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Abstract

Multi-objective optimization allows satisfying multiple decision criteria concurrently, and generally yields multiple solutions.
It has the potential to be applied to structural damage identification applications which are oftentimes under-determined. How
to achieve high-quality solutions in terms of accuracy, diversity, and completeness is a challenging research subject. The
solution techniques and parametric selections are believed to be problem specific. In this research, we formulate a reinforce-
ment learning hyper-heuristic scheme to work coherently with the single-point search algorithm MOSA/R (Multi-Objective
Simulated Annealing Algorithm based on Re-seed). The four low-level heuristics proposed can meet various optimization
requirements adaptively and autonomously using the domination amount, crowding distance, and hypervolume calculations.
The new approach exhibits improved and more robust performance than AMOSA, NSGA-II, and MOEA/D when applied to
benchmark test cases. It is then applied to an active damage interrogation scheme for structural damage identification where
solution diversity/completeness and accuracy are critically important. Results show that this approach can successfully
include the true damage scenario in the solution set identified. The outcome of this research can potentially be extended to
a variety of applications.

Keywords Multi-objective optimization - Hyper-heuristic - Reinforcement learning - Simulated annealing - Structural
damage identification

1 Introduction

Many engineering optimization problems involve multiple
types of goals, thus naturally present themselves as multi-
objective problems. For example, the rapid advancement of
sensing and measurement technologies has made it possible
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to realize structural damage identification in the near real
time. Fault parameters in a structure are identified through
matching measurements with model predictions in the
parametric space. A well-known issue in direct inversion-
based techniques in structural damage identification is that
the problems formulated are oftentimes under-determined,
as the number of measurements is generally smaller than
the number of fault parameters (i.e., location and severity
of damage) to be identified. Since multiple criteria may be
involved in matching measurements with predictions, the
identification can be cast into a multi-objective optimiza-
tion problem. A multi-objective optimization formulation
has the potential of overcoming the computational issue in
direct inversion.

From a methodology standpoint, multi-objective optimi-
zation algorithms have been applied to a variety of appli-
cations, ranging from production scheduling (Wang et al.
2014; Lu et al. 2016), structural optimization (Kaveh and
Laknejadi 2013; Ye et al. 2017, 2019; Zavala et al. 2014 and
2016; Zarchi and Attaran 2019), performance improvement
(Szo6ll6s et al. 2009), to structural damage identification
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(Cha and Buyukozturk 2015; Cao et al. 2018a, b; Tiachacht
et al. 2018; Gomes et al. 2018; Dinh-Cong and Nguyen-Thoi
2021). However, the solution techniques are often devised
and evaluated for specific problem domains, requiring an
in-depth understanding of the problem domain involved
and challenging to be exercised in different instances. Even
for the same type of problems, the formulation may need
to be adjusted as more knowledge and insights are gained.
One possible approach to tackle this difficulty is the hyper-
heuristic concept (Cowling et al. 2000). The terminology
implies that a high-level scheme to select heuristic opera-
tors is incorporated as the detailed algorithms are executed
(Burke et al. 2009), given a particular problem and several
low-level heuristics. Instead of finding reasonable solu-
tions, hyper-heuristic is more interested in adaptively find-
ing proper solution methods. Many hyper-heuristic studies
have been conducted for multi-objective problems, includ-
ing problems on benchmarks (Maashi et al. 2015; Zhang
et al. 2020) and real-world applications (Guizzo et al. 2015;
Hitomi and Selva 2015 2016; Qin et al. 2021). For more
discussions about hyper-heuristic techniques, one can refer
to literature (Burke et al. 2013).

A hyper-heuristic framework typically involves (1) a
high-level strategy to iteratively select among low-level
heuristics based on the performance; (2) a predefined reposi-
tory of low-level heuristics; and (3) applying the heuristics
selected into optimization and evaluating their performance.
The selection mechanism in hyper-heuristics, which ensures
objectivity, specifies the heuristic to apply to a given optimi-
zation point without using any domain information. Online
learning hyper-heuristics usually take advantage of the con-
cept of reinforcement learning for selection (Ozcan et al.
2012), as they aim to iteratively solve the heuristics selec-
tion task by weight adaptation through interactions with the
search domain. The low-level heuristics correspond to a set
of exploration rules, and each carries a utility value. The
values are updated at each step based on the success of the
chosen heuristic. An improving move is rewarded, while a
worsening move is punished. The low-level heuristics can
be embedded in single-point search techniques suited for
these tasks because only one neighbor is analyzed for a
choice decision (Nareyek 2003). In a single-point search-
based hyper-heuristic framework, e.g., simulated annealing
(Kirkpatrick et al. 1983)-based hyper-heuristic, an initial
candidate solution goes through a set of successive stages
repeatedly until termination.

A multi-objective optimization problem inherently fea-
tures multiple solutions. A major challenge in solving such
a problem is finding these multiple solutions in a diverse and
complete sense. Incomplete solutions congregated together
cannot fully reflect the advantage of multi-objective optimi-
zation formulation and may not even satisfy the requirement
of the specific engineering problem. To tackle this issue, in
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this research, we establish a general-purpose framework that
incorporates hyper-heuristic systematically into the state-
of-the-art Multi-Objective Simulated Annealing (MOSA)
approach to improve both the generality and solution perfor-
mance. We develop a reinforcement learning hyper-heuristic
inspired by probability matching (Goldberg 1990), consist-
ing of selection and credit assignment strategies. Recent
investigations have shown that the solution quality/diversity
and the robustness of MOSA may be enhanced with re-seed
schemes (Cao et al. 2019). The re-seed schemes, on the other
hand, need to be tailored to fit specific problem formula-
tions. Here, in this research, the re-seed schemes are treated
as low-level heuristics, empowering the algorithm to cover
various scenarios. The performance and generality of the
proposed approach are first demonstrated over commonly
recognized benchmark testing cases DTLZ (Deb et al. 2002a
b) and UF (Zhang et al. 2008) in comparison with the popu-
lar multi-objective algorithms, NSGA-II (Deb et al. 2002a
b), AMOSA (Bandyopadhyay et al. 2008), and MOEA/D
(Zhang and Li 2007).

