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Harnessing Machine Learning and Physiological
Knowledge for a Novel EMG-Based

Neural-Machine Interface
Joseph Berman , Robert Hinson , I-Chieh Lee , and He Huang , Senior Member, IEEE

Abstract—Objective: In this study, we aimed to develop
a novel electromyography (EMG)-based neural machine in-
terface (NMI), called the Neural Network-Musculoskeletal
hybrid Model (N2M2), to decode continuous joint angles.
Our approach combines the concepts of machine learning
and musculoskeletal modeling.Methods:We compared our
novel design with a musculoskeletal model (MM) and 2
continuous EMG decoders based on artificial neural net-
works (ANNs): multilayer perceptrons (MLPs) and nonlin-
ear autoregressive neural networks with exogenous inputs
(NARX networks). EMG and joint kinematics data were col-
lected from 10 non-disabled and 1 transradial amputee
subject. The offline performance tested across 3 different
conditions (i.e., varied arm postures, shifted electrode lo-
cations, and noise-contaminated EMG signals) and online
performance for a virtual postural matching task was quan-
tified. Finally, we implemented the N2M2 to operate a pros-
thetic hand and tested functional task performance. Re-
sults: The N2M2 made more accurate predictions than the
MLP in all postures and electrode locations (p< 0.003). For
estimated MCP joint angles, the N2M2 was less sensitive
to noisy EMG signals than the MM or NARX network with
respect to error (p < 0.032) as well as the NARX network
with respect to correlation (p = 0.007). Additionally, the
N2M2 had better online task performance than the NARX
network (p ≤ 0.030). Conclusion: Overall, we have found
that combining the concepts of machine learning and mus-
culoskeletal modeling has resulted in a more robust joint
kinematics decoder than either concept individually. Signif-
icance: The outcome of this study may result in a novel,
highly reliable controller for powered prosthetic hands.
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I. INTRODUCTION

OVER the past decades, research in electromyography
(EMG)-based neural machine interfaces (NMI) has

greatly advanced and been successfully applied to different ma-
chines, such as robots [1], [2], computer or virtual reality [3], [4],
andmultifunctional prosthetic arms [5], [6]. Focusing on robotic
prostheses, EMG pattern recognition is one of commonly used
decoding concepts that classifies multi-channel EMG signals
into discrete motion types, such as hand open/close [7], [8], [9],
[10], [11], [12], [13]. However, this approach can only operate
one degree of freedom (DOF) at a time, producing non-natural
prosthesis motions during functional task performance.
To enable natural, multi-joint coordinated prosthetic arm

motion, recent research has focused on developing continuous
EMG-based NMI for multifunction robotic prostheses. Existing
continuous decoding algorithms can be divided into two cate-
gories: machine learning methods and musculoskeletal model-
ing approaches. In machine learning-based approaches, EMG
signals are mapped directly to joint kinematics in a black-box
style. The types of machine learning models used for these
approaches range from linear regression [14], [15], [16] to
artificial neural networks (ANNs) [15], [16], [17], [18], [19].
Machine learning approaches are entirely data-driven, requiring
little prior knowledge of the physiology of the upper limb.
However, these approaches can lack robustness to deviations
in the input data from the original training data [17], [20], [21].
Another recent concept is deciphering EMG signals to estimate
user intent based on the known physiology of human neural
control of movements. From this concept, the EMG-drivenmus-
culoskeletal model-based approaches have been developed and
tested [16], [22], [23], [24], [25], [26], [27], [28], [29]. Muscu-
loskeletal models have incorporated deterministic components,
such as Hill-typemusclemodels andmulti-linkage arm dynamic
models, to explicitly define the physiological mapping from
EMGsignals (efferent neural signals) to an internalmuscle force
state and the intended motion of the joints. This model-based
approach has allowed EMG-based decoding to remain robust to
variations in the input.
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Motivated by the complementary benefit of existing machine
learning and neuromusculoskeletal modeling methods, in this
study, we propose to combine the two concepts together to
leverage their benefits for EMG-based neural interface de-
sign. Our present method still follows human physiology for
movement production (i.e., EMG signals are mapped to joint
torque which drives joint motion). However, our approach re-
places the Hill-type muscle model with an ANN to map EMG
signals to an internal state value we defined as virtual joint
torque intended to drive a forward dynamicsmodel to accurately
estimate joint motion. One challenge for this approach is in
training the ANN that maps EMG signals to virtual joint torque.
This is because direct measurement of joint torque is difficult
and impractical for daily use. One potential solution is to use
inverse dynamics with the recorded motion to obtain values of
joint torque. However, this method suffers from computational
inaccuracies. Reinforcement learning (RL) is another potential
solution to train the EMG decoding ANN. RL is an advanced
form of machine learning [30] that allows agents to learn to
take actions (prosthesis control) based on the human-prosthesis
system state (i.e., EMGsignals) tomaximize a predefined reward
function (i.e., the closeness of measured and estimated joint
positions). Hence, RL can allow an ANN to be trained with a
reward function based on the actual and estimated joint motions
without the need for explicitly defining ground truth torque
values.
Therefore, the goal of this study was to develop a novel

framework for an EMG-based NMI that combines the concepts
of machine learning and musculoskeletal modeling and can
continuously identify the user’s intended joint motion, whichwe
refer to as the N2M2 decoder in this study. RL was used to train
the N2M2 decoder. This systemwas evaluated offline and online
with a real-time virtual postural matching task, as a comparison
with the often-investigated continuousEMGdecoders, including
1) amusculoskeletalmodel (MM), 2) a non-recurrentmulti-layer
perceptron (MLP), and 3) a recurrent ANN called a nonlinear
autoregressive neural network with exogenous inputs, or NARX
network (NN). In addition, we preliminarily demonstrated the
physical task performance of prosthesis users, wearing a transra-
dial prosthesis that was operated by our presented EMG-based
neural interface. The contributions of this study include 1) a
novel concept and framework for EMGdecoding, 2) a pilot eval-
uation of performance and comparison with commonly reported
musculoskeletal modeling and machine learning approaches
to EMG decoding, and 3) implementation of the concept in
real-time prosthesis control. The outcome of this studymay lead
to a novel design of a robust EMG-basedNMI that can accurately
predict both virtual joint torque and joint position. This study
expands on our preliminary version of this concept [31].

