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Abstract 

Every day patients access and generate online health content through a variety of online 
channels, creating an ever-expanding sea of data in the form of digital communications. At the 
same time, proponents of public health have recently called for timely, granular, and actionable 
data to address a range of public health issues, stressing the need for social listening platforms 
that can identify and compile this valuable data. Yet previous attempts at social listening in 
healthcare have yielded mixed results, largely because they have failed to incorporate 
sufficient context to understand the communications they seek to analyze. Guided by Activity 
Theory to design HealthSense, we propose a platform for efficiently sensing and gathering 
data across the web for real time analysis to support public health outcomes. HealthSense 
couples theory-guided content analysis and graph propagation with graph neural networks 
(GNNs) to assess the relevance and credibility of information, as well as intelligently navigate 
the complex online channel landscape, leading to significant improvements over existing 
social listening tools. We demonstrate the value of our artifact in gathering information to 
support two important exemplar public health tasks: 1) performing post market d rug 
surveillance for adverse reactions and 2) addressing the opioid crisis by monitoring for potent 
synthetic opioids released into communities. Our results across data, user, and event 
experiments show that effective design artifacts can enable better outcomes across both 
automated and human decision-making contexts, making social listening for public health 
possible, practical, and valuable. Through our design process, we extend Activity Theory to 
address the complexities of modern online communication platforms, where information 
resides not only within the collection of individual communication activities, but in the 
complex network of interactions between them.  

 

Keywords: public health 3.0, social listening, activity theory, online platforms, computational 
design, graph neural networks, opioid crisis, pharmacovigilance 

 

1  Introduction  

Users access and generate health-related information through a variety of online platforms, creating an ever-expanding 
sea of data. These interactions range from online health communities (Yan and Tan 2014) to patient portals (Peacock 
et al. 2017), general microblogs such as Twitter (Barnes et al. 2019), and open discussion boards such as Reddit (Park 
et al. 2018). Prior research has focused on how patient interactions with online resources may benefit individual health 
outcomes, such as managing chronic disease (Liu et al. 2020), patient education (Hansen 2008), patient emotional 
support (Yan and Tan 2014), and clinical decision support (Wright et al. 2009).  

But beyond individual benefits, there is significant, untapped potential in leveraging these vast and various digital 
communications to address greater public health issues (Fichman et al. 2011), such as combating the opioid crisis 
(Bowen et al. 2019), detecting adverse drug events (Adjeroh et al. 2014), understanding e-cigarette trends (Cole-Lewis 
et al. 2016), and tracking disease prevalence (Yang et al. 2013). The critical and oft-ignored first step in accomplishing 
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these goals is the employment of effective social listening platforms to efficiently gather relevant information to 
support time-sensitive analytics. Indeed, a movement toward “public health 3.0” has made specific calls to address 
the dearth of “timely, granular, and actionable” data to support public health initiatives (Wang and DeSalvo 2018), 
and data from social platforms to support public health research and practice (Pagoto et al. 2019). Social listening 
platforms have been used to great effect in other areas – for instance, by marketers to understand customer opinions 
(Davis and Logan 2019; Hewett et al. 2016). However, significant limitations in available social listening platforms 
hinder them from effectively supporting public health informatics.  

The recent COVID-19 epidemic has put a spotlight on public health issues, and the need for data to support time-
sensitive decisions. For instance, Apple and Google partnered to provide health authorities with anonymized public 
movement data and contact-tracing capabilities (Apple Media 2020). However, social listening initiatives at public 
health agencies remain limited, with significant opportunity for development. Per conversations with US Health and 
Human Services officials in July 2021, aside from the public movement data, HHS has no partnerships or initiatives 
to utilize online platform data. The CDC has issued guidance for usage of “social listening and monitoring tools,” but 
only lists commercial platforms with limited data sources (CDC 2021) This leaves significant room for improvement 
in utilizing such data to support public health analytics. 

Social listening platforms applied to the healthcare context represent extreme cases regarding both the opportunity for 
improving public health and the complexity involved in the gathering, parsing, and understanding of relevant data 
(Boudry 2015; Pour and Jafari 2018). Previous attempts at social listening platforms in healthcare have had mixed 
results. In a famous example, Google Flu Trends (GFT) was designed to predict influenza cases using search data. 
Despite initial promise, the project failed (Lazer et al. 2014). Researchers pointed out that the narrow view taken by 
GFT ignores issues such as context, credibility, and the inherently omni-channel nature of online interactions 
(Broniatowski et al. 2014; Lazer et al. 2014). Traditionally, social listening has been considered a technology problem, 
but solely technology-centered solutions like the original GFT algorithm often fall short. It is challenging to extract 
meaning from online platform data, as communication is a human process (Abbasi et al. 2018). Effective health-
focused social listening platforms must be designed from a socio-technical perspective.  

In order to effectively leverage social listening to address time-sensitive public health outcomes, information must be 
gathered efficiently from a wide variety of sources spread across the digital landscape. Currently available platforms 
tend either to focus on a highly curated set of sources (Davis and Logan 2019; Sarker et al. 2015), or slowly crawl the 
web to collect data-warehouse-like snapshots of data, outdated before it is captured (Kumar et al. 2017). To design an 
improved social listening platform capable of supporting public health use cases, we utilize and extend Activity Theory 
(Chen et al. 2013; Engeström 1987; Valecha et al. 2019) to imbue it with the context of digital communications, 
allowing it to efficiently identify, cull, and gather the most relevant information across a variety of online platforms 
for use in time-sensitive analytics. Activity Theory has been utilized to great success in understanding individual 
communication processes. However the phenomenon of modern communication through myriad interconnected 
online platforms represents significantly more than the sum of these individual communications. To truly capture 
meaning from online discourse, this theory must be expanded to consider how information arises from the complex 
network of interactions between individual content, authors, channels, communities, and platforms. As we 
demonstrate, it is not only within these communication activities that information resides, but also (and often more 
importantly) between. 

Following a computational design research approach (Rai 2017; Padmanabhan et al. 2022), we propose HealthSense, 
a design artifact for social listening to collect timely, granular, actionable data in support of public health 3.0 analytics. 
The design relies critically on our extension of Activity Theory to incorporate characteristics of the multiplex 
relationships between authors, channels, communities, and content which arise as information propagates through 
online platforms. The context concealed in these relationships provides the key to designing an effective social 
listening system. To demonstrate the efficacy and value of HealthSense, we run a series of experiments on a large 
health dataset encompassing 37 million data points related to opioids and adverse drug events. Data experiments reveal 
that HealthSense efficiently identifies over 90% of task-relevant content from only 20% of the data – much faster than 
comparison methods including state-of-the-art deep learning techniques. User and event detection experiments with a 
major pharmaceutical drug safety team show that HealthSense’s performance facilitates better automated detection 
and allows analysts to make more accurate decisions related to adverse drug events.  

Our work makes several contributions to research and practice. First, we develop a novel artifact guided by Activity 
Theory that seamlessly combines relevance, credibility, and cross-channel landscape assessment to enable markedly 
better and more timely public health listening capabilities. Second, through our design process, we propose an 
extension to Activity Theory to include multiplex relationships between activities that are critically important, 
particularly when analyzing communication activities within highly connected online platforms. Third, we extend 
knowledge of graph neural networks through two novel extensions which improve the performance of these methods. 
Fourth, more broadly, we show that in time-sensitive environments at the intersection of Big Data and machine 
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learning, artifacts guided by human-centered theories and intuition are critical complements to automated AI-driven 
techniques. Finally, our rigorous evaluation across data, event, and user experiments show that effective design 
artifacts can make social listening for public health possible, practical, and valuable. 

 

2  Background  

2 .1  The  Sta te  o f  So c ia l  L i s t en ing  Resea rc h  

The use of data from online platforms to achieve organizational or societal goals has been explored in many use cases. 
Among the most prevalent has been opinion mining – analyzing user generated opinions shared on social media 
platforms regarding brands and products for various marketing purposes (Adamopoulos et al. 2018). Content from 
health forums and other online platforms has been analyzed to support health outcomes, such as the design of tools 
for detecting adverse drug events (Adjeroh et al. 2014) and for understanding how patient support forums assist in the 
management of chronic diseases (Dadgar and Joshi 2018). However, a common characteristic among the vast majority 
of studies that seek to leverage data from online platforms is that they are largely focused on explaining a phenomenon 
or providing a proof of concept for their methods, and take data acquisition for granted – often relying on pre-collected 
(possibly proprietary) data or a convenience sample from siloed data sources, such as the Twitter API or social 
monitoring tools such as Brandwatch (Davis and Logan 2019; McClellan et al. 2017). As discussed regarding Google 
Flu Trends, using a single, narrow data source without context can be highly problematic. 

