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Abstract
Multi-objective optimization allows satisfying multiple decision criteria concurrently, and generally yields multiple solutions. 
It has the potential to be applied to structural damage identification applications which are oftentimes under-determined. How 
to achieve high-quality solutions in terms of accuracy, diversity, and completeness is a challenging research subject. The 
solution techniques and parametric selections are believed to be problem specific. In this research, we formulate a reinforce-
ment learning hyper-heuristic scheme to work coherently with the single-point search algorithm MOSA/R (Multi-Objective 
Simulated Annealing Algorithm based on Re-seed). The four low-level heuristics proposed can meet various optimization 
requirements adaptively and autonomously using the domination amount, crowding distance, and hypervolume calculations. 
The new approach exhibits improved and more robust performance than AMOSA, NSGA-II, and MOEA/D when applied to 
benchmark test cases. It is then applied to an active damage interrogation scheme for structural damage identification where 
solution diversity/completeness and accuracy are critically important. Results show that this approach can successfully 
include the true damage scenario in the solution set identified. The outcome of this research can potentially be extended to 
a variety of applications.

Keywords  Multi-objective optimization · Hyper-heuristic · Reinforcement learning · Simulated annealing · Structural 
damage identification

1  Introduction

Many engineering optimization problems involve multiple 
types of goals, thus naturally present themselves as multi-
objective problems. For example, the rapid advancement of 
sensing and measurement technologies has made it possible 

to realize structural damage identification in the near real 
time. Fault parameters in a structure are identified through 
matching measurements with model predictions in the 
parametric space. A well-known issue in direct inversion-
based techniques in structural damage identification is that 
the problems formulated are oftentimes under-determined, 
as the number of measurements is generally smaller than 
the number of fault parameters (i.e., location and severity 
of damage) to be identified. Since multiple criteria may be 
involved in matching measurements with predictions, the 
identification can be cast into a multi-objective optimiza-
tion problem. A multi-objective optimization formulation 
has the potential of overcoming the computational issue in 
direct inversion.

From a methodology standpoint, multi-objective optimi-
zation algorithms have been applied to a variety of appli-
cations, ranging from production scheduling (Wang et al. 
2014; Lu et al. 2016), structural optimization (Kaveh and 
Laknejadi 2013; Ye et al. 2017, 2019; Zavala et al. 2014 and 
2016; Zarchi and Attaran 2019), performance improvement 
(Szőllős et al. 2009), to structural damage identification 
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(Cha and Buyukozturk 2015; Cao et al. 2018a, b; Tiachacht 
et al. 2018; Gomes et al. 2018; Dinh-Cong and Nguyen-Thoi 
2021). However, the solution techniques are often devised 
and evaluated for specific problem domains, requiring an 
in-depth understanding of the problem domain involved 
and challenging to be exercised in different instances. Even 
for the same type of problems, the formulation may need 
to be adjusted as more knowledge and insights are gained. 
One possible approach to tackle this difficulty is the hyper-
heuristic concept (Cowling et al. 2000). The terminology 
implies that a high-level scheme to select heuristic opera-
tors is incorporated as the detailed algorithms are executed 
(Burke et al. 2009), given a particular problem and several 
low-level heuristics. Instead of finding reasonable solu-
tions, hyper-heuristic is more interested in adaptively find-
ing proper solution methods. Many hyper-heuristic studies 
have been conducted for multi-objective problems, includ-
ing problems on benchmarks (Maashi et al. 2015; Zhang 
et al. 2020) and real-world applications (Guizzo et al. 2015; 
Hitomi and Selva 2015 2016; Qin et al. 2021). For more 
discussions about hyper-heuristic techniques, one can refer 
to literature (Burke et al. 2013).

A hyper-heuristic framework typically involves (1) a 
high-level strategy to iteratively select among low-level 
heuristics based on the performance; (2) a predefined reposi-
tory of low-level heuristics; and (3) applying the heuristics 
selected into optimization and evaluating their performance. 
The selection mechanism in hyper-heuristics, which ensures 
objectivity, specifies the heuristic to apply to a given optimi-
zation point without using any domain information. Online 
learning hyper-heuristics usually take advantage of the con-
cept of reinforcement learning for selection (Ozcan et al. 
2012), as they aim to iteratively solve the heuristics selec-
tion task by weight adaptation through interactions with the 
search domain. The low-level heuristics correspond to a set 
of exploration rules, and each carries a utility value. The 
values are updated at each step based on the success of the 
chosen heuristic. An improving move is rewarded, while a 
worsening move is punished. The low-level heuristics can 
be embedded in single-point search techniques suited for 
these tasks because only one neighbor is analyzed for a 
choice decision (Nareyek 2003). In a single-point search-
based hyper-heuristic framework, e.g., simulated annealing 
(Kirkpatrick et al. 1983)-based hyper-heuristic, an initial 
candidate solution goes through a set of successive stages 
repeatedly until termination.

A multi-objective optimization problem inherently fea-
tures multiple solutions. A major challenge in solving such 
a problem is finding these multiple solutions in a diverse and 
complete sense. Incomplete solutions congregated together 
cannot fully reflect the advantage of multi-objective optimi-
zation formulation and may not even satisfy the requirement 
of the specific engineering problem. To tackle this issue, in 

this research, we establish a general-purpose framework that 
incorporates hyper-heuristic systematically into the state-
of-the-art Multi-Objective Simulated Annealing (MOSA) 
approach to improve both the generality and solution perfor-
mance. We develop a reinforcement learning hyper-heuristic 
inspired by probability matching (Goldberg 1990), consist-
ing of selection and credit assignment strategies. Recent 
investigations have shown that the solution quality/diversity 
and the robustness of MOSA may be enhanced with re-seed 
schemes (Cao et al. 2019). The re-seed schemes, on the other 
hand, need to be tailored to fit specific problem formula-
tions. Here, in this research, the re-seed schemes are treated 
as low-level heuristics, empowering the algorithm to cover 
various scenarios. The performance and generality of the 
proposed approach are first demonstrated over commonly 
recognized benchmark testing cases DTLZ (Deb et al. 2002a 
b) and UF (Zhang et al. 2008) in comparison with the popu-
lar multi-objective algorithms, NSGA-II (Deb et al. 2002a 
b), AMOSA (Bandyopadhyay et al. 2008), and MOEA/D 
(Zhang and Li 2007).