This new framework is then applied to the inverse analy-
sis of structural damage identification utilizing piezoelectric-
based active interrogation. In such an approach, frequency-
sweeping voltage excitation is supplied to a piezoelectric
transducer attached to the host structure. Owing to the two-
way electro-mechanical coupling, the structural impedance is
coupled with the piezoelectric impedance that can be meas-
ured based on frequency-sweeping excitation. The measured
changes of piezoelectric impedance, in conjunction with the
finite element model of the baseline healthy structure, can then
be used as damage signatures to facilitate the identification of
damage location and severity. In structural health monitor-
ing, one main challenge is to detect/identify small-sized dam-
age at the early stage of damage progression. Because of the
high-bandwidth characteristic of piezoelectric transducers, the
piezoelectric impedance can be measured in high frequency
range with small wavelengths, which is very promising for
detecting and identifying small-sized damage. Modeling
piezoelectric impedance in high frequency range, meanwhile,
naturally leads to high mesh density as well as large num-
ber of unknown parameters to be identified as damage may
occur in any elements/segments in the structure. As such, the
inverse problem may be under-determined since the number
of high-quality measurements is generally limited. One pos-
sible strategy is to incorporate additional constraints/criteria
in problem formulation. That is, we can generally assume that
damage occurs within a limited number of element/segments,
so the damage index vector, the dimension of which is the
number of segments to be identified, is sparse. In general,
damage occurrence in engineering structures is a small prob-
ability event. The occurrence of damages at multiple locations
simultaneously has even smaller probability. This will lead to
a multi-objective optimization problem where one objective
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is the minimization of the difference between piezoelectric
impedance measurements and the model prediction in the
parametric space, and another objective is the sparsity of the
damage index vector. Solving this multi-objective optimization
problem can lead to a set of solutions which can help pinpoint-
ing actual damage using engineering judgment or additional
sensing devices. Obviously, the diversity and completeness of
the solution set become critically important so the true damage
scenario can be included. Here, in this research, we examine
systematically how the proposed reinforcement learning hyper-
heuristic in multi-objective simulated annealing can effectively
tackle the challenges.

The rest of the paper is organized as follows. Section 2
outlines the algorithmic foundation, including the multi-
objective simulated annealing algorithm (MOSA) and the
reinforcement hyper-heuristic strategy. Section 3 proposes
four low-level heuristics embedded in the hyper-heuristic
MOSA that combines reinforcement hyper-heuristics with
the MOSA algorithm. In Sect. 4, benchmark case studies
involving 14 test functions are conducted and analyzed with
performance metrics, the inverted generational distance
(IGD) and hypervolume (HV), which showcases the per-
formance improvement. Section 5 presents the application
of the proposed algorithm on structural damage identifica-
tion where solution diversity and completeness are essential.
Finally, concluding remarks are given in Sect. 6.

2 Algorithm foundation

2.1 Multi-objective optimization and simulated
annealing

A multi-objective minimization problem can be expressed as
mlny=f(x)= (f](x)vvfn(x))a (])

where x = (xl, ,xm) € Q, is the m-dimensional design
variable vector and y = (yl, ,yn) € Q, is the n-dimen-
sional objective vector. , is the feasible domain which is
defined by a set of equalities and inequalities of x, and Q,
is the corresponding objective space. Since the objectives
of such a problem may conflict with each other, there may
not exist a single solution simultaneously optimizing all
objectives. Instead, a number of solutions can be obtained
with trade-offs between different objectives, known as the
Pareto optimal solutions. To evaluate the solutions, the
concept of Pareto dominance can be applied. Mathemati-
cally, x, is said to dominate another solution x, (defined
as x, <x,) ift fi(x,) <fi(x,),Vie {1,2,...,n} and
];(Xl) <]§(X2), di € {1,2,...,n}. When there does not exist
another solution that dominates x* € Q_, then it becomes a
non-dominated solution, i.e., Pareto optimal and is included
into Pareto optimal set.

Several metaheuristics have been developed to solve the
multi-objective optimization problem, such as evolutionary
algorithm (Zhou et al. 2011), genetic algorithm (Deb et al.
2000]), particle swarm algorithm (Mohd et al. 2018), and
simulated annealing, etc. While these approaches have been
widely applied, simulated annealing has shown interesting
versatility and adaptivity. Simulated annealing mimics the
metallurgical process of annealing during which a heated
metal is cooled to the ground state. Multi-objective Simu-
lated Annealing (MOSA) is a class of simulated annealing
extensions to multi-objective optimization, exploiting the
idea of constructing an estimated Pareto front by gathering
non-dominated solutions found while exploring the feasible
domain. In MOSA, the acceptance criteria are traditionally
derived by adopting the differential between new and current
solutions. However, the comparison between the new solu-
tion to the current solution remains to be an issue. Therefore,
several new techniques have been proposed by using Pareto
domination-based acceptance criterion (Smith 2006; Ban-
dyopadhyay et al. 2008; Cao et al. 2019). The domination
status of the point is considered with respect to the current
solution together with the archive of non-dominated solu-
tions. MOSA can find multiple Pareto-optimal solutions in
a single run.

2.2 Reinforcement learning hyper-heuristics

The reinforcement learning hyper-heuristic strategy pro-
posed in this research consists of two parts, heuristic selec-
tion and credit assignment. Essentially, we want to design
online strategies that are capable of autonomously selecting
between different heuristics based on their credits (Burke
et al. 2013). The credit assignment firstly rewards the heuris-
tics online based on the specific criterion, and then the cred-
its are fed to the heuristic selection strategy. Fundamentally,
this is analogous to the reward assignment in reinforcement
learning, where the agent receives a numerical reward based
on a successful action. Here, in this research, a new credit
assignment strategy is developed based on hypervolume
(Zitzler and Thiele 1999) increments as well as the number
of solutions newly generated to calculate the credit ¢; ,

(HV(PF,)-HV(PF,_,) , |PF.|-|N(PF,PF,_)|
i@ HV(PF,

ry ) 7] )
B i(t) — it — 1) 2)

In the above Equation, iter is the total number of iterations,
i(t) is the number of iterations that has been performed at epoch
t (i.e., the #-th time heuristic selection has been conducted), PF,
represents the Pareto front at ¢, and HV(*) approximates the
hypervolume of the Pareto front in percentage using Monte
Carlo approach through N uniformly distributed samples
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within the bounded hyper-cuboid to alleviate the computa-
tional burden. Specifically,

HV(PF,r %) = volume( U v(x, r *)), 3)
XEPF

where r* is the reference point, which is set to be 1.1
times the upper bound of the Pareto front in the HV cal-
culation (Ishibuchi et al. 2010; Li et al. 2016). Therefore,
in Eq. (2), HV(PF,) € [0, 1] is the hypervolume of the
Pareto front at ¢, (HV(PF,) — HV(PF,_))) is the hyper-
volume increment since the last time the heuristics are
selected, and HV(PF,,,,) is the normalization term. The
term (|PF,| — |\ (PF,, PF,_))|) /|PF,| € [0, 1] computes
the percentage of the newly generated solution in the cur-
rent Pareto front. Both terms are dimensionless, and they
are summed together first then divided by (i(r) — i(t — 1))
to evaluate the performance of a heuristic as reflected by
the evolution of the Pareto front per iteration. Because it is
easier for the optimizer to achieve improvements at early
stage of optimization, we introduce the compensatory fac-
tor e/V/ier € [1, e] to emphasize the credits earned as the
optimization progresses progressively.

