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Abstract

Every day patients access and generate online health content through a variety of online
channels, creating an ever-expanding sea of data in the form of digital communications. At the
same time, proponents of public health have recently called for timely, granular, and actionable
data to address a range of public health issues, stressing the need for social listening platforms
that can identify and compile this valuable data. Yet previous attempts at social listening in
healthcare have yielded mixed results, largely because they have failed to incorporate
sufficient context to understand the communications they seek to analyze. Guided by Activity
Theory to design HealthSense, we propose a platform for efficiently sensing and gathering
data across the web for real time analysis to support public health outcomes. HealthSense
couples theory-guided content analysis and graph propagation with graph neural networks
(GNNs) to assess the relevance and credibility of information, as well as intelligently navigate
the complex online channel landscape, leading to significant improvements over existing
social listening tools. We demonstrate the value of our artifact in gathering information to
support two important exemplar public health tasks: 1) performing post market drug
surveillance for adverse reactions and 2) addressing the opioid crisis by monitoring for potent
synthetic opioids released into communities. Our results across data, user, and event
experiments show that effective design artifacts can enable better outcomes across both
automated and human decision-making contexts, making social listening for public health
possible, practical, and valuable. Through our design process, we extend Activity Theory to
address the complexities of modern online communication platforms, where information
resides not only within the collection of individual communication activities, but in the
complex network of interactions between them.

Keywords: public health 3.0, social listening, activity theory, online platforms, computational
design, graph neural networks, opioid crisis, pharmacovigilance

1 Introduction

Users access and generate health-related information through a variety of online platforms, creating an ever-expanding
sea of data. These interactions range from online health communities (Yan and Tan 2014) to patient portals (Peacock
et al. 2017), general microblogs such as Twitter (Barnes et al. 2019), and open discussion boards such as Reddit (Park
et al. 2018). Prior research has focused on how patient interactions with online resources may benefit individual health
outcomes, such as managing chronic disease (Liu et al. 2020), patient education (Hansen 2008), patient emotional
support (Yan and Tan 2014), and clinical decision support (Wright et al. 2009).

But beyond individual benefits, there is significant, untapped potential in leveraging these vast and various digital
communications to address greater public health issues (Fichman et al. 2011), such as combating the opioid crisis
(Bowen et al. 2019), detecting adverse drug events (Adjeroh et al. 2014), understanding e-cigarette trends (Cole-Lewis
et al. 2016), and tracking disease prevalence (Yang et al. 2013). The critical and oft-ignored first step in accomplishing
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these goals is the employment of effective social listening platforms to efficiently gather relevant information to
support time-sensitive analytics. Indeed, a movement toward “public health 3.0” has made specific calls to address
the dearth of “timely, granular, and actionable” data to support public health initiatives (Wang and DeSalvo 2018),
and data from social platforms to support public health research and practice (Pagoto et al. 2019). Social listening
platforms have been used to great effect in other areas — for instance, by marketers to understand customer opinions
(Davis and Logan 2019; Hewett et al. 2016). However, significant limitations in available social listening platforms
hinder them from effectively supporting public health informatics.

The recent COVID-19 epidemic has put a spotlight on public health issues, and the need for data to support time-
sensitive decisions. For instance, Apple and Google partnered to provide health authorities with anonymized public
movement data and contact-tracing capabilities (Apple Media 2020). However, social listening initiatives at public
health agencies remain limited, with significant opportunity for development. Per conversations with US Health and
Human Services officials in July 2021, aside from the public movement data, HHS has no partnerships or initiatives
to utilize online platform data. The CDC has issued guidance for usage of “social listening and monitoring tools,” but
only lists commercial platforms with limited data sources (CDC 2021) This leaves significant room for improvement
in utilizing such data to support public health analytics.

Social listening platforms applied to the healthcare context represent extreme cases regarding both the opportunity for
improving public health and the complexity involved in the gathering, parsing, and understanding of relevant data
(Boudry 2015; Pour and Jafari 2018). Previous attempts at social listening platforms in healthcare have had mixed
results. In a famous example, Google Flu Trends (GFT) was designed to predict influenza cases using search data.
Despite initial promise, the project failed (Lazer et al. 2014). Researchers pointed out that the narrow view taken by
GFT ignores issues such as context, credibility, and the inherently omni-channel nature of online interactions
(Broniatowski et al. 2014; Lazer et al. 2014). Traditionally, social listening has been considered a technology problem,
but solely technology-centered solutions like the original GFT algorithm often fall short. It is challenging to extract
meaning from online platform data, as communication is a human process (Abbasi et al. 2018). Effective health-
focused social listening platforms must be designed from a socio-technical perspective.

In order to effectively leverage social listening to address time-sensitive public health outcomes, information must be
gathered efficiently from a wide variety of sources spread across the digital landscape. Currently available platforms
tend either to focus on a highly curated set of sources (Davis and Logan 2019; Sarker et al. 2015), or slowly crawl the
web to collect data-warehouse-like snapshots of data, outdated before it is captured (Kumar et al. 2017). To design an
improved social listening platform capable of supporting public health use cases, we utilize and extend Activity Theory
(Chen et al. 2013; Engestrom 1987; Valecha et al. 2019) to imbue it with the context of digital communications,
allowing it to efficiently identify, cull, and gather the most relevant information across a variety of online platforms
for use in time-sensitive analytics. Activity Theory has been utilized to great success in understanding individual
communication processes. However the phenomenon of modern communication through myriad interconnected
online platforms represents significantly more than the sum of these individual communications. To truly capture
meaning from online discourse, this theory must be expanded to consider how information arises from the complex
network of interactions between individual content, authors, channels, communities, and platforms. As we
demonstrate, it is not only within these communication activities that information resides, but also (and often more
importantly) between.

Following a computational design research approach (Rai 2017; Padmanabhan et al. 2022), we propose HealthSense,
a design artifact for social listening to collect timely, granular, actionable data in support of public health 3.0 analytics.
The design relies critically on our extension of Activity Theory to incorporate characteristics of the multiplex
relationships between authors, channels, communities, and content which arise as information propagates through
online platforms. The context concealed in these relationships provides the key to designing an effective social
listening system. To demonstrate the efficacy and value of HealthSense, we run a series of experiments on a large
health dataset encompassing 37 million data points related to opioids and adverse drug events. Data experiments reveal
that HealthSense efficiently identifies over 90% of task-relevant content from only 20% of the data — much faster than
comparison methods including state-of-the-art deep learning techniques. User and event detection experiments with a
major pharmaceutical drug safety team show that HealthSense’s performance facilitates better automated detection
and allows analysts to make more accurate decisions related to adverse drug events.

Our work makes several contributions to research and practice. First, we develop a novel artifact guided by Activity
Theory that seamlessly combines relevance, credibility, and cross-channel landscape assessment to enable markedly
better and more timely public health listening capabilities. Second, through our design process, we propose an
extension to Activity Theory to include multiplex relationships between activities that are critically important,
particularly when analyzing communication activities within highly connected online platforms. Third, we extend
knowledge of graph neural networks through two novel extensions which improve the performance of these methods.
Fourth, more broadly, we show that in time-sensitive environments at the intersection of Big Data and machine
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learning, artifacts guided by human-centered theories and intuition are critical complements to automated Al-driven
techniques. Finally, our rigorous evaluation across data, event, and user experiments show that effective design
artifacts can make social listening for public health possible, practical, and valuable.

2 Background
2.1 The State of Social Listening Research

The use of data from online platforms to achieve organizational or societal goals has been explored in many use cases.
Among the most prevalent has been opinion mining — analyzing user generated opinions shared on social media
platforms regarding brands and products for various marketing purposes (Adamopoulos et al. 2018). Content from
health forums and other online platforms has been analyzed to support health outcomes, such as the design of tools
for detecting adverse drug events (Adjeroh et al. 2014) and for understanding how patient support forums assist in the
management of chronic diseases (Dadgar and Joshi 2018). However, a common characteristic among the vast majority
of studies that seek to leverage data from online platforms is that they are largely focused on explaining a phenomenon
or providing a proof of concept for their methods, and take data acquisition for granted — often relying on pre-collected
(possibly proprietary) data or a convenience sample from siloed data sources, such as the Twitter API or social
monitoring tools such as Brandwatch (Davis and Logan 2019; McClellan et al. 2017). As discussed regarding Google
Flu Trends, using a single, narrow data source without context can be highly problematic.

Web crawlers or spiders provide a method for broader acquisition of large volumes and varieties of online content
(Kobayashi and Takeda 2000). Traditionally a set of seed URLS are provided to a crawler, which recursively traverses
out-links from those URLS and the pages they point to, eventually collecting millions of pages (or more) for analysis
(Cho et al. 1998). While these tools are effective, they are indiscriminate in the content they collect, and very slow.
Focused crawlers attempt to address these issues by seeking out content based on specific, predefined requirements
(Chen et al. 2003). They tend to manage their crawl frontier (i.e., the pages to be collected) by topic prioritization
(Pant and Srinivasan 2005). That is, the crawler typically prioritizes and determines whether to collect a given URL
based on lexical analysis to determine topic relevance of content surrounding the link in the source page and/or in
ancestor pages already collected (Aggarwal et al. 2001; Diligenti et al. 2000; Fu et al. 2012; Pant and Srinivasan 2005).

While focused crawlers do provide more topic-relevant content, most do not provide the efficiency needed to support
time-sensitive analysis. More importantly, many of these crawlers only consider lexical features to determine topic
relevance. Some add features such as graph-based analysis (Chau and Chen 2007) and sentiment in addition to topic
(Fuetal. 2012). Others have explored crawling web and social media for event-related information (Farag et al. 2018).
However, for the time-sensitive analysis required for many public health use cases, there is need for a social listening
platform that can holistically, yet efficiently, consider the context and complexities of human communication from a
broad spectrum of online resources.

2.2 Node Embeddings and Graph Neural Networks

Advances in neural networks have introduced new ways to represent graph-based data. Node embeddings allow local
network neighborhood information for each node in the network to be encoded into a fixed-length vector
representation. For instance, techniques such as DeepWalk (Perozzi et al. 2014) and Node2Vec (Grover and Leskovec
2016) embody similar design intuitions to Word2Vec style word embeddings — that is, graph random walks are run
through a single-layer neural network. More recent work on graph neural networks (GNN) allows node embeddings
to be learned via message-passing as part of an end-to-end learning framework, based on how effectively they can
support downstream classification tasks (e.g., node, edge, graph, etc.). Examples include graph convolutional
networks (Kipf and Welling 2017) and GraphSage (Hamilton et al. 2017). Graph attention networks extend these
methods by replacing fixed edge weights with parametric attention weights (Velickovic et al. 2018). A historical
limitation of GNNSs has been the assumption of homogeneous node and edge types (Wu et al. 2021). Heterogeneous
graph neural networks have been proposed as a way to allow inclusion of different explicitly defined node types
(Zhang et al. 2019), as well as attention mechanisms (Wang et al. 2019).