Web crawlers or spiders provide a method for broader acquisition of large volumes and varieties of online content 
(Kobayashi and Takeda 2000). Traditionally a set of seed URLS are provided to a crawler, which recursively traverses 
out-links from those URLS and the pages they point to, eventually collecting millions of pages (or more) for analysis 
(Cho et al. 1998). While these tools are effective, they are indiscriminate in the content they collect, and very slow. 
Focused crawlers attempt to address these issues by seeking out content based on specific, predefined requirements 
(Chen et al. 2003). They tend to manage their crawl frontier (i.e., the pages to be collected) by topic prioritization 
(Pant and Srinivasan 2005). That is, the crawler typically prioritizes and determines whether to collect a given URL 
based on lexical analysis to determine topic relevance of content surrounding the link in the source page and/or in 
ancestor pages already collected (Aggarwal et al. 2001; Diligenti et al. 2000; Fu et al. 2012; Pant and Srinivasan 2005). 

While focused crawlers do provide more topic-relevant content, most do not provide the efficiency needed to support 
time-sensitive analysis. More importantly, many of these crawlers only consider lexical features to determine topic 
relevance. Some add features such as graph-based analysis (Chau and Chen 2007) and sentiment in addition to topic 
(Fu et al. 2012). Others have explored crawling web and social media for event-related information (Farag et al. 2018). 
However, for the time-sensitive analysis required for many public health use cases, there is need for a social listening 
platform that can holistically, yet efficiently, consider the context and complexities of human communication from a 
broad spectrum of online resources.  

 

2 .2  No de  Embe ddi ng s  a nd  Gra ph Neura l  Netwo rks  

Advances in neural networks have introduced new ways to represent graph-based data. Node embeddings allow local 
network neighborhood information for each node in the network to be encoded into a fixed-length vector 
representation. For instance, techniques such as DeepWalk (Perozzi et al. 2014) and Node2Vec (Grover and Leskovec 
2016) embody similar design intuitions to Word2Vec style word embeddings – that is, graph random walks are run 
through a single-layer neural network. More recent work on graph neural networks (GNN) allows node embeddings 
to be learned via message-passing as part of an end-to-end learning framework, based on how effectively they can 
support downstream classification tasks (e.g., node, edge, graph, etc.). Examples include graph convolutional 
networks (Kipf and Welling 2017) and GraphSage (Hamilton et al. 2017). Graph attention networks extend these 
methods by replacing fixed edge weights with parametric attention weights (Velickovic et al. 2018). A historical 
limitation of GNNs has been the assumption of homogeneous node and edge types (Wu et al. 2021). Heterogeneous 
graph neural networks have been proposed as a way to allow inclusion of different explicitly defined node types 
(Zhang et al. 2019), as well as attention mechanisms (Wang et al. 2019).   

For social listening platforms, GNNs afford opportunities for incorporating rich, domain-adapted graph 
representations. This is part of an exciting trend where advancements in machine learning enable the development of 
artifacts that better capture the richness of key social-technical phenomena, allowing closer alignment with underlying 
theories (Rai 2017; Padmanabhan et al. 2022; Yang et al. 2022). We propose a novel embedding fused with graph 
propagation to capture complex cross-channel individual and network-level activities. By overcoming current 
limitations of GNNs in the context of social listening such as sparse labels, scalability to larger graphs, and effectively 
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considering different types of heterogeneity (Wu et al. 2021; Dai et al. 2022; Bojchevski et al. 2020), our artifact 
outperforms existing focused crawling and GNN methods.  

 

3  An Activity Theoretic Perspective  

Digital communication is a human process, and therefore may only be truly understood from a socio-technical vantage 
point, with appropriate consideration for context that supports sense-making (Abbasi et al. 2018). Understanding this 
complex digital communication process is key in the design of an efficient social listening platform capable of 
supporting timely and relevant insights. With this goal in mind, we inform our social listening platform design by (1) 
utilizing Activity Theory to examine the creation of online content and (2) extending Activity Theory to frame digital 
communication as a multiplex communication activity. Activity Theory recognizes that an activity can be thought of 
as an interaction between a subject (usually a human being) and an object, in order to generate an outcome (Leontev 
1978), often using a tool (Kaptelinin and Nardi 2006). Engeström (1987) expanded the theory to recognize that 
activities are carried out within the context of a community. Activity Theory is not a predictive theory, but a framework 
for orienting an observer to better understand a complex, real-life problem (Kuutti 1991). It has been used often in 
studying human-computer interaction, as the use of technology is dependent on the complex, dynamic social 
environments where it takes place (Allen et al. 2013), and to inform the design of information systems (Chen et al. 
2008, 2013; Korpela et al. 2002). 

 

Figure 1: Activity framework showing Online Context Examples 

Designed as a descriptive meta-theory or framework, Activity Theory should be interpreted for the context of interest 
(Chen et al. 2013; Engeström 1987), which for our purposes is the creation of online health-related content. As 
depicted in Figure 1, in our context we understand the subject to be a user posting content, and the online channel 
(e.g., Twitter, web pages, blogs, etc.) to be the tool. Further, online communities provide important context, including 
group norms, formal and informal rules, acronyms, and coded language with special meaning. 

While this view is informative in understanding the activities of individuals, our goal is to leverage large volumes of 
online content created by the combination of these activities in order to understand public health phenomenon. As 
shown in Figure 2, information propagates within and across online platforms through communication activities that 
are not only highly interconnected, but connected by multiplex relationships of their constituent components. That is, 
not only may pieces of content be related, but the author of one piece of content may be related to a second community 
where other content was created; or the authors of two unrelated pieces of content may regularly correspond in other 
ways on the platform; or similar content may be shared across two separate channels. The interactions between the 
individual elements of communication activities (importantly author, channel, community, and content) give rise to a 
multiplex network of inter-activity relationships which can provide rich information to social listening platforms.  

While research on Activity Theory has noted the potential to consider the interactions between activity processes, this 
has largely been limited to examining pairs of activity processes to understand co-production of outputs (Allen et al. 
2013; Chen et al. 2013; Effah and Adam 2021). Outside of Activity Theory, other research streams have recently 
emphasized the importance of inter-connected activities on online platforms. Most notably, there is a quickly growing 
literature regarding omnichannel user behavior, particularly as it relates to designing and measuring marketing 
interventions and outcomes (e.g. Cui et al. 2021; Sun et al. 2022). However, even this emergent research focuses only 
on a limited subset of the multiplex relationships among activities on online platforms (namely, how individual users 
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interact with multiple channels). We propose that incorporation of a full complement of these multiplex inter-activity 
relationships is crucial to extracting information from the cacophony of communication activities on online platforms. 
When designing artifacts, kernel theories from the natural or social sciences are often used to guide meta-requirements 
and meta-design (Walls et al. 1992). However, existing individual theories are rarely used without adaptation, and 
design often requires integrating multiple theoretical perspectives (Arazy et al. 2010). This extension to Activity 
Theory represents a core component informing our meta-design, which we demonstrate to be critical in our artifact 
instantiation. Moreover, in order to meet social listening needs in the public health 3.0 context, we couple our extended 
Activity Theoretic perspective with characteristics from the context-based information quality literature. 

 

 
Note: The relationships noted in this stylized figure are only exemplar as the full complement of exponential relationships would be difficult to 

depict—each component of each activity has a potential relationship with each component of all other activities 

 

Figure 2: Multiplex relationships among communication activities on online platforms 

 

4  Requirements  & Design  

The public health domain is undergoing a paradigm shift into what has been termed “public health 3.0” (DeSalvo et 
al. 2017). A core mantra of this movement is the call for “timely, granular, actionable data” to support public health 
informatics (Wang and DeSalvo 2018). More generally, these calls point to the need for data that is relevant and useful 
to the task of public health management, which aligns with the context-based based definition of information quality 
(Nelson et al. 2005). Context-based information quality considers output from a system and determines if it is helpful 
towards the task at hand by identifying and measuring the output across relevant dimensions. As is often noted, there 
is no generally agreed-upon definition of information quality, and the literature acknowledges it is best considered a 
multidimensional constructure that has both objective and subjective components depending on the context (Arazy 
and Kopak 2011). Table 1 represents a summary of the significant research that has been performed to conceptualize 
contextual information quality in various contexts, resulting in identification of a wide range of relevant dimensions. 
In analyzing these dimensions, we identify four high-level themes which inform our requirements: Timeliness, 
Relevance, Credibility, and Completeness. In the following sections, we outline each of these requirements as well as 
how our extension of Activity Theory informs the design of our artifact to accomplish them, as summarized in Table 
2.  
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Table 1: Conceptualization of context-based information quality 
Source Timeliness Relevance Credibility Completeness Other * 

(Strong et al. 
1997) 

Timeliness Relevancy, Value-Added Accuracy, Believability, 
Consistency, Objectivity 

Completeness, Amount of 
data 

Accessibility, 
Interpretability, Ease of 

Understanding, Conciseness  

(Nelson et al. 
2005) 

Currency Meaningfulness (as part of 
Accuracy) 

Believable, 
Consistent, Correct (as part of 

Accuracy) 

Completeness Format 

(Lee et al. 