Heuristic selection starts from the low-level heuristics
at each time epoch. The concept is similar to agent in rein-
forcement learning. There is, however, the exploration versus
exploitation dilemma (EvE). That is, while the heuristic with
the highest credits should be favored, those with low cred-
its need to be selected because they may lead to high-quality
results. Previous strategies include probability matching (PM),
adaptive pursuit (Thierens 2007), choice function (Cowling
et al. 2000; Maashi et al. 2015), Markov chain models (McCly-
mont and Keedwell 2011), and multi-armed bandit algorithms
(Krempser et al. 2012). Here, we formulate a heuristic selec-
tion strategy with a minimal number of parameters inspired by
the idea of probability matching to specifically fit the online
learning scheme. Given a finite set of heuristic O, an heuristic
o; € O is selected at time ¢ with probability p; , proportional
to the quality of heuristic g, ,, which is mainly determined by
the credit c; ,. The parameter ¢ is independent of the algorithm,
indicating how many times the heuristic selection has been
conducted. The update rule is given as follows:

4it =% 4,1 +(1 _a)'ci,t “4)
qi+
30Ol ’ Q)

j=1 Bt

Pi,t = Pnmin +(1- |O| 'pmin)

where p_;.. € (0, ﬁ] is the minimum selection probability
to facilitate exploration and guarantee p, , € [0, 1]. It is
greater than 0 so that the heuristics with low credits are also
considered. Here, in our research, the value of p,, is tuned

to a relatively small value of 0.1 for the following
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considerations: (1) larger value of p,;, will negatively affect
the selection of heuristics with high credits (i.e., heuristics
with good performance) to which more attention should be
still paid; (2) when larger value is given to select heuristics
with low credits, the exploration will take long time, thus
resulting in longer computing time for convergence. Our
subsequent case studies demonstrate that this selection leads
to good performance in general. Meanwhile, the forgetting
factor @ € [0, 1] determines the significance of the credits
received previously because the current solution may be the
result of a decision taken in the past. If @ > 0.5, the algo-
rithm will focus more on previous credits obtained; and if
a < 0.5, it will focus more on current credits, as indicated in
Eq. (4). Here, we take the previous and current credits with
equal importance, so the value of « is set as 0.5. Note that
the credit means the algorithm will reward the heuristic due
to its generation of solutions with high quality. It is worth
noting here again that # — 1 in Eq. (4) does not imply the
iteration before ¢ in optimization; it means the last time the
hyper-heuristic is updated. And we only update the values
that correspond to the chosen heuristic at # — 1. For unse-
lected heuristics, we have g; , = g; ;_;. In order to facilitate
the algorithm, the value of ¢; is set as 0.1 at the beginning
of the computation and will be updated after iterations. After
p;.; is determined using Eqgs. (4) and (5), roulette wheel
selection method (Lipowski and Lipowska 2012) is used to
choose the lower-level heuristic per its probability.

3 Hyper-heuristic MOSA

Based on the hyper-heuristic rules defined, the MOSA algo-
rithm and the joint hyper-heuristic scheme are presented in
this section.

3.1 MOSA/R algorithm

Hereafter, the algorithm used in this study is referred to as
Multi-Objective Simulated Annealing based on Re-seed
(MOSA/R), which was originally explored for configura-
tion optimization (Cao et al. 2019). MOSA/R computes the
acceptance probability of a new solution using the concept
of the amount of domination. The algorithm was designed,
aiming at solving multimodal optimization problems with
strong constraints. It takes care of feasible solutions more
efficiently due to the re-seed technique developed com-
pared to traditional MOSAs. As will be demonstrated in this
research, the advancement of MOSA/R can be generalized
with hyper-heuristics by making the re-seed step autono-
mously to cater to various design preferences. The pseudo-
code of MOSA/R is provided as shown in Algorithms 1-5.
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Algorithm 1 MOSA/R
1: Set Tmaz, Tmin, # of iterations per temperature iter, cooling rate o, k =0

2: Initialize the Archive (Pareto front)

3. current solution = randomly chosen from Archive

4: while T > Tmin do

5 for 1:iter do

6: Generate a new solution in the neighborhood of current solution

7 if new solution dominates k(k >= 1) solutions in the Archive then
8 Update

9 else if new solution dominated by & solutions in the Archive then
10: Action

11 else if new solution non-dominant to Archive then

12: Action

13: end if

14: end for
15: end while

Algorithm 2 Update
1: Remove all & dominated solutions from the Archive

2. Add new solution to the Archive

3: Set new solution as current solution

Algorithm 3 Action
1: if new solution and Archive are non-dominant to each other then

2: Set new solution as current solution
3: else

4 if new solution dominated by current solution then
5 Re-seed

6: else

7 Simulated Annealing

8 end if

9

: end if

Algorithm 4 Re-seed
1: new solution dominated by k(k >= 0) solutions in the Archive

2: Select a heuristic from low-level heuristics based on hyper-heuristic strategy
3: Set selected solution following the selected heuristic

wif 1) (14 e TRETY S 1and (0,1) then

Set selected solution as current solution

. else

Simulated Annealing

. end if

@ e oo
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Algorithm 5 Simulated Annealing

_ DL Adominey
- k

L Adomgyg

2 if st > rand (0, 1) then
(o)

3: Set new solution as current solution

4: end if

Given two solutions a and b, if a < b (i.e., a dominates

b) then the amount of domination is defined as
M

Adomyy, = [ [.2,jarsgin Vi@ —1®I/R). ©®
where M is the number of objectives, and R; represents the
range of the ith objective (Bandyopadhyay et al. 2008). The
hyper-heuristic scheme comes into effect in Algorithm Re-
seed, as indicated in the pseudo-code Algorithm 4. When-
ever re-seed is triggered, a low-level heuristic is firstly
selected from the repository based on the proposed rein-
forcement learning hyper-heuristic (Sect. 2.3), and then
the current solution is altered using the selected low-level
heuristic. Simulated annealing in most related hyper-heu-
ristic studies (Antunes et al. 2011; Bai et al. 2012; Burke
et al. 2013;) is used as the high-level heuristic to select
lower-level heuristic from the repository to exploit multiple

neighborhoods, which can be regarded as variable neighbor-
hood search mechanism. However, the proposed approach
in this research uses probability matching (PM) as the
high-level heuristic and part of the MOSA/R as lower-level
heuristics, which can be regarded as an adaptive operator
selection (Maturana et al. 2009). In the next subsection, we
propose four low-level heuristics for the hyper-heuristic
MOSA/R.

3.2 Low-level heuristics

Hereafter, the MOSA/R with the hyper-heuristic scheme is
referred to as MOSA/R-HH. The hyper-heuristic scheme
intervenes in the re-seed scheme (Algorithm Re-seed),
which makes itself different from other MOSA algorithms.
In this paper, we propose four re-seed strategies as low-
level heuristics.

Fig. 1 Examples of solutions A A A
selected by the four low-level = = =
- I - 3 I

heuristics .

L

by

by

by

I B R ®

. : [ | A | AN S
|
° ] °
|
Archive : | Archive Archive
o o | °
° | e o
. — A . . A . .
> > >
fix) filx) falx)
(@ (b) (0
A A
X =
S «Q
Min. amount
Y of domination
Largest crowding
distance contribution
([ ]
Max. amount
Archive (] ° @ domination
. A .
> »
filx) filx)

@ Springer

(d)

(e



A reinforcement learning hyper-heuristic in multi-objective optimization with application...