For social listening platforms, GNNs afford opportunities for incorporating rich, domain-adapted graph
representations. This is part of an exciting trend where advancements in machine learning enable the development of
artifacts that better capture the richness of key social-technical phenomena, allowing closer alignment with underlying
theories (Rai 2017; Padmanabhan et al. 2022; Yang et al. 2022). We propose a novel embedding fused with graph
propagation to capture complex cross-channel individual and network-level activities. By overcoming current
limitations of GNNss in the context of social listening such as sparse labels, scalability to larger graphs, and effectively
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considering different types of heterogeneity (Wu et al. 2021; Dai et al. 2022; Bojchevski et al. 2020), our artifact
outperforms existing focused crawling and GNN methods.

3 An Activity Theoretic Perspective

Digital communication is a human process, and therefore may only be truly understood from a socio-technical vantage
point, with appropriate consideration for context that supports sense-making (Abbasi et al. 2018). Understanding this
complex digital communication process is key in the design of an efficient social listening platform capable of
supporting timely and relevant insights. With this goal in mind, we inform our social listening platform design by (1)
utilizing Activity Theory to examine the creation of online content and (2) extending Activity Theory to frame digital
communication as a multiplex communication activity. Activity Theory recognizes that an activity can be thought of
as an interaction between a subject (usually a human being) and an object, in order to generate an outcome (Leontev
1978), often using a tool (Kaptelinin and Nardi 2006). Engestrom (1987) expanded the theory to recognize that
activities are carried out within the context of a community. Activity Theory is not a predictive theory, but a framework
for orienting an observer to better understand a complex, real-life problem (Kuutti 1991). It has been used often in
studying human-computer interaction, as the use of technology is dependent on the complex, dynamic social
environments where it takes place (Allen et al. 2013), and to inform the design of information systems (Chen et al.
2008, 2013; Korpela et al. 2002).
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Designed as a descriptive meta-theory or framework, Activity Theory should be interpreted for the context of interest
(Chen et al. 2013; Engestrom 1987), which for our purposes is the creation of online health-related content. As
depicted in Figure 1, in our context we understand the subject to be a user posting content, and the online channel
(e.g., Twitter, web pages, blogs, etc.) to be the tool. Further, online communities provide important context, including
group norms, formal and informal rules, acronyms, and coded language with special meaning.

While this view is informative in understanding the activities of individuals, our goal is to leverage large volumes of
online content created by the combination of these activities in order to understand public health phenomenon. As
shown in Figure 2, information propagates within and across online platforms through communication activities that
are not only highly interconnected, but connected by multiplex relationships of their constituent components. That is,
not only may pieces of content be related, but the author of one piece of content may be related to a second community
where other content was created; or the authors of two unrelated pieces of content may regularly correspond in other
ways on the platform; or similar content may be shared across two separate channels. The interactions between the
individual elements of communication activities (importantly author, channel, community, and content) give rise to a
multiplex network of inter-activity relationships which can provide rich information to social listening platforms.

While research on Activity Theory has noted the potential to consider the interactions between activity processes, this
has largely been limited to examining pairs of activity processes to understand co-production of outputs (Allen et al.
2013; Chen et al. 2013; Effah and Adam 2021). Outside of Activity Theory, other research streams have recently
emphasized the importance of inter-connected activities on online platforms. Most notably, there is a quickly growing
literature regarding omnichannel user behavior, particularly as it relates to designing and measuring marketing
interventions and outcomes (e.g. Cui et al. 2021; Sun et al. 2022). However, even this emergent research focuses only
on a limited subset of the multiplex relationships among activities on online platforms (namely, how individual users
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interact with multiple channels). We propose that incorporation of a full complement of these multiplex inter-activity
relationships is crucial to extracting information from the cacophony of communication activities on online platforms.
When designing artifacts, kernel theories from the natural or social sciences are often used to guide meta-requirements
and meta-design (Walls et al. 1992). However, existing individual theories are rarely used without adaptation, and
design often requires integrating multiple theoretical perspectives (Arazy et al. 2010). This extension to Activity
Theory represents a core component informing our meta-design, which we demonstrate to be critical in our artifact
instantiation. Moreover, in order to meet social listening needs in the public health 3.0 context, we couple our extended
Activity Theoretic perspective with characteristics from the context-based information quality literature.
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Note: The relationships noted in this stylized figure are only exemplar as the full complement of exponential relationships would be difficult to
depict—each component of each activity has a potential relationship with each component of all other activities

Figure 2: Multiplex relationships among communication activities on online platforms

4 Requirements & Design

The public health domain is undergoing a paradigm shift into what has been termed “public health 3.0” (DeSalvo et
al. 2017). A core mantra of this movement is the call for “timely, granular, actionable data” to support public health
informatics (Wang and DeSalvo 2018). More generally, these calls point to the need for data that is relevant and useful
to the task of public health management, which aligns with the context-based based definition of information quality
(Nelson et al. 2005). Context-based information quality considers output from a system and determines if it is helpful
towards the task at hand by identifying and measuring the output across relevant dimensions. As is often noted, there
is no generally agreed-upon definition of information quality, and the literature acknowledges it is best considered a
multidimensional constructure that has both objective and subjective components depending on the context (Arazy
and Kopak 2011). Table 1 represents a summary of the significant research that has been performed to conceptualize
contextual information quality in various contexts, resulting in identification of a wide range of relevant dimensions.
In analyzing these dimensions, we identify four high-level themes which inform our requirements: Timeliness,
Relevance, Credibility, and Completeness. In the following sections, we outline each of these requirements as well as
how our extension of Activity Theory informs the design of our artifact to accomplish them, as summarized in Table
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Table 1: Co

ceptualization of context-based informati

Source Timeliness Relevance Credibility Completeness Other *
(Strong et al. Timeliness Relevancy, Value-Added Accuracy, Believability, Completeness, Amount of | Accessibility,
1997) Consistency, Objectivity data Interpretability, Ease of
Understanding, Conciseness
(Nelson et al. Currency Meaningfulness (as part of Believable, Completeness Format
2005) Accuracy) Consistent, Correct (as part of
Accuracy)
(Lee et al. Currency, Cycle | Content, Essentialness, Accuracy, Believability, Appropriate amount, Unambiguous, Usage
2002) time, Non- Informativeness, Importance, | Consistency, Correctness, Attribute granularity,
volatility, Meaningfulness, Precision, Credibility, Factual, Free from Completeness,
Timeliness Relevance, Usefulness, bias, Objectivity, Reliability, Comprehensiveness,
Value-added Reputation, Validity Level of detail, Quantity,
Sufficiency
(Knight and Timeliness, Relevancy, Useability, Accuracy, Believability, Amount of data, Accessibility, Availability,
Burn 2005) Efficiency Useful, Value-added Consistency, Objectivity, Completeness Concise, Navigation,
Reliability, Reputation Security, Understandability
(Ge et al. Timeliness Relevancy, Interpretability, Accuracy, Believability, Appropriate amount, Accessibility, Ease of
2011) Value-added Consistency, Objectivity, Completeness manipulation, Ease of
Reliability, Reputation representation/
understanding, Security
(Arazy et al. Accessibility Accuracy, Objectivity Completeness Representation
2017; Arazy (discussed only
and Kopak and includes
2011) timeliness)
(Zheng et al. Timeliness Value-added Objectivity, Reliability Richness Format
2013)
(Todoran et Timeliness Relevancy, Interpretability Accuracy, Consistency, Completeness, Data Accessibility, Security,
al. 2015) Correctness, Integrity, amount Understandability

Objectivity Reliability,
Reputation

Table 2: Requirements and design elements

Information Quality Meta-Requirements

Activity Theoretic Meta-

0. Gather Timely data from a variety of online platforms

to support time-sensitive analysis

topic and sentiment (f)

Requirements
1. Evaluate 2. Evaluate 3. Navigate Channel
Relevance Credibility Landscape for Completeness
Author Learn author tendencies from
= tendencies aggregate collection of authored
£ documents (a)
«
E Channel Leverage channel-specific Incorporate channel source
E % context patterns (e.g., web, blog, forum, context to predict relevance
£ E and social media) (b) of a given path (c)
e 2z
S E ] ] e lineuisti I
= g Community Capture group-specific mgulstlc ncorporate E
s norms norms through use of lexicons, group norms 2
-E libraries, and dictionaries (d) into seeding () B
;E Analyze linguistic Incorporate content topic and =
= Content . - . L )
features to determine sentiment information into =]
language e
-
w

graphs (g)

Communication

network

Inter-activity

Incorporate author and site
relationships through features

Analyze multi-level bi-directional author, site and
document-level graphs representing inter-activity

gedorskios derived from multi-level graph (h) relationships (i)
Information . . . L
e Incorporate spatial dynamics through graph propagation and convolution (j)

(a)-(j) During our analysis we run an ablation analysis to demonstrate the importance of each lettered element in our
artifact performance. Please see Tables 7 and 8 for details.




4.1 Motivating Case: Opioid Epidemic

Although our design is generalizable to a large variety of public health issues, it is useful to consider a motivating case
to describe the requirements for a social listening platform for public health. The opioid epidemic is a major public
health crisis, particularly in developed countries such as the United States (Schwetz et al. 2019). Each day 128 people
die of overdoses from opioids (Wilson 2020), i.e., drugs naturally derived from poppy plants and their synthetic
counterparts. In the past several years, there has been a drastic increase in overdoses from synthetic opioids such as
Fentanyl and Carfentanil (an elephant tranquilizer and chemical weapon), which are hundreds to thousands of times
as potent as heroin. Drug dealers often cut heroin with these because they are cheaper and more potent, creating
uncharacteristically strong batches of difficult to dose drugs — leading to sudden spikes in overdoses (Shoff et al.
2017).
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Note: In these social networks, “cop” is a term for purchasing drugs, and “plug” is used to describe a prolific or notorious drug
dealer. So, the meme depicts a person in a hurry to jump in their car and buy from a batch because overdoses and deaths were
reported. Many users immediately posted agreement with the sentiment.

Figure 3: Reddit posting (and related comments) making a joke about seeking out a batch of drugs that caused

overdoses and deaths due to its high potency

Despite the often fatal outcomes, drug dealers are incentivized to make these dangerous batches because they are
highly sought after by customers, as Joseph Pinjuh, chief of the narcotics unit for the U.S. attorney in Cleveland
explained: “[Drug users] know that’s the high that’1l take you right up to the edge, maybe kill you, maybe not...That’s
the high that they want.” (AP 2016). As news spreads over social media of users overdosing, there is a surge of interest
in that batch of drugs (Overbeek and Janke 2018). Figure 3 presents a Reddit post illustrating this mindset.

When these potent batches arrive in an area, word spreads rapidly and the situation can escalate quickly. In 2016
Akron police reported 25 overdoses in a three day period and near-by Columbus reported 10 overdoses in a nine-hour
period (DeMio 2016). This phenomenon provides a clear example where timely detection of the situation (i.e., a new
batch of especially strong opioids has arrived in a certain local) could result in better health outcomes. Normally,
hospitals and EMS vehicles have a limited supply of Naloxone (common trade name, Narcan) which is an injectable
medicine used to reverse the effects of opioids in an emergency situation.