II. METHODS

A. Subjects

For this study, 10 non-disabled (ND) subjects (6 male, 4
female, ages 19-32, right-hand dominant) and 1 subject (male,
age 42) with a right transradial amputation (TRA) sustained
approximately 2 years prior to data collection were recruited.

Fig. 1. Diagram of EMG electrode (green) and retro-reflective marker
(blue) locations. Dashed lines indicate placement on the posterior sec-
tion of the arm. PIP 2/5 = proximal interphalangeal joint of the 2nd and
5th digit; MCP 2/5 = metacarpophalangeal joint of the 2nd and 5th digit;
ECRL = extensor carpi radialis longus; EDC = extensor digitorum com-
munis; FCR = flexor carpi radialis; FDS = flexor digitorum superficialis.

Our experimental protocol was approved by the University of
North Carolina at Chapel Hill Institutional Review Board and
all subjects provided informed consent before participating.

B. Data Acquisition

First, the right forearm of each subject was cleaned with an
alcohol pad. Then, 4 dry bipolar surface electrodes (SX230,
Biometrics Ltd., U.K.) (material: steel, contact diameter: 10mm
diameter, contact spacing: 20 mm, CMRR @ 60 Hz: >96 dB,
bandpass: 20–450Hz)were placed over fourmuscles in the fore-
armwhichwere identified by palpation: a) extensor carpi radialis
longus (ECRL), b) extensor digitorum communis (EDC), c)
flexor carpi radialis (FCR), and d) flexor digitorum superficialis
(FDS). Thirteen retro-reflectivemarkerswere placed on the hand
and forearm. For the TRA subject, we placed the markers on the
intact upper limb for mirrored bilateral movements to be con-
ducted. The locations of the electrodes and markers are shown
in Fig. 1. Electrodes were connected to an amplifier (K800 Am-
plifier, Biometrics Ltd. U.K.) and EMG signals were recorded
at 1000 Hz while the 3-dimensional positions of each marker
were recorded at 100 Hz by an infrared motion capture system
(Vicon Motion Systems Ltd. U.K.) (typical error <1 mm). The
EMG system was connected to the analog-to-digital interface of
the motion capture system to synchronize the data.
We first collected EMG data while subjects performed the

maximum voluntary contraction (MVC) for flexion and ex-
tension of both the wrist and MCP joints. Subjects were then
instructed to perform movements of the wrist and MCP joints
in either a cyclical pattern or in self-selected velocities. For
patterned movements, subjects began in a neutral position with
their joints between fully flexed and fully extended positions
and their muscles relaxed. The pattern involved moving the
targeted joint between the neutral, fully flexed, neutral, and
fully extended positions at a 0.25 Hz rate set on a metronome.
For each posture, subjects performed 5 movement types: 1)
isolated wrist flexion/extension in a pattern, 2) isolated MCP
flexion/extension in a pattern, 3) isolated wrist flexion/extension
in self-selected velocities, 4) isolated MCP flexion/extension
in self-selected velocities, and 5) simultaneous wrist and MCP
flexion/extension in self-selected velocities. For all MCP joint
movements, subjects were instructed to keep their 4 fingers
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Fig. 2. The three tested arm postures for offline decoder evaluation.

together throughout the trial and move them all simultaneously.
Subjects rested between trials to reduce muscle fatigue. For ND
subjects, EMG and kinematic data were collected in 3 different
postures: original, pronated, and raised (Fig. 2). These postures
were chosen to reflect commonly used postures in activities of
daily living (ADLs), each of which are affected differently by
gravity. In the original posture, 2 trials lasting approximately 30 s
each were completed for each movement type for a total of 10
trials. One trial for each movement type was randomly selected
to train each decoder while the other trials were reserved to test
performance. In the other 2 postures 1 trial lasting approximately
30 s was completed for each movement type for a total of 5 trials
in each posture. After all trials were completed, the location
of each electrode was marked on the subject’s forearm. Then,
each electrode was moved 0.5 cm perpendicular to the muscle
fibers. The ND subjects were then instructed to reperform the 5
trials in the original posture only. The TRA subject completed 2
trials lasting approximately 30 s for each movement type in the
original posture only.

C. Simulated Noise

In addition to the varied posture and shifted electrode data,
we created a third set of testing data by simulating a noisy EMG
signal. This was done by adding white, zero-mean Gaussian
noise with varying standard deviations to the raw EMG signals
from the original posture testing data trials of ND subjects. The
recorded values of the raw EMG signals were typically within
the range of−1 V to 1 V. Thus, we investigated simulated noise
cases with standard deviations in a relatively moderate range of
0 to 0.010 V incremented in steps of 0.001 V as this was found
to be sufficient to observe performance drops.

D. Data Processing

Muscle activation levels were estimated from the mean abso-
lute value (MAV) of the EMG signals obtained using a 100 ms
sliding window adjusted in 10 ms increments, resulting in pro-
cessed EMG signals with a frequency of 100 Hz to match the
frequency of the marker position data. The maximum values of
the processed EMG signals from the MVC trials were used to
normalize the EMG data from all other trials. Marker positions
were low-pass filtered using a 4th-order Butterworth filter with
a cutoff frequency of 5 Hz similar to previous studies [20], [22],
[27]. Wrist and MCP joint angles were calculated from filtered
marker positions using inverse kinematics. The processed data
from 1 trial for each of the 5 movement types in the original
posture were randomly chosen as training data. The remaining

trials were reserved as testing data to validate the performance
of each decoder.