This new framework is then applied to the inverse analy-
sis of structural damage identification utilizing piezoelectric-
based active interrogation. In such an approach, frequency-
sweeping voltage excitation is supplied to a piezoelectric 
transducer attached to the host structure. Owing to the two-
way electro-mechanical coupling, the structural impedance is 
coupled with the piezoelectric impedance that can be meas-
ured based on frequency-sweeping excitation. The measured 
changes of piezoelectric impedance, in conjunction with the 
finite element model of the baseline healthy structure, can then 
be used as damage signatures to facilitate the identification of 
damage location and severity. In structural health monitor-
ing, one main challenge is to detect/identify small-sized dam-
age at the early stage of damage progression. Because of the 
high-bandwidth characteristic of piezoelectric transducers, the 
piezoelectric impedance can be measured in high frequency 
range with small wavelengths, which is very promising for 
detecting and identifying small-sized damage. Modeling 
piezoelectric impedance in high frequency range, meanwhile, 
naturally leads to high mesh density as well as large num-
ber of unknown parameters to be identified as damage may 
occur in any elements/segments in the structure. As such, the 
inverse problem may be under-determined since the number 
of high-quality measurements is generally limited. One pos-
sible strategy is to incorporate additional constraints/criteria 
in problem formulation. That is, we can generally assume that 
damage occurs within a limited number of element/segments, 
so the damage index vector, the dimension of which is the 
number of segments to be identified, is sparse. In general, 
damage occurrence in engineering structures is a small prob-
ability event. The occurrence of damages at multiple locations 
simultaneously has even smaller probability. This will lead to 
a multi-objective optimization problem where one objective 
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is the minimization of the difference between piezoelectric 
impedance measurements and the model prediction in the 
parametric space, and another objective is the sparsity of the 
damage index vector. Solving this multi-objective optimization 
problem can lead to a set of solutions which can help pinpoint-
ing actual damage using engineering judgment or additional 
sensing devices. Obviously, the diversity and completeness of 
the solution set become critically important so the true damage 
scenario can be included. Here, in this research, we examine 
systematically how the proposed reinforcement learning hyper-
heuristic in multi-objective simulated annealing can effectively 
tackle the challenges.

The rest of the paper is organized as follows. Section 2 
outlines the algorithmic foundation, including the multi-
objective simulated annealing algorithm (MOSA) and the 
reinforcement hyper-heuristic strategy. Section 3 proposes 
four low-level heuristics embedded in the hyper-heuristic 
MOSA that combines reinforcement hyper-heuristics with 
the MOSA algorithm. In Sect. 4, benchmark case studies 
involving 14 test functions are conducted and analyzed with 
performance metrics, the inverted generational distance 
(IGD) and hypervolume (HV), which showcases the per-
formance improvement. Section 5 presents the application 
of the proposed algorithm on structural damage identifica-
tion where solution diversity and completeness are essential. 
Finally, concluding remarks are given in Sect. 6.

2 � Algorithm foundation

2.1 � Multi‑objective optimization and simulated 
annealing

A multi-objective minimization problem can be expressed as

where � =
(
x1,… , xm

)
∈ Ωx is the m-dimensional design 

variable vector and � =
(
y1,… , yn

)
∈ Ωy is the n-dimen-

sional objective vector. Ωx is the feasible domain which is 
defined by a set of equalities and inequalities of x, and Ωy 
is the corresponding objective space. Since the objectives 
of such a problem may conflict with each other, there may 
not exist a single solution simultaneously optimizing all 
objectives. Instead, a number of solutions can be obtained 
with trade-offs between different objectives, known as the 
Pareto optimal solutions. To evaluate the solutions, the 
concept of Pareto dominance can be applied. Mathemati-
cally, �1 is said to dominate another solution �2 (defined 
as �1 ≺ �2 )  if:  fi

(
�1
)
≤ fi

(
�2
)
, ∀i ∈ {1, 2,… , n} and 

fj
(
�1
)
< fj

(
�2
)
, ∃i ∈ {1, 2,… , n} . When there does not exist 

another solution that dominates �∗ ∈ Ωx , then it becomes a 
non-dominated solution, i.e., Pareto optimal and is included 
into Pareto optimal set.

(1)min � = f (�) =
(
f1(�),… , fn(�)

)
,

Several metaheuristics have been developed to solve the 
multi-objective optimization problem, such as evolutionary 
algorithm (Zhou et al. 2011), genetic algorithm (Deb et al. 
2000]), particle swarm algorithm (Mohd et al. 2018), and 
simulated annealing, etc. While these approaches have been 
widely applied, simulated annealing has shown interesting 
versatility and adaptivity. Simulated annealing mimics the 
metallurgical process of annealing during which a heated 
metal is cooled to the ground state. Multi-objective Simu-
lated Annealing (MOSA) is a class of simulated annealing 
extensions to multi-objective optimization, exploiting the 
idea of constructing an estimated Pareto front by gathering 
non-dominated solutions found while exploring the feasible 
domain. In MOSA, the acceptance criteria are traditionally 
derived by adopting the differential between new and current 
solutions. However, the comparison between the new solu-
tion to the current solution remains to be an issue. Therefore, 
several new techniques have been proposed by using Pareto 
domination-based acceptance criterion (Smith 2006; Ban-
dyopadhyay et al. 2008; Cao et al. 2019). The domination 
status of the point is considered with respect to the current 
solution together with the archive of non-dominated solu-
tions. MOSA can find multiple Pareto-optimal solutions in 
a single run.

2.2 � Reinforcement learning hyper‑heuristics

The reinforcement learning hyper-heuristic strategy pro-
posed in this research consists of two parts, heuristic selec-
tion and credit assignment. Essentially, we want to design 
online strategies that are capable of autonomously selecting 
between different heuristics based on their credits (Burke 
et al. 2013). The credit assignment firstly rewards the heuris-
tics online based on the specific criterion, and then the cred-
its are fed to the heuristic selection strategy. Fundamentally, 
this is analogous to the reward assignment in reinforcement 
learning, where the agent receives a numerical reward based 
on a successful action. Here, in this research, a new credit 
assignment strategy is developed based on hypervolume 
(Zitzler and Thiele 1999) increments as well as the number 
of solutions newly generated to calculate the credit ci, t

In the above Equation, iter is the total number of iterations, 
i(t) is the number of iterations that has been performed at epoch 
t (i.e., the t-th time heuristic selection has been conducted), PFt 
represents the Pareto front at t, and HV(*) approximates the 
hypervolume of the Pareto front in percentage using Monte 
Carlo approach through N uniformly distributed samples 

(2)ci, t = e
i(t)

iter ⋅

⎛⎜⎜⎜⎝

(HV(PFt)−HV(PFt−1)

HV(PFtrue)
+

�PFt�−�⋂ (PFt ,PFt−1)�
�PFt�

i(t) − i(t − 1)

⎞⎟⎟⎟⎠
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within the bounded hyper-cuboid to alleviate the computa-
tional burden. Specifically,

 where r* is the reference point, which is set to be 1.1 
times the upper bound of the Pareto front in the HV cal-
culation (Ishibuchi et al. 2010; Li et al. 2016). Therefore, 
in Eq.  (2), HV(PFt) ∈ [0, 1] is the hypervolume of the 
Pareto front at t, (HV(PFt) − HV(PFt−1)) is the hyper-
volume increment since the last time the heuristics are 
selected, and HV(PFtrue) is the normalization term. The 
term 

���PFt
�� − ��

⋂
(PFt, PFt−1)

��
����PFt

�� ∈ [0, 1] computes 
the percentage of the newly generated solution in the cur-
rent Pareto front. Both terms are dimensionless, and they 
are summed together first then divided by (i(t) − i(t − 1)) 
to evaluate the performance of a heuristic as reflected by 
the evolution of the Pareto front per iteration. Because it is 
easier for the optimizer to achieve improvements at early 
stage of optimization, we introduce the compensatory fac-
tor ei(t)∕iter ∈ [1, e] to emphasize the credits earned as the 
optimization progresses progressively.