We interviewed the program director of a local clinic specialized in treating opioid addicts and president of the local
volunteer rescue squad. She explained that a “good” batch (meaning cut with synthetic opioids, such that it is
dangerous and especially potent) often causes a spike in overdoses for 24 to 72 hours after its release. In this case,
first responders may easily find themselves in situations with inadequate supplies of Naloxone on hand, with multiple
overdose victims present and/or individual victims requiring multiple doses. If first responders were aware of the
likely high rate of these heavy overdoses in advance, they could stock more Naloxone in their vehicles. An interviewed
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emergency room physician' agreed and further explained that if he were made aware that a strong batch of Fentanyl-
or Carfentanil- laced opioids had been released in the area, he would treat patients presenting with overdose symptoms
more aggressively in the emergency room. These sentiments echo research which has suggested that better data could
have significant impacts in combatting opioid overdoses (Bowen et al. 2019; Saloner et al. 2020).

Social media, websites, blogs, and forums are used by drug dealers and drug seekers to spread this information about
batch strength and availability within the opioid using community (Overbeek and Janke 2018; Pandrekar et al. 2018).
We propose that a social listening platform can provide the timely, granular, actionable information needed to prepare
local responders for these strong batches of opioids. In Table 2, we outline how Activity Theory intersects with the
requirements of a social listening platform for public health to inform the design of such a system. In the remainder
of this section, we will describe these requirements and illustrate selected design elements within the context of this
use case of surveillance to detect dangerous batches of opioids. To provide concrete examples in line with our
motivating case, we collected data from Reddit groups r/opiates and r/opiaterollcall. Although we use this example to
illustrate the key system requirements and underlying gaps they address, it is important to note that our work is relevant
to social listening for various types of health events. We later evaluate our proposed artifact on multiple health use
cases including opioids and adverse drug events.

4.2 Meta-Requirement 0: Timeliness

Timeliness is the primary requirement which underlies the motivation for our design, in that many of the other
dimensions are easily addressable without this constraint. Capabilities for timely use of data (often referred to as
“velocity”) have been a primary driver for deriving value from the “big data” movement in recent years (Kitchin and
McArdle 2016). From a contextual quality standpoint, timeliness or currency relates to whether data is sufficiently
“up to date” for use in a given task (Nelson et al. 2005, Strong et al. 1997). Within the health context, timeliness is
driven by the urgency of many public health issues. A potent batch of opioids may cause dozens of overdoses within
hours or days without intervention (DeMio 2016; Shoff et al. 2017). Failure to identify adverse drug events in a timely
manner may cost pharmaceutical companies significant sums and leave masses of patients suffering or worse (Adjeroh
et al. 2014). Disease epidemics can explode overnight (Yang et al. 2013). Furthermore, as the overall available digital
content and noise grows at a greater pace than the sub-set of relevant, time-critical content, the “need for speed” cannot
be overstated (Boldi et al. 2018). The proponents of public health 3.0 also note the necessity of removing silos around
data and achieving wide interoperability (Wang and DeSalvo 2018). Indeed, identification of timely, granular,
actionable data might be simple if it were available in a single or even small set of sources with open APIs.
Unfortunately, content providers, patients, and other users post relevant information across a vast and varied online
landscape (Boudry 2015): from social media outlets (Twitter, Reddit); to websites (WebMD.com, Medscape.com), to
patient forums (HealthBoards.com, MedHelp.com), to blogs (MothersInMedicine.com, AmbulanceDriverFiles.com),
and beyond. The integration of insights from across these various sources is critical in creating effective analytics that
can impact public health (Lazer et al. 2014).

The opioid case provides further examples of additional considerations for timely identification of information across
a variety of sources. As discussed, there is strong agreement among healthcare professionals that the prompt detection
of strong batches of opioids in the community would save lives and improve medical outcomes. In addition, sites,
forums, blogs, and social media groups hosting this illicit information are highly dynamic and ephemeral (Hayes et
al. 2018). They tend to pop in and out of existence quickly, often being found by law enforcement groups or site
moderators and shifting to new platforms. Even if the web resource continues to exist (e.g., a drug forum), specific
pieces of relevant content (e.g., a specific post) may be deleted almost as soon as it is posted. For instance, Reddit has
a culture of user-moderation to enforce group norms and remove content that is illegal, illicit, or otherwise contrary
to Reddit policies or goals of the community (Squirrell 2019). In historical data examined for our motivating case,
8.1% of posts were deleted or removed (2.2% within one day, 5.3% within 7 days). These posts are often removed
precisely because they include information relevant to the social listening objective, such as mentioning locations
and/or attempts at sourcing drugs, often specifically focused on potent batches. This further increases the pressure for
efficient social listening.

4.3 Meta-Requirement 1: Evaluate Relevance

Beyond the overarching requirement of timeliness, the first theme we note within the contextual information quality
literature is that of relevance to the problem at hand. Relevance refers to the degree of applicability and usefulness of
information for a given task (Lee et al. 2002; Todoran et al. 2015), or the extent to which it is beneficial and provides
advantage (Zheng et al. 2013). Within the online health information context, there is a variety of information from
many sources which must be evaluated for relevance to the social listening task. Because relevance in a social listening
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context must be determined before retrieving content, existing tools typically evaluate content surrounding the link on
ancestor pages (Farag et al. 2018; Fu et al. 2012; Pant and Srinivasan 2005). However, these basic approaches miss a
significant amount of information.

For instance, online platforms are often utilized as people research medical information and express their opinions
and emotions (Bender et al. 2008). This process creates rich and abundant content using group- or channel- specific
semantic communication features such as slang, abbreviations, and emoticons (Smith et al. 2012; Waterloo et al.
2018). Both within channels as well as within communities formed by groups of users, specialized language or content
generation patterns are often developed or used, and these must be understood in order to interpret message relevance
(Squirrell 2019). For example, in Figure 3, we see unusual word choices that mean something specific to the
community such as “cop” referring to purchase and “plug” referring to a drug dealer in this context.

In addition to the content, other aspects of digital communication creation can be used to help fully interpret the
relevance of the information. Authors play a variety of social roles within online communities (Benamar et al. 2017),
and uncovering these nuances of author relationships within the multiplex of communication activities can help
contextualize the posted content and assess relevance. For example, in the Reddit opioid context, some users primarily
ask questions and some answer; others seek or offer drugs; some seek or provide emotional support; and there are
those who post tips on harm reduction, or copping/using (Overbeek and Janke 2018; Pandrekar et al. 2018). Figure 4
shows a network of all communications on opiate subreddits among a sample of users, illustrating how various users
interact over time. Information propagation and relationships within the author graph provides latent information about
these author roles that helps contextualize content. For instance, the active addict (red triangle) who posts controversial
information about sourcing drugs has frequent run-ins with the moderator (green square). In order to assess the
relevance of digital communications, artifact design should consider not only content, but also how information
propagates through the multiplex relationships between content, authorship, channel, and community aspects, all of
which provide valuable context.
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Figure 4: All communications across opiate subreddits among a sample of users from 7/1/13 to 6/30/17.

Size of arrow represents frequency of comments of one user in response to another. Selected users are
characterized based on their observed posting behaviors.



4.4 Meta-Requirement 2: Evaluate Credibility

The next theme of contextual information quality that applies to the design of social listening tools is credibility. To
be useful, information must be believable, free-of-error, and correct (Lee et al. 2002). Information quality research
often considers accuracy, which is an intrinsic trait (Arazy and Kopak 2011), yet the perception of accuracy is involved
in credibility assessments (Fogg 2003). Further, the reputation of the source must also be taken into consideration
(Todoran et al. 2015; Zheng et al. 2013). Fake websites, spam, and other non-credible information are especially
troubling in the healthcare context, and the quantity of deceptive and false information is steadily increasing (Song
and Zahedi 2007). Online medical information is fraught with credibility issues, in which scam initiators rely on social
expectations and psychological persuasion techniques to target patients (Garrett et al. 2019). For example, with
prescriptions and doctor recommended medications, fraudulent actors often pose as online sources of information and
products, resulting in counterfeit drugs and misinformation (Song and Zahedi 2007). Yet, detecting non-credible
health-related content is not easy, even for humans (Li et al. 2019).

This presents a problem for users and social listening platforms alike as they try to assess health information online.
Non-credible content provides a false signal for social listening tasks. Recognizing and eliminating content with low
credibility during the social listening process will provide higher quality information in a more efficient manner.
Fortunately, our extension to Activity Theory provides insight into signals that can help identify non-credible
information. First, because authoritative and trustworthy authors (and similarly sites/channels) are less likely to link
to non-credible content (Gyongyi et al. 2004), links between authors may be used to infer credibility, similar to
inferring relevance as illustrated in Figure 4. However, these methods require seed information about credibility,
which is not always readily available (Abbasi et al. 2012). For this, we may look to group norms in the community.

In our Reddit case, a moderator explains the group norm for identifying non-credible authors: “If you are trying to
vouch for someone simply leave a ‘+’ a positive experience, ‘-’ a negative [experience], and XXX’ stay away, bad
friend.” This vernacular was observed frequently. For example, a user posted a new thread with pictures of opioids
designed to entice purchasing, but subsequent responses from other uses simply stated, “xxx bad friend.” The phrase
“bad friend” was observed numerous times as the vernacular chosen by the community to warn others the person was
looking to harm or scam people. Without the context of understanding the “bad friend” warnings, the above post may
have fit the profile of task-relevant information about an especially potent batch of opioids hitting the market, whereas
in actuality it is likely a scam artist over-promising the potency of his drugs. An effective and efficient social listening
platform must be able to utilize characteristics of communication activities propagating through online platforms and
the multiplex relationship between them to evaluate information credibility.

4.5 Meta-Requirement 3: Navigate Complexity of the Online Channel Landscape

The final theme of contextual information quality that guides our meta-requirements is that of completeness. Data that
is only a subset of the complete set of relevant data can lead to incorrect assumptions and interpretations (Lee et al.
2002; Todoran et al. 2015). A related concept is richness, in that the data that provides deep contextual detail is more
useful (Zheng et al. 2013). Users and providers of online health content generate an enormous amount of information
across a variety of channels, making it difficult to navigate and analyze (Chung et al. 2005). Existing social listening
techniques often assume topical locality, which posits that similar content is likely to be well linked together (Davison
2000), making them prone to converging on local optima, getting trapped in pockets within the online landscape and
missing large quantities of relevant data. Many healthcare information providers are in competition with other websites
and forums, with sponsorship motivations to avoid crosslinks (Szalavitz 2011). Online communities tend to create
pockets of communication that may be isolated from other, related, and relevant content (Bergmark et al. 2002). These
health communities may span multiple communication channels, fragmenting and dispersing important content across
the channel landscape, switching between relevant and irrelevant information within conversation threads, and
creating many one-directional links, creating significant difficulties for navigation (Boudry 2015; Jami Pour and Jafari
2018).

