO (K � 50) 3,475.05 — 2,444.74 224.98 805.32
ES heuristic 4,055.72 +16:7% 2,234.54 258.82 1,562.35
ANN (rounding) 3,564.63 +2:6% 2,490.92 224.69 849.02
ANN (ceiling) 3,481.34 +0:2% 2,605.72 214.84 660.78
RANN (rounding) 3,946.45 +13:6% 2,458.55 238.91 1,248.99
RANN (ceiling) 3,810.612 +9:7% 2,577.53 227.91 1,005.18

Note. The bold cells highlight the method with the smallest gap in total cost to the SAA-SOmethod.
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variance of the objective increases. The solution time of
the SAA-SO heuristic increases approximately linearly
(note the log scale of the y-axis) in the instance size,
whereas the solution time of the prescriptive machine
learning methods is (almost) constant across the
instance sizes considered. The use of RANN is slightly
more computationally expensive than the use of ANN
as each entry of z must be prescribed individually as
opposed to concurrently. We note from Figure 9 that,
when the expected number of orders is 300, the solu-
tion time for SAA-SO for even a single instance of
CDSSP is on the order of a day, whereas the prescrip-
tive ML methods require a fraction of a second. As
mentioned earlier, a crowdsourced delivery platform
most likely needs to solve instances of CDSSP for multi-
ple markets and, possibly, even more than once per
day. Therefore, our proposed prescriptive ML method
has a significant advantage over the SAA-SO heuristic,
especially as the instance size increases. The intense
computation is done off-line and ahead of time, result-
ing in orders of magnitude faster online computational
time while producing comparable solutions.

7. Discussion
We present a prescriptive machine learning method
for online construction of scheduled courier shifts on
crowdsourced delivery platforms under uncertain
demand and ad hoc courier arrivals. We show using
real crowdsourced delivery demand data that the
costs of our prescribed solutions are within 0.2%–1.9%
of those generated by our SAA-SO and can be gener-
ated online in a fraction of the time (as the data and
ML models can be generated and trained off-line
ahead of time). For future research directions, note
that, although this paper focuses on crowdsourced
delivery as the application setting, our prescriptive
machine learning method can potentially be general-
ized to other applications in transportation and logis-
tics that involve demand prediction as the underlying
simulation optimization model can easily be adapted
to those settings. Additionally, in our computational
experiments, we use a simple routing algorithm for
scheduled couriers and a simple random choice model
for ad hoc couriers. In future work, more complex
routing algorithms and choice models can be consid-
ered. In future work, complex pricing policies can be
considered, namely, the interaction between pricing
decisions and the arrival process of ad hoc couriers.
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