Page70f19 16

Perturbation

Update
MOSA/R >

Archive

!

' Lol (e

Yes
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Hyper-heuristic (Repository)

Re-seed
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New
Solution

A

No

atisfying Stopping
Cretia?

Preto Front

Fig.2 Flowchart of MOSA/R and the embedded hyper-heuristic

(1) Minimum amount of domination of solution in the
Archive. The first strategy selecting the solution from
Archive calculates the minimum difference of domination
amount with respect to the new solution. For Vx € Archive
that dominates the new solution,

Xopoer = AL mm(Adomxyxm)
X

Caem in <HZ1,ﬁ<x>¢fi<xw> i) = i)/ Ri))'
(7N

Then the selected solution is set as current solution with
probability ! . To avoid premature

convergence, the solution is chosen with the minimum dif-
ference of domination amount. As shown in Fig. 1(a), the
selected solution using this strategy corresponds to the one
in the Archive that dominates the current solution the least.

(2) Maximum amount of domination of solution in the
Archive. The second strategy is defined similarly to low-
level heuristic (1). For Vx € Archive that dominates the
new solution,

Xgoloer = AIE maX(Adomx’XW)
X

M
S <Hi=1zﬂ(x)#fi(xmr) 10 = il Ri))‘
®)

The only difference is that this time the solution will be
chosen with the maximum domination amount compared to
the new solution. The strategy emphasizes the exploitation
of better neighboring solutions than strategy (1) that aims
to maintain a balance between exploration and exploitation.
As shown in Fig. 1(b), the selected solution by the second
strategy dominates the current solution the most. The first
two strategies are new solution dependent. Next, we will
introduce two new solution-independent strategies.

(3) Solution with the largest hypervolume (HV) contri-
bution in the Archive. In this heuristic, the hypervolume
contribution of each point in Archive is computed using the
method proposed by Emmerich et al (2005). Hypervolume
contribution quantifies how much each point in the Pareto
front contributes to the HV. As explained in Fig. 1(c), the
areas of the colored rectangles indicate the hypervolume
contribution for each solution in the Archive. A large value
of HV contribution indicates that the point stays in a less
explored portion of the Pareto front but with good conver-
gent performance.

14+exp(=Adomjyeieq. pew/ Mmax(T,1))

Table 1 Maj.n properties of the Problem No. of Obj No. of Var Properties

14 test functions
DTLZ1 3 Linear Pareto, multimodal
DTLZ2 3 Concave Pareto
DTLZ3 3 10 Concave Pareto, multimodal
DTLZ4 3 10 Concave Pareto, biased solutions distribution
DTLZ5 3 10 Concave degenerated Pareto
DTLZ6 3 10 Concave Pareto, biased solutions distribution
DTLZ7 3 10 Discontinuous Pareto
UF1 2 10 Convex Pareto
UF2 2 10 Convex Pareto
UF3 2 10 Convex Pareto
UF4 2 10 Concave Pareto
UF5 2 10 Discrete Pareto
UF6 2 10 Discontinuous Pareto,
UF7 2 10 Linear Pareto

@ Springer
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(4) Solution with the largest crowding distance in the
Archive. This strategy utilizes the technique called crowding
distance (Deb et al. 2002a b), and the point will be selected
with the largest crowding distance. The strategy is inclined
to exploration (diversity) in the EVE dilemma. As presented
in Fig. 1(d), in the minimization case, the crowding dis-
tance for each solution in the Archive is determined by the
area of the bounding box formed by its adjacent solutions.
It is worth noting that, in computing crowding distance,
the edge points (min/max points) are set as infinity after
sorting operation based on objective values. Figure 1(d) is
employed for illustration only, and the infinite edge points
are not included.

Figure 1(e) compares the solutions selected by the pro-
posed four low-level heuristics, each low-level heuristic
design has its own emphasis and intention. The hyper-
heuristic scheme is designed to adaptively switch between
different priorities that suit the current search endeavor
the best, and therefore could be applied to tackle different
instances without further modification. Figure 2 depicts the
overall mechanism of MOSA/R and the co-acting hyper-
heuristic in a flowchart.

4 Benchmark case studies
4.1 Test cases

The proposed algorithm MOSA/R-HH, AMOSA (Bandyo-
padhyay et al. 2008), NSGA-II (Deb et al. 2002a b), and
MOEA/D (Zhang and Li 2007) algorithms are applied here
to evaluate the benchmark test problems including DTLZ
(Deb et al. 2002a b) and UF (Zhang et al. 2008) test suites.
These three algorithms are selected here for comparison
because they have been applied to a number of multi-objec-
tive optimization problems. As listed in Table 1, the test
functions are representative due to their diverse properties.
All algorithms will be executed 5 times independently for
each test problem.

4.2 Parametric setting

The initial temperature and final temperature (stopping crite-
rion) control the acceptance of all solutions at the beginning
of the algorithm (Suman and Kumar 2006) and error, respec-
tively. The starting temperature 7, and final temperature 7,,,;,
values for AMOSA and MOSA/R-HH are here set to be 100
and 107, respectively. The total number of iterations, denoted
as iter, is chosen to be 20,000 for DTLZ1 and DTLZ2, 30,000
for DTLZ3-7, and 100,000 for UF test problems. For the cool-
ing process in simulated annealing, the exponential approach
is adopted as T;,, = &'T, with cooling coefficient of 0.8. Note
that all parameters in AMOSA are set to be the same as that of
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MOSA/R-HH. For NSGA-II and MOEA/D, the total number
of function evaluations is set in accordance with AMOSA and
MOSA/R-HH. Other parameters are used following those in
literature (Deb et al. 2002a,b; Zhang and Li 2007). The popu-
lation size is set to be 150 and 300 for 2-objective and 3-objec-
tive test problems, respectively. The distribution indices of
Simulated Crossover (SBX) and polynomial mutation are set
to be 20. The crossover rate is 1.0, and the mutation ration is
1/n, where n is the length of the decision vector. In MOEA/D,
Tchebycheff approach is used, and the size of neighbor popula-
tion is set to be 20. All initial solutions are generated randomly
from the decision space of the problems.

4.3 Performance metrics

In this study, two popular metrics, inverted generational dis-
tance (IGD) (Ishibuchi et al. 2015) and hypervolume (HV)
(Zitzler et al. 2007), are used to quantify the performance
of the algorithms. The performance comparison is based on
the Pareto set that it is a set of solutions realizing the optimal
trade-offs between the optimization objectives in multi-objec-
tive optimization problems.