In the opioid context, online resources come and go rapidly as sites get shut down and users congregate to discuss
drugs in a new location, with sparse (or no) direct connections between these, as users want to avoid authorities as
they move to new communication hubs (Ladegaard 2019). In order to reach these pockets of relevant content, a social
listening platform may have to traverse links to intermediate sites that seem less relevant to the social listening task,
but actually, eventually lead to more relevant information. To illustrate this phenomenon, we used detailed clickstream
data from Comscore to analyze browsing activity of users that visited the r/opiates subreddit between 2012 and 2018.
Comscore recruits and pays a representative panel of internet users to install an apparatus which records and reports
their internet browsing behaviors. By analyzing the clickstream collected by Comscore, we identified all users who
visited r/opiates at some point during their tenure on the panel, and compiled the top 100 sites visited by this group of
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users (as measured by percentage of time spent on the site). As expected, many of the sites were drug related and
likely relevant to the opioid listening task.

However, as Figure 5 depicts, direct hyperlink connections between many of these sites are sparse, particularly among
many of the confirmed drug-related sites (Park et al. 2018). Without consideration of the potential for certain irrelevant
URLs to lead to relevant content, a social listening artifact would have a difficult time traversing between the relevant
content. However, Bitcointalk.org emerges as an important node that forges connections between drug-related sites —
in fact, it is the most central node in the entire graph of sites (nodes are sized by betweenness centrality, although
bitcointalk.org was the most central for a variety of measures). This has face validity, as bitcoin is frequently used to
pay for illegal drug transactions online (Foley et al. 2018). Without traversing links to/from Bitcointalk.org which
might otherwise be considered irrelevant based on content alone, a social listening platform might have difficulty
navigating the channel landscape to pockets of relevant content, instead converging on local optima and missing
significant amounts of important information. In order to efficiently gather relevant public health information, a social
listening platform must be able to navigate the complex channel landscape that is the reality of the online platform
environment.

bitcointalk.org . Illicit Drug Site
'\ - Example 1

\{@

~ B e N e  —
AN B~ X llicit Drug Site
~ _ ~_\ Example 2

Figure 5: Network graphs for the top 100 websites visited by Comscore Users that frequented r/opiates

5 The Healthsense Artifact

We follow the requirements and design elements identified through Activity Theory and the contextual information
quality literature to develop HealthSense, a social listening platform for public health. Our system is comprised of
three modules, each of which address a separate meta-requirement: evaluating the 1) relevance and 2) credibility of
content while intelligently 3) navigating the complex channel landscape of online platforms in order to gather timely,
granular, and actionable information for use in public health informatics. All three modules leverage state-of-the-art
graph neural networks in their construction. Recently, graph neural networks (GNNs) have garnered considerable
attention for their ability to incorporate graph message parsing into robust machine learning architectures (Wu et al.
2021). GNNs’ ability to parsimoniously consider nodes, edges, features, and hierarchical graph structures in the
convolution process (Wu et al. 2021) aligns with the extension of Activity Theory to consider the propagation of
information across multiplex interactivity relationships among communication activities in online platforms. From a
computational design perspective (Padmanabhan et al. 2022; Rai 2017), our HealthSense instantiation makes the
following methodological contributions:

o Couple graph propagation with state-of-the-art GNNs. This allows us to incorporate credibility information
from across millions of nodes (via graph propagation), with limited seed labels, in unison with GNNs that
are better suited for message-passing across thousands of nodes (i.e., localized focal node-level graphs) in
relatively less sparse-label environments (Bojchevski et al. 2020; Dai et al. 2022). There has been limited
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work at this intersection (Bojchevski et al. 2020). Moreover, we employ multi-level bi-directional graph
propagation to better capture the multiplex of activities across the network.

e Propose bi-relational edge-enriched node embeddings. We use domain-adapted feature-based classifiers to
derive important node and in/out-bound edge information used by the GNNs5s for assessing relevance and
tunneling potential, and represent these parsimoniously in an embedding that considers different relation
types, and node/edge characteristics.

We discuss these novel aspects of HealthSense in the remainder of the section, and subsequently use benchmarking
and ablation analysis to evaluate them, and HealthSense as a whole.

The Relevance Assessment Module (RAM) evaluates both topic and sentiment of online content in order to determine
its relevance to the social listening task. The primary signals used are linguistic features of the information content
surrounding a link to target content. These are evaluated within the context of latent author tendencies discovered
through analysis of other authored content, and relationships to other authors and content. Relevance cues also include
context-specific lexicons, libraries, and dictionaries which capture group norms from the communities within which
the content was created. Multiple classifiers are created to incorporate varying structures and behaviors across online
channels and used as input for the GNN.

The Credibility Assessment Module (CAM) evaluates the credibility of online content to avoid collection of non-
credible information in the social listening task. CAM uses graph propagation-based features (in a similar manner as
TrustRank (Gydngyi et al. 2004)) as input for a GNN-based credibility classifier. Document, author, and site-level
graphs are utilized to evaluate potential content. Trust for each graph is seeded using various signals according to
group norms of how credibility is determined within various communities.

The Landscape Assessment Module (LAM) evaluates links among online platforms in order to identify content which
may not contain relevant information itself, but may lead to further relevant content as document nodes in the graph
are traversed. This counterbalances the hyper-focus of RAM and CAM on collection of relevant, credible content, and
is critical as pertinent information often occurs in sparsely connected pockets. LAM utilizes a GNN to learn patterns
from subgraphs from a training set of nodes known to lead to relevant or irrelevant information.

The HealthSense system is comprised of the RAM, CAM, and LAM modules, as summarized in Figure 6. The system
begins with seed content URLs and propagates through links to other online content. Each candidate URL is first
evaluated by the CAM module and rated with regard to its estimated credibility. Each URL which exceeds a specified
threshold credibility is passed to RAM which ranks all current candidate URLs based on expected relevance to a given
social listening task based on topic and sentiment information. Finally, the LAM module evaluates all URLs below a
specified relevance threshold and scores them based on their likelihood of leading to further relevant content. The
system then retrieves candidate URLs from a queue in order of combined RAM and LAM scores. As new URLs are
collected, scores for all remaining candidate URLs are updated to incorporate new information. In this way,
HealthSense gathers the most useful information for a given social listening task in a highly efficient manner.

As depicted in the center of Figure 6, each module’s GNN employs a relational graph convolutional network (Kipf
and Welling 2017; Schlichtkrull et al. 2017). Let G represent the graph of collected and in-queue document nodes V,
with E signifying the set of edges (in and outlinks). For each node v with neighbors N (v), each layer k of the graph
convolutional network feeds forward a node embedding h¥ (i.e., a feature vector) by averaging the neighbor nodes’
information and passing it through a neural network. This process is repeated for each v, across the K layers of the
graph convolutional network, with each subsequent layer pulling in neighbor information from one further hop (i.e.,
neighbors’ neighbors, and so on). Although the proposed node embeddings can provide invaluable micro-level
insights, we aggregate node embeddings into a graph embedding such that CAM, RAM, and LAM predict credibility,
relevance, and tunneling potential for a given document node as a graph classification problem to allow better
consideration for macro-level in/out-link information. To ensure that node and graph embeddings are learned as part
of an end-to-end learning strategy, the graph convolutional network’s loss function uses final binary class labels from
a small training set (relevance for RAM, credibility for CAM, and tunneling potential for LAM). The initial input
node embeddings for each v are:

hg = XU (l)’
where X, is the feature vector of node v. For each subsequent layer, where k > 1:
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where ¢ is an activation function for non-linearity in the node embeddings. Wy and By, are the trainable model weight
parameters for the node embedding dense layers, used to balance how much new neighborhood information should
be aggregated across each u neighbor of node v in the latest convolutional layer k, versus existing node embedding
information (from the prior layer). R denotes the set of relation types in the graph — in our case, there are two distinct
types: inlinks and outlinks. Hence, N,(v) are the inbound or outbound neighbor nodes. As we employ graph
convolutional networks designed for undirected graphs (Wu et al. 2021; Kipf and Welling 2017), adding a relational
mechanism enables us to account for differences in propagation information across in versus out-bound links
(Schlichtkrull et al. 2017). That is, the graph convolutional network includes separate weights for each relation type
at each layer.
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Figure 6: HealthSense system design

One limitation of the node embedding formulation in equation (2) is that it doesn’t consider edge feature vectors. For
relevance and landscape assessment, where we want to decide whether to retrieve a given URL, the anchor text around
a link might contain important edge-specific information between nodes (Fu et al 2012). To incorporate in/outbound
edge feature vectors X(,, ) between nodes v and u, we can tweak our formulation to an edge-conditioned node:
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where F” is the weights from a single dense layer neural network learned offline across all edge vectors for relation
type r in E. To normalize the added dense edge feature representation signified by F'x(,, ,,), we take the dot product
between the neighbor edge and node vectors.

As noted, the three respective GNNs treat node credibility, relevance, and tunneling potential prediction for each node
v as a graph classification problem. Whereas node embeddings could be aggregated by averaging or summation to
construct a simple graph embedding, such an approach would lose important node heterogeneity information. Instead,
we employ non-linear aggregation using multi-layer perceptrons to calibrate node importance. Formally, given
h%, h¥, h% ... hk € H* denotes the set of node embeddings associated with node v and its neighbors at the last layer
k = K, the graph embedding g uses a two-layer multi-layer perceptron where the first layer weights Wy, are a non-
linear accumulation of the node embeddings and the second layer W, maps this information to a dense representation
using a non-linear (ReLU) activation function:

go=0|Wya| D Wy,hk @,

nkenk

For CAM and LAM, H* includes N, (v) U N,(u) to allow inclusion of two-hops of neighbors, but for RAM H*
encompasses N,.(v) since the target node is more crucial for relevance assessment. All three GNNs use the ReLU
activation function for node embedding layers and binary cross-entropy for loss. Finally, a single dense layer is used
to predict the downstream task (i.e., relevance, credibility, and/or tunneling potential):

§=Wr*gg )

The node and edge feature vectors x,, and va_u) for the target node, while important throughout for the GNNs to infer
credibility, relevance, and tunneling potential, become even more critical early on due to the sparse nature of the
graphs (i.e., there is highly incomplete information about neighbors in the earliest listening phases, as few nodes have
yet been collected). Consequently, for each node v, the RAM, CAM, and LAM modules leverage graph propagation
or feature-based classification methods to compute initial credibility, relevance, and context scores/features which are
used as the node and edge vectors for the GNNs used to derive the final C(v), S(v), and L(v) classification scores.
In the remainder of the section, we describe how these crucial initial features/scores are derived.

5.1 Relevance Assessment Module (RAM)

RAM evaluates each candidate URL v to be retrieved to determine its potential relevance to the social listening task.
For each v, the initial relevance score used as input feature vectors for the GNN are derived based on text classifiers
trained to determine the topic and sentiment of content surrounding the URL in parent documents (those that contain
links to the candidate URL). This module represents the most direct evaluation of whether the content for collection
is relevant to the task at hand. For example, if the social listening objective were to be related to detecting adverse
drug events, the classification models in RAM would be trained to target content expressing negative sentiments about
experience with a prescription medication. To account for channel-specific communication patterns (Smith et al. 2012;
Waterloo et al. 2018), topic and sentiment classifiers are trained on separate labeled corpora categorized into four
channels: web, social, forum, and blog, resulting in 8 total binary classifiers.