E. Multilayer Perceptron Decoder

Multilayer perceptrons (MLPs) were created using the Deep
Learning Toolbox in MATLAB 2021a (Mathworks Inc., USA).
A separate MLP was created for each of the 2 joints for each
subject and was trained to map processed EMG signals directly
to joint angles. Each MLP was trained until performance no
longer significantly increased (i.e., the gradient of normalized
mean squared error fell below 10e-8). To obtain maximum
performance, we tested theMLPs aswe incremented the number
of neurons in the hidden layer and then the number of hidden
layers used until we no longer observed a significant increase in
performance. The final structure contained 1 hidden layer with
5 neurons.

F. NARX Network Decoder

Nonlinear autoregressive neural networks with exogenous
inputs, or NARX networks (NNs), were created using the Deep
Learning Toolbox in MATLAB 2021a. An NN is a special type
of recurrent neural network that predicts values in a time series
based on previous values from the time series, which has pre-
viously shown success in EMG-based decoding of kinematics
[32]. The input to the NN included processed EMG signals with
no time delay in addition to the joint angle from the previous
timestep. NNswere first trained in an open-loop configuration in
which input joint angleswere ground-truth values taken from the
training data. Training completed when performance no longer
significantly increased as described above. Then the NARX
network was switched to a closed-loop configuration in which
the input joint angle was the joint angle predicted by the network
with a time delay of 1 timestep. The NARX network was trained
a second time in the closed-loop configuration until performance
no longer significantly increased. We tested the NNs as we
incremented the number of neurons in the hidden layer and then
the number of hidden layers used until we no longer observed
a significant increase in performance. The final structure also
contained 1 hidden layer with 5 neurons. The final structure in
open-loop and closed-loop configurations is shown in Fig. 3.

G. Musculoskeletal Model Decoder

A musculoskeletal model (MM) decoder containing 4 mus-
cles modeled as Hill-type actuators with contractile elements
and parallel elastic elements was defined in MATLAB. The
4 muscles included 2 agonist/antagonist pairs: 1 crossing the
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TABLE I
MUSCULOSKELETAL MODEL PARAMETERS AND CONSTRAINT RANGES

Fig. 3. Structures of the NARX network decoder in open-loop (top) and
closed-loop (bottom) configurations. The decoder was calibrated first in
open-loop and then in closed-loop configurations, but for real-time use,
only the closed-loop configuration was tested.

wrist joint and 1 crossing the wrist and MCP joints. For each
muscle, 6 parameters, each constrained to an approximate range
of physiological values (Table I), were optimized using the
GlobalSearch function from the Global Optimization Toolbox
inMATLAB2021a tominimize themean squared error between
measured and estimated joint angles. Individual constraints for
each muscle chosen based on physiological values were found
to work best for the TRA subject, but approximate ranges used
across all muscles were found to work best for the ND subjects.
Because the MCP joint has a smaller range of motion than
the wrist joint, the values of squared errors calculated for the
MCP joint were weighted twice as high as the squared errors
calculated for the wrist joint. The inputs to the model were
muscle activations approximated from processed EMG signals
using the following functions:

uk = αEk−d − β1uk−1 − β2uk−2 (1)

ak =
eAuk − 1

eA − 1
(2)

whereEk is the processed EMG signal at the current timestep k,
d is the electromechanical delay equal to 4 (equivalent to 40ms),
and α, β1, β2, and A are coefficients equal to 1.1881, −0.18,
0.0081, and−1 respectively following the methods used in [16].

The force estimated by each muscle model was used to drive
a forward dynamics model of the hand and wrist. Two segments
representing the palm and fingers were defined as uniform solid

TABLE II
FORWARD DYNAMICS MODEL PARAMETERS

cylindrical rods and pin joints were used to represent the wrist
and MCP joints. The moment of inertia for each segment was
defined as

I =
1

3
ML2 (3)

where M and L are the mass and length of each segment
respectively. Additionally, damping components were defined
for both joints. Each parameter was predefined and used for all
subjects. Themass and damping coefficient values were initially
set within realistic physiological ranges but were each increased
to improve the stability of the model. Lengths were based on
the measured lengths of a researcher’s palm and fingers. A
spring-damper component was used to generate limiting forces
when either jointmoved outside of its respective range ofmotion
(Wrist joint: [−90°, 90°]; MCP joint: [−5°, 88°]). The final
parameters used are shown in Table II. The full details of the
model are described in [22].

H. Neural Network-Musculoskeletal Hybrid Model
Decoder

RL agents were created using the Reinforcement Learning
Toolbox in MATLAB 2021a. The agents were implemented us-
ing the Deep Deterministic Policy Gradient (DDPG) algorithm.
This algorithm uses an actor-critic ANN structure in which the
actor network is trained to predict the optimal action given the
current state and the critic network is trained to predict the
long-term discounted reward given the current state and the
action taken. The details of the DDPG algorithm are described
in [33]. The actor network contained 2 hidden layers with 200
and 100 neurons. The critic network contained a path for the
state input and a path for the action input each containing 2
hidden layers with 100 and 50 neurons which were combined
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Fig. 4. Block diagram of the N2M2 decoder. Only the blue blocks and paths were active during real-time use. The measured joint positions, reward
function, and critic were only active during calibration.

using an addition layer. All hidden layers used the rectified
linear unit (ReLU) activation function and the output layer of the
actor network also used a hyperbolic tangent (tanh) activation
function followed by a scaling layer while the output layer of
the critic network used no activation function. We defined the
state as a vector with a length of 5 containing the 4 values of the
processedEMGsignals at the current timestep and the joint angle
estimated in the previous timestep. We defined the action as a
virtual joint torque value, τ̂ , for the targeted joint. Temporally
correlated noise was added to the virtual torque values during
training to encourage action exploration as described in [33].
The virtual joint torque values were used as inputs to the same
forward dynamics model used in the MM decoder. Multi-agent
reinforcement learning (MARL) was used to allow agents for
the wrist and MCP joints to be trained and provide inputs to the
forward dynamics model simultaneously. Finally, to train the
agents we defined our reward function based on [34]:

Reward =
1

α+
∣∣∣θk − θ̂k

∣∣∣
(4)

where θk is themeasured joint angle in radians at timestep k, θ̂k is
the estimated joint angle at timestep k, and α is a constant value.
The full block diagram of the Neural Network-Musculoskeletal
Hybrid Model (N2M2) decoder is shown in Fig. 4. We retrained
and tested N2M2 decoders while increasing the value of α by
0.1 through a range of 0.1 through 1.0 as we found this range
was sufficient to find a peak in average performance. Maximum
average performance was found at α = 0.7 for the wrist agents
and α = 0.5 for the MCP agents. All hyperparameters used
with the DDPG algorithm were tuned using similar methods to
maximize performance and are listed in Table III.