2002) 

Currency, Cycle 

time, Non-
volatility, 

Timeliness 

Content, Essentialness, 

Informativeness, Importance, 
Meaningfulness, Precision, 

Relevance, Usefulness, 

Value-added 

Accuracy, Believability, 

Consistency, Correctness, 
Credibility, Factual, Free from 

bias, Objectivity, Reliability, 

Reputation, Validity 

Appropriate amount, 

Attribute granularity, 
Completeness, 

Comprehensiveness, 

Level of detail, Quantity, 
Sufficiency 

Unambiguous, Usage 

(Knight and 

Burn 2005) 

Timeliness, 

Efficiency 

Relevancy, Useability, 

Useful, Value-added 

Accuracy, Believability, 

Consistency, Objectivity, 
Reliability, Reputation 

Amount of data, 

Completeness 

Accessibility, Availability, 

Concise, Navigation, 
Security, Understandability 

(Ge et al. 

2011) 

Timeliness Relevancy, Interpretability, 

Value-added 

Accuracy, Believability, 

Consistency, Objectivity, 

Reliability, Reputation 

Appropriate amount, 

Completeness 

Accessibility, Ease of 

manipulation, Ease of 

representation/ 
understanding, Security 

(Arazy et al. 

2017; Arazy 
and Kopak 

2011) 

Accessibility 

(discussed only 
and includes 

timeliness) 

 Accuracy, Objectivity Completeness Representation 

(Zheng et al. 
2013) 

Timeliness Value-added Objectivity, Reliability Richness Format 

(Todoran et 

al. 2015) 

Timeliness Relevancy, Interpretability Accuracy, Consistency, 

Correctness, Integrity,  

Objectivity Reliability, 
Reputation 

Completeness, Data 

amount 

Accessibility, Security, 

Understandability 

 

 

Table 2: Requirements and design elements 

Activity Theoretic Meta-

Requirements 

Information Quality Meta-Requirements 

 

0. Gather Timely data from a variety of online platforms  

to support time-sensitive analysis 

1. Evaluate 

Relevance 

2. Evaluate 

Credibility 

3. Navigate Channel 

Landscape for Completeness 

In
d

iv
id

u
a

l 
co

m
m

u
n

ic
a

ti
o

n
 

a
ct

iv
it

ie
s 

Author 

tendencies 

Learn author tendencies from 

aggregate collection of authored 

documents (a) 

  

D
esig

n
 E

lem
en

ts 

Channel 

context 

Leverage channel-specific 

patterns (e.g., web, blog, forum, 

and social media) (b) 

 

Incorporate channel source 

context to predict relevance  

of a given path (c) 

Community 

norms 

Capture group-specific linguistic 

norms through use of lexicons, 

libraries, and dictionaries (d) 

Incorporate  

group norms  

into seeding (e) 

 

Content 

language 

Analyze linguistic  

features to determine  

topic and sentiment (f) 

 

Incorporate content topic and 

sentiment information into  

graphs (g) 

C
o

m
m

u
n

ic
a

ti
o

n
 

n
et

w
o

rk
 Inter-activity  

relationships  

Incorporate author and site 

relationships through features 

derived from multi-level graph (h) 

Analyze multi-level bi-directional author, site and 

document-level graphs representing inter-activity 

relationships (i) 

Information 

propagation 
Incorporate spatial dynamics through graph propagation and convolution (j) 

(a)-(j) During our analysis we run an ablation analysis to demonstrate the importance of each lettered element in our 

artifact performance. Please see Tables 7 and 8 for details. 
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4 .1  Mo t iv a t ing  Ca se :  Opio id  Epi demic  

Although our design is generalizable to a large variety of public health issues, it is useful to consider a motivating case 
to describe the requirements for a social listening platform for public health. The opioid epidemic is a major public 
health crisis, particularly in developed countries such as the United States (Schwetz et al. 2019). Each day 128 people 
die of overdoses from opioids (Wilson 2020), i.e., drugs naturally derived from poppy plants and their synthetic 
counterparts. In the past several years, there has been a drastic increase in overdoses from synthetic opioids such as 
Fentanyl and Carfentanil (an elephant tranquilizer and chemical weapon), which are hundreds to thousands of times 
as potent as heroin. Drug dealers often cut heroin with these because they are cheaper and more potent, creating 
uncharacteristically strong batches of difficult to dose drugs – leading to sudden spikes in overdoses (Shoff et al. 
2017). 

 

  

Note: In these social networks, “cop” is a term for purchasing drugs, and “plug” is used to describe a prolific or notorious drug 

dealer. So, the meme depicts a person in a hurry to jump in their car and buy from a batch because overdoses and deaths were 

reported. Many users immediately posted agreement with the sentiment. 

Figure 3: Reddit posting (and related comments) making a joke about seeking out a batch of drugs that caused 

overdoses and deaths due to its high potency 

Despite the often fatal outcomes, drug dealers are incentivized to make these dangerous batches because they are 
highly sought after by customers, as Joseph Pinjuh, chief of the narcotics unit for the U.S. attorney in Cleveland 
explained: “[Drug users] know that’s the high that’ll take you right up to the edge, maybe kill you, maybe not…That’s 
the high that they want.” (AP 2016). As news spreads over social media of users overdosing, there is a surge of interest 
in that batch of drugs (Overbeek and Janke 2018). Figure 3 presents a Reddit post illustrating this mindset. 

When these potent batches arrive in an area, word spreads rapidly and the situation can escalate quickly. In 2016 
Akron police reported 25 overdoses in a three day period and near-by Columbus reported 10 overdoses in a nine-hour 
period (DeMio 2016). This phenomenon provides a clear example where timely detection of the situation (i.e., a new 
batch of especially strong opioids has arrived in a certain local) could result in better health outcomes. Normally, 
hospitals and EMS vehicles have a limited supply of Naloxone (common trade name, Narcan) which is an injectable 
medicine used to reverse the effects of opioids in an emergency situation.  

We interviewed the program director of a local clinic specialized in treating opioid addicts and president of the local 
volunteer rescue squad. She explained that a “good” batch (meaning cut with synthetic opioids, such that it is 
dangerous and especially potent) often causes a spike in overdoses for 24 to 72 hours after its release. In this case, 
first responders may easily find themselves in situations with inadequate supplies of Naloxone on hand, with multiple 
overdose victims present and/or individual victims requiring multiple doses. If first responders were aware of the 
likely high rate of these heavy overdoses in advance, they could stock more Naloxone in their vehicles. An interviewed 
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emergency room physician1 agreed and further explained that if he were made aware that a strong batch of Fentanyl- 
or Carfentanil- laced opioids had been released in the area, he would treat patients presenting with overdose symptoms 
more aggressively in the emergency room. These sentiments echo research which has suggested that better data could 
have significant impacts in combatting opioid overdoses (Bowen et al. 2019; Saloner et al. 2020).  

Social media, websites, blogs, and forums are used by drug dealers and drug seekers to spread this information about 
batch strength and availability within the opioid using community (Overbeek and Janke 2018; Pandrekar et al. 2018). 
We propose that a social listening platform can provide the timely, granular, actionable information needed to prepare 
local responders for these strong batches of opioids. In Table 2, we outline how Activity Theory intersects with the 
requirements of a social listening platform for public health to inform the design of such a system. In the remainder 
of this section, we will describe these requirements and illustrate selected design elements within the context of this 
use case of surveillance to detect dangerous batches of opioids. To provide concrete examples in line with our 
motivating case, we collected data from Reddit groups r/opiates and r/opiaterollcall. Although we use this example to 
illustrate the key system requirements and underlying gaps they address, it is important to note that our work is relevant 
to social listening for various types of health events. We later evaluate our proposed artifact on multiple health use 
cases including opioids and adverse drug events. 

 

4 .2  Meta -Require ment  0 :  Time l ine ss  

Timeliness is the primary requirement which underlies the motivation for our design, in that many of the other 
dimensions are easily addressable without this constraint. Capabilities for timely use of data (often referred to as 
“velocity”) have been a primary driver for deriving value from the “big data” movement in recent years (Kitchin and 
McArdle 2016). From a contextual quality standpoint, timeliness or currency relates to whether data is sufficiently 
“up to date” for use in a given task (Nelson et al. 2005, Strong et al. 1997). Within the health context, timeliness is 
driven by the urgency of many public health issues. A potent batch of opioids may cause dozens of overdoses within 
hours or days without intervention (DeMio 2016; Shoff et al. 2017). Failure to identify adverse drug events in a timely 
manner may cost pharmaceutical companies significant sums and leave masses of patients suffering or worse (Adjeroh 
et al. 2014). Disease epidemics can explode overnight (Yang et al. 2013).  Furthermore, as the overall available digital 
content and noise grows at a greater pace than the sub-set of relevant, time-critical content, the “need for speed” cannot 
be overstated (Boldi et al. 2018). The proponents of public health 3.0 also note the necessity of removing silos around 
data and achieving wide interoperability (Wang and DeSalvo 2018). Indeed, identification of timely, granular, 
actionable data might be simple if it were available in a single or even small set of sources with open APIs. 
Unfortunately, content providers, patients, and other users post relevant information across a vast and varied online 
landscape (Boudry 2015): from social media outlets (Twitter, Reddit); to websites (WebMD.com, Medscape.com), to 
patient forums (HealthBoards.com, MedHelp.com), to blogs (MothersInMedicine.com, AmbulanceDriverFiles.com), 
and beyond. The integration of insights from across these various sources is critical in creating effective analytics that 
can impact public health (Lazer et al. 2014).  