Heuristic selection starts from the low-level heuristics 
at each time epoch. The concept is similar to agent in rein-
forcement learning. There is, however, the exploration versus 
exploitation dilemma (EvE). That is, while the heuristic with 
the highest credits should be favored, those with low cred-
its need to be selected because they may lead to high-quality 
results. Previous strategies include probability matching (PM), 
adaptive pursuit (Thierens 2007), choice function (Cowling 
et al. 2000; Maashi et al. 2015), Markov chain models (McCly-
mont and Keedwell 2011), and multi-armed bandit algorithms 
(Krempser et al. 2012). Here, we formulate a heuristic selec-
tion strategy with a minimal number of parameters inspired by 
the idea of probability matching to specifically fit the online 
learning scheme. Given a finite set of heuristic O, an heuristic 
oi ∈ � is selected at time t with probability pi, t proportional 
to the quality of heuristic qi, t , which is mainly determined by 
the credit ci, t . The parameter t is independent of the algorithm, 
indicating how many times the heuristic selection has been 
conducted. The update rule is given as follows:

 where pmin ∈ (0,
1

|�| ] is the minimum selection probability 
to facilitate exploration and guarantee pi, t ∈ [0, 1] . It is 
greater than 0 so that the heuristics with low credits are also 
considered. Here, in our research, the value of pmin is tuned 
to a relatively small value of 0.1 for the following 

(3)HV(PF, r ∗) = volume(
⋃
x∈PF

v(x, r ∗)),

(4)qi, t = � ⋅ qi, t−1 + (1 − �) ⋅ ci, t

(5)pi, t = pmin + (1 − ��� ⋅ pmin)
qi, t∑���
j=1

qj, t

,

considerations: (1) larger value of pmin will negatively affect 
the selection of heuristics with high credits (i.e., heuristics 
with good performance) to which more attention should be 
still paid; (2) when larger value is given to select heuristics 
with low credits, the exploration will take long time, thus 
resulting in longer computing time for convergence. Our 
subsequent case studies demonstrate that this selection leads 
to good performance in general. Meanwhile, the forgetting 
factor � ∈ [0, 1] determines the significance of the credits 
received previously because the current solution may be the 
result of a decision taken in the past. If 𝛼 > 0.5 , the algo-
rithm will focus more on previous credits obtained; and if 
𝛼 < 0.5 , it will focus more on current credits, as indicated in 
Eq. (4). Here, we take the previous and current credits with 
equal importance, so the value of � is set as 0.5. Note that 
the credit means the algorithm will reward the heuristic due 
to its generation of solutions with high quality. It is worth 
noting here again that t − 1 in Eq. (4) does not imply the 
iteration before t in optimization; it means the last time the 
hyper-heuristic is updated. And we only update the values 
that correspond to the chosen heuristic at t − 1 . For unse-
lected heuristics, we have qi, t = qi, t−1 . In order to facilitate 
the algorithm, the value of qi,0 is set as 0.1 at the beginning 
of the computation and will be updated after iterations. After 
pi, t is determined using Eqs. (4) and (5), roulette wheel 
selection method (Lipowski and Lipowska 2012) is used to 
choose the lower-level heuristic per its probability.

3 � Hyper‑heuristic MOSA

Based on the hyper-heuristic rules defined, the MOSA algo-
rithm and the joint hyper-heuristic scheme are presented in 
this section.

3.1 � MOSA/R algorithm

Hereafter, the algorithm used in this study is referred to as 
Multi-Objective Simulated Annealing based on Re-seed 
(MOSA/R), which was originally explored for configura-
tion optimization (Cao et al. 2019). MOSA/R computes the 
acceptance probability of a new solution using the concept 
of the amount of domination. The algorithm was designed, 
aiming at solving multimodal optimization problems with 
strong constraints. It takes care of feasible solutions more 
efficiently due to the re-seed technique developed com-
pared to traditional MOSAs. As will be demonstrated in this 
research, the advancement of MOSA/R can be generalized 
with hyper-heuristics by making the re-seed step autono-
mously to cater to various design preferences. The pseudo-
code of MOSA/R is provided as shown in Algorithms 1–5.
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Given two solutions a and b, if � ≺ � (i.e., a dominates 
b) then the amount of domination is defined as

where M is the number of objectives, and Ri represents the 
range of the ith objective (Bandyopadhyay et al. 2008). The 
hyper-heuristic scheme comes into effect in Algorithm Re-
seed, as indicated in the pseudo-code Algorithm 4. When-
ever re-seed is triggered, a low-level heuristic is firstly 
selected from the repository based on the proposed rein-
forcement learning hyper-heuristic (Sect. 2.3), and then 
the current solution is altered using the selected low-level 
heuristic. Simulated annealing in most related hyper-heu-
ristic studies (Antunes et al. 2011; Bai et al. 2012; Burke 
et al. 2013;) is used as the high-level heuristic to select 
lower-level heuristic from the repository to exploit multiple 

(6)Δdom�,� =
∏M

i=1,fi(�)≠fi(�)
(||fi(�) − fi(�)

||∕Ri),

neighborhoods, which can be regarded as variable neighbor-
hood search mechanism. However, the proposed approach 
in this research uses probability matching (PM) as the 
high-level heuristic and part of the MOSA/R as lower-level 
heuristics, which can be regarded as an adaptive operator 
selection (Maturana et al. 2009). In the next subsection, we 
propose four low-level heuristics for the hyper-heuristic 
MOSA/R.

3.2 � Low‑level heuristics

Hereafter, the MOSA/R with the hyper-heuristic scheme is 
referred to as MOSA/R-HH. The hyper-heuristic scheme 
intervenes in the re-seed scheme (Algorithm Re-seed), 
which makes itself different from other MOSA algorithms. 
In this paper, we propose four re-seed strategies as low-
level heuristics.

Fig. 1   Examples of solutions 
selected by the four low-level 
heuristics
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(1) Minimum amount of domination of solution in the 
Archive. The first strategy selecting the solution from 
Archive calculates the minimum difference of domination 
amount with respect to the new solution. For ∀� ∈ Archive 
that dominates the new solution,

Then the selected solution is set as current solution with 
probability 1

1+exp(−Δdomselected, new∕max(T ,1))
 . To avoid premature 

(7)

�select = argmin
�

(Δdom�,�new)

= argmin
�

(

∏M

i=1,fi(�)≠fi(�new)
(|
|

fi(�) − fi(�new)||∕Ri)
)

.

convergence, the solution is chosen with the minimum dif-
ference of domination amount. As shown in Fig. 1(a), the 
selected solution using this strategy corresponds to the one 
in the Archive that dominates the current solution the least.

(2) Maximum amount of domination of solution in the 
Archive. The second strategy is defined similarly to low-
level heuristic (1). For ∀� ∈ Archive that dominates the 
new solution,

The only difference is that this time the solution will be 
chosen with the maximum domination amount compared to 
the new solution. The strategy emphasizes the exploitation 
of better neighboring solutions than strategy (1) that aims 
to maintain a balance between exploration and exploitation. 
As shown in Fig. 1(b), the selected solution by the second 
strategy dominates the current solution the most. The first 
two strategies are new solution dependent. Next, we will 
introduce two new solution-independent strategies.