As depicted in Table 3, each classifier employs a wide variety of features, including fixed word unigrams, bigrams,
and trigrams, as well as various linguistic features and lexicons designed to capture group norms. Part-of-speech (POS)
and POS-word n-grams are derived using the Stanford tagger and the CMU ARK tool in order to account for channel-
specific language usage (Manning et al. 2014). N-grams are also coded with semantic features from a variety of
specific entity tags including emojis, abbreviations, and slang terms (Zimbra et al. 2018). Entity tags are curated from
domain-specific lexicons and lexical thesauri. For instance, if the domain of interest is post-marketing surveillance of
pharmaceutical drugs, example entity tags might include <drug>, <condition>, <symptom>, and <treatment>. The
POS and semantic entity tags both help interpret the meaning of messages by abstracting and categorizing community-
specific language characteristics into a common scheme allowing analysis. Finally, semantic sentiment tags are
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derived from existing sentiment lexicons containing polarity scores for over 100,000 terms (Baccianella et al. 2010).
Terms are labeled with one of seven possible sentiment labels from <strong neg> to <strong pos>, based on average
sentiment scores across its various senses. Several author metrics are employed to account for the impact of author
roles and tendencies on potential topic or sentiment relevance of a document’s outlinks. These pertain to the topic and
sentiment relevance of other known authored documents, and number/percentage of author in/out links as well as topic
or sentiment relevant ones.

Table 3: Examples of N-Gram Features Used In Topic and Sentiment Relevance Classifiers

Feature . Key Topic Key Sentiment Feature
Category Example Text Representation Feature Examples Examples
Word I used to hate smoking until I started taking Chantix smoking, started taking, hate, smoking, Chantix
®. Chantix
POS PRP VBD TO VB NN IN PRP VBD VBG NNP : : NN, NNP, VBG NNP VB, VB NN
LRB
PRP|I VBDJused TOJ|to VB|hate NN|smoking INjuntil | NN|smoking, VBihate, :|: :]- LRB|(
POS-Word PRP|I VBDjstarted VBGjtaking NNP|Chantix :|: |- NNP|Chantix
LRBI(
Semantic I used to hate <habit> until I started taking <drug> <habit>, taking <drug>,
Entity Tags <frown face>. <frown face>
Semantic <neu> <neu> to <strong neg> <neu> until <neu> <strong neg>, <strong
Sentiment Tags | started <neu> Chantix <strong neg>. neg> <neu>
Author and Number of known prior authored documents,
Site Content number and percentage of topic/sentiment relevant documents
Author and Number of total links, number and percentage of in/out links,
Site Linkage number and percentage of topic/sentiment relevant in/out links

To refine the extracted feature space for faster relevance assessment in time-sensitive environments and improve
classification performance, the attribute space is ranked and filtered using a feature subsumption approach based on the
information gain heuristic (Riloff et al. 2006). For each feature f, information gain IG(f) is calculated based on entropy
reduction provided by that feature in isolation. Only features with IG(f) greater than a defined threshold were retained
for use in each classifier. Further, no higher-order n-gram g was retained unless it provided higher information gain
than all q of the lower-order n-grams it contained (i.e., IG(g) > IG(g)) Vi€ [1,q]).

Each of the 8 channel-specific topic/sentiment models was trained using a binary linear SVM classifier (SVMperf)
(Joachims 2006). These classifiers were trained on a set of manually labeled content known to be relevant or irrelevant
from a topic or sentiment perspective. To ensure that sentiment was only evaluated with regard to the target topic, the
sentiment classifier only used features extracted from defined windows surrounding relevant topic keywords. Topic and
sentiment relevance scores from the anchor text surrounding in-bound links from each u towards target document v are
used to construct X¢,,,) edge feature vectors in the GNN. The x,, node feature vectors are one-hot encoded with the

index value corresponding to that node set to 1, and all other values in the vector 0. For each v, the GNN computes a
relevance score S(v).

5.2 Credibility Assessment Module (CAM)

The credibility assessment module (CAM) is intended to reduce the intake of low-credibility content, including medical
spam and phishing documents, which can pose major information quality concerns if unmitigated. In order to
accomplish this objective, CAM uses weighted multi-layer bi-directional graph-propagation to construct a credibility
value for each node. These values are input as the x,, node feature vectors in equation (1) of the credibility GNN. Our
graph propagation-based credibility features method addresses several limitations associated with existing propagation
techniques. Although prior studies have relied on only document-level graphs (Diligenti et al. 2000; Farag et al. 2018),
our extension to Activity Theory proposes that relationships between content, channel, author-level information
provides important context. Therefore, the graph propagation in CAM incorporates inter-related graphs from each level.
These graphs are seeded with credibility information from many online databases that maintain site, document, and/or
author-level assessments. We incorporated many databases which are focused on guiding consumers to and accrediting
credible online health information, such as the Medical Library Association (mlanet.org), the Health on the Net
Foundation (hon.ch), the National Association of Boards of Pharmacies (nabp.pharmacy), and LegitScript
(legitscript.com).
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Authorship credibility is an emerging area of focus with the proliferation of cyber deviance and fake news on social
media platforms (Viviani and Pasi 2017). For web and blog channels, if authorship information is present, initial author
credibility is inferred from site and page-level credibility scores. For forums, such information is derived from
community-level measures such as up/down votes on postings. For social media platforms, initial credibility is derived
from existing databases or computed, using metrics such as TwitterRank (Weng et al. 2010).

While information quality from the databases we use to seed credibility is high, coverage is limited — typically less than
5% of all domains, URLs, and users. For instance, most of the aforementioned domain-level databases contain
information for only thousands out of the millions of medical websites, pages, and authors existing online (Abbasi et
al. 2012). To extrapolate this information to each URL evaluated by HealthSense for collection, we use graph
propagation methods to project credibility information to unknown nodes (Gydngyi et al. 2004). CAM utilizes a multi-
level bi-directional graph-based algorithm that propagates over site, document, and author-level hyperlink graphs to
compute the credibility of all nodes in the multi-level graph, including the candidate URLs. Bi-directional propagation
allows for more efficient and effective usage of existing credibility information in sparse-graph situations where only
retrieved and candidate nodes are available. The algorithm employs trainable parameters for initial versus propagated
credibility, inbound versus outbound propagation, and cross-layer propagation.

In the document-level graph, a “document” refers to content with a unique URL, as in the case of a web page or
blog page. For forum posts or social media messages with unique pages (URLs), a document would be the page
associated with that particular post or message. However, for some forums or social media, it might be the thread page
containing multiple posts/messages. Each node v is assigned an initial credibility score C';(v) depending on database
coverage and node type (e.g., site, document, author). Regarding sites and pages/documents, depending on the database
used to seed credibility, information may be available at the individual page level, or only at the site level. If only site-
level information is available, all pages in the document graph are assigned the same credibility label as the site. If the
converse is true and only page-level credibility is known, the site is assigned a credibility score equal to the average of
all known pages belonging to the site domain. Once the initial C’; (v) has been computed for each of the collected nodes
and candidate URLSs, credibility scores are propagated to all other nodes in the graph.

The credibility score for any node v in the multi-level graph is computed as:
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where i and o denote the inlink and outlink edge relation types, and N; (v) and N, (v) are the sets of inlinks and outlinks
of v, respectively. The a parameter controls the relative weights of initial versus computed credibility scores, and
weights of inlinks versus outlinks are determined by the § parameter. For any candidate URL, the set of outlinks is
empty (i.e., [N, (v)| = 0), since the URL has not yet been retrieved and its outbound links are as yet unknown. For the
site and page-level graphs, in/out links denote hyperlinks pointing from one node to another. For the author-level graph,
these links represent page-level hyperlinks between pages co-authored by respective authors. That is, if page a points
to page b, in the author-level graph, each author node from a would have a link to author nodes in . Within the multi-
layer graph, cross-layer links (i.e., those between site and page nodes, pages and authors, and sites and authors), do not
have directionality since these are not hyperlinks pointing from one site (page) to another, or directed between-author
links. Hence, H(v) are the set of links of v with nodes from the other two layers in the graph. The parameter y
determines the relative weight given to cross-layer links. The GNN uses the output of the graph propagation process
described, C'(v), as an input in X,,. It is important to reiterate that the credibility scoring GNN does not use edge-
conditioned node embeddings, but rather the embedding described in equation (2), as no topic and sentiment
information is yet available for edge vectors (that is done later in RAM). CAM is intended to efficiently make an initial
determination of document nodes without in-depth content analysis. As noted earlier, and later demonstrated
empirically, our proposed multi-level bi-directional graph propagation approach used in concert with a GNN for
credibility assessment, allows markedly better listening capabilities in the form of higher precision and recall, allowing
efficient prioritization of relevant information to allow for timely collection.

5.3 Landscape Assessment Module (LAM)

The landscape assessment module (LAM) in HealthSense determines the potential for any given candidate URL to lead
to additional relevant information by analyzing a labeled graph of all collected and candidate URL nodes. The context
scoring GNN uses a training set encompassing subgraphs for documents with class labels indicating whether they led
to relevant pages within y hops. For a candidate URL v, it generates a context score L(v). As input for the GNN’s edge-
conditioned node embeddings (see equation (3)), each x,, comprises features representing the node’s channel source,
estimated topic relevance, and estimated sentiment relevance. Channel sources are represented in x,, as a two-bit

15



encoding. Average estimated topic and sentiment relevance scores across all inlinks of v are provided by the RAM
module. Additionally, the topic and sentiment relevance scores from anchor text surrounding in-bound links from each
u towards target document v are used to construct the x¢,, ., edge feature vectors in the GNN.

5.4 Prioritized Collection Based on RAM, CAM, and LAM

Bringing all modules together, candidate URLs are collected based on their rank defined as

0if Cw) < T,
P(v) = SWifCWw)= Teand S(v) = T 7
SW)+LWw)if Clv) = Tpand S(v) < Tg,

where S(v), C(v), and L(v) represent the aforementioned GNN-classifier scores from the RAM, CAM, and LAM
modules, respectively, and T, and T represent minimal credibility and relevance thresholds. Note that URLs below a
certain credibility score are given the lowest possible priorities, although credibility scores are updated periodically
based on more complete graph information and may rise above this threshold in any given update. This allows the RAM
module to only be run on a subset of URLs. Likewise, the LAM module is only run for URLSs that fall below a certain
relevance threshold. URLs with L(v) = 0 are those with promising landscape contexts, and this score can help boost
the relevance of a borderline candidate URL. The hierarchical flow of module execution for each URL significantly
improves runtime for the HealthSense system. For simplicity, we use 0.5 as the threshold for T, and Ty, as this is also
the standard classification cut-off used by our GNNs during the training phase. Tuning of these thresholds could lead
to further improvement.