The opioid case provides further examples of additional considerations for timely identification of information across 
a variety of sources. As discussed, there is strong agreement among healthcare professionals that the prompt detection 
of strong batches of opioids in the community would save lives and improve medical outcomes. In addition, sites, 
forums, blogs, and social media groups hosting this illicit information are highly dynamic and ephemeral (Hayes et 
al. 2018). They tend to pop in and out of existence quickly, often being found by law enforcement groups or site 
moderators and shifting to new platforms. Even if the web resource continues to exist (e.g., a drug forum), specific 
pieces of relevant content (e.g., a specific post) may be deleted almost as soon as it is posted. For instance, Reddit has 
a culture of user-moderation to enforce group norms and remove content that is illegal, illicit, or otherwise contrary 
to Reddit policies or goals of the community (Squirrell 2019). In historical data examined for our motivating case, 
8.1% of posts were deleted or removed (2.2% within one day, 5.3% within 7 days). These posts are often removed 
precisely because they include information relevant to the social listening objective, such as mentioning locations 
and/or attempts at sourcing drugs, often specifically focused on potent batches. This further increases the pressure for 
efficient social listening.  

 

4 .3  Meta -Require ment  1 :  Ev a lua te  Re lev a nce  

Beyond the overarching requirement of timeliness, the first theme we note within the contextual information quality 
literature is that of relevance to the problem at hand. Relevance refers to the degree of applicability and usefulness of 
information for a given task (Lee et al. 2002; Todoran et al. 2015), or the extent to which it is beneficial and provides 
advantage (Zheng et al. 2013). Within the online health information context, there is a variety of information from 
many sources which must be evaluated for relevance to the social listening task. Because relevance in a social listening 
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context must be determined before retrieving content, existing tools typically evaluate content surrounding the link on 
ancestor pages (Farag et al. 2018; Fu et al. 2012; Pant and Srinivasan 2005). However, these basic approaches miss a 
significant amount of information. 

For instance, online platforms are often utilized as people research medical information and express their opinions 
and emotions (Bender et al. 2008). This process creates rich and abundant content using group- or channel- specific 
semantic communication features such as slang, abbreviations, and emoticons (Smith et al. 2012; Waterloo et al. 
2018). Both within channels as well as within communities formed by groups of users, specialized language or content 
generation patterns are often developed or used, and these must be understood in order to interpret message relevance 
(Squirrell 2019). For example, in Figure 3, we see unusual word choices that mean something specific to the 
community such as “cop” referring to purchase and “plug” referring to a drug dealer in this context.  

In addition to the content, other aspects of digital communication creation can be used to help fully interpret the 
relevance of the information. Authors play a variety of social roles within online communities (Benamar et al. 2017), 
and uncovering these nuances of author relationships within the multiplex of communication activities can help 
contextualize the posted content and assess relevance.  For example, in the Reddit opioid context, some users primarily 
ask questions and some answer; others seek or offer drugs; some seek or provide emotional support; and there are 
those who post tips on harm reduction, or copping/using (Overbeek and Janke 2018; Pandrekar et al. 2018). Figure 4 
shows a network of all communications on opiate subreddits among a sample of users, illustrating how various users 
interact over time. Information propagation and relationships within the author graph provides latent information about 
these author roles that helps contextualize content. For instance, the active addict (red triangle) who posts controversial 
information about sourcing drugs has frequent run-ins with the moderator (green square). In order to assess the 
relevance of digital communications, artifact design should consider not only content, but also how information 
propagates through the multiplex relationships between content, authorship, channel, and community aspects, all of 
which provide valuable context. 

 

 

• Moderator, posts about harm 

reduction 

• Police officer, posts about 

treatment programs 

• Active addict, posts controversial info about 

copping and using 

• Drug seeker, asks advice about finding 

dealers, copping, using 

Figure 4: All communications across opiate subreddits among a sample of users from 7/1/13 to 6/30/17. 

Size of arrow represents frequency of comments of one user in response to another. Selected users are 

characterized based on their observed posting behaviors. 
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4 .4  Meta -Require ment  2 :  Ev a lua te  Credib i l i t y  

The next theme of contextual information quality that applies to the design of social listening tools is credibility. To 
be useful, information must be believable, free-of-error, and correct (Lee et al. 2002). Information quality research 
often considers accuracy, which is an intrinsic trait (Arazy and Kopak 2011), yet the perception of accuracy is involved 
in credibility assessments (Fogg 2003). Further, the reputation of the source must also be taken into consideration 
(Todoran et al. 2015; Zheng et al. 2013). Fake websites, spam, and other non-credible information are especially 
troubling in the healthcare context, and the quantity of deceptive and false information is steadily increasing (Song 
and Zahedi 2007). Online medical information is fraught with credibility issues, in which scam initiators rely on social 
expectations and psychological persuasion techniques to target patients (Garrett et al. 2019). For example, with 
prescriptions and doctor recommended medications, fraudulent actors often pose as online sources of information and 
products, resulting in counterfeit drugs and misinformation (Song and Zahedi 2007). Yet, detecting non-credible 
health-related content is not easy, even for humans (Li et al. 2019).  

This presents a problem for users and social listening platforms alike as they try to assess health information online. 
Non-credible content provides a false signal for social listening tasks. Recognizing and eliminating content with low 
credibility during the social listening process will provide higher quality information in a more efficient manner. 
Fortunately, our extension to Activity Theory provides insight into signals that can help identify non-credible 
information. First, because authoritative and trustworthy authors (and similarly sites/channels) are less likely to link 
to non-credible content (Gyöngyi et al. 2004), links between authors may be used to infer credibility, similar to 
inferring relevance as illustrated in Figure 4. However, these methods require seed information about credibility, 
which is not always readily available (Abbasi et al. 2012). For this, we may look to group norms in the community. 

In our Reddit case, a moderator explains the group norm for identifying non-credible authors: “If you are trying to 
vouch for someone simply leave a ‘+’ a positive experience, ‘-’ a negative [experience], and ’XXX’ stay away, bad 
friend.” This vernacular was observed frequently. For example, a user posted a new thread with pictures of opioids 
designed to entice purchasing, but subsequent responses from other uses simply stated, “xxx bad friend.” The phrase 
“bad friend” was observed numerous times as the vernacular chosen by the community to warn others the person was 
looking to harm or scam people. Without the context of understanding the “bad friend” warnings, the above post may 
have fit the profile of task-relevant information about an especially potent batch of opioids hitting the market, whereas 
in actuality it is likely a scam artist over-promising the potency of his drugs. An effective and efficient social listening 
platform must be able to utilize characteristics of communication activities propagating through online platforms and 
the multiplex relationship between them to evaluate information credibility. 

 

4 .5  Meta -Require ment  3 :  Na v ig a te  Co mplex i ty  o f  the  Onl ine  Cha nne l  La ndsca pe  

The final theme of contextual information quality that guides our meta-requirements is that of completeness. Data that 
is only a subset of the complete set of relevant data can lead to incorrect assumptions and interpretations (Lee et al. 
2002; Todoran et al. 2015). A related concept is richness, in that the data that provides deep contextual detail is more 
useful (Zheng et al. 2013). Users and providers of online health content generate an enormous amount of information 
across a variety of channels, making it difficult to navigate and analyze (Chung et al. 2005). Existing social listening 
techniques often assume topical locality, which posits that similar content is likely to be well linked together (Davison 
2000), making them prone to converging on local optima, getting trapped in pockets within the online landscape and 
missing large quantities of relevant data. Many healthcare information providers are in competition with other websites 
and forums, with sponsorship motivations to avoid crosslinks (Szalavitz 2011). Online communities tend to create 
pockets of communication that may be isolated from other, related, and relevant content (Bergmark et al. 2002). These 
health communities may span multiple communication channels, fragmenting and dispersing important content across 
the channel landscape, switching between relevant and irrelevant information within conversation threads, and 
creating many one-directional links, creating significant difficulties for navigation (Boudry 2015; Jami Pour and Jafari 
2018).  

In the opioid context, online resources come and go rapidly as sites get shut down and users congregate to discuss 
drugs in a new location, with sparse (or no) direct connections between these, as users want to avoid authorities as 
they move to new communication hubs (Ladegaard 2019). In order to reach these pockets of relevant content, a social 
listening platform may have to traverse links to intermediate sites that seem less relevant to the social listening task, 
but actually, eventually lead to more relevant information. To illustrate this phenomenon, we used detailed clickstream 
data from Comscore to analyze browsing activity of users that visited the r/opiates subreddit between 2012 and 2018. 
Comscore recruits and pays a representative panel of internet users to install an apparatus which records and reports 
their internet browsing behaviors. By analyzing the clickstream collected by Comscore, we identified all users who 
visited r/opiates at some point during their tenure on the panel, and compiled the top 100 sites visited by this group of 
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users (as measured by percentage of time spent on the site). As expected, many of the sites were drug related and 
likely relevant to the opioid listening task.  