Inverted Generational Distance (IGD) The IGD indicator
measures the degree of convergence by computing the aver-
age of the minimum distance of points in the true Pareto front
(PF*) to points in Pareto front obtained (PF), as described
below:

|PFx| . M )
t+ePFx, i=1 \/{2}}} (Zm=l (% =f) )
|PF |

IGD(PF, PF %) =
)

where M is the number of objectives, f,, is the mth objective
value of f € PF.InEq. (9) A{: ¢ « .y | calculates the
m=1 " "

> min
fePF

minimum Euclidean distance between the ith point in PF*
and points in PF. A lower value of IGD indicates better
convergence and completeness of the PF obtained.
Hypervolume (HV) The HV indicator measures conver-
gence as well as diversity as shown in Eq. (3). The calcula-
tion of HV requires normalized objective function values
and here HV stands for the percentage covered by the Pareto
front of the cuboid defined by the reference point and the
original point (0, 0, 0). As mentioned before, the reference
point is set to be 1.1 times the upper bound of the PF*.

4.4 Test case results and discussions

The four algorithms are applied to the test functions listed in
Table 1. The analysis results are based on 5 independent test
runs and meanwhile the mean and standard deviation of IGD
and HV are recorded. All computations are conducted within
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Table 2 Numerical test results:

Problems MOSA/R-HH AMOSA NSGA-II MOEA/D

IGD mean and standard

deviation DTLZI1 0.007191 + 0.000369 0.02134 + 0.00506 1.656 + 0.538 0.01315 + 0.00195
DTLZ2 0.01403 = 0.00127  0.01992 + 0.00107 0.03093 + 0.00147  0.02434 + 0.00173
DTLZ3 0.06330 + 0.00380 0.7198 + 0.131 7.419 + 1.87 0.0342 + 0.0125
DTLZ4 0.02263 + 0.00222  0.07643 + 0.00456 0.02176 + 0.000668 0.02334 + 0.00176
DTLZ5 6.356E-4 + 434E-5 0.001956 + 1.49E-4  0.001390 + 2.74E-4  0.002541 + 0.0966
DTLZ6 3.231 E-4 + 542E-6 4.404E-4 + 1.85E-4 0.8738 £ 0.0762  0.001792 + 2.20E-4
DTLZ7 0.01657 + 9.49E-4  0.01928 + 5.45E-4 0.8235 + 0.0211 0.06502 + 0.00152
UF1 0.01252 + 0.00189  0.03509 + 0.00250 0.01972 + 0.00967  0.01938 + 0.00567
UFR2 0.002974 + 6.25E-4  0.005458 + 8.87E-05 0.006871 + 0.00365  0.01876 + 0.00563
UF3 0.2477+ 0.104 0.3797 + 0.368 0.1559 + 0.0131 0.2553 +0.0323
UF4 0.01905 + 8.76E-4  0.03124 + 1.99E-4 0.03792 + 0.00397  0.04796 + 0.00513
UF5 0.1636 + 0.00666 0.1523 +0.0242 0.6759 + 0.279 0.6501 + 0.292
UF6 0.1412 + 0.0816 0.09371 + 4.34E-06 0.4929 + 0.0963 0.5606 + 0.151
UF7 0.01713 £ 1.33 E-4  0.03393 +0.00514  0.008407 + 0.00309  0.005269 + 5.043E-4

MATLAB on a desktop computer with Intel(R) Core(TM)
i7-10700F CPU @ 2.90 GHz, 16 G RAM.

Tables 2 and 3 show the relative performance of all four
algorithms in terms of the two metrics IGD and HV, where
we keep 4 significant digits for mean and standard devia-
tion. The shaded grids indicate the best result in each test
in terms of the mean value. As can be observed from the
table, MOSA/R-HH prevails in DTLZ1, DTLZ2, DTLZS5,
and DTLZ7 in both metrics. MOEA/D has an edge over
MOSA/R-HH in DTLZ3, while MOSA/R-HH performs
significantly better than NSGA-II and AMOSA. DTLZ4
is a close race for MOSA/R-HH, NSGA-II, and MOEA/D.
And for DTLZ6, MOSA/R-HH, AMOSA, and MOEA/D
all demonstrate similar performance. Figure 3 depicts the
Pareto front obtained by each algorithm when applied to
DTLZ1 test case. It is worth noting that different algorithms
may exhibit different strengths in specific cases. Consider

DTLZ3 as an example. DTLZ3 involves the Rastrigin func-
tion, a non-convex, non-linear multimodal function, on top
of DTLZ2, which is employed to test the convergence to the
true Pareto front. MOEA/D essentially decomposes mul-
tiple objectives into multiple single objectives. As such, it
is possible to avoid certain limitations of the evolutionary
algorithms based on the Pareto dominant relationship, which
is similar to the MOSA/R-HH algorithm. Therefore, in cer-
tain cases the convergence of MOEA/D algorithm to the
true Pareto front may indeed be on par or even better. This,
however, does not change the main observation here that
MOSA/R-HH mostly outperforms other algorithms.

For UF test cases, MOSA/R-HH takes the lead in three
of them in both IGD and HV, which is the best among the
four algorithms. Figure 4 shows an example of the Pareto
front obtained by each algorithm for UF4 in comparison
with the true Pareto front. It can be noticed that the Pareto

Table 3 Numerical test

Instance MOSA/R-HH AMOSA NSGA-II MOEA/D

results: HV mean and standard

deviation DTLZ1 0.8593 + 0.0204 0.8312 + 0.0184 0.04210 + 0.0941 0.8353 + 0.0282
DTLZ2 0.5945 + 0.00586 0.5850 + 0.00130 0.5663 + 0.00832  0.5789 + 0.00420
DTLZ3 0.5280 + 0.0380 0.004466 + 0.00470  0.001404 + 0.00236  0.5376 + 0.0248
DTLZ4 0.5739 + 0.00869 0.5535 + 0.00738 0.5686 + 0.00765  0.5763 + 0.00877
DTLZ5 0.2139 + 0.00157 0.2096 + 0.00125 0.2097 + 0.00100  0.2038 + 0.00356
DTLZ6 0.2059 + 0.00568 0.2029 + 0.00166  0.001440 +0.00211  0.2012 + 0.00119
DTLZ7 0.2635 + 0.00549 0.2580 + 0.0122 0.1683 + 0.00304  0.2498 + 0.00557
UF1 0.7114 + 0.00231 0.683 + 0.00198 0.6958 + 0.0126 0.6962 + 6.37E-4
UF2 0.7207 + 5.52 E-4 0.71843 + 4.03E-4 0.7165 + 0.00351  0.7036 + 0.00355
UF3 0.4724 + 0.0993 0.4098 + 0.227 0.5196 + 0.0204 0.3787 + 0.0454
UF4 0.4224 + 0.00295 0.4044 + 0.00659 0.3919 + 0.00760  0.3885 + 0.0131
UF5 0.3613 + 0.0346 0.3651 + 0.0405 0.05647 + 0.0524 0.1128 + 0.158
UF6 0.3287 + 0.0428 0.3487 + 0.00766 0.1104 + 0.0413 0.2214 + 0.0643
UF7 0.5677 + 0.00127 0.5454 + 0.00541 0.5734 +0.00451  0.5773 + 0.00169
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Fig. 3 Pareto front obtained by
each algorithm for test instance
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front obtained by MOSA/R-HH stays close to the true Pareto
front and maintains good diversity. The performance of
AMOSA, NAGA-II, and MOEA/D fluctuate as test function
changes due to different problem properties. On the other
hand, MOSA/R-HH is more robust and outperforms other
algorithms when tackling most test instances because of the
adaptive hyper-heuristic scheme.