(3) Solution with the largest hypervolume (HV) contri-
bution in the Archive. In this heuristic, the hypervolume 
contribution of each point in Archive is computed using the 
method proposed by Emmerich et al (2005). Hypervolume 
contribution quantifies how much each point in the Pareto 
front contributes to the HV. As explained in Fig. 1(c), the 
areas of the colored rectangles indicate the hypervolume 
contribution for each solution in the Archive. A large value 
of HV contribution indicates that the point stays in a less 
explored portion of the Pareto front but with good conver-
gent performance.

(8)

�select = argmax
�

(Δdom�,�new)

= argmax
�

(

∏M

i=1,fi(�)≠fi(�new)
(|
|

fi(�) − fi(�new)||∕Ri)
)

.

Fig. 2   Flowchart of MOSA/R and the embedded hyper-heuristic

Table 1   Main properties of the 
14 test functions

Problem No. of Obj No. of Var Properties

DTLZ1 3 6 Linear Pareto, multimodal
DTLZ2 3 7 Concave Pareto
DTLZ3 3 10 Concave Pareto, multimodal
DTLZ4 3 10 Concave Pareto, biased solutions distribution
DTLZ5 3 10 Concave degenerated Pareto
DTLZ6 3 10 Concave Pareto, biased solutions distribution
DTLZ7 3 10 Discontinuous Pareto
UF1 2 10 Convex Pareto
UF2 2 10 Convex Pareto
UF3 2 10 Convex Pareto
UF4 2 10 Concave Pareto
UF5 2 10 Discrete Pareto
UF6 2 10 Discontinuous Pareto,
UF7 2 10 Linear Pareto
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(4) Solution with the largest crowding distance in the 
Archive. This strategy utilizes the technique called crowding 
distance (Deb et al. 2002a b), and the point will be selected 
with the largest crowding distance. The strategy is inclined 
to exploration (diversity) in the EvE dilemma. As presented 
in Fig. 1(d), in the minimization case, the crowding dis-
tance for each solution in the Archive is determined by the 
area of the bounding box formed by its adjacent solutions. 
It is worth noting that, in computing crowding distance, 
the edge points (min/max points) are set as infinity after 
sorting operation based on objective values. Figure 1(d) is 
employed for illustration only, and the infinite edge points 
are not included.

Figure 1(e) compares the solutions selected by the pro-
posed four low-level heuristics, each low-level heuristic 
design has its own emphasis and intention. The hyper-
heuristic scheme is designed to adaptively switch between 
different priorities that suit the current search endeavor 
the best, and therefore could be applied to tackle different 
instances without further modification. Figure 2 depicts the 
overall mechanism of MOSA/R and the co-acting hyper-
heuristic in a flowchart.

4 � Benchmark case studies

4.1 � Test cases

The proposed algorithm MOSA/R-HH, AMOSA (Bandyo-
padhyay et al. 2008), NSGA-II (Deb et al. 2002a b), and 
MOEA/D (Zhang and Li 2007) algorithms are applied here 
to evaluate the benchmark test problems including DTLZ 
(Deb et al. 2002a b) and UF (Zhang et al. 2008) test suites. 
These three algorithms are selected here for comparison 
because they have been applied to a number of multi-objec-
tive optimization problems. As listed in Table 1, the test 
functions are representative due to their diverse properties. 
All algorithms will be executed 5 times independently for 
each test problem.

4.2 � Parametric setting

The initial temperature and final temperature (stopping crite-
rion) control the acceptance of all solutions at the beginning 
of the algorithm (Suman and Kumar 2006) and error, respec-
tively. The starting temperature Tmax and final temperature Tmin 
values for AMOSA and MOSA/R-HH are here set to be 100 
and 10–5, respectively. The total number of iterations, denoted 
as iter, is chosen to be 20,000 for DTLZ1 and DTLZ2, 30,000 
for DTLZ3-7, and 100,000 for UF test problems. For the cool-
ing process in simulated annealing, the exponential approach 
is adopted as Ti+1 = �iTi with cooling coefficient of 0.8. Note 
that all parameters in AMOSA are set to be the same as that of 

MOSA/R-HH. For NSGA-II and MOEA/D, the total number 
of function evaluations is set in accordance with AMOSA and 
MOSA/R-HH. Other parameters are used following those in 
literature (Deb et al. 2002a,b; Zhang and Li 2007). The popu-
lation size is set to be 150 and 300 for 2-objective and 3-objec-
tive test problems, respectively. The distribution indices of 
Simulated Crossover (SBX) and polynomial mutation are set 
to be 20. The crossover rate is 1.0, and the mutation ration is 
1/n, where n is the length of the decision vector. In MOEA/D, 
Tchebycheff approach is used, and the size of neighbor popula-
tion is set to be 20. All initial solutions are generated randomly 
from the decision space of the problems.

4.3 � Performance metrics

In this study, two popular metrics, inverted generational dis-
tance (IGD) (Ishibuchi et al. 2015) and hypervolume (HV) 
(Zitzler et al. 2007), are used to quantify the performance 
of the algorithms. The performance comparison is based on 
the Pareto set that it is a set of solutions realizing the optimal 
trade-offs between the optimization objectives in multi-objec-
tive optimization problems.

Inverted Generational Distance (IGD) The IGD indicator 
measures the degree of convergence by computing the aver-
age of the minimum distance of points in the true Pareto front 
(PF*) to points in Pareto front obtained (PF), as described 
below:

where M is the number of objectives, fm is the mth objective 
value of � ∈ PF . In Eq. (9), min

�∈PF

(

M
∑

m=1
(f im ∗ −fm)2

)

 calculates the 

minimum Euclidean distance between the ith point in PF* 
and points in PF. A lower value of IGD indicates better 
convergence and completeness of the PF obtained.

Hypervolume (HV) The HV indicator measures conver-
gence as well as diversity as shown in Eq. (3). The calcula-
tion of HV requires normalized objective function values 
and here HV stands for the percentage covered by the Pareto 
front of the cuboid defined by the reference point and the 
original point (0, 0, 0). As mentioned before, the reference 
point is set to be 1.1 times the upper bound of the PF*.

4.4 � Test case results and discussions

The four algorithms are applied to the test functions listed in 
Table 1. The analysis results are based on 5 independent test 
runs and meanwhile the mean and standard deviation of IGD 
and HV are recorded. All computations are conducted within 

(9)

IGD(PF,PF ∗) =

∑�PF∗�
�∗∈PF∗, i=1

�
min
�∈PF

�∑M

m=1
(f i
m
∗ −fm)

2

�

�PF ∗�
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MATLAB on a desktop computer with Intel(R) Core(TM) 
i7-10700F CPU @ 2.90 GHz, 16 G RAM.