However, as Figure 5 depicts, direct hyperlink connections between many of these sites are sparse, particularly among 
many of the confirmed drug-related sites (Park et al. 2018). Without consideration of the potential for certain irrelevant 
URLs to lead to relevant content, a social listening artifact would have a difficult time traversing between the relevant 
content. However, Bitcointalk.org emerges as an important node that forges connections between drug-related sites – 
in fact, it is the most central node in the entire graph of sites (nodes are sized by betweenness centrality, although 
bitcointalk.org was the most central for a variety of measures). This has face validity, as bitcoin is frequently used to 
pay for illegal drug transactions online (Foley et al. 2018). Without traversing links to/from Bitcointalk.org which 
might otherwise be considered irrelevant based on content alone, a social listening platform might have difficulty 
navigating the channel landscape to pockets of relevant content, instead converging on local optima and missing 
significant amounts of important information. In order to efficiently gather relevant public health information, a social 
listening platform must be able to navigate the complex channel landscape that is the reality of the online platform 
environment. 

 

 
Figure 5: Network graphs for the top 100 websites visited by Comscore Users that frequented r/opiates 

 

5  The Healthsense Artifact  

We follow the requirements and design elements identified through Activity Theory and the contextual information 
quality literature to develop HealthSense, a social listening platform for public health. Our system is comprised of 
three modules, each of which address a separate meta-requirement: evaluating the 1) relevance and 2) credibility of 
content while intelligently 3) navigating the complex channel landscape of online platforms in order to gather timely, 
granular, and actionable information for use in public health informatics. All three modules leverage state-of-the-art 
graph neural networks in their construction. Recently, graph neural networks (GNNs) have garnered considerable 
attention for their ability to incorporate graph message parsing into robust machine learning architectures (Wu et al. 
2021). GNNs’ ability to parsimoniously consider nodes, edges, features, and hierarchical graph structures in the 
convolution process (Wu et al. 2021) aligns with the extension of Activity Theory to consider the propagation of 
information across multiplex interactivity relationships among communication activities in online platforms. From a 
computational design perspective (Padmanabhan et al. 2022; Rai 2017), our HealthSense instantiation makes the 
following methodological contributions: 

• Couple graph propagation with state-of-the-art GNNs. This allows us to incorporate credibility information 
from across millions of nodes (via graph propagation), with limited seed labels, in unison with GNNs that 
are better suited for message-passing across thousands of nodes (i.e., localized focal node-level graphs) in 
relatively less sparse-label environments (Bojchevski et al. 2020; Dai et al. 2022). There has been limited 
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work at this intersection (Bojchevski et al. 2020). Moreover, we employ multi-level bi-directional graph 
propagation to better capture the multiplex of activities across the network.  

• Propose bi-relational edge-enriched node embeddings. We use domain-adapted feature-based classifiers to 
derive important node and in/out-bound edge information used by the GNNs for assessing relevance and 
tunneling potential, and represent these parsimoniously in an embedding that considers different relation 
types, and node/edge characteristics. 

We discuss these novel aspects of HealthSense in the remainder of the section, and subsequently use benchmarking 
and ablation analysis to evaluate them, and HealthSense as a whole. 

The Relevance Assessment Module (RAM) evaluates both topic and sentiment of online content in order to determine 
its relevance to the social listening task. The primary signals used are linguistic features of the information content 
surrounding a link to target content. These are evaluated within the context of latent author tendencies discovered 
through analysis of other authored content, and relationships to other authors and content. Relevance cues also include 
context-specific lexicons, libraries, and dictionaries which capture group norms from the communities within which 
the content was created. Multiple classifiers are created to incorporate varying structures and behaviors across online 
channels and used as input for the GNN. 

The Credibility Assessment Module (CAM) evaluates the credibility of online content to avoid collection of non-
credible information in the social listening task. CAM uses graph propagation-based features (in a similar manner as 
TrustRank (Gyöngyi et al. 2004)) as input for a GNN-based credibility classifier. Document, author, and site-level 
graphs are utilized to evaluate potential content. Trust for each graph is seeded using various signals according to 
group norms of how credibility is determined within various communities.  

The Landscape Assessment Module (LAM) evaluates links among online platforms in order to identify content which 
may not contain relevant information itself, but may lead to further relevant content as document nodes in the graph 
are traversed. This counterbalances the hyper-focus of RAM and CAM on collection of relevant, credible content, and 
is critical as pertinent information often occurs in sparsely connected pockets. LAM utilizes a GNN to learn patterns 
from subgraphs from a training set of nodes known to lead to relevant or irrelevant information. 

The HealthSense system is comprised of the RAM, CAM, and LAM modules, as summarized in Figure 6. The system 
begins with seed content URLs and propagates through links to other online content. Each candidate URL is first 
evaluated by the CAM module and rated with regard to its estimated credibility. Each URL which exceeds a specified 
threshold credibility is passed to RAM which ranks all current candidate URLs based on expected relevance to a given 
social listening task based on topic and sentiment information. Finally, the LAM module evaluates all URLs below a 
specified relevance threshold and scores them based on their likelihood of leading to further relevant content. The 
system then retrieves candidate URLs from a queue in order of combined RAM and LAM scores. As new URLs are 
collected, scores for all remaining candidate URLs are updated to incorporate new information. In this way, 
HealthSense gathers the most useful information for a given social listening task in a highly efficient manner.   

As depicted in the center of Figure 6, each module’s GNN employs a relational graph convolutional network (Kipf 
and Welling 2017; Schlichtkrull et al. 2017). Let 𝐺 represent the graph of collected and in-queue document nodes 𝑉, 
with 𝐸 signifying the set of edges (in and outlinks). For each node 𝑣 with neighbors 𝑁(𝑣), each layer 𝑘 of the graph 
convolutional network feeds forward a node embedding 𝐡𝑣

𝑘 (i.e., a feature vector) by averaging the neighbor nodes’ 
information and passing it through a neural network. This process is repeated for each 𝑣, across the 𝐾 layers of the 
graph convolutional network, with each subsequent layer pulling in neighbor information from one further hop (i.e., 
neighbors’ neighbors, and so on). Although the proposed node embeddings can provide invaluable micro-level 
insights, we aggregate node embeddings into a graph embedding such that CAM, RAM, and LAM predict credibility, 
relevance, and tunneling potential for a given document node as a graph classification problem to allow better 
consideration for macro-level in/out-link information. To ensure that node and graph embeddings are learned as part 
of an end-to-end learning strategy, the graph convolutional network’s loss function uses final binary class labels from 
a small training set (relevance for RAM, credibility for CAM, and tunneling potential for LAM). The initial input 
node embeddings for each 𝑣 are: 

      𝐡𝑣
0 = 𝐱𝑣                 (1), 

where 𝐱𝑣 is the feature vector of node 𝑣. For each subsequent layer, where 𝑘 ≥ 1:  

        𝐡𝑣
𝑘 = 𝜎(∑ ∑ 𝐖𝑘

𝑟
𝐡𝑢
𝑘−1

|𝑁𝑟(𝑣)|

 

𝑢∈𝑁(𝑣) 

 

r∈𝑅

+ 𝐁𝑘𝐡𝑣
𝑘−1)            (2), 
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where 𝜎 is an activation function for non-linearity in the node embeddings. 𝐖𝑘
𝑟  and 𝐁𝑘 are the trainable model weight 

parameters for the node embedding dense layers, used to balance how much new neighborhood information should 
be aggregated across each 𝑢 neighbor of node 𝑣 in the latest convolutional layer 𝑘, versus existing node embedding 
information (from the prior layer). 𝑅 denotes the set of relation types in the graph – in our case, there are two distinct 
types: inlinks and outlinks. Hence, 𝑁𝑟(𝑣) are the inbound or outbound neighbor nodes. As we employ graph 
convolutional networks designed for undirected graphs (Wu et al. 2021; Kipf and Welling 2017), adding a relational 
mechanism enables us to account for differences in propagation information across in versus out-bound links 
(Schlichtkrull et al. 2017). That is, the graph convolutional network includes separate weights for each relation type 
at each layer. 

 

 
Figure 6: HealthSense system design 

 

One limitation of the node embedding formulation in equation (2) is that it doesn’t consider edge feature vectors. For 
relevance and landscape assessment, where we want to decide whether to retrieve a given URL, the anchor text around 
a link might contain important edge-specific information between nodes (Fu et al 2012). To incorporate in/outbound 
edge feature vectors  𝐱(𝑣,𝑢)

𝑒  between nodes 𝑣 and 𝑢, we can tweak our formulation to an edge-conditioned node:    
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        𝐡𝑣
𝑘 = 𝜎(∑ ∑ 𝐖𝑘

𝑟
𝐡𝑢
𝑘−1 𝐅𝑟𝐱(𝑣,𝑢)

𝑒

√|𝑁𝑟(𝑣)||𝑁𝑟(𝑢)|

 

𝑢∈𝑁(𝑣) 

 

r∈𝑅

+ 𝐁𝑘𝐡𝑣
𝑘−1)            (3), 

where 𝐅𝑟  is the weights from a single dense layer neural network learned offline across all edge vectors for relation 
type 𝑟 in 𝐸. To normalize the added dense edge feature representation signified by 𝐅𝑟𝐱(𝑣,𝑢)

𝑒 , we take the dot product 

between the neighbor edge and node vectors.  