5 Application to structural damage
identification

In this section, we apply the proposed approach (MOSA/R-
HH) to the identification of damage parameters in a structure
based on piezoelectric impedance/admittance active interro-
gation, to showcase the advantage of incorporating the hyper-
heuristic technique in engineering implementation.

@ Springer

5.1 Piezoelectricimpedance/admittance
for structural damage identification

Structural damage identification, i.e., the process of identifying
the location and severity of damage, is typically realized by
inverse analysis through comparison between sensor measure-
ments and model prediction in the parametric space. Active
interrogation through actuation and sensing is widely adopted.
Piezoelectric transducers are compact and can be easily inte-
grated with the host structure. Owing to the two-way electro-
mechanical coupling, they can be used as actuators and/or
sensors. They possess high bandwidth, and thus can be used
for high-frequency active interrogation which is promising for
detecting small-sized damage. The finite element-based equa-
tions of motion of a structure integrated with a piezoelectric
transducer can be derived as (Wang and Tang 2008)

Mii+Cx+Kx+K,,0=0 (10)



A reinforcement learning hyper-heuristic in multi-objective optimization with application...

Page110f19 16

Fig.4 Pareto front obtained by
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K.Q+ Kszx +RO=V,, (11) impedance/admittance approach. In actual practice, we

where x is the structural displacement vector, M, K, and C
are mass, stiffness and damping matrices, respectively,K;,
is the electro-mechanical coupling vector, K, is the recipro-
cal of capacitance of the piezoelectric transducer, R is the
resistor employed in the measurement circuit, Q is the elec-
trical charge on the surface of piezoelectric transducer, and
V., 1s the input/excitation voltage. In the context of structural
damage identification, the host structure is divided into n
segments. We assume damage occurs in one or some of the
segments as local stiffness reduction. Here, without loss of
generality, we assume damage in structure causes stiffness
reduction while the mass remains unchanged. The stiffness
matrixn of the damaged structure can be written as

K, = Y K;;(1 — a;), where K, is the stiffness matrix of the
=

Jth segment of the healthy structure, a; is the damage index
indicating damage severity |aj‘ and location j. In structural
damage identification, we aim at identifying ot = [a;, -+
which is referred to as the damage index vector.

While a variety of active interrogation approaches have
been proposed, in this research, we apply the piezoelectric

, 0]

supply frequency-sweeping excitation voltage to the piezo-
electric transducer integrated with the host structure and
measure the resulting current in the circuit. After deriva-
tions, we can obtain, for example, the admittance of the
integrated system (Shuai et al. 2017; Cao et al. 2018b):
iw
ioR + K, - KT (K, - M + iwC) 'K,
12)
where w is the excitation frequency, i is the imaginary unit,
and / and Vm are, respectively, the magnitude of the current
and that of the voltage input. Although both impedance and
admittance which is the reciprocal of the impedance have
been used in previous investigations, here in this research,
we focus on the admittance. In piezoelectric impedance or
admittance based active interrogation, the same piezoelec-
tric transducer is used as actuator and sensor concurrently,
which leads to implementation convenience. Moreover, as
impedance and admittance are harmonic responses, the
inverse analysis is more likely to be realized than transient
responses. In order to facilitate efficient computational
analysis, we conduct linearization of Eq. (12) to develop

Aw) = =
Vin

@ Springer



16 Page120f19

P.Caoetal.

—— Healthy state

0.000285 —— Damaged state
0.000280
- 0.000275

= 0.000270

ittance

0.000265

Adm

0.000260

Admittance change - - - - - - -
due to damage

0.000255

1
1
1
0.000250 1

3150 3160 3170 3180 5100 3200 3210 3220 5230
Sweeping Frequency (Hz)

Fig.5 Illustration of admittance responses and admittance change
due to damage

The admittance changes then can be written as a linear
function of the damage index a;.

A(@) = A~ A(=0) = Y [0iK, - KLZ'K )
J=1 s5)

KLZ7' LK, L)Z 'K )] a;,

where Z = K — Mw? + iowC denotes the dynamic stiffness
of the structure and L indicates how the elemental matrices
are assembled into the global stiffness matrix. Equation (15)
exhibits the relationship between the admittance changes
and damage index at single excitation frequency point .
Such relationship holds at every frequency point of voltage
excitation. When admittances are measured at m frequency
points, m equations can be formulated to establish the rela-
tion as a matrix form

16)

T
AA(w)) iw((K - @M +ioC) 'K, LTKhL<(K - @M +ioC) 'K, )
AA = E = 5
AA(@,) (K. +ioR - KL, (K= 0?M +io€C) 'Ky, )

=S,

a sensitivity-based relation between the admittance change
and the damage index vector (Shuai et al. 2017),

o 0A
A (o) = A(oe = 0) + Z a_|aj=0“" (13)
= 9%
where
JA

o lo=0 =ilioR + K, ~ K (K - Mo” + Coi)"'K|,]
J
(K, — Mw? + Cwi)™!

daj

_ZK{Q[ |a]»=0]K12'

14

Fig.6 Experimental setup and

In the above equation, AA(®) = A (a #0) — A(a =0)
represents the vector of the changes of admittance at a
series of excitation frequency points where admittance is
measured. For example, we can measure admittance at m
frequency points @y, ... ,®,, and then obtain the admittance
change vector before and after damage occurrence. S,,,, is
the sensitivity matrix in terms of the coefficient matrices
shown in Eq. (16). An example of admittance response and
the change are illustrated in Fig. 5. Our mission is to solve
for oo based on the admittance change vector and the sensi-

tivity matrix S,,,,.

7 180 mm 15 mm,

geometry of cantilever plate

1 6163 mm 74763 mm

|19.05 mm

561 mm
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5.2 Inverse optimization formulation

As can be seen in Fig. 5, admittance changes are more sig-
nificant around the peaks which correspond to the structural
resonances. The changes are much less significant elsewhere
and can be easily contaminated by measurement noise. One
can envision that the effective measurements with noticeable
changes are generally limited. That is, m is small. Mean-
while, to inversely identify small-sized damage, the number
of finite elements and the number of segments will need
to be large such that the analysis can have high fidelity in
high frequency range and the damage can be pinpointed.
As such, the number of segments or the dimension of the
damage index vector, n, will need to be large. Moreover, it is
important to point out that the rows of the sensitivity matrix
are not necessarily linearly independent, as the selection of
frequency points for admittance measurement is generally
arbitrary, e.g., evenly distributed with the frequency range of
interest. Therefore, the inverse problem, Eq. (18), is often-
times under-determined.