6 Applications and Evaluation

In order to evaluate HealthSense, we constructed a large-scale test bed and used it to explore two public health 3.0
tasks: (1) post-marketing drug surveillance (PMDS) and (2) synthetic opioid batch surveillance. As discussed in our
motivating case above, the opioid listening task requires the detection of positively valenced content related to opioid
usage in near real-time in order to be helpful to emergency responders, ER physicians, and law enforcement. For
PMDS, although pharmaceutical companies are required to perform rigorous testing to ensure the safety of drugs
before they may be sold to consumers, inevitably issues of adverse reactions or other unintended consequences
occasionally arise after a drug is on the market. Because of the high social and monetary costs associated with these
incidents, pharmaceutical companies, as well as other stakeholders such as regulators, watchdog agencies, and even

adverse reactions or other issues. Content posted on online platforms as consumers and providers discuss the drugs in
question, particularly with a negative sentiment, provides a rich source to monitor for such signals. Accordingly, we
use HealthSense to identify negatively valenced content from online platforms for use in PMDS tasks.

For both tasks, PMDS and opioid listening, we evaluate the amount of relevant content collected at various milestones
by HealthSense compared to leading benchmarks. For the PMDS task, we also perform a field study, including a user
experiment and disproportionality analysis, in order to evaluate the practical value of HealthSense. In the following
sections, we describe the test bed data, comparison methods used, and detailed results of our field study and evaluation.

6.1 Testbed Construction

HealthSense is a social listening tool which intelligently senses and prioritizes collection of content most useful for a
specified task. This intelligent sensing provides the efficiency imperative for public health tasks — the same
information could be obtained by a simple crawler collecting all links, although in a much longer period of time and
buried in a mountain of additional useless content. To evaluate the effectiveness and efficiency of HealthSense in
gathering task-relevant information, we developed a test bed of all information that could be collected by a simple
crawler given unlimited time. From a set of 100 seed URLs of health and drug-related sites, a simple crawler was used
to collect the content of over 37 million distinct URLs from websites, forums, blogs, and social networking sites.
Following prior work (Pant and Srinivasan 2005; Srinivasan et al. 2005; Fu et al. 2012), to determine the relevancy of
each URL to the PMDS and opioid surveillance tasks, a gold-standard classifier too computationally expensive to be
used for data collection was trained based on a training set of 2000 relevant and 2000 irrelevant pages manually labeled
by two domain experts for each task.!

!'In order to validate the results of the gold-standard classifier for evaluation, we conducted additional tests (available upon
request) noting the performance to be statistically indistinguishable from that measured on the manually labeled URLs.
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(i.e., page). This part involved assessing whether a page indeed referenced an entity of interest for that particular
testbed. Next, where a relevant entity existed in the page, the valence of the entity mention was assessed. For the first

prior IS/online studies. The former are well-suited for health domain-specific valence annotation whereas the latter
offer guidelines on assessment of valence for an array of subtle private states manifesting in user-generated text, such

noted, for the opioid (PMDS) listening task, positive (negative) valence pages were deemed relevant.

~ Table4:TestBedOverview

Source Total PMDS Task Opioid Task
Relevant Irrelevant % Relevant Relevant Irrelevant % Relevant
Website 14,281,509 1,582,096 12,699,413 12.46% 860,012 13,421,497 6.41%
Blog 4,111,213 387,827 3,723,386 10.42% 624,424 3,486,790 17.91%
Forum 3,553,363 488,839 3,064,524 15.95% 367,418 3,185,945 11.53%
Social Network 15,118,657 2,410,606 12,708,051 18.97% 1,213,490 13,905,167 8.73%
Total 37,064,742 4,869,368 32,195,374 13.14% 3,065,343 33,999,398 9.02%

On average, these pages comprised 1,687 words/tokens. The annotators labeled an additional 12,000 test pages as
relevant/irrelevant to PMDS and opioids. Following best practices (Abbasi et al. 2018), the experts underwent two
rounds of discussion to resolve differences after independently annotating 100-page samples. They each then
independently labeled all training and test cases, meeting after every 1000 instances to resolve differences. Before
resolving differences, Cohen’s Kappa across all 16,000 instances was 0.95 and 0.93 for PMDS and opioid tasks,
respectively, representing very good inter-rater agreement. Consistent with prior work (Fu et al. 2012; Menczer et al.
2004), this SVM classifier using over 100,000 n-gram features (n = 1, 2, 3) was designed to be highly accurate but is
unsuitable for time-sensitive tasks. Evaluation on an independent set of 12,000 test pages found it to have relevance
classification accuracies of 97.2% and 95.3% on the PMDS and opioid tasks, respectively. The classifier was applied
to the entire set of 37 million URLs to determine the relevancy of each, as summarized in Table 4.

Table 5: Baseline and benchmark comparison methods

Method Reference Description

Graph Neural Networks
Heterogeneous (Wang et al. 2019) | Each candidate URL’s relevance score is calculated using a GNN relevance classifier that takes into
graph attention account node and link type information and hierarchical attention. Node types are defined by the 4
network (HGAN) channels and topic/sentiment scores derived using BERT (i.e., 16 types). Link types are in- and out-

links.

Het. graph neural
network (HGNN)

(Zhang et al. 2019)

Each candidate URL’s relevance score is calculated using a GNN relevance classifier that takes into
account node type information (similarly to HGAN).

Graph attention

(Velickovié et al.

Each candidate URL’s relevance score is calculated using a GNN relevance classifier that implicitly

network (GAT) 2018) captures the weights for all edges with parametric weights.

GraphSAGE (Hamilton et al. Each candidate URL’s relevance score is calculated using a GNN relevance classifier that samples
(GSage) 2017) neighboring nodes and assumes they contribute equally.

Graph conv. (Kipfand Welling | Each candidate URL’s relevance score is calculated using a GNN relevance classifier that explicitly
network (GCN) 2017) captures the weights for all edges with fixed non-parametric weights.

Focused crawlers utilizing hyperlink graph information

Graph-Based

(Fu et al. 2012)

Candidate URLSs are ranked based on their topic and sentiment composition across the hyperlink

Sentiment (GBS) graph, relative to known relevant and irrelevant URLs
Hopfield Net (HFN) | (Chau and Chen Each candidate URL has weighted links from inbound nodes in a single-layer neural network, where
2007) weights, activation, and loss are handled using feed-forward, back propagation based on actual
relevance once collected
Context Graph (Diligenti et al. Candidate URLSs are ranked based on their classification scores using a series of Naive Bayes
Model (CGM) 2000) classifiers each trained on documents that are exactly n hops away from relevant content, with n=0

indicating directly relevant content

Node embeddings learned using neural networks

17




DeepWalk (DW) (Perozzi et al. Node random walk sequences over the hyperlink graph are input into a skip-gram (neural network
2014) with one hidden layer) to construct node embeddings used to rank candidate URLs based on cosine
similarities with known relevant and irrelevant URLs
Node2vec (N2V) (Grover and Node breadth-first and depth-first random walk samples over the hyperlink graph are input into a
Leskovec 2016) skip-gram model (neural network with one hidden layer) to construct node embeddings used to rank
candidate URLs based on cosine similarities with known relevant and irrelevant URLs (i.e., similar
to DW, but with breadth/depth control)
Focused crawlers utilizing link context
Keyword (KW) (Aggarwal et al. TF-IDF vectors for a select pre-defined list of keywords are extracted from the content of the
2001) training URLs and used to rank candidate URLs for collection based on vector cosine similarities
with known relevant and irrelevant URLs
Vector-Space (Aggarwal et al. TF-IDF vectors for all present tokens are extracted from the content of the training URLs and used
Model (VSM) 2001) to rank candidate URLs for collection based on vector cosine similarities with known relevant and
irrelevant URLs
Naive Bayes (NB) (Pant and N-grams are extracted from the content of the training URLSs as features in a naive Bayes classifier
Srinivasan 2005) for ranking candidate URL relevance probability
BERT (Yang et al. 2022) | Candidate URLs ranked based on relevance scores computed using a BERT-base model further
fine-tuned on our relevant versus irrelevant training cases.
Baseline crawlers
Breadth-First (Chau and Chen Each candidate URL is collected in a breadth-first queue from the list of seeds
Search (BFS) 2003)
PageRank (PR) (Brin and Page Each candidate URL is collected in decreasing order of PageRank computed from existing URL
1998) graph prior to collection

6.2 Data Experiment

HealthSense was evaluated against a set of baselines and leading benchmark methods for social listening on both
PMDS and opioid listening tasks. Because of potential sensitivity to seeding, each method was evaluated based on
average performance in collecting URLs across 10 separate runs, each run seeded with a random subset of 200 seed
URLs from a pool of 500 seed URLSs (distinct from those used in test bed construction). Each benchmark method was
trained as described in Table 5 to identify pertinent content based on the 4,000 expert-labeled URLs.

In Table 6 and Figures 7 and 8, we evaluated the performance of the HealthSense system and benchmarks by
comparing precision, recall, and f-measure metrics. In Table 6, the AUC values in the first three columns are the areas
under the curve for the f-measure, precision, and recall curves depicted in Figure 7 and 8 — a measure of the overall
shape of the curves, with percentages closer to 100% indicating better performance. Note that due to space limitations,
we only plotted the top two comparison methods from each category. The HealthSense system attained 75.1% of all
relevant pages for the PMDS task within the first 5 million URLs collected, with a precision of 72.6%. These figures
are more than double those of the best comparison method, HGAN. For the opioid surveillance task, HealthSense was
2.4x better than HGAN at 5 million URLs.

At 10 million URLs collected, HealthSense identified 99.9% of all relevant pages for both tasks, while HGAN lagged
behind at between 53-67%. HealthSense outperformed other advanced GNN and graph analytics methods by even
wider margins. As may be seen Figure 7, this advantage is not limited to any particular channel, with HealthSense
performing consistently across website, blog, forum, and social networking formats. With regard to timeliness, it is
important to note that server response represent the sole bottleneck for collection — algorithm runtimes are significantly
shorter than the time spent waiting on requested pages. Therefore, the time spent in collection is a linear function of
the performance noted in Table 6 and Figures 7 and 8. For instance, HealthSense can reach 75% recall after collecting
5 million pages — approximately 2.5x faster than HGAN, which would need to collect 12 million pages, and over 4x
faster than a baseline BFS (22 million pages). Exact collection times are highly dependent on network and collection
infrastructure.

It is clear from the results that HealthSense is extremely effective and efficient at prioritizing and collecting relevant
information for social listening tasks, significantly better than existing state of the art methods. As we later demonstrate
with our field study, these performance lifts translate into significant improvements in downstream listening tasks —
e.g. allowing key stakeholders to identify important adverse events faster and more accurately. In order to demonstrate
how theory-guided design elements in HealthSense impact its overall performance, we performed an ablation analysis
(Padmanabhan et al. 2022). Consistent with prior machine learning-oriented design evaluation (Yang et al. 2022), we
conducted a leave-out analysis at the module and individual component level, using ablation settings as described in
Table 7. For module-level, we examined performance deltas attributable to excluding CAM and/or LAM modules
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from HealthSense. Connecting to Table 2, this category of ablation analysis is analogous to excluding the entire
columns related to requirement (2) and/or (3). Component-level ablation focused on the impact of excluding specific
elements related to individual cells labeled in Table 2.