As noted, the three respective GNNs treat node credibility, relevance, and tunneling potential prediction for each node 
𝑣 as a graph classification problem. Whereas node embeddings could be aggregated by averaging or summation to 
construct a simple graph embedding, such an approach would lose important node heterogeneity information. Instead, 
we employ non-linear aggregation using multi-layer perceptrons to calibrate node importance. Formally, given 

𝐡𝑣
𝑘, 𝐡1

𝑘 , 𝐡2
𝑘 …𝐡𝑛

𝑘 ∈ 𝐻𝑘  denotes the set of node embeddings associated with node 𝑣 and its neighbors at the last layer 
𝑘 = 𝐾, the graph embedding 𝑔𝐺 uses a two-layer multi-layer perceptron where the first layer weights 𝐖𝑙1  are a non-

linear accumulation of the node embeddings and the second layer 𝐖𝑙2  maps this information to a dense representation 

using a non-linear (ReLU) activation function:      

𝑔𝐺 = 𝜎

(

 𝐖𝑙2𝜎 ( ∑ 𝐖𝑙1𝐡𝑖
𝑘

 

𝐡𝑖
𝑘∈𝐻𝑘

)

)

                  (4), 

For CAM and LAM, 𝐻𝑘  includes 𝑁𝑟(𝑣) ∪ 𝑁𝑟(𝑢) to allow inclusion of two-hops of neighbors, but for RAM 𝐻𝑘  
encompasses 𝑁𝑟(𝑣) since the target node is more crucial for relevance assessment. All three GNNs use the ReLU 
activation function for node embedding layers and binary cross-entropy for loss. Finally, a single dense layer is used 
to predict the downstream task (i.e., relevance, credibility, and/or tunneling potential): 

ŷ = 𝐖𝑓 ∗ 𝑔𝐺                  (5), 

The node and edge feature vectors 𝐱𝑣 and 𝐱(𝑣,𝑢)
𝑒  for the target node, while important throughout for the GNNs to infer 

credibility, relevance, and tunneling potential, become even more critical early on due to the sparse nature of the 
graphs (i.e., there is highly incomplete information about neighbors in the earliest listening phases, as few nodes have 
yet been collected). Consequently, for each node 𝑣, the RAM, CAM, and LAM modules leverage graph propagation 
or feature-based classification methods to compute initial credibility, relevance, and context scores/features which are 
used as the node and edge vectors for the GNNs used to derive the final  𝐶(𝑣), 𝑆(𝑣), and L(𝑣) classification scores. 
In the remainder of the section, we describe how these crucial initial features/scores are derived. 

 

5 .1  Relev a nce  Asse ss ment  Mo dule  (RA M)  

RAM evaluates each candidate URL 𝑣 to be retrieved to determine its potential relevance to the social listening task. 
For each 𝑣, the initial relevance score used as input feature vectors for the GNN are derived based on text classifiers 
trained to determine the topic and sentiment of content surrounding the URL in parent documents (those that contain 
links to the candidate URL). This module represents the most direct evaluation of whether the content for collection 
is relevant to the task at hand. For example, if the social listening objective were to be related to detecting adverse 
drug events, the classification models in RAM would be trained to target content expressing negative sentiments about 
experience with a prescription medication. To account for channel-specific communication patterns (Smith et al. 2012; 
Waterloo et al. 2018), topic and sentiment classifiers are trained on separate labeled corpora categorized into four 
channels: web, social, forum, and blog, resulting in 8 total binary classifiers. 

As depicted in Table 3, each classifier employs a wide variety of features, including fixed word unigrams, bigrams, 
and trigrams, as well as various linguistic features and lexicons designed to capture group norms. Part-of-speech (POS) 
and POS-word n-grams are derived using the Stanford tagger and the CMU ARK tool in order to account for channel-
specific language usage (Manning et al. 2014).  N-grams are also coded with semantic features from a variety of 
lexicons to capture more generalizable language patterns (Baccianella et al. 2010). These include general and channel-
specific entity tags including emojis, abbreviations, and slang terms (Zimbra et al. 2018). Entity tags are curated from 
domain-specific lexicons and lexical thesauri. For instance, if the domain of interest is post-marketing surveillance of 
pharmaceutical drugs, example entity tags might include <drug>, <condition>, <symptom>, and <treatment>. The 
POS and semantic entity tags both help interpret the meaning of messages by abstracting and categorizing community-
specific language characteristics into a common scheme allowing analysis. Finally, semantic sentiment tags are 
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derived from existing sentiment lexicons containing polarity scores for over 100,000 terms (Baccianella et al. 2010). 
Terms are labeled with one of seven possible sentiment labels from <strong neg> to <strong pos>, based on average 
sentiment scores across its various senses. Several author metrics are employed to account for the impact of author 
roles and tendencies on potential topic or sentiment relevance of a document’s outlinks. These pertain to the topic and 
sentiment relevance of other known authored documents, and number/percentage of author in/out links as well as topic 
or sentiment relevant ones.  

 

Table 3: Examples of N-Gram Features Used In Topic and Sentiment Relevance Classifiers 

Feature 

Category 
Example Text Representation 

Key Topic 

Feature Examples 

Key Sentiment Feature 

Examples 

Word 
I used to hate smoking until I started taking Chantix 

. 

smoking, started taking, 

Chantix  

hate, smoking, Chantix 

POS 
PRP VBD TO VB NN IN PRP VBD VBG NNP : : 

LRB 

NN, NNP, VBG NNP VB, VB NN 

POS-Word 

PRP|I VBD|used TO|to VB|hate NN|smoking IN|until 

PRP|I VBD|started VBG|taking NNP|Chantix :|: :|- 

LRB|( 

NN|smoking, 

NNP|Chantix 

VB|hate, :|: :|- LRB|( 

Semantic 

Entity Tags 

I used to hate <habit> until I started taking <drug> 

<frown face>. 

<habit>, taking <drug>, 

<frown face> 

 

Semantic 

Sentiment Tags 

<neu> <neu> to <strong neg> <neu> until <neu> 

started <neu> Chantix <strong neg>. 

 <strong neg>, <strong 

neg> <neu> 

Author and 

Site Content 

Number of known prior authored documents,  

number and percentage of topic/sentiment relevant documents 

Author and 

Site Linkage 

Number of total links, number and percentage of in/out links,  

number and percentage of topic/sentiment relevant in/out links 

To refine the extracted feature space for faster relevance assessment in time-sensitive environments and improve 
classification performance, the attribute space is ranked and filtered using a feature subsumption approach based on the 
information gain heuristic (Riloff et al. 2006). For each feature f, information gain IG(f) is calculated based on entropy 
reduction provided by that feature in isolation. Only features with IG(f) greater than a defined threshold were retained 
for use in each classifier. Further, no higher-order n-gram g was retained unless it provided higher information gain 
than all q of the lower-order n-grams it contained (i.e., IG(g) > IG(gi) ∀i∈ [1,q]).  

Each of the 8 channel-specific topic/sentiment models was trained using a binary linear SVM classifier (SVMperf) 
(Joachims 2006). These classifiers were trained on a set of manually labeled content known to be relevant or irrelevant 
from a topic or sentiment perspective. To ensure that sentiment was only evaluated with regard to the target topic, the 
sentiment classifier only used features extracted from defined windows surrounding relevant topic keywords. Topic and 
sentiment relevance scores from the anchor text surrounding in-bound links from each 𝑢 towards target document 𝑣 are 
used to construct 𝐱(𝑣,𝑢)

𝑒  edge feature vectors in the GNN. The 𝐱𝑣 node feature vectors are one-hot encoded with the 

index value corresponding to that node set to 1, and all other values in the vector 0. For each 𝑣, the GNN computes a 
relevance score 𝑆(𝑣).  
 

5 .2  Credi b i l i t y  As ses smen t  Mo dule  (CAM)  

The credibility assessment module (CAM) is intended to reduce the intake of low-credibility content, including medical 
spam and phishing documents, which can pose major information quality concerns if unmitigated. In order to 
accomplish this objective, CAM uses weighted multi-layer bi-directional graph-propagation to construct a credibility 
value for each node. These values are input as the 𝐱𝑣 node feature vectors in equation (1) of the credibility GNN.  Our 
graph propagation-based credibility features method addresses several limitations associated with existing propagation 
techniques. Although prior studies have relied on only document-level graphs (Diligenti et al. 2000; Farag et al. 2018), 
our extension to Activity Theory proposes that relationships between content, channel, author-level information 
provides important context. Therefore, the graph propagation in CAM incorporates inter-related graphs from each level. 
These graphs are seeded with credibility information from many online databases that maintain site, document, and/or 
author-level assessments. We incorporated many databases which are focused on guiding consumers to and accrediting 
credible online health information, such as the Medical Library Association (mlanet.org), the Health on the Net 
Foundation (hon.ch), the National Association of Boards of Pharmacies (nabp.pharmacy), and LegitScript 
(legitscript.com). 
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Authorship credibility is an emerging area of focus with the proliferation of cyber deviance and fake news on social 
media platforms (Viviani and Pasi 2017). For web and blog channels, if authorship information is present, initial author 
credibility is inferred from site and page-level credibility scores. For forums, such information is derived from 
community-level measures such as up/down votes on postings. For social media platforms, initial credibility is derived 
from existing databases or computed, using metrics such as TwitterRank (Weng et al. 2010). 