Tables 2 and 3 show the relative performance of all four 
algorithms in terms of the two metrics IGD and HV, where 
we keep 4 significant digits for mean and standard devia-
tion. The shaded grids indicate the best result in each test 
in terms of the mean value. As can be observed from the 
table, MOSA/R-HH prevails in DTLZ1, DTLZ2, DTLZ5, 
and DTLZ7 in both metrics. MOEA/D has an edge over 
MOSA/R-HH in DTLZ3, while MOSA/R-HH performs 
significantly better than NSGA-II and AMOSA. DTLZ4 
is a close race for MOSA/R-HH, NSGA-II, and MOEA/D. 
And for DTLZ6, MOSA/R-HH, AMOSA, and MOEA/D 
all demonstrate similar performance. Figure 3 depicts the 
Pareto front obtained by each algorithm when applied to 
DTLZ1 test case. It is worth noting that different algorithms 
may exhibit different strengths in specific cases. Consider 

DTLZ3 as an example. DTLZ3 involves the Rastrigin func-
tion, a non-convex, non-linear multimodal function, on top 
of DTLZ2, which is employed to test the convergence to the 
true Pareto front. MOEA/D essentially decomposes mul-
tiple objectives into multiple single objectives. As such, it 
is possible to avoid certain limitations of the evolutionary 
algorithms based on the Pareto dominant relationship, which 
is similar to the MOSA/R-HH algorithm. Therefore, in cer-
tain cases the convergence of MOEA/D algorithm to the 
true Pareto front may indeed be on par or even better. This, 
however, does not change the main observation here that 
MOSA/R-HH mostly outperforms other algorithms.

For UF test cases, MOSA/R-HH takes the lead in three 
of them in both IGD and HV, which is the best among the 
four algorithms. Figure 4 shows an example of the Pareto 
front obtained by each algorithm for UF4 in comparison 
with the true Pareto front. It can be noticed that the Pareto 

Table 2   Numerical test results: 
IGD mean and standard 
deviation

Problems MOSA/R-HH AMOSA NSGA-II MOEA/D

DTLZ1 0.007191 ± 0.000369 0.02134 ± 0.00506 1.656 ± 0.538 0.01315 ± 0.00195
DTLZ2 0.01403 ± 0.00127 0.01992 ± 0.00107 0.03093 ± 0.00147 0.02434 ± 0.00173
DTLZ3 0.06330 ± 0.00380 0.7198 ± 0.131 7.419 ± 1.87 0.0342 ± 0.0125
DTLZ4 0.02263 ± 0.00222 0.07643 ± 0.00456 0.02176 ± 0.000668 0.02334 ± 0.00176
DTLZ5 6.356E-4 ± 4.34E-5 0.001956 ± 1.49E-4 0.001390 ± 2.74E-4 0.002541 ± 0.0966
DTLZ6 3.231 E-4 ± 5.42E-6 4.404E-4 ± 1.85E-4 0.8738 ± 0.0762 0.001792 ± 2.20E-4
DTLZ7 0.01657 ± 9.49E-4 0.01928 ± 5.45E-4 0.8235 ± 0.0211 0.06502 ± 0.00152
UF1 0.01252 ± 0.00189 0.03509 ± 0.00250 0.01972 ± 0.00967 0.01938 ± 0.00567
UF2 0.002974 ± 6.25E-4 0.005458 ± 8.87E-05 0.006871 ± 0.00365 0.01876 ± 0.00563
UF3 0.2477± 0.104 0.3797 ± 0.368 0.1559 ± 0.0131 0.2553 ± 0.0323
UF4 0.01905 ± 8.76E-4 0.03124 ± 1.99E-4 0.03792 ± 0.00397 0.04796 ± 0.00513
UF5 0.1636 ± 0.00666 0.1523 ± 0.0242 0.6759 ± 0.279 0.6501 ± 0.292
UF6 0.1412 ± 0.0816 0.09371 ± 4.34E-06 0.4929 ± 0.0963 0.5606 ± 0.151
UF7 0.01713 ± 1.33 E-4 0.03393 ± 0.00514 0.008407 ± 0.00309 0.005269 ± 5.043E-4

Table 3   Numerical test 
results: HV mean and standard 
deviation

Instance MOSA/R-HH AMOSA NSGA-II MOEA/D

DTLZ1 0.8593 ± 0.0204 0.8312 ± 0.0184 0.04210 ± 0.0941 0.8353 ± 0.0282
DTLZ2 0.5945 ± 0.00586 0.5850 ± 0.00130 0.5663 ± 0.00832 0.5789 ± 0.00420
DTLZ3 0.5280 ± 0.0380 0.004466 ± 0.00470 0.001404 ± 0.00236 0.5376 ± 0.0248
DTLZ4 0.5739 ± 0.00869 0.5535 ± 0.00738 0.5686 ± 0.00765 0.5763 ± 0.00877
DTLZ5 0.2139 ± 0.00157 0.2096 ± 0.00125 0.2097 ± 0.00100 0.2038 ± 0.00356
DTLZ6 0.2059 ± 0.00568 0.2029 ± 0.00166 0.001440 ± 0.00211 0.2012 ± 0.00119
DTLZ7 0.2635 ± 0.00549 0.2580 ± 0.0122 0.1683 ± 0.00304 0.2498 ± 0.00557
UF1 0.7114 ± 0.00231 0.683 ± 0.00198 0.6958 ± 0.0126 0.6962 ± 6.37E-4
UF2 0.7207 ± 5.52 E-4 0.71843 ± 4.03E-4 0.7165 ± 0.00351 0.7036 ± 0.00355
UF3 0.4724 ± 0.0993 0.4098 ± 0.227 0.5196 ± 0.0204 0.3787 ± 0.0454
UF4 0.4224 ± 0.00295 0.4044 ± 0.00659 0.3919 ± 0.00760 0.3885 ± 0.0131
UF5 0.3613 ± 0.0346 0.3651 ± 0.0405 0.05647 ± 0.0524 0.1128 ± 0.158
UF6 0.3287 ± 0.0428 0.3487 ± 0.00766 0.1104 ± 0.0413 0.2214 ± 0.0643
UF7 0.5677 ± 0.00127 0.5454 ± 0.00541 0.5734 ± 0.00451 0.5773 ± 0.00169
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front obtained by MOSA/R-HH stays close to the true Pareto 
front and maintains good diversity. The performance of 
AMOSA, NAGA-II, and MOEA/D fluctuate as test function 
changes due to different problem properties. On the other 
hand, MOSA/R-HH is more robust and outperforms other 
algorithms when tackling most test instances because of the 
adaptive hyper-heuristic scheme.

5 � Application to structural damage 
identification

In this section, we apply the proposed approach (MOSA/R-
HH) to the identification of damage parameters in a structure 
based on piezoelectric impedance/admittance active interro-
gation, to showcase the advantage of incorporating the hyper-
heuristic technique in engineering implementation.