In order to solve the structural damage identification
problem, here we cast the inverse analysis into an optimiza-
tion framework. One objective is obvious, i.e., to minimize
the difference between measurements and model prediction
in the damage parametric space. In this research, we impose
an additional objective that fits the nature of damage iden-
tification. In engineering practice, structural damage occur-
rence is normally a small probability event. The occurrence
of damages at multiple locations has very small probability.
That is, we can assume the number of segments with dam-
age is small or, equivalently speaking, the damage index
vector is sparse. This fits the nature of damage occurrence
in practical situations. We then have the following optimiza-
tion model:

find @ € E*
min ||AA — AA

min |lecll,

meas ” 2

a7

sty <a; <a,

Here, , is the lower bound of the damage index with value of
0, indicating healthy state, and «,, is upper bound with value
of 1, meaning totally damaged state, and |[[|, denotes the /,
norm. It is worth emphasizing that for the multi-objective
optimization formulated in Eq. (17), we may expect multiple
solutions of damage index vector &, which fits the situation
that the inverse problem in structural damage identification
is under-determined. If multiple solutions are indeed found,
we may use engineering judgment or deploy additional sen-
sors for final decision making. In comparison, a single objec-
tive optimization generally yields a single solution, which
may not reflect the actual damage scenario.

5.3 Experimental setup

We conduct finite element formulation and experiment to
generate necessary data for case demonstration. The setup
is shown in Fig. 6. A cantilever plate is used as the host
structure with the length 561 mm, width 19.05 mm, and
thickness 4.763 mm. It is made of aluminum with mass den-
sity 2700 kg/m? and Young’s modulus 68.9 GPa. A piezo-
electric transducer is attached to the top surface at 180 mm
from the fixed end. The piezoelectric transducer has length
15 mm, width 19.05 mm, and thickness 1.4 mm. It has the
following material properties: Young’s moduli E;; = 86 GPa
and Ei; =73 GPa, density p = 9500kg/m®, piezoelec-
tric constant —1.0288 x 10°Vm™!, and dielectric constant
Py3 = 1.3832 x 10°mF~". The plate is discretized with 3D
20-node solid element with 12,500 elements in total. To
facilitate damage identification, it is divided into 25 seg-
ments along the length direction, each with a damage index
;. In experiment, a small resistor R (100€2) is connected in
serial to the piezoelectric transducer to measure the voltage
drop across it (Fig. 6), and the current in the circuit can
be obtained which then yields the admittance information.
A signal analyzer (Agilent 35670A) with a source chan-
nel and the sweep sine capability is employed. The source
channel is used to generate the sinusoidal voltage V,, sent
to the piezoelectric transducer, and the output voltage V
across the resistor is recorded. Without loss of generality,
piezoelectric admittances and their changes upon damage
occurrence are measured around the 14th (1893.58 Hz) and
the 21st (3704.05 Hz) natural frequencies. 100 measure-
ments are collected in the frequency range from 1891.69 to
1895.47 Hz and from 3700.35 to 3707.75 Hz, respectively.
Correlated finite element analysis and experimental meas-
urements are conducted so the model matches with the
experimental setup in terms of admittance measurements
under the healthy state.

It is worth noting that piezoelectric transducer has very
high bandwidth. As such, the piezoelectric admittance can
be accurately extracted at much higher frequencies than the
usual vibration-based approaches. For example, in the case
studies, we are able to extract admittances at the abovemen-
tioned frequency ranges. The high-frequency responses
are capable of reflecting structural property changes with
small characteristic sizes (i.e., small damage). As a trade-
off, a single piezoelectric admittance technique usually cov-
ers smaller structure/component for damage identification.
This is generally not a problem for structures in aerospace,
marine, and some infrastructure components such as wind
energy components as multiple transducers can be used.
The admittance value versus frequency relation is obtained
based on frequency sweeping. The piezoelectric admittances
are essentially harmonic responses. In our experiment, at
each frequency point, 50 repeated cycles of responses are
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Table 4 Objective function Algorithms Case 1 Case 2 Case 3
values for case studies
Obj 1 Obj2  Objl Obj2  Objl Obj 2
MOSA/R-HH 2.460 x 107° 1 8.361 x 107! 1 3.6361 x 1073 1
2.36686 x 10~° 2 8.197 x 10! 2 4.2474 x 1077 2
2.36683 x 107° 3 8.111 x 10711 3 7.1758 x 1078 3
MOSA/R 2.460 % 10~° 1 8.498 x 107! 1 3.6361 x 1073 1
2.364 x 10~° 2 8.212 x 1011 2 4.3089 x 1077 2
- - 8.172x 10~ 3 4.0033 x 1077 3
Table 5 Hypervolume index for two case studies In order to minimize unwanted uncertainties and vari-
Algorithms Hypervolume Index ations in the experimental testbe.d, we use an added mass
(attached to the host structure using small amount of wax)
Case 1 Case 2 Case3 5 emulate damage. Using this method, we can easily add/
MOSA/R-HH 0.9 0.87 0.89 remove damage without altering the testbed boundary condi-
MOSA/R 0.84 0.81 0.88 tion. The added mass causes the shift of admittance curves,

recorded and then averaged. This can effectively reduce the
noise effect. The admittance change before and after damage
occurrence is used as input. The subtraction of the admit-
tances before and after damage occurrence can remove pos-
sible DC shift in experiment.

@ Springer

which is equivalent to stiffness reduction. In our experiment,
after we introduce the added mass, we extract admittance
curve in the frequency range of interest. We then adjust, in
the numerical model, the stiffness (i.e., reducing the Young’s
modulus of the elements) in the specific segment to which
the mass is added, such that the admittance curve calculated
matches with the experimental one (with added mass). The
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percentage of stiffness reduction in the damaged segment
can then be obtained numerically.

5.4 Optimization solutions and discussion

Three cases are studied here using the experimental setup
and procedure outline in the preceding subsection. In the
first case, we introduce damage to the 14th segment with
local equivalent segment stiffness reduction 0.28%. To
demonstrate and evaluate the reinforcement learning
hyper-heuristic and the resulting MOSA/R-HH, we apply
both MOSA/R-HH and MOSA/R (Sect. 3.1) into the case
investigation.

It is worth noting that the true Pareto front for practi-
cal engineering analysis generally cannot be obtained a
priori. To facilitate the computation, the term HV (PF,.,,)
in Eq. (2) needs to be evaluated. We take the followings
steps: a) The two objectives are normalized, so the objec-
tive values are in the range of [0,1]; b) For Obj 1 in the
Pareto front, we use ‘linspace’ in MATLAB to generate a
linearly spaced vector in the range of [0,1]. Here, in this
research, the number of solutions in Pareto front is set as
900, so we use 30 (square root of 900) points in the lin-
early generated vector; ¢) For Obj 2 in the Pareto front, we
use pf(2,:) =1—sqrt(pf(l,:)); d) We then calculate the

hypervolume using the estimated Pareto front with refer-
ence points. Here, the reference points are set as 1.1 times
the boundary points of each objective; and e) The initial
hypervolume of the estimated Pareto front for the damage
identification case is 0.76. Note that this value can be differ-
ent when different strategy is used to generate the estimated
Pareto front.