I. Offline Estimation Performance Metrics

Each trained decoder was used to estimate wrist and MCP
joint angles for all testing data trials. Then to evaluate per-
formance, we calculated Pearson’s correlation coefficient (r)
between measured and estimated joint angles:

r =

∑N
k = 1 (θk − θavg)

(
θ̂k − θ̂avg

)
√∑N

k = 1 (θk − θavg)
2
√∑N

k = 1 (θ̂k − θ̂avg)
2

(5)

TABLE III
HYPERPARAMETERS USED WITH THE DEEP DETERMINISTIC POLICY

GRADIENT ALGORITHM

where θk and θ̂k are the kth measured and estimated joint angle
respectively, θavg and θ̂avg are themeanmeasured and estimated
joint angle respectively, and N is the total number of data points
in the given trial. In addition, we calculated the normalized root
mean squared error (NRMSE) defined as the root mean squared
error between measured and estimated joint angles normalized
by the total range of measured joint angles:

NRMSE =

√
1
N

∑N
k=1 (θk − θ̂k)

2

(θmax − θmin)
(6)

where θk and θ̂k are the kth measured and estimated joint angle
respectively, θmax and θmin are the maximum and minimum
measured joint angle, respectively, for the given trial, and N
is the total number of data points in the given trial. For all 3
postures and both electrode locations, both Pearson’s correlation
coefficient and NRMSE suggested similar outcomes. Thus, for
simplicity NRMSE is only reported for simulated noise cases.
Finally, the smoothness of the estimated trajectories of joint

positions was quantified using the mean absolute value of the
third derivative (i.e., jerk), or mean absolute jerk, averaged
across all trials (excluding simulated noise cases):

Mean Absolute Jerk =
1

N

N∑
k = 1

∣∣∣∣
d3

dt3
θ̂k

∣∣∣∣ (7)
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where θ̂k is the kth estimated joint angle andN is the total number
of data points in the given trial. This metric was inspired by
previous studies that used the third derivative to estimate the
smoothness of motion [35] such as 1 study that used the integral
of squared jerk to quantify the smoothness of patterns drawn by
subjects with Parkinson’s disease [36].
For trials that only included 1 actively moving joint, metrics

are considered for that joint only. For trials that included both
joints moving simultaneously, the metrics of both joints were
considered.

J. Real-Time Control

To validate the feasibility of real-time control of a prosthetic
device using our N2M2 decoder, we defined 4 tests: 1 virtual
posture matching test displayed on a computer screen and 3 tests
to be completed using a prosthesis. The prosthesis consisted of
an active terminal device (MyoHand VariPlus Speed, Ottobock,
Germany) connected to a wrist flexor and wrist rotator. An
adapterwas designed tomount the prosthesis to the upper limbof
ND subjects while allowing flexion and extension of the elbow
and natural wrist movements. The 3 tests using the prosthetic
device include Box and Blocks, Modified Page Turning, and
Modified Shelf tests. Each of these 3 tests were set up on a
73.7 cm tall table that subjects stood in front of. Each subject
completed 5 trials for each test. Subjects completed the virtual
hand test using both the N2M2 and NN decoders to establish a
comparison. For simplicity, theMLPdecoderwasnot considered
for this test due to its significantly lower performance. All other
tests using the physical prosthetic device were completed using
the N2M2 decoder only to demonstrate the capabilities of the
decoder for real-time control. The device allowed control of 3
DOF (hand open/close, wrist flexion/extension, andwrist prona-
tion/supination). Encoders were mounted on the device for each
DOF and a PID controller was tuned to allow for position-based
control. Only the hand open/close and wrist flexion/extension
DOFwere actively controlled by subjects. The wrist was rotated
to a predetermined position prior to each test (original for the
Box andBlocksTest and pronated for theModifiedPageTurning
and Shelf tests).
Five of the 10 ND participants returned on a separate day to

complete these tests. The forearms of all subjects were again
cleaned with an alcohol wipe and 4 bipolar surface electrodes
wereplaced in approximately the sameoriginal locations.Before
beginning the tests, subjects were instructed to complete another
MVC trial in which only EMG data were collected. These data
were processed the same as previously described and used to
normalize all EMG data recorded in real-time. Next, the inputs
and outputs of the decoders were manually linearly scaled by
experimenters, following the methodology of previous studies
[24], [37], [38], to ensure the subject could comfortably reach
all angles in the range of motion for each joint without excessive
physical effort. In addition, to help improve the stability of the
estimated joint angles for the virtual hand test only, moving
average filters with window sizes equivalent to 80 ms were
placed directly at the output of each decoder and the filtered
output values were used in the feedback loops. Due to the natural
lowpass filtering effect introduced by including a physical motor

Fig. 5. The 9 target postures (black) and base posture (blue) in the
online postural matching task.

in the control loop, the moving average filter was found to
provide little benefit and was not used for any of the other tests.