5.1 � Piezoelectric impedance/admittance 
for structural damage identification

Structural damage identification, i.e., the process of identifying 
the location and severity of damage, is typically realized by 
inverse analysis through comparison between sensor measure-
ments and model prediction in the parametric space. Active 
interrogation through actuation and sensing is widely adopted. 
Piezoelectric transducers are compact and can be easily inte-
grated with the host structure. Owing to the two-way electro-
mechanical coupling, they can be used as actuators and/or 
sensors. They possess high bandwidth, and thus can be used 
for high-frequency active interrogation which is promising for 
detecting small-sized damage. The finite element-based equa-
tions of motion of a structure integrated with a piezoelectric 
transducer can be derived as (Wang and Tang 2008)

(10)M𝐱̈+𝐂𝐱̇+𝐊𝐱+𝐊12Q=𝟎

Fig. 3   Pareto front obtained by 
each algorithm for test instance 
DTLZ1



A reinforcement learning hyper‑heuristic in multi‑objective optimization with application…

1 3

Page 11 of 19  16

 where � is the structural displacement vector, M, K, and C 
are mass, stiffness and damping matrices, respectively,�12 
is the electro-mechanical coupling vector, Kc is the recipro-
cal of capacitance of the piezoelectric transducer, R is the 
resistor employed in the measurement circuit, Q is the elec-
trical charge on the surface of piezoelectric transducer, and 
Vin is the input/excitation voltage. In the context of structural 
damage identification, the host structure is divided into n 
segments. We assume damage occurs in one or some of the 
segments as local stiffness reduction. Here, without loss of 
generality, we assume damage in structure causes stiffness 
reduction while the mass remains unchanged. The stiffness 
matrix of the damaged structure can be written as 
�d =

n∑
j=1

�hj

�
1 − �j

�
 , where �hj is the stiffness matrix of the 

jth segment of the healthy structure, �j is the damage index 
indicating damage severity |||�j

||| and location j. In structural 
damage identification, we aim at identifying � = [�1,⋯ , �n] 
which is referred to as the damage index vector.

While a variety of active interrogation approaches have 
been proposed, in this research, we apply the piezoelectric 

(11)KcQ +��
��
� + RQ̇ = Vin,

impedance/admittance approach. In actual practice, we 
supply frequency-sweeping excitation voltage to the piezo-
electric transducer integrated with the host structure and 
measure the resulting current in the circuit. After deriva-
tions, we can obtain, for example, the admittance of the 
integrated system (Shuai et al. 2017; Cao et al. 2018b):

where � is the excitation frequency, i is the imaginary unit, 
and I and Vin are, respectively, the magnitude of the current 
and that of the voltage input. Although both impedance and 
admittance which is the reciprocal of the impedance have 
been used in previous investigations, here in this research, 
we focus on the admittance. In piezoelectric impedance or 
admittance based active interrogation, the same piezoelec-
tric transducer is used as actuator and sensor concurrently, 
which leads to implementation convenience. Moreover, as 
impedance and admittance are harmonic responses, the 
inverse analysis is more likely to be realized than transient 
responses. In order to facilitate efficient computational 
analysis, we conduct linearization of Eq. (12) to develop 

(12)

A(�) =
I

Vin

=
i�

i�R + Kc −��
��

(
�d − �2� + i��

)−1
�12

,

Fig. 4   Pareto front obtained by 
each algorithm for test instance 
UF4
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a sensitivity-based relation between the admittance change 
and the damage index vector (Shuai et al. 2017),

where

(13)Ad(�) ≈ A(� = �) +

n∑
j=1

�A

��j
|�j=0�j,

(14)

�A
��j

|�j=0 =�i[i�R + Kc −�T
12(� −��2 + ��i)−1�12]

−2�T
12[

�(�d −��2 + ��i)−1

��j
|�j=0]�12.

The admittance changes then can be written as a linear 
function of the damage index �j.

where � = � −��2 + i�� denotes the dynamic stiffness 
of the structure and � indicates how the elemental matrices 
are assembled into the global stiffness matrix. Equation (15) 
exhibits the relationship between the admittance changes 
and damage index at single excitation frequency point � . 
Such relationship holds at every frequency point of voltage 
excitation. When admittances are measured at m frequency 
points, m equations can be formulated to establish the rela-
tion as a matrix form

In the above equation, Δ�(�) = �d(� ≠ 0) − �(� = 0) 
represents the vector of the changes of admittance at a 
series of excitation frequency points where admittance is 
measured. For example, we can measure admittance at m 
frequency points �1,… ,�m and then obtain the admittance 
change vector before and after damage occurrence.  �m×n is 
the sensitivity matrix in terms of the coefficient matrices 
shown in Eq. (16). An example of admittance response and 
the change are illustrated in Fig. 5. Our mission is to solve 
for � based on the admittance change vector and the sensi-
tivity matrix �m×n.

(15)
ΔA(�) = Ad − A( = �) =

n∑
j=1

[�i(Kc −�T
12
�−1�12)

−2

�T
12
�−1(�T

j
�hj�j)�

−1�12] �j,

(16)Δ� =

⎡⎢⎢⎣

ΔA(�1)

⋮

ΔA(�m)

⎤
⎥⎥⎦
=

i�
��

� − �2� + i��
�−1

�12

�T

�T�h�
��

� − �2� + i��
�−1

�12

�

�
Kc + i�R −�T

12

�
� − �2� + i��

�−1
�12

�2
= �m×n�.

Fig. 5   Illustration of admittance responses and admittance change 
due to damage

Fig. 6   Experimental setup and 
geometry of cantilever plate
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5.2 � Inverse optimization formulation

As can be seen in Fig. 5, admittance changes are more sig-
nificant around the peaks which correspond to the structural 
resonances. The changes are much less significant elsewhere 
and can be easily contaminated by measurement noise. One 
can envision that the effective measurements with noticeable 
changes are generally limited. That is, m is small. Mean-
while, to inversely identify small-sized damage, the number 
of finite elements and the number of segments will need 
to be large such that the analysis can have high fidelity in 
high frequency range and the damage can be pinpointed. 
As such, the number of segments or the dimension of the 
damage index vector, n, will need to be large. Moreover, it is 
important to point out that the rows of the sensitivity matrix 
are not necessarily linearly independent, as the selection of 
frequency points for admittance measurement is generally 
arbitrary, e.g., evenly distributed with the frequency range of 
interest. Therefore, the inverse problem, Eq. (18), is often-
times under-determined.

In order to solve the structural damage identification 
problem, here we cast the inverse analysis into an optimiza-
tion framework. One objective is obvious, i.e., to minimize 
the difference between measurements and model prediction 
in the damage parametric space. In this research, we impose 
an additional objective that fits the nature of damage iden-
tification. In engineering practice, structural damage occur-
rence is normally a small probability event. The occurrence 
of damages at multiple locations has very small probability. 
That is, we can assume the number of segments with dam-
age is small or, equivalently speaking, the damage index 
vector is sparse. This fits the nature of damage occurrence 
in practical situations. We then have the following optimiza-
tion model:

Here, �l is the lower bound of the damage index with value of 
0, indicating healthy state, and �u is upper bound with value 
of 1, meaning totally damaged state, and ‖‖p denotes the lp 
norm. It is worth emphasizing that for the multi-objective 
optimization formulated in Eq. (17), we may expect multiple 
solutions of damage index vector � , which fits the situation 
that the inverse problem in structural damage identification 
is under-determined. If multiple solutions are indeed found, 
we may use engineering judgment or deploy additional sen-
sors for final decision making. In comparison, a single objec-
tive optimization generally yields a single solution, which 
may not reflect the actual damage scenario.