The values depicted in Table 8 are the percentage degradation in performance when each component is excluded from
HealthSense. Based on the first three rows (for each testbed), performance suffers significantly when excluding CAM
or LAM, and even further if both are removed. Ablation of components (a) thru (j) highlight the importance of
individual design elements (all paired t-test p-values < 0.01). The most impactful are elements i and j which relate to
our extension to Activity Theory. This analysis demonstrates the significant value contained in multiplex interactivity
relationships through which information propagates on online platforms.

Table 6: Percentage AUC Values and F-measure, Precision, and Recall at 5 and 10 Million

PMDS Tasks

Method AUC Values* @5M @10M
F-Meas Prec Rec F-Meas Prec Rec F-Meas Prec Rec
HealthSense 44.7 37.9 91.8 73.8 72.6 75.1 65.8 49.1 99.9
HGAN 33.2 26.0 79.1 35.9 35.2 36.7 42.9 31.7 66.3
Graph HGNN 31.3 24.3 76.3 33.7 32.5 35.0 40.2 29.4 63.4
Neural GSage 29.8 22.8 74.7 32.0 30.0 34.2 37.9 27.3 62.0
Networks GAT 28.9 22.0 73.9 31.2 29.0 33.9 36.8 26.3 61.3
GCN 28.1 21.3 73.1 30.5 27.9 33.5 35.7 25.3 60.7
Hyperlink GBS 32.2 25.1 75.9 33.9 33.5 343 38.4 28.6 58.7
Graph CGM 28.3 20.5 70.2 23.3 23.0 23.6 31.5 23.4 48.1
HFN 21.9 15.1 58.0 14.9 14.7 15.1 22.2 16.5 33.9
Node N2V 25.3 18.1 64.1 19.8 19.5 20.0 254 18.9 38.7
Embedding | DW 24.0 16.3 63.1 154 15.2 15.6 23.0 17.1 35.2
BERT 254 17.5 65.5 16.8 16.7 16.9 25.0 18.7 37.7
Link NB 24.5 16.8 64.2 16.2 16.1 16.4 24.1 17.9 36.8
Context KW 21.2 14.5 56.8 13.2 13.0 13.3 19.9 14.8 30.4
VSM 19.9 13.3 55.0 10.3 10.2 10.4 16.0 11.9 24 .4
Baseline BFS 25.5 19.6 62.5 24.8 24.5 25.1 26.5 19.7 40.4
PR 19.9 13.9 52.9 12.8 12.6 12.9 18.8 14.0 28.6

Opioids Task

Method AUC Values* @5M @10M
F-Meas Prec Rec F-Meas Prec Rec F-Meas Prec Rec
HealthSense 33.1 25.9 90.6 51.7 41.7 67.9 47.6 31.2 99.9
HGAN 21.3 14.5 73.8 21.9 17.5 29.2 24.8 16.1 53.8
Graph HGNN 19.8 13.2 72.5 20.3 15.7 28.6 22.4 14.3 51.8
Neural GSage 18.3 12.1 70.9 18.8 14.1 28.3 20.6 12.9 51.8
Networks GAT 18.1 11.9 70.4 18.5 13.8 27.9 20.3 12.7 51.2
GCN 17.9 11.8 69.9 18.2 13.6 27.6 20.0 12.5 50.5
Hyperlink GBS 20.5 13.8 72.5 17.8 14.4 23.4 234 15.3 49.9
Graph CGM 18.4 12.0 67.0 16.4 13.2 21.5 194 12.7 41.3
HFN 14.8 9.2 57.7 9.6 7.7 12.6 154 10.0 32.7
Node N2V 174 11.3 63.8 15.3 12.3 20.0 18.2 11.9 38.7
Embedding | DW 16.6 10.3 63.1 11.8 9.6 15.6 16.5 10.8 35.2
BERT 17.5 10.9 65.4 12.9 10.5 16.9 17.9 11.8 37.7
Link NB 16.9 10.5 64.2 12.5 10.1 16.4 17.3 11.3 36.8
Context KW 14.3 8.8 56.1 9.0 7.2 11.8 16.1 10.5 344
VSM 13.3 8.2 54.1 7.5 6.1 9.9 12.3 8.0 26.1
Baseline BFS 15.5 10.2 58.0 12.4 10.0 16.3 14.2 9.3 30.3
PR 13.2 8.2 51.3 8.8 7.1 11.5 12.5 8.2 26.6

* All AUC values are calculated as area under the relevant curve across all possible collection cutoffs
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Table 7: Ablation settings

(a) | Exclude author content features from topic/sentiment classifiers

(b) | Replace channel-specific classifiers with a single topic and sentiment classifier

(¢) | Exclude channel/source features

(d) | Omit the lexicon-based semantic entity tags

(e) | Replace seed credibility scores with random values between 0-0.1 (similar to PageRank) and set aineq. 7 to 0
(f) | Exclude topic and sentiment classifiers from RAM, replacing with single relevance classifier per channel
(g) | Omit topic and sentiment classification scores from LAM

(h) | Exclude author/site linkage features

(i1) | Omit bi-directional edge relations from GNNs (eqgs. 2-3) and credibility graph (eq. 7)

(i2) | Exclude author and site graphs

(j1) | Exclude graph propagation, directly using only seed credibility scores in the GNN

(j2) | Remove graph embedding (eq. 4), replacing it with a standard dense layer

Table 8: Ablation Analysis: Percent Degradation in HealthSense Performance by Excluded Component

PMDS Task
Method @5M @1om AUC Values
F1 |Prec| Rec | F1 | Prec | Rec
CAM (2) 34.3| 39.5| 20.3| 30.5| 379 86
LAM (3) 25.1| 31.8
CAM and LAM (28&3)
Author tendencies |(a) Author content features 8.8/ 7.4| 10.2| 15.1| 17.6| 9.4 6.3 44 49
(b) Channel-specific classifiers 9.4| 9.8 9.0 16.7] 19.0, 11.5( 7.4, 8.3 4.5
Channel context
(c) Channel source context 13.8| 16.6| 10.7| 18.2| 21.9] 94| 121 21.4| 4.1
. (d) Semantic entity tags 12.7| 13.8) 11.5| 11.3] 11.9| 10.1 8.7 6.9 5.5
Community norms ——— -
(e) Seed credibility information 19.5| 25.6| 12.0/ 17.1| 18.8/ 13.3| 21.3| 33.0/ 84
(f) Topic and sentiment classifiers 8.9 52| 12.4| 13.7| 16.5 7.6 8.3 7.5 54
Content language - - -
(g) Topic/sentiment labels in graphs 14.8| 16.0 13.7| 23.1| 28.5|] 9.3| 13.0f 23.5| 3.7
(h) Author/site linkage features 15.3| 13.3| 17.2| 15,5/ 16.6| 13.0, 10.8/ 8.7| 8.0
Inter-activity (i1) Bi-directional relations 18.6| 22.7| 13.9] 22.6/ 25.2| 16.6/ 16.6| 20.6| 7.4
relationships (i2) Author & site graphs in CAM/LAM | 20.8| 20.5| 21.2| 24.6| 28.6/ 15.0/ 18.5| 23.8| 8.5
(i3) i1 and i2 25.0) 23.6| 26.4| 30.9| 36.2 17.0( 19.9] 30.9| 7.4
inf ’ (j1) CAM graph propagation 23.0) 20.9| 25.1| 24.4) 288 13.6| 24.4| 33.5| 9.1
p"r;’;:;;'gr‘] (i2) Graph embeddings in GNNs 19.0 18.0] 20.0] 231 255 17.5| 21.4| 198 7.4
(3) 1 and 2 305 28.5] 32.4] 30.1] 34.3] 19.7] 20.6] 38.5] 4.3
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Opioid Task
@5M @1omMm AUC Values
Method F1 |[Prec| Rec | F1 |Prec | Rec | F1 | Prec | Rec
CAM (2) 35.6/ 46.5| 14.6
LAM (3) 38.5| 40.9| 29.6| 29.7| 39.2| 10.6
CAM and LAM (283)
Author tendencies |(a) Author content features 9.5| 95| 93| 18.2| 20.8/ 8.6 151 19.8/ 3.9
Channel context (b) Channel-specific classifiers 9.7| 7.0/ 13.8| 13.0/ 15.3] 4.5 14.2| 226 2.5
(c) Channel source context 30.9| 37.1| 17.7| 31.7| 36.5| 9.8 25.1| 40.2| 438
Community norms (d) Semantic entity tags 18.6| 20.8| 14.7| 17.7| 20.6 6.8 16.6| 17.5 5.2
(e) Seed credibility information 23.2| 236] 226] 32.2] 36.3] 14.6] 39.5[0618 10.2]
Content language (f) Topic and sentiment classifiers 20.2| 245 12.0/ 14.3| 16.4 6.5 14.7| 17.1 3.6
(g) Topic/sentiment labels in graphs 31.3| 37.5| 17.8| 27.6| 326/ 5.1 27.3| 457 56
(h) Author/site linkage features 10.9| 12.6| 7.9 17.2| 18.9| 11.2| 179 20.7| 64
Inter-activity (i1) Bi-directional relations 31.2| 37.6| 17.4/ 34.4| 39.1| 126/ 29.0( 40.8) 95
relationships (i2) Author & site graphs in CAM/LAM | 32.1| 38.2| 19.0| 34.7| 39.3| 13.7| 31.6| 46.1| 9.7
(i3) i1 and i2 354| 421| 20.5 37.4| 419 16.8| 32.1| 49.2| 10.7
Information (j1) CAM graph propagation 43.9| 46.0| 39.9| 39.6/ 42.4| 28.6/ 39.1 10.3
propagation (j2) Graph embeddings in GNNs 33.2| 36.5| 27.00 27.6 31.7| 105 8.0
(j3) j1 and j2 47.3| 49.7| 42.8| 46.8| 49.0

* All AUC values are calculated as area under the relevant curve across all possible collection cutoffs
6.3 Field Study: HealthSense in Action

The results in the prior section demonstrate the potential for HealthSense to accurately and efficiently retrieve relevant
information from a variety of online channels for social listening. To demonstrate the downstream value proposition
of these gains, we performed a field study on the PMDS task in conjunction with a major US-based pharmaceutical
manufacturer (who, for anonymity, we will refer to as PharmCo). A common use case for safety teams tasked with
post-market drug surveillance is to use alternative data sources to examine and verify (or discredit) potential adverse
event cases stemming from customer complaints, regulatory queries, or clinical data. Two common methods for
examining event cases are (1) manual/qualitative examination of supporting evidence; (2) statistical disproportionality
analysis of adverse drug mentions. We used HealthSense to perform field experiments related to both of these case
examination methods.

6.3.1 Field Experiment Test Bed

To create the test bed for the field experiment, a team of 5 experts from the global drug safety unit at PharmCo used
the full PMDS data (encompassing over 37 million data points collected as described previously) to carefully and
thoroughly examine 100 cases reported to them over a two-week period. The team used a two-step process to examine
the cases. Initially, following standard internal protocols for examining potential adverse drug reaction accounts, team
members independently examined the PMDS test bed via custom Tableau dashboards equipped with search
capabilities and data visualization, zooming, and filtration functionalities. Each of the five team members individually
categorized each case as a “true positive” (case with supporting evidence) or “false positive” (lacking sufficient
evidence). The 5 experts then came together to discuss their case assessments and achieve consensus. Ultimately, in
their assessment of 100 total cases, the team considered 21 cases to be true positives and the rest to be false positives.
This set of cases formed the test bed for both the user experiment and disproportionality analysis described next.

6.3.2 User Experiment

In all, 77 members of the global drug safety unit at PharmCo participated in the experiment. None of the 5 experts
that assisted with test bed construction participated in the experiment. For purposes of the experiment, 20 cases were
selected from the test bed: 10 true positive cases and 10 negatives as determined by the panel of experts. Participants
were randomly assigned to one of three experiment groups, each provided with data from a different social listening
method: HealthSense, GBS (benchmark), and BFS (baseline). As shown in Table 9, the groups were not significantly
different from one another in terms of age, years of experience working on safety/ risk teams, and prior experience
working with dashboards (one-way ANOVA p-values > 0.05).
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Table 9: Summary Statistics for User Study Participants from PharmCo Global Safety Unit

Group Age Safety/Risk Experience Dashboard Experience
HealthSense Data Users 36.92 10.12 3.52
GBS Data Users 35.77 9.95 3.61
BFS Data Users 37.36 9.55 3.92

Within the experiment, all participants used the same Tableau dashboards. Each participant was given 30 minutes of
training on how to use the dashboards. They were also provided access to recorded videos with information on how
to use various features and functions of the dashboards. For each of the three experimental groups, the @5M post-
marketing drug surveillance (PMDS) collection as described in Table 6 was loaded onto the dashboards.

Participants were given 3 hours to examine the 20 cases in the user experiment test bed and categorize each as a “true
positive” or “false positive” as previously defined. This duration was chosen to be consistent with the contiguous time
blocks that safety team members routinely devote to examining cases. Following the firm’s internal protocols and
procedures, each participant was also asked to provide written evidence/examples to support their categorizations. The
participants’ categorizations and supporting responses were examined by the 5 experts. Only those true positive
responses with appropriate evidence were considered correct. After the experiment, participants completed a short
survey related to the usefulness of the PMDS data and dashboards provided. The results are summarized in Table 10.
Participants using the HealthSense data were not only able to identify true positives with significantly higher precision
and recall than those using GBS or BFS data, but were also significantly better at identifying false positive cases.
These results suggest HealthSense effectively supports the societal benefits of faster, more effective adverse event
identification while simultaneously reducing PMDS investigation costs.

Table 10: Field Ex

eriment Results for HealthSense and Comparison Methods

Group PTP Precision | PTP Recall PTP F-Measure FP Precision FP Recall FP F-Measure
HealthSense Data Users 85.34 81.54 82.97 83.31 85.77 84.12
GBS Data Users 70.24 65.00 65.99 69.05 71.15 68.87
BFS Data Users 63.32 63.08 62.25 66.58 66.54 65.50

6.3.3 Disproportionality Analysis Case Study

In addition to its usefulness for vetting reported adverse drug events, many stakeholders, including pharmaceutical
companies, regulators, and healthcare hedge funds, stand to benefit from early detection of such adverse events prior
to reporting. Disproportionality analysis (Rothman et al. 2004) is a commonly used technique for automatically
detecting adverse events from various data sources by comparing the occurrences and co-occurences of entities and
outcomes in a corpus. To see how accurately these events could be detected solely based on data gathered by our
social listening platform as compared to others, we performed disproportionality analysis using data from
HealthSense, GBS, and BFS at the 5 million URL collection threshold.

For purposes of the disproportionality analysis, we measured co-occurrence of drug and reaction tuples within
documents using the reporting odds ratio (ROR) metric. Tuples with 95% confidence of ROR>1.0 were considered
positive predictions. Note that since disproportionality analysis was performed at the drug-reaction tuple level, cases
comprised of more than one reaction related to a drug could allow for multiple drug-reaction true positives for the
same case. Performance was evaluated using recall of the 21 possible true positive cases, and precision defined as
proportion of all positive signals that related to true positives identified by the experts. Table 11 summarizes results.
Relative to the user experiment, HealthSense demonstrated even higher performance gains. Using HealthSense data,
recall for the disproportionality analysis was 36% higher and precision 81% higher than that achieved using GBS.
Through the use of data efficiently gathered by HealthSense, it is clear that pharmaceutical companies or other
stakeholders could effectively use social listening to discover significantly more true adverse events, while
substantially reducing time and resources spent investigating false positives.

Table 11: Event Detection Results for HealthSense and Comparison Methods

ROR Data Unique Event Cases True Positive False Positive Case Signal
Detected Signals Signals Recall Precision
HealthSense Data 15 23 26 71.43 46.94
GBS Data 11 14 40 52.38 25.93
BFS Data 10 12 42 47.62 22.22
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7 Discussion and Conclusion

In this study, we propose HealthSense — an effective, efficient social listening platform that can be used to provide
timely, granular, and actionable data for time-sensitive analysis in support of public health tasks. Through a variety of
real-world use-cases, we demonstrate that it is capable of providing significant value and improvements in public
health outcomes, especially in time-sensitive situations. It significantly outperforms currently available tools for social
listening — creating new possibilities for aiding time-sensitive public health informatics.

From a computational design perspective (Rai 2017; Padmanabhan et al. 2022), we make five distinct contributions
to research and practice. First, we show that theory-guided social listening artifacts can seamlessly combine relevance,
credibility, and cross-channel landscape assessment to enable markedly better public health sensing capabilities. In
order to meet the challenges of the 21 century, including improving the social determinants of health (Wang and
DeSalvo 2018), social listening platforms must shift from the data collection and information retrieval paradigm
towards intelligent sensing. In the same vein as prior IS design research in societally impactful contexts such as
emergency response (Chen et al. 2013), our work underscores the value of using Activity Theory to understand the
complexities and nuances of online social activities and content creation via digital communication. The combination
of the Activity Theory framework along with theories regarding contextual information quality were instrumental in
facilitating more accurate and efficient listening capabilities in our proposed artifact.

Second, through our design process, we develop and propose an extension to existing Activity Theory literature, which
addresses gaps in its ability to describe communication activities on modern online platforms — specifically the ability
to capture information hidden in the multiplex relationships between communication activities. As part of our design
framework developed based on this extension, we propose novel credibility and relevance assessment mechanisms
that use graph propagation and content-based classifiers in conjunction with state-of-the-art graph convolutional
networks that employ node and edge-conditioned embeddings. We then use rigorous and detailed evaluation of our
artifact to empirically demonstrate that the inclusion of these mechanisms based on our extension to Activity Theory
drastically improves the capabilities of our proposed social listening artifact. This novel contribution back to theory
and demonstration of its value opens new opportunities for researchers to use the Activity Theoretic lens to address
further issues relating to communication activities on modern online platforms.

Third, in designing our artifact, we contribute to knowledge on graph neural networks through two novel extensions
to this methodology. First, to address issues related to label sparsity, we couple graph propagation methods with graph
neural networks. This allows us to propagate sparsely known seeding information across the network, improving
performance of GNNs which perform better in low-sparsity environments. This extends limited prior work in this area
by Bojchevski et al. (2020). Second, we extend the GNN architecture to include bi-relational edge-enriched node
embeddings informed by domain-adapted feature-based classifiers. This allows for parsimonious representation of
crucial information about in- and out-bound links to be utilized in relevance and landscape assessment. Through our
ablation analysis, both of these novel extensions were shown to add significant value to our social listening artifact.

Fourth, we show that in dynamic environments involving machine learning applied to complex user-generated content,
artifacts guided by human-centered theories and intuition remain critical complements to automated Al-driven
techniques. State-of-the-art learning representations such as graph convolutional networks (Wu et al. 2021) using
edge-conditioned node embeddings represent powerful new methods for deriving graph-based patterns related to
credibility and relevance. However, in emergent contexts such as the early stages of social listening, these methods
are at their best when used in combination with theory-supported methods to represent heterogeneity and extract
context from limited available information. We believe our work is a microcosm of how technical research can
combine cumulative knowledge with state-of-the-art machine learning methods in the era of large-scale pre-trained
embeddings and multi-billion parameter universal language models.

Finally, our results across data, user, and event experiments demonstrate the downstream value chain associated with
effectively designed social listening artifacts. Calls from champions of the public health 3.0 movement for timely,
granular, and actionable data point directly to the prospects of tangible value that may be obtained through improved
public health outcomes (Wang and DeSalvo 2018). Yet, without direct evidence, the presumption of value from such
data and related analyses remains unclear. In our study, we show that HealthSense identified over 90% of relevant
information for specified tasks by analyzing less than 20% of data. Through our partnership with the
pharmacovigilance team at a major US pharmaceutical manufacturer, we further are able to show how this
improvement translates into actual improvements in the downstream value chain. Data gathered by HealthSense
resulted in a 36% improvement in recall and 81% improvement in precision in automated analysis, and a 22%
improvement in recall and 25% improvement in precision for downstream manual investigation of potential adverse
drug reactions. These real-world improvements in both effectiveness and efficiency of downstream analytics point
directly to the impacts on public health outcomes made possible by HealthSense.
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Our work also has potential applications beyond those in the public health domain. Social listening capabilities can be
beneficial in a variety of contexts—a prime example is digital marketing. Although social listening is prevalent in this
context, marketing research and practice have largely focused on use cases that do not require near-real-time analytics,
2014). Alternatively, when near-real-time analysis is an important aspect of the use case, the focus is often on a single
platform with ready access to data through native tools or APIs, such as in the case of targeted advertising and
messaging based on social media activity (Adamopoulos et al. 2018). Our system has significant utility specifically in
circumstances where time is of the essence and information is required from a wide variety of online channels. For
instance, in identifying and responding to users omnichannel product discussions and purchase behaviors (Cui et al.
2021; Sun et al. 2022), or in crisis identification and response, detecting groundswells of negative reaction to products
or company activities (Hewett et al. 2016). Work in these areas has largely, to date, been focused on retrospective
analysis, but in practice would require a social listening tool such as ours in order to enable near-real-time responses.

Our work is not without its limitations. Importantly, our models are only able to account for a small portion of the
totality of complexity present in online communications. For instance, beyond establishing norms that contextualize
communications, online communities provide social structures within which authors and their contributions are
evaluated, which provides further context. Complexities such as this are difficult to capture, but could provide
significant value. Our artifact also requires startup costs in the form of the creation of small task-relevant training sets
for seeding. So, while useful for monitoring time-sensitive information for stable tasks, it may be less effective for
exploratory tasks devoid of domain knowledge. Future extensions could address this issue. Our listening testbeds also
focused on text-based content. Recent work has underscored the importance of health-related video and audio content
(Li et al. 2019, Liu et al. 2020), and we believe future work should extend public health listening to multimedia
contexts. In sum, despite these acknowledged limitations, we believe this work has important implications for IS
research at the intersection of design and data science that integrates social-technical concepts into novel domain-
adapted machine learning artifacts in societally impactful contexts, and for practitioners requiring data from online
platforms to fuel time-sensitive informatics.
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