In both algorithms, the maximum iterations are 100,000,
the population is 150, and the number of Pareto optimal set
is 9,000. The computation terminates when the maximum
iteration is reached. Within 9,000 results, there are many
repeated solutions after optimization convergence. After
post-processing by removing the repeated ones, we obtain
three distinct solutions from MOSA/R-HH and two distinct
solutions from MOSA/R, shown in Fig. 7. In Fig. 7, the
horizontal axis indicates the damage location, and the ver-
tical axis indicates the severity of damage at the segment
identified. The corresponding objective function values are
listed in Table 4. In the table, the multiple solutions identi-
fied are arranged based on the number of non-zero entries,
i.e., the second objective function in optimization. The HV
values are listed in Table 5. An immediate observation from
these results indicates 1) the true damage scenario is essen-
tially included in the solution sets identified by both methods
(Fig. 7(a) being the closest); and 2) MOSA/R-HH yields

0.0018
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higher HV values and therefore better diversity. With the
higher solution diversity and the solutions distribution, an
operator will have higher confidence in making the decision.

We now further analyze the individual solutions identi-
fied. Observing Fig. 7, we can conclude that the two algo-
rithms perform similarly in the two solutions that they both
identify. In the first solution, both algorithms correctly iden-
tify the damage location (the 14th segment) and severity
(~0.28%). In the second solution, in addition to the 14th seg-
ment identified, both algorithms point to the 10th segment
having ~0.07% stiffness reduction. While this represents a
solution that is different from the true damage scenario, it is
a valid solution provided by the multi-objective optimization
formulation. In this solution, the damage severity identi-
fied in the 10th segment is quite small (0.07%) as compared
to the true damage severity of 0.28% at the 14th segment.
Apparently, both solvers are able to find a second solution
which is similar to the true damage scenario. The MOSA/R-
HH further points to a third damage scenario in which the
14th segment, the 10th segment, and the 17th segment all
have stiffness reductions. Nevertheless, since the 17th seg-
ment has even smaller damage severity, i.e.,~0.01%, this
scenario is quite similar to the second scenario since the
damage effect in the 17th segment is in the order of magni-
tude smaller. In general, for this first case, both MOSA/R and

MOSA/R-HH can produce good results to damage identifica-
tion, and the multiple solutions generated all point to the true
damage scenario. The HV values listed in Table 5 confirm
that MOSA/R-HH yields higher HV values and therefore
better diversity. This validates the algorithm improvement.

In the second case, we introduce a smaller damage, 0.16%
stiffness reduction, to the 12th segment. In damage identifi-
cation, smaller size damage is generally more challenging to
identify. Once again we apply both MOSA/R and MOSA/R-
HH. The same set of computational parameters in the first
case are employed. This time, both algorithms produce three
distinct solutions as plotted in Fig. 8. These solutions are
arranged in the order of non-zero entries. In the first solu-
tion, both algorithms point to the true damage scenario,
i.e.,~0.16% damage in the 12th segment. It is worth noting
that MOSA/R and MOSA/R-HH point to considerably dif-
ferent results afterward. For the second solution, MOSA/R-
HH indicates damage in the 12th segment (0.14%) and the
13th segment (~0.03%). In this solution, the damage effect
in the 13th segment is quite small compared to true dam-
age severity of 0.16%, and thus this solution is close to the
true damage scenario. On the other hand, MOSA/R indicates
damage in the 10th segment (0.12%) and the 17th segment
(0.12%). This is quite different to the true damage scenario.
Similar observations can be obtained for the third solution

Fig.9 Damage identification
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results. MOSA/R-HH indicates damage in the 11th segment
(~0.14%), the 12th segment (0.03%), and the 10th segment
(0.01%). Although this is different from the true damage
scenario (i.e., the 12thsegment having 0.16% damage), this
result is quite close from physics standpoint because the
11th segment is directly net to the 12th segment. When we
examine the third solution of MOSA/R, the result is damage
occurring in the 10th segment (0.13%), the 17th segment
(0.09%), and the 9th segment (0.02%). This is very different
from the true damage scenario. The HV values of Case 2
are reported in Table 4. As expected, MOSA/R-HH yields
higher HV values and therefore better solution diversity.
We can again conclude that MOSA/R-HH produces better
damage identification results as all three solutions are close
to the true damage scenarios. MOSA/R on the other hand
produces two solutions that are quite different from the true
damage scenario.

In the third case, we introduce damage to two separate
locations at the 9th and the 19th segments with 0.23% and
0.18% stiffness reductions, respectively. For this multi-dam-
age case, three solutions are produced by both algorithms,
as shown in Fig. 9. The three solutions identify one, two,
and three damage locations, respectively, since the second
optimization objective is to minimize the number of damage
locations. Consequently, both algorithms point to a single
damage solution as shown in Fig. 9(a). While this solution
does not match with the true damage scenario, it is not a
surprise because both algorithms attempt to find optimal
solutions that minimize the objective functions, and numeri-
cally they identify the single damage as an optimal solution.
Meanwhile, in this solution, both algorithms are able to find
one damage location correctly with close to actual severity.
For solution 2 shown in Fig. 9(b), both algorithms identify
the true damage locations, and the severities are fairly close
to the actual values. For the third solution, both algorithms
correctly identify the main damage locations and the severi-
ties obtained are close, while they both additionally point
to a third damage location. MOSA/R-HH identifies a third
damage at segment 7 with severity of 0.005%, and MOSA/R
identifies is located at segment 17 with severity of 0.016%.
These two severity values are very small as compared to
those of the main damage locations. Thus, the third solu-
tion identified by both algorithms is similar to the second
solution, and both solutions point to the true damage sce-
nario with good accuracy. The results obtained in this case
demonstrate the ability of the proposed algorithm to handle
the multiple damage case. It is worth noting that the dam-
age identification cases are all conducted using experimental
data which inevitably is subject to noise and various uncer-
tainties. The results obtained by MOSA/R-HH demonstrate
its capability of producing damage identification results in
an accurate and robust manner.

6 Conclusions

In this research, we formulate an autonomous hyper-heuris-
tic scheme that works coherently with multi-objective sim-
ulated annealing, featuring domination amount, crowding
distance, and hypervolume calculations. The hyper-heuristic
scheme can be adjusted at a high level by changing heuristic
selection and credit assignment strategies or at a low level
by customizing the heuristic repository to meet different
optimization requirements. It can also be used to investi-
gate the relation between heuristics and problem instances.
The proposed MOSA/R-HH is shown to yield better results
than other MOSA algorithms like AMOSA and representa-
tive evolutionary algorithms like NSGA-II and MOEA/D
in benchmark test cases. The proposed hyper-heuristic
approach is then applied to piezoelectric admittance-based
active interrogation for structural health monitoring. By
comparing with MOSA/R without hyper-heuristic, we suc-
cessfully demonstrate that the new algorithm can identify
damage scenario with enhanced accuracy and robustness.
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