(17)

⎧⎪⎪⎨⎪⎪⎩

find � ∈ �n

min ��ΔA − ΔAmeas
��2

min ‖�‖0
s.t.�l ≤ �j ≤ �u

5.3 � Experimental setup

We conduct finite element formulation and experiment to 
generate necessary data for case demonstration. The setup 
is shown in Fig. 6. A cantilever plate is used as the host 
structure with the length 561 mm, width 19.05 mm, and 
thickness 4.763 mm. It is made of aluminum with mass den-
sity 2700 kg/m3 and Young’s modulus 68.9 GPa. A piezo-
electric transducer is attached to the top surface at 180 mm 
from the fixed end. The piezoelectric transducer has length 
15 mm, width 19.05 mm, and thickness 1.4 mm. It has the 
following material properties: Young’s moduli E11 = 86 GPa 
and E33 = 73 GPa , density � = 9500kg/m3 , piezoelec-
tric constant −1.0288 × 109Vm−1 , and dielectric constant 
�33 = 1.3832 × 108mF−1 . The plate is discretized with 3D 
20-node solid element with 12,500 elements in total. To 
facilitate damage identification, it is divided into 25 seg-
ments along the length direction, each with a damage index 
�i . In experiment, a small resistor R ( 100Ω ) is connected in 
serial to the piezoelectric transducer to measure the voltage 
drop across it (Fig. 6), and the current in the circuit can 
be obtained which then yields the admittance information. 
A signal analyzer (Agilent 35670A) with a source chan-
nel and the sweep sine capability is employed. The source 
channel is used to generate the sinusoidal voltage Vin sent 
to the piezoelectric transducer, and the output voltage Vout 
across the resistor is recorded. Without loss of generality, 
piezoelectric admittances and their changes upon damage 
occurrence are measured around the 14th (1893.58 Hz) and 
the 21st (3704.05 Hz) natural frequencies. 100 measure-
ments are collected in the frequency range from 1891.69 to 
1895.47 Hz and from 3700.35 to 3707.75 Hz, respectively. 
Correlated finite element analysis and experimental meas-
urements are conducted so the model matches with the 
experimental setup in terms of admittance measurements 
under the healthy state.

It is worth noting that piezoelectric transducer has very 
high bandwidth. As such, the piezoelectric admittance can 
be accurately extracted at much higher frequencies than the 
usual vibration-based approaches. For example, in the case 
studies, we are able to extract admittances at the abovemen-
tioned frequency ranges. The high-frequency responses 
are capable of reflecting structural property changes with 
small characteristic sizes (i.e., small damage). As a trade-
off, a single piezoelectric admittance technique usually cov-
ers smaller structure/component for damage identification. 
This is generally not a problem for structures in aerospace, 
marine, and some infrastructure components such as wind 
energy components as multiple transducers can be used. 
The admittance value versus frequency relation is obtained 
based on frequency sweeping. The piezoelectric admittances 
are essentially harmonic responses. In our experiment, at 
each frequency point, 50 repeated cycles of responses are 
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recorded and then averaged. This can effectively reduce the 
noise effect. The admittance change before and after damage 
occurrence is used as input. The subtraction of the admit-
tances before and after damage occurrence can remove pos-
sible DC shift in experiment.

In order to minimize unwanted uncertainties and vari-
ations in the experimental testbed, we use an added mass 
(attached to the host structure using small amount of wax) 
to emulate damage. Using this method, we can easily add/
remove damage without altering the testbed boundary condi-
tion. The added mass causes the shift of admittance curves, 
which is equivalent to stiffness reduction. In our experiment, 
after we introduce the added mass, we extract admittance 
curve in the frequency range of interest. We then adjust, in 
the numerical model, the stiffness (i.e., reducing the Young’s 
modulus of the elements) in the specific segment to which 
the mass is added, such that the admittance curve calculated 
matches with the experimental one (with added mass). The 

Fig. 7   Damage identification 
results for Case 1; 3 distinct 
solutions from MOSA/R-HH 
and 2 distinct solutions from 
MOSA/R

(a) (b)

(c)

Table 4   Objective function 
values for case studies

Algorithms Case 1 Case 2 Case 3

Obj 1 Obj 2 Obj 1 Obj 2 Obj 1 Obj 2

MOSA/R-HH 2.460 × 10−9 1 8.361 × 10−11 1 3.6361 × 10−5 1
2.36686 × 10−9 2 8.197 × 10−11 2 4.2474 × 10−7 2
2.36683 × 10−9 3 8.111 × 10−11 3 7.1758 × 10−8 3

MOSA/R 2.460 × 10−9 1 8.498 × 10−11 1 3.6361 × 10−5 1
2.364 × 10−9 2 8.212 × 10−11 2 4.3089 × 10−7 2
- - 8.172 × 10−11 3 4.0033 × 10−7 3

Table 5   Hypervolume index for two case studies

Algorithms Hypervolume Index

Case 1 Case 2 Case 3

MOSA/R-HH 0.9 0.87 0.89
MOSA/R 0.84 0.81 0.88
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percentage of stiffness reduction in the damaged segment 
can then be obtained numerically.

5.4 � Optimization solutions and discussion

Three cases are studied here using the experimental setup 
and procedure outline in the preceding subsection. In the 
first case, we introduce damage to the 14th segment with 
local equivalent segment stiffness reduction 0.28%. To 
demonstrate and evaluate the reinforcement learning 
hyper-heuristic and the resulting MOSA/R-HH, we apply 
both MOSA/R-HH and MOSA/R (Sect. 3.1) into the case 
investigation.

It is worth noting that the true Pareto front for practi-
cal engineering analysis generally cannot be obtained a 
priori. To facilitate the computation, the term HV

(
PFtrue

)
 

in Eq. (2) needs to be evaluated. We take the followings 
steps: a) The two objectives are normalized, so the objec-
tive values are in the range of [0,1]; b) For Obj 1 in the 
Pareto front, we use ‘linspace’ in MATLAB to generate a 
linearly spaced vector in the range of [0,1]. Here, in this 
research, the number of solutions in Pareto front is set as 
900, so we use 30 (square root of 900) points in the lin-
early generated vector; c) For Obj 2 in the Pareto front, we 
use pf (2, ∶) = 1 − sqrt(pf (1, ∶)) ; d) We then calculate the 

hypervolume using the estimated Pareto front with refer-
ence points. Here, the reference points are set as 1.1 times 
the boundary points of each objective; and e) The initial 
hypervolume of the estimated Pareto front for the damage 
identification case is 0.76. Note that this value can be differ-
ent when different strategy is used to generate the estimated 
Pareto front.