1) Virtual Posture Matching Test: Subjects were seated in
front of a monitor that displayed a 2-DOF planar link-segment
virtual hand based on the setups from previous studies [13],
[24], [37], [38], [39], [40] which visualized the joint angles
estimated by the decoder. Subjects were asked to move the
virtual hand from a base posture to each of the 9 target postures
(Fig. 5) as they appeared. After each target posture was reached,
subjects relaxed their hand and returned the virtual hand to
the base posture. Target postures were considered completed
when both joints were held within ±5° of the target posture
for 0.5 consecutive seconds. The base posture was considered
completed when both joints were held within ±8° of the base
posture for 0.25 consecutive seconds. The displayed posture
turned green to indicate the virtual hand was within the required
range. The order the target postures appeared in was randomized
for each subject and subjects were given 60 s to hit each target
posture. Subjects were allowed to practice with each decoder to
familiarize with the test and allow experimenters to adjust the
linear scaling prior to recorded trials. The decoder used first was
randomized for each subject and subjects were blinded to which
decoder they were using during the trials. Subjects completed 5
trials using each decoder.
The performance metrics used in this test were task com-

pletion percentage, defined as the number of target postures
successfully completed in the given 60 s, task duration, defined
as the time taken to hit the target postures when starting from
the base posture, number of overshoots, defined as the number
of times the virtual hand moved in and out of the required range
of the target posture, and normalized path length, defined as
the length of the angular trajectory taken by the virtual hand
normalized by the length of the minimum angular trajectory
between the base posture and target posture:

Normalised Path Length

=

∑N−1
k=1

√
(θwk+1 − θwk )

2 + (θmk+1 − θmk )2

√
(θwt − θwi )

2 + (θmt − θmi )2
(8)

where θwk and θmk are the kth wrist and MCP joint angles of the
virtual hand, θwt and θmt are the wrist and MCP joint angles of
the target posture, θwi and θmi are the initial wrist and MCP joint
angles, and N is the total number of data points in the given trial.
Taskduration, number of overshoots, andnormalizedpath length
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Fig. 6. The Box and Blocks Test (a), Modified Page Turning Test (b),
and Shelf Test (c).

were only considered for successfully reached target postures.
Additionally, to quantify the smoothness of the estimated joint
positions for each trial, the mean absolute jerk was calculated
as previously described.
Finally, after all trials were completed but before revealing

the order of the decoders, subjects were asked which decoder
they preferred using in terms of quickly and efficiently reaching
all postures.

2) Box and Blocks Test: A common test for measuring
functional ability in the upper limb is the Box and Blocks
Test [41]. The test consists of a 53.7 cm by 25.4 cm wooden
box separated into 2 equal sections by a 15.2 cm tall partition
(Fig. 6(a)). One hundred and fifty blocks with 2.5 cm long sides
were placed on the right side of the partition. Subjects stood
in front of the box and were given 60 s to move as many
blocks as they could from the right side of the partition to
the left. For a block to be counted, the terminal device of the
arm was required to cross the partition. If multiple blocks were
successfully transported in 1 movement, only 1 was counted.

3) Modified Page Turning Test: Page turning is a test in-
cluded in the Southampton Hand Assessment Procedure [42].
The original test involves a card placed on a table which subjects
are asked to flip horizontally to simulate turning the pages of a
book. This test can be used to evaluate functionality of forearm
pronation/supination in a prosthetic arm. For ourmodification, to
demonstrate control of thewrist flexion/extensionDOF, subjects
were instructed to flip cards by instead grasping the card and
using a wrist flexion motion to flip the card vertically. Five 3 in
by 5 in index cards were placed on a Table I in apart from each
other and 5 in from the edge of the table (Fig. 6(b)). The time
taken by the subject to flip all 5 cards was recorded.

4) Shelf Test: To further demonstrate the simultaneous con-
trol of the hand open/close and wrist flexion/extension DOF in
addition to the robustness of the N2M2 decoder for a raised arm
posture, we defined 1 additional test. Subjects stood in front of
a table with an 45.7 cm tall wooden bench placed on top to
simulate a shelf (Fig. 6(c)). Three blocks used in the Box and
Blocks Test were placed on the table under the bench. Subjects
were given 60 s to move the blocks 1 at a time back and forth
between the table (lower level) and the top of the bench (higher
level). All 3 blocks were required to be moved to the next level
before any could be moved back. Subjects were allowed to use
their left hand to readjust any of the blocks if they landed in a
position difficult to reach with the arm. If a block dropped to the
floor, the subject was instructed to move on to the next block
while an experimenter retrieved the dropped block. The total
number of blocks moved from 1 level to another was recorded.

K. Data Analysis

1) Offline Estimation Performance: To evaluate the ro-
bustness of decoders, the results of correlation coefficient (r)
and NRMSE were used to compare the decoders at varied
postures (4 decoders (N2M2, MM, NN, and MLP) X 3 arm
postures (original, pronated, and raised)) and decoders with
different electrode locations (4 decoders X 2 electrode locations
(original and shifted)) using two-way repeatedANOVA.Fisher’s
transformation was applied to the correlation values to satisfy
the normality requirement. For the main effects that reached a
significant level, post hoc comparisons were conducted. For the
interaction effects that reached a significant level, the post hoc
pairwise comparison was conducted to break down the interac-
tion into simple effects. Tukey’s honestly significant difference
test was used for all post hoc tests. The significant level was set
at α = 0.05.
For the simulated noise results, correlation and NRMSE val-

ues were averaged for each subject, joint, and level of simulated
noise for each decoder. For each decoder, the mean correlation
and NRMSE were linearly fit as a function of level of simulated
noise via a least squares method. The slopes of the fitted lines
were used as a metric to indicate how quickly performance
decreased as the level of noise increased. Faster decreases in
performance were indicated by larger magnitudes of negative
slopes for correlation values and larger magnitudes of positive
slopes for NRMSE values. The slope for each decoder for each
joint was compared using one-way repeated measures ANOVA
with decoder type as the independent variable. Tukey’s honestly
significant difference test was used to determine significant
differences. The significant level was set at α = 0.05.

2) Virtual Posture Matching Test: The average task com-
pletion percentage and mean absolute jerk across all trials and
the average task duration, number of overshoots, and normalized
path length for each completed posture for the N2M2 and
NN decoders were compared using a paired 2-sample t-test.
Differences were considered significant for p < 0.05.

3) Smoothness of Estimated Joint Positions: The aver-
age mean absolute jerk for each decoder was compared using
one-way repeated measures ANOVA with decoder type as the
independent variable. A Tukey test was used to determine sig-
nificant differences. Differences were considered significant for
p < 0.05.