While information quality from the databases we use to seed credibility is high, coverage is limited – typically less than 
5% of all domains, URLs, and users. For instance, most of the aforementioned domain-level databases contain 
information for only thousands out of the millions of medical websites, pages, and authors existing online (Abbasi et 
al. 2012). To extrapolate this information to each URL evaluated by HealthSense for collection, we use graph 
propagation methods to project credibility information to unknown nodes (Gyöngyi et al. 2004). CAM utilizes a multi-
level bi-directional graph-based algorithm that propagates over site, document, and author-level hyperlink graphs to 
compute the credibility of all nodes in the multi-level graph, including the candidate URLs. Bi-directional propagation 
allows for more efficient and effective usage of existing credibility information in sparse-graph situations where only 
retrieved and candidate nodes are available. The algorithm employs trainable parameters for initial versus propagated 
credibility, inbound versus outbound propagation, and cross-layer propagation. 

In the document-level graph, a “document” refers to content with a unique URL, as in the case of a web page or 
blog page. For forum posts or social media messages with unique pages (URLs), a document would be the page 
associated with that particular post or message. However, for some forums or social media, it might be the thread page 
containing multiple posts/messages. Each node 𝑣 is assigned an initial credibility score 𝐶′𝐼(𝑣) depending on database 
coverage and node type (e.g., site, document, author). Regarding sites and pages/documents, depending on the database 
used to seed credibility, information may be available at the individual page level, or only at the site level. If only site-
level information is available, all pages in the document graph are assigned the same credibility label as the site. If the 
converse is true and only page-level credibility is known, the site is assigned a credibility score equal to the average of 
all known pages belonging to the site domain. Once the initial 𝐶′𝐼(𝑣) has been computed for each of the collected nodes 
and candidate URLs, credibility scores are propagated to all other nodes in the graph. 

The credibility score for any node 𝑣 in the multi-level graph is computed as: 

𝐶′(𝑣) = 𝛼𝐶′𝐼(𝑣) + (1 − 𝛼)( ∑ 𝛽
𝐶(𝑢𝑖)

|𝑁𝑜(𝑢𝑖)|

 

𝑢𝑖∈𝑁𝑖(𝑣)

+ ∑ (1 − 𝛽)
𝐶(𝑢𝑜)

|𝑁𝑖(𝑢𝑜)|

 

𝑢𝑜∈𝑁𝑜(𝑣)

) + 𝛾 ( ∑
𝐶(𝑚)

|𝐻(𝑣)|

 

𝑚∈𝐻(𝑣)

),    (6) 

where 𝑖 and 𝑜 denote the inlink and outlink edge relation types, and 𝑁𝑖(𝑣) and 𝑁𝑜(𝑣) are the sets of inlinks and outlinks 
of 𝑣, respectively. The 𝛼 parameter controls the relative weights of initial versus computed credibility scores, and 
weights of inlinks versus outlinks are determined by the 𝛽 parameter. For any candidate URL, the set of outlinks is 
empty (i.e., |𝑁𝑜(𝑣)| = 0), since the URL has not yet been retrieved and its outbound links are as yet unknown. For the 
site and page-level graphs, in/out links denote hyperlinks pointing from one node to another. For the author-level graph, 
these links represent page-level hyperlinks between pages co-authored by respective authors. That is, if page a points 
to page b, in the author-level graph, each author node from a would have a link to author nodes in b. Within the multi-
layer graph, cross-layer links (i.e., those between site and page nodes, pages and authors, and sites and authors), do not 
have directionality since these are not hyperlinks pointing from one site (page) to another, or directed between-author 
links. Hence, 𝐻(𝑣) are the set of links of 𝑣 with nodes from the other two layers in the graph. The parameter 𝛾 
determines the relative weight given to cross-layer links. The GNN uses the output of the graph propagation process 
described, 𝐶′(𝑣), as an input in 𝐱𝑣. It is important to reiterate that the credibility scoring GNN does not use edge-
conditioned node embeddings, but rather the embedding described in equation (2), as no topic and sentiment 
information is yet available for edge vectors (that is done later in RAM). CAM is intended to efficiently make an initial 
determination of document nodes without in-depth content analysis. As noted earlier, and later demonstrated 
empirically, our proposed multi-level bi-directional graph propagation approach used in concert with a GNN for 
credibility assessment, allows markedly better listening capabilities in the form of higher precision and recall, allowing 
efficient prioritization of relevant information to allow for timely collection. 
 

5 .3  La ndsca pe  As ses sment  Mo dule  (LA M)  

The landscape assessment module (LAM) in HealthSense determines the potential for any given candidate URL to lead 
to additional relevant information by analyzing a labeled graph of all collected and candidate URL nodes. The context 
scoring GNN uses a training set encompassing subgraphs for documents with class labels indicating whether they led 
to relevant pages within y hops. For a candidate URL 𝑣, it generates a context score 𝐿(𝑣). As input for the GNN’s edge-
conditioned node embeddings (see equation (3)), each 𝒙𝑣 comprises features representing the node’s channel source, 
estimated topic relevance, and estimated sentiment relevance. Channel sources are represented in 𝒙𝑣 as a two-bit 
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encoding. Average estimated topic and sentiment relevance scores across all inlinks of 𝑣 are provided by the RAM 
module. Additionally, the topic and sentiment relevance scores from anchor text surrounding in-bound links from each 
𝑢 towards target document 𝑣 are used to construct the 𝐱(𝑣,𝑢)

𝑒  edge feature vectors in the GNN. 
 

5 .4  Pr io r i t i zed  Co l l ec t io n  Ba sed  o n  RA M,  CAM,  a nd  LA M  

Bringing all modules together, candidate URLs are collected based on their rank defined as 

𝑃(𝑣) =  {

0 𝑖𝑓 𝐶(𝑣) < 𝑇𝐶
𝑆(𝑣) 𝑖𝑓 𝐶(𝑣) ≥  𝑇𝐶  𝑎𝑛𝑑 𝑆(𝑣) ≥  𝑇𝑆

𝑆(𝑣) + 𝐿(𝑣) 𝑖𝑓 𝐶(𝑣) ≥  𝑇𝐶  𝑎𝑛𝑑 𝑆(𝑣) <  𝑇𝑆,

                     (7) 

where 𝑆(𝑣), 𝐶(𝑣), and L(𝑣) represent the aforementioned GNN-classifier scores from the RAM, CAM, and LAM 
modules, respectively, and 𝑇𝐶  and 𝑇𝑆 represent minimal credibility and relevance thresholds. Note that URLs below a 
certain credibility score are given the lowest possible priorities, although credibility scores are updated periodically 
based on more complete graph information and may rise above this threshold in any given update. This allows the RAM 
module to only be run on a subset of URLs. Likewise, the LAM module is only run for URLs that fall below a certain 
relevance threshold. URLs with 𝐿(𝑣) ≥ 0 are those with promising landscape contexts, and this score can help boost 
the relevance of a borderline candidate URL. The hierarchical flow of module execution for each URL significantly 
improves runtime for the HealthSense system. For simplicity, we use 0.5 as the threshold for 𝑇𝐶  and 𝑇𝑆, as this is also 
the standard classification cut-off used by our GNNs during the training phase. Tuning of these thresholds could lead 
to further improvement. 
 

6  Applications and Evaluation  

In order to evaluate HealthSense, we constructed a large-scale test bed and used it to explore two public health 3.0 
tasks: (1) post-marketing drug surveillance (PMDS) and (2) synthetic opioid batch surveillance. As discussed in our 
motivating case above, the opioid listening task requires the detection of positively valenced content related to opioid 
usage in near real-time in order to be helpful to emergency responders, ER physicians, and law enforcement. For 
PMDS, although pharmaceutical companies are required to perform rigorous testing to ensure the safety of drugs 
before they may be sold to consumers, inevitably issues of adverse reactions or other unintended consequences 
occasionally arise after a drug is on the market. Because of the high social and monetary costs associated with these 
incidents, pharmaceutical companies, as well as other stakeholders such as regulators, watchdog agencies, and even 
healthcare hedge funds, are very interested in detecting such issues as early as possible (Brewer and Colditz 1999; van 
Grootheest et al. 2003). Effective, efficient PMDS relies upon the timely identification of signals that may suggest 
adverse reactions or other issues. Content posted on online platforms as consumers and providers discuss the drugs in 
question, particularly with a negative sentiment, provides a rich source to monitor for such signals. Accordingly, we 
use HealthSense to identify negatively valenced content from online platforms for use in PMDS tasks.  