In both algorithms, the maximum iterations are 100,000, 
the population is 150, and the number of Pareto optimal set 
is 9,000. The computation terminates when the maximum 
iteration is reached. Within 9,000 results, there are many 
repeated solutions after optimization convergence. After 
post-processing by removing the repeated ones, we obtain 
three distinct solutions from MOSA/R-HH and two distinct 
solutions from MOSA/R, shown in Fig. 7. In Fig. 7, the 
horizontal axis indicates the damage location, and the ver-
tical axis indicates the severity of damage at the segment 
identified. The corresponding objective function values are 
listed in Table 4. In the table, the multiple solutions identi-
fied are arranged based on the number of non-zero entries, 
i.e., the second objective function in optimization. The HV 
values are listed in Table 5. An immediate observation from 
these results indicates 1) the true damage scenario is essen-
tially included in the solution sets identified by both methods 
(Fig. 7(a) being the closest); and 2) MOSA/R-HH yields 

Fig. 8   Damage identification 
results for Case 2; 3 distinct 
solutions from MOSA/R-HH 
and 3 distinct solutions from 
MOSA/R

(a) (b)

(c)
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higher HV values and therefore better diversity. With the 
higher solution diversity and the solutions distribution, an 
operator will have higher confidence in making the decision.

We now further analyze the individual solutions identi-
fied. Observing Fig. 7, we can conclude that the two algo-
rithms perform similarly in the two solutions that they both 
identify. In the first solution, both algorithms correctly iden-
tify the damage location (the 14th segment) and severity 
(~ 0.28%). In the second solution, in addition to the 14th seg-
ment identified, both algorithms point to the 10th segment 
having ~ 0.07% stiffness reduction. While this represents a 
solution that is different from the true damage scenario, it is 
a valid solution provided by the multi-objective optimization 
formulation. In this solution, the damage severity identi-
fied in the 10th segment is quite small (0.07%) as compared 
to the true damage severity of 0.28% at the 14th segment. 
Apparently, both solvers are able to find a second solution 
which is similar to the true damage scenario. The MOSA/R-
HH further points to a third damage scenario in which the 
14th segment, the 10th segment, and the 17th segment all 
have stiffness reductions. Nevertheless, since the 17th seg-
ment has even smaller damage severity, i.e., ~ 0.01%, this 
scenario is quite similar to the second scenario since the 
damage effect in the 17th segment is in the order of magni-
tude smaller. In general, for this first case, both MOSA/R and 

MOSA/R-HH can produce good results to damage identifica-
tion, and the multiple solutions generated all point to the true 
damage scenario. The HV values listed in Table 5 confirm 
that MOSA/R-HH yields higher HV values and therefore 
better diversity. This validates the algorithm improvement.

In the second case, we introduce a smaller damage, 0.16% 
stiffness reduction, to the 12th segment. In damage identifi-
cation, smaller size damage is generally more challenging to 
identify. Once again we apply both MOSA/R and MOSA/R-
HH. The same set of computational parameters in the first 
case are employed. This time, both algorithms produce three 
distinct solutions as plotted in Fig. 8. These solutions are 
arranged in the order of non-zero entries. In the first solu-
tion, both algorithms point to the true damage scenario, 
i.e., ~ 0.16% damage in the 12th segment. It is worth noting 
that MOSA/R and MOSA/R-HH point to considerably dif-
ferent results afterward. For the second solution, MOSA/R-
HH indicates damage in the 12th segment (0.14%) and the 
13th segment (~ 0.03%). In this solution, the damage effect 
in the 13th segment is quite small compared to true dam-
age severity of 0.16%, and thus this solution is close to the 
true damage scenario. On the other hand, MOSA/R indicates 
damage in the 10th segment (0.12%) and the 17th segment 
(0.12%). This is quite different to the true damage scenario. 
Similar observations can be obtained for the third solution 

Fig. 9   Damage identification 
results for Case 3; 3 distinct 
solutions from MOSA/R-HH 
and 3 distinct solutions from 
MOSA/R

(a) (b)

(c)
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results. MOSA/R-HH indicates damage in the 11th segment 
(~ 0.14%), the 12th segment (0.03%), and the 10th segment 
(0.01%). Although this is different from the true damage 
scenario (i.e., the 12thsegment having 0.16% damage), this 
result is quite close from physics standpoint because the 
11th segment is directly net to the 12th segment. When we 
examine the third solution of MOSA/R, the result is damage 
occurring in the 10th segment (0.13%), the 17th segment 
(0.09%), and the 9th segment (0.02%). This is very different 
from the true damage scenario. The HV values of Case 2 
are reported in Table 4. As expected, MOSA/R-HH yields 
higher HV values and therefore better solution diversity. 
We can again conclude that MOSA/R-HH produces better 
damage identification results as all three solutions are close 
to the true damage scenarios. MOSA/R on the other hand 
produces two solutions that are quite different from the true 
damage scenario.

In the third case, we introduce damage to two separate 
locations at the 9th and the 19th segments with 0.23% and 
0.18% stiffness reductions, respectively. For this multi-dam-
age case, three solutions are produced by both algorithms, 
as shown in Fig. 9. The three solutions identify one, two, 
and three damage locations, respectively, since the second 
optimization objective is to minimize the number of damage 
locations. Consequently, both algorithms point to a single 
damage solution as shown in Fig. 9(a). While this solution 
does not match with the true damage scenario, it is not a 
surprise because both algorithms attempt to find optimal 
solutions that minimize the objective functions, and numeri-
cally they identify the single damage as an optimal solution. 
Meanwhile, in this solution, both algorithms are able to find 
one damage location correctly with close to actual severity. 
For solution 2 shown in Fig. 9(b), both algorithms identify 
the true damage locations, and the severities are fairly close 
to the actual values. For the third solution, both algorithms 
correctly identify the main damage locations and the severi-
ties obtained are close, while they both additionally point 
to a third damage location. MOSA/R-HH identifies a third 
damage at segment 7 with severity of 0.005%, and MOSA/R 
identifies is located at segment 17 with severity of 0.016%. 
These two severity values are very small as compared to 
those of the main damage locations. Thus, the third solu-
tion identified by both algorithms is similar to the second 
solution, and both solutions point to the true damage sce-
nario with good accuracy. The results obtained in this case 
demonstrate the ability of the proposed algorithm to handle 
the multiple damage case. It is worth noting that the dam-
age identification cases are all conducted using experimental 
data which inevitably is subject to noise and various uncer-
tainties. The results obtained by MOSA/R-HH demonstrate 
its capability of producing damage identification results in 
an accurate and robust manner.

6 � Conclusions

In this research, we formulate an autonomous hyper-heuris-
tic scheme that works coherently with multi-objective sim-
ulated annealing, featuring domination amount, crowding 
distance, and hypervolume calculations. The hyper-heuristic 
scheme can be adjusted at a high level by changing heuristic 
selection and credit assignment strategies or at a low level 
by customizing the heuristic repository to meet different 
optimization requirements. It can also be used to investi-
gate the relation between heuristics and problem instances. 
The proposed MOSA/R-HH is shown to yield better results 
than other MOSA algorithms like AMOSA and representa-
tive evolutionary algorithms like NSGA-II and MOEA/D 
in benchmark test cases. The proposed hyper-heuristic 
approach is then applied to piezoelectric admittance-based 
active interrogation for structural health monitoring. By 
comparing with MOSA/R without hyper-heuristic, we suc-
cessfully demonstrate that the new algorithm can identify 
damage scenario with enhanced accuracy and robustness.
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