4) Prosthetic Device Tests: For the prosthetic device tests,
the average performance metric for each test (e.g., number of
blocks moved or time taken to flip all cards) across all subjects
and trials was calculated to give an idea of the typical ability of
the N2M2 decoder for performing some ADLs.

III. RESULTS

In this section, we quantify the robustness of each decoder for
ND subject data by first establishing a baseline for comparisons
by testing with data similar to the training data (original posture,
original electrode locations, and no simulated noise). Example
representative plots of simultaneously measured and estimated
wrist and MCP joint angles from a section of a baseline trial for
an ND subject are shown in Fig. 7. Similar representative plots
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TABLE IV
AVERAGE PEARSON’S CORRELATION COEFFICIENT AND NRMSE BETWEEN ESTIMATED AND MEASURED JOINT ANGLES OF TRIALS COMPLETED BY THE

TRANSRADIAL AMPUTEE SUBJECT FOR EACH DECODER

Fig. 7. Representative plots of simultaneous wrist (left) and MCP
(right) joint angles estimated by the N2M2 (blue), MM (red), NN (or-
ange), and MLP (purple) decoders for a trial completed by a non-
disabled subject with self-selected movement velocities. Measured joint
angles are represented by the black lines.

for a trial completed by the TRA subject are shown in Fig. 8 and
the average performance achieved by each decoder for trials
completed by the TRA subject are summarized in Table IV. All
results are reported as the mean ± standard deviation unless
stated otherwise.

1) Varied Posture: The respective correlation values for
the N2M2, MM, NN, and MLP decoders were 0.86 ± 0.10,
0.88 ± 0.10, 0.89 ± 0.09, and 0.69 ± 0.12 for the original pos-
ture, 0.76± 0.17, 0.78± 0.15, 0.78± 0.16, and 0.56± 0.17 for
the pronated posture, and 0.80± 0.17, 0.82± 0.15, 0.82± 0.15,
and0.59±0.14 for the raised posture (Fig. 9). Two-wayANOVA
revealed no significant interaction (p = 0.22). The main effects
of both variables were found to be significant (p < 0.001). The
Tukey test determined that the decoders performed better in the
original posture when compared to either the pronated or raised
postures (p< 0.009), but the decoders performed similarly in the
pronated and raised postures (p= 0.34). Additionally, across all
postures, correlation values of theN2M2,MM, andNNdecoders
were not significantly different (p>0.27).However, itwas found
that the correlation values of theMLPdecoderwere significantly
lower than each of the other 3 decoders (p < 0.001).

Fig. 8. Representative plots of simultaneous wrist (left) and MCP
(right) joint angles estimated by the N2M2 (blue), MM (red), NN (or-
ange), and MLP (purple)decoders for a trial completed by the transradial
amputee subject with self-selected movement velocities. Measured joint
angles are represented by the black lines.

Fig. 9. Average Pearson’s correlation coefficient (r) between estimated
and measured joint angles of the N2M2 (blue), MM (red), NN (orange),
and MLP (purple) decoders for each of the 3 postures and shifted
electrode locations. Error bars represent standard deviation.

2) Shifted Electrodes: The respective correlation values
for the N2M2, MM, NN, and MLP decoders were 0.86 ± 0.10,
0.88 ± 0.10, 0.89 ± 0.09, and 0.69 ± 0.12 for the original
electrode locations and 0.76 ± 0.24, 0.79 ± 0.25, 0.78 ± 0.23,
and 0.57 ± 0.17 for the shifted electrode locations (Fig. 9).
Two-wayANOVA revealed no significant interaction (p= 0.19).
Significancewas determined for both decoder type and electrode
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location (p< 0.006). The Tukey test determined that the decoder
performed better for original electrode locationswhen compared
to shifted electrode locations (p = 0.005). Additionally, no sig-
nificant differences were found between the correlation values
of the N2M2, MM, and NN decoders (p > 0.33). However, it
was found that the correlation values of the MLP decoder were
significantly lower than each of the other 3 decoders (p< 0.001).

3) Simulated Noise: The average values of the slopes of
the lines fitted to the average correlation values across all
subjects for the N2M2, MM, NN, and MLP decoders were
−8.63 ± 10.50 V−1, −6.33 ± 6.99 V−1, −18.80 ± 8.85 V−1,
and −10.34 ± 10.59 V−1 respectively for the wrist joint and
−8.63± 9.19 V−1,−14.46± 14.72 V−1,−43.96± 25.62 V−1,
and−13.50± 6.21V−1 respectively for theMCP joint.One-way
ANOVA revealed significance for the main effect of decoder
type in the cases of both the wrist (p = 0.005) and MCP joint
(p < 0.001). For the wrist joint, the Tukey test revealed no
significant differences between the slopes of lines fitted to aver-
age correlation values for the N2M2, MM, and MLP decoders
(p > 0.77). Additionally, no significant difference was found
between the slopes for the NN andMLP decoder (p= 0.11), but
it was found that the slopes of the NN decoder had significantly
larger magnitudes than the slopes of either the N2M2 or MM
decoders (p< 0.048). For theMCP joint, the Tukey test revealed
no significant differences between the slopes for theN2M2,MM,
and MLP decoders (p > 0.40). However, the magnitudes of the
slopes for the NN decoder were found to be significantly larger
than those of each of the other 3 decoders (p < 0.027).
The average values of the slopes of the lines fitted to the aver-

age NRMSE values across all subjects for the N2M2, MM, NN,
and MLP decoders were 7.25 ± 7.18 V−1, 14.31 ± 15.20 V−1,
16.63 ± 11.08 V−1, and 3.80 ± 3.16 V−1 respectively for
the wrist joint and 6.39 ± 7.54 V−1, 30.49 ± 20.56 V−1,
25.18 ± 13.61 V−1, and 5.16 ± 3.19 V−1 respectively for the
MCP joint. One-wayANOVA revealed significance for themain
effect of decoder type in the cases of both the wrist (p = 0.026)
and MCP joint (p < 0.001). For the wrist joint, the Tukey test
revealed that the slopes for the NN decoder were significantly
larger than the slopes of theMLP decoder (p= 0.031). However,
no significant differences were found between the slopes of any
other pair of decoders (p > 0.14). For the MCP joint, there
were no significant differences found between the slopes for the
N2M2 and MLP decoders (p = 0.94) or between the slopes
for the MM and NN decoders (p = 0.73). However, it was
found that the slopes of either the MM or NN decoder were
significantly larger than the slopes of either the N2M2 or MLP
decoder (p < 0.031).
Lines were additionally fitted to the average metrics for both

joints across all subjects and are shown in Fig. 10.
4) Smoothness of Estimated Joint Positions: The aver-

age mean absolute jerk for the offline estimations made by the
N2M2, MM, NN, and MLP decoders were 7.77e4 ± 4.67e4
degrees/s3, 1.05e4 ± 5.45e3 degrees/s3, 3.53e5 ± 4.67e5
degrees/s3, and 5.43e6 ± 1.62e6 degrees/s3 respectively
(Fig. 11(a)). One-way ANOVA revealed significance for the
main effect of decoder type (p< 0.001). The Tukey test revealed
that the MM decoder had significantly lower mean absolute jerk
than each of the other 3 decoders (p< 0.001), theN2M2 decoder

Fig. 10. Average points and fitted lines for the Pearson’s correlation
coefficient (r) (top) and NRMSE (bottom) between estimated and mea-
sured wrist (left) and MCP (right) joint angles of the N2M2 (blue), MM
(red), NN (orange), and MLP (purple) decoders for EMG data with added
Gaussian noise with increasing standard deviation (σ).

Fig. 11. The average mean absolute jerk for joint angles estimated
offline (excluding simulated noise cases) (a) and during the Virtual Pos-
ture Matching Test (b) for each decoder. Lower values indicate smoother
estimated position trajectories. Error bars represent standard deviation.

had significantly lower mean absolute jerk than the NN or MLP
decoders (p < 0.001), and the NN decoder had significantly
lower mean absolute jerk than the MLP decoder (p < 0.001).

A. Real-Time Control

1) Virtual Posture Matching Test: For the N2M2 decoder,
the task completion percentage, task duration, normalized
path length, and number of overshoots were 99.56 ± 2.22%,
9.18 ± 7.80 s, 5.70 ± 6.44, and 3.23 ± 2.91 respectively.
For the NN decoder the task completion percentage, task du-
ration, normalized path length, and number of overshoots were
84.89± 13.56%, 10.71± 10.63 s, 7.32± 8.66, 4.18± 4.26 re-
spectively. The averagemean absolute jerk for theN2M2andNN
decoders were 2.08e4± 1.28e4 degrees/s3 and 4.98e4± 4.36e4
degrees/s3 respectively. Results were found to be significantly
different between the 2 decoders for task completion percentage
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TABLE V
AVERAGE PERFORMANCE METRICS FOR THE REAL-TIME TESTS WITH THE PROSTHETIC DEVICE

Fig. 12. Average task completion percentage, task duration, normal-
ized path length, and number of overshoots achieved by subjects using
the N2M2 and NN decoders. Error bars represent standard deviation.

(p < 0.001), normalized path length (p = 0.030), number of
overshoots (p = 0.009), and mean absolute jerk (p < 0.001).
Task duration was slightly lower for the N2M2 decoder than
the NN decoder but was not found to be significantly different
(p = 0.092). The values of task completion percentage, task
duration, normalized path length, and NO are summarized in
Fig. 12 and mean absolute value is summarized in Fig. 11(b).
Additionally, all 5 subjects indicated that they preferred the
N2M2 decoder.

2) Prosthetic Device Tests: The number of blocks moved
in the Box and Blocks Test, time taken to complete theModified
Page Turning Test, and number of blocks moved in the Shelf
Test were 10.84 ± 2.51, 47.23 ± 16.03 s, and 10.60 ± 2.94
respectively when averaged across all subjects and trials. These
results are summarized in TableV. Examples of the performance
achieved by the N2M2 decoder for each test is shown in the
attached video.

IV. DISCUSSION

In this study, we developed a novel EMG-based decoding
algorithm that is RL-trained and can predict continuous joint
kinematics from non-disabled and amputee subjects. This de-
coder is leveraged by the benefit of both machine learning and
musculoskeletalmodel-based decoding concepts. Our algorithm
follows the human limb motion production process, in which
EMG signal magnitude represents the intended force/torque
rather than joint motion.When compared to the NN decoder, our
system yielded significantly higher online performance for the
posture matching task. Additionally, our developed EMG-based
NMI can estimate both virtual joint torque and joint positions
continuously based on EMG signals. Although we did not

directly use the virtual joint torque for prosthesis control, this
study introduces the possibility of using virtual joint torque in
real-time for future applications.
The results suggested that using a recurrent structure for

ANN-based EMG decoding can potentially provide better joint
kinematics estimations. In the recurrent structure ofANN, the es-
timated joint kinematics for one timestep are fed back as inputs to
the ANNs in the following timestep. Such a strategy, adopted by
N2M2andNNdecoders, showed better offline performance than
the MLP decoder, which estimated joint angles in an open-loop
manner. Specifically, the network structure of the MLP decoder
was identical to that of the NN decoder with the exception of the
feedback loop. The NN decoder, however, consistently outper-
formed the MLP in offline evaluation for accurate estimations
of joint kinematics across various testing scenarios (including
varied electrode locations and arm positions). We believe the
performance increase observed from the MLP to NN decoder
through introducing a feedback loop is largely because providing
the last estimated joint angle via the feedback loop introduces the
ability to train an ANN not to make large, erroneous changes in
estimated joint angles over a short timestep. Similarly, theN2M2
decoder also produced significantly better kinematic estimations
than the MLP decoder in all offline testing conditions. From a
dynamic system point of view, the system output depends on
both external inputs as well as the current system state. Hence,
the input joint position enables better estimations of virtual joint
torque by the ANN for forward dynamic simulation.
A lowpass filtering effect in an EMG decoder, such as the one

introduced by the forward dynamics model, will likely result
in more accurate estimations of joint positions regardless of
minor variations in the input EMG signals. This is evidenced
by our analysis of offline performance that revealed that both
the N2M2 and MM decoders were less sensitive to noise than
NN decoder in terms of correlation of joint positions (Fig. 10).
This is likely because the forward dynamics model included in
the N2M2 and MM decoders works to mimic the dynamics of
the wrist and MCP joints of a healthy, intact limb. In general,
the estimated joint angles output from the model appeared to
follow a smooth, continuous trajectory as a result of simulated
damping and inertia properties of the forward dynamics model
which resulted in a lowpass filtering effect. This was confirmed
by the comparison of the smoothness of estimated joint positions
which revealed that in terms of mean absolute jerk, the decoders
with forward dynamics models (i.e., N2M2 and MM decoders)
produced smoother trajectories than either the pure machine
learning decoders (i.e., NN and MLP decoders) (Fig. 11). This
lowpass filtering and natural smoothing effect likely helped to
improve sensitivity to any high frequencies in the input and
prevent the jerkiness of a noisy input from propagating to the
output. While no additional lowpass filters were included in the
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NN or MLP decoders for this study, any future work should
consider adding an extra lowpass filtering step and can determine
if higher performance and robustness to variations in input EMG
signals are achievable. Additionally, it was found that when
noise was added to input EMG signals, the values of NRMSE,
specifically for theMCP joint angles, increased at a significantly
higher rate for the MM decoder when compared to the N2M2
decoder. Poor MCP joint angle decoding accuracy with the
same musculoskeletal model has been noted in a previous study,
potentially as a result of inexact electrode placement and EMG
crosstalk [22]. Future work can be conducted to investigate the
specific differences between the N2M2 and MM decoders in
terms of sensitivity to electrode placement during the initial
training data collection and EMG crosstalk.
We predicted that the higher robustness and smoothness of the

N2M2 decoder would be beneficial for efficiently completing
dynamic online tasks. The Virtual Posture Matching Test, for
instance, was completed in a session at least several days after
the initial training data collection session used to calibrate each
decoder. Despite any similarities in the average correlation and
NRMSE calculated offline, we found that the N2M2 decoder
had significantly higher performance and was more preferred
by subjects. It is likely that the N2M2 decoder was more robust
to any changes in EMG signals between the 2 sessions (e.g., dif-
ferences in skin impedance, signal to noise ratio of EMGsignals,
levels of muscle fatigue, ect.) as suggested by the results from
our analysis of performance with noisy EMG signals (Fig. 10).
For another example, our N2M2 can be applied to control of a
2DOF prosthesis, which enables the users to perform physical
functional tasks. This result also indicated that N2M2was robust
as the prosthesis attached to the human user leads to external
weight changes to the arm. The evidence implied that it is likely
that a musculoskeletal modeling approach such as our N2M2
decoder will work well after only one system calibration session
while pure machine learning approaches will be subject to
frequent and inconvenient system recalibrations. Additionally,
the smoothness of the decoder allowed subjects to more easily
maintain constant joint positions necessary for completing each
target posture. Themoving averagefilters did help to improve the
smoothness of joint position estimationsmadebyboth theN2M2
and NN decoders as seen by the drop in average mean absolute
jerk from theoffline analysis to theVirtual PostureMatchingTest
(Fig. 11). However, the outputs of the higher-performing N2M2
decoder remained significantly less jerky than the outputs of the
NN decoder. Thus, the smoothness of the output of a decoder
may be more desirable for tasks that require fine motor control.
Additionally, other future studies can consider offline metrics
such as mean absolute jerk to estimate the level of smoothness
or jerkiness that can be expected during online tasks.
Several limitations were identified in this study. First, the

initial RL training of the N2M2 decoder took approximately
8 hours as a result of the much larger ANN sizes and extra
computation time needed for the forward dynamics simulation.
Contrarily, the NN and MLP decoders can be trained within
minutes. Although N2M2 does not require frequent retraining
across days, further reducing the computational complexity of
the RL training process is needed. One potential solution is to

leverage learning transfer to accelerate the learning process. Sec-
ond, our approach to filtering estimated joint angles in real-time
included only a moving average filter. As discussed previously,
the N2M2 decoder benefits from the lowpass characteristics
of the forward dynamics model that the NN decoder does not
have. It may be beneficial to investigate the effect of additional
lowpass filtering at the input of the NN decoder as a method of
reducing remaining high-frequency noise in the signals which
can cause unexpected behavior. Furthermore, future work can
consider alternate filtering approaches, including finite impulse
response and infinite impulse response filters, to reduce jerki-
ness and improve functional task performance. Third, our study
was limited in the sample size. More human subjects should
be included in the future work to systematically evaluate the
benefit of our N2M2 decoder to amputee patients. Fourth, all
patterned movements were completed by subjects at a single
movement frequency. Future work should consider including
movement frequencies across a range of reasonable values to
improve and test robustness to those frequencies. Finally, one
feature of N2M2 that has not been explored in this study is the
application of the estimated virtual joint torque. Future research
can focus on exploring the feasibility of applying the virtual
torque for grasping force control in prosthesis or feeding back
virtual joint torque to users as an artificial proprioception for
improved robotic arm control.

V. CONCLUSION

In this study, we introduced a novel EMG-based decoder
called N2M2 that harnessed machine learning within the known
physiology of neuromusculoskeletal system in humans. We
compared our N2M2 decoder to two other block-box ANN-
based decoders, with and without recurrent structures, as well
as a musculoskeletal model. Our results suggest that using a
recurrent ANN as well as lowpass filtering similar to the effects
introduced by our forward dynamics model in EMG decoder
design was important to estimating joint motion both offline and
online. Further work should be done in determining the specific
differences between the N2M2 and MM decoder in terms of
sensitivity to exact electrode placement when collecting initial
training data and EMG crosstalk. Finally, we demonstrated
the capabilities for real-time control of a prosthetic hand with
different functional tasks. These promising results implied that
our EMG-based NMI was feasible for reliable control of a
transradial prosthetic device and potentially other applications
in human-machine systems.
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