For both tasks, PMDS and opioid listening, we evaluate the amount of relevant content collected at various milestones 
by HealthSense compared to leading benchmarks. For the PMDS task, we also perform a field study, including a user 
experiment and disproportionality analysis, in order to evaluate the practical value of HealthSense. In the following 
sections, we describe the test bed data, comparison methods used, and detailed results of our field study and evaluation. 
 

6 .1  Testbed  Co nstruc t io n  

HealthSense is a social listening tool which intelligently senses and prioritizes collection of content most useful for a 
specified task. This intelligent sensing provides the efficiency imperative for public health tasks – the same 
information could be obtained by a simple crawler collecting all links, although in a much longer period of time and 
buried in a mountain of additional useless content. To evaluate the effectiveness and efficiency of HealthSense in 
gathering task-relevant information, we developed a test bed of all information that could be collected by a simple 
crawler given unlimited time. From a set of 100 seed URLs of health and drug-related sites, a simple crawler was used 
to collect the content of over 37 million distinct URLs from websites, forums, blogs, and social networking sites. 
Following prior work (Pant and Srinivasan 2005; Srinivasan et al. 2005; Fu et al. 2012), to determine the relevancy of 
each URL to the PMDS and opioid surveillance tasks, a gold-standard classifier too computationally expensive to be 
used for data collection was trained based on a training set of 2000 relevant and 2000 irrelevant pages manually labeled 
by two domain experts for each task.1  

 

1 In order to validate the results of the gold-standard classifier for evaluation, we conducted additional tests (available upon 

request) noting the performance to be statistically indistinguishable from that measured on the manually labeled URLs. 
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Consistent with prior online health studies, the annotation protocol involved two steps (Cameron et al. 2013; Leaman 
et al. 2010). First, an appropriate ontology was used to gauge the presence of relevant entities in the online document 
(i.e., page). This part involved assessing whether a page indeed referenced an entity of interest for that particular 
testbed. Next, where a relevant entity existed in the page, the valence of the entity mention was assessed. For the first 
step, in regards to the opioid test bed, annotators used the drug abuse ontology framework (Cameron et al. 2013; 
Nasralah et al. 2020) to identify entities closely related to opioids. In the case of PMDS, the entity lexicon was 
comprised of terms from UMLS, SIDER, idiomatic expressions, and the consumer health vocabulary (Leaman et al. 
2010). For the second step, annotators of both testbeds used guidelines from the online drug epidemiology literature 
(Cameron et al. 2013), coupled with the general guidelines for valence annotation (Wiebe et al. 2005) used in many 
prior IS/online studies. The former are well-suited for health domain-specific valence annotation whereas the latter 
offer guidelines on assessment of valence for an array of subtle private states manifesting in user-generated text, such 
as “opinions, beliefs, thoughts, feelings, emotions, goals, evaluations, and judgments,” (Wiebe et al. 2005, p. 168). As 
noted, for the opioid (PMDS) listening task, positive (negative) valence pages were deemed relevant. 

 

Table 4: Test Bed Overview 

Source Total 
PMDS Task Opioid Task 

Relevant Irrelevant % Relevant Relevant Irrelevant % Relevant 

Website 14,281,509 1,582,096 12,699,413 12.46% 860,012 13,421,497 6.41% 

Blog 4,111,213 387,827 3,723,386 10.42% 624,424 3,486,790 17.91% 

Forum 3,553,363 488,839 3,064,524 15.95% 367,418 3,185,945 11.53% 

Social Network 15,118,657 2,410,606 12,708,051 18.97% 1,213,490 13,905,167 8.73% 

Total 37,064,742 4,869,368 32,195,374 13.14% 3,065,343 33,999,398 9.02% 

On average, these pages comprised 1,687 words/tokens. The annotators labeled an additional 12,000 test pages as 
relevant/irrelevant to PMDS and opioids. Following best practices (Abbasi et al. 2018), the experts underwent two 
rounds of discussion to resolve differences after independently annotating 100-page samples. They each then 
independently labeled all training and test cases, meeting after every 1000 instances to resolve differences. Before 
resolving differences, Cohen’s Kappa across all 16,000 instances was 0.95 and 0.93 for PMDS and opioid tasks, 
respectively, representing very good inter-rater agreement. Consistent with prior work (Fu et al. 2012; Menczer et al. 
2004), this SVM classifier using over 100,000 n-gram features (n = 1, 2, 3) was designed to be highly accurate but is 
unsuitable for time-sensitive tasks. Evaluation on an independent set of 12,000 test pages found it to have relevance 
classification accuracies of 97.2% and 95.3% on the PMDS and opioid tasks, respectively. The classifier was applied 
to the entire set of 37 million URLs to determine the relevancy of each, as summarized in Table 4. 

 

Table 5: Baseline and benchmark comparison methods 
Method Reference Description 

Graph Neural Networks 

Heterogeneous 

graph attention 

network (HGAN) 

(Wang et al. 2019) Each candidate URL’s relevance score is calculated using a GNN relevance classifier that takes into 

account node and link type information and hierarchical attention. Node types are defined by the 4 

channels and topic/sentiment scores derived using BERT (i.e., 16 types). Link types are in- and out-

links. 

Het. graph neural 

network (HGNN) 

(Zhang et al. 2019) Each candidate URL’s relevance score is calculated using a GNN relevance classifier that takes into 

account node type information (similarly to HGAN). 

Graph attention 

network (GAT) 

(Veličković et al. 

2018) 

Each candidate URL’s relevance score is calculated using a GNN relevance classifier that implicitly 

captures the weights for all edges with parametric weights. 

GraphSAGE 

(GSage) 

(Hamilton et al. 

2017) 

Each candidate URL’s relevance score is calculated using a GNN relevance classifier that samples 

neighboring nodes and assumes they contribute equally. 

Graph conv. 

network (GCN) 

(Kipf and Welling 

2017) 

Each candidate URL’s relevance score is calculated using a GNN relevance classifier that explicitly 

captures the weights for all edges with fixed non-parametric weights. 

Focused crawlers utilizing hyperlink graph information 

Graph-Based 

Sentiment (GBS) 

(Fu et al. 2012) Candidate URLs are ranked based on their topic and sentiment composition across the hyperlink 

graph, relative to known relevant and irrelevant URLs  

Hopfield Net (HFN) (Chau and Chen 

2007) 

Each candidate URL has weighted links from inbound nodes in a single-layer neural network, where 

weights, activation, and loss are handled using feed-forward, back propagation based on actual 

relevance once collected 

Context Graph 

Model (CGM) 

(Diligenti et al. 

2000) 

Candidate URLs are ranked based on their classification scores using a series of Naïve Bayes 

classifiers each trained on documents that are exactly n hops away from relevant content, with n=0 

indicating directly relevant content 

Node embeddings learned using neural networks  



18 

 

DeepWalk (DW) (Perozzi et al. 

2014) 

Node random walk sequences over the hyperlink graph are input into a skip-gram (neural network 

with one hidden layer) to construct node embeddings used to rank candidate URLs based on cosine 

similarities with known relevant and irrelevant URLs 

Node2vec (N2V) (Grover and 

Leskovec 2016) 

Node breadth-first and depth-first random walk samples over the hyperlink graph are input into a 

skip-gram model (neural network with one hidden layer) to construct node embeddings used to rank 

candidate URLs based on cosine similarities with known relevant and irrelevant URLs (i.e., similar 

to DW, but with breadth/depth control) 

Focused crawlers utilizing link context 

Keyword (KW) (Aggarwal et al. 

2001) 

TF-IDF vectors for a select pre-defined list of keywords are extracted from the content of the 

training URLs and used to rank candidate URLs for collection based on vector cosine similarities 

with known relevant and irrelevant URLs 

Vector-Space 

Model (VSM) 

(Aggarwal et al. 

2001) 

TF-IDF vectors for all present tokens are extracted from the content of the training URLs and used 

to rank candidate URLs for collection based on vector cosine similarities with known relevant and 

irrelevant URLs 

Naïve Bayes (NB) (Pant and 

Srinivasan 2005) 

N-grams are extracted from the content of the training URLs as features in a naïve Bayes classifier 

for ranking candidate URL relevance probability 

BERT (Yang et al. 2022) Candidate URLs ranked based on relevance scores computed using a BERT-base model further 

fine-tuned on our relevant versus irrelevant training cases. 

Baseline crawlers 

Breadth-First 

Search (BFS) 

(Chau and Chen 

2003) 

Each candidate URL is collected in a breadth-first queue from the list of seeds 

PageRank (PR) (Brin and Page 

1998) 

Each candidate URL is collected in decreasing order of PageRank computed from existing URL 

graph prior to collection 

 

6 .2  Da ta  Ex per iment  

HealthSense was evaluated against a set of baselines and leading benchmark methods for social listening on both 
PMDS and opioid listening tasks. Because of potential sensitivity to seeding, each method was evaluated based on 
average performance in collecting URLs across 10 separate runs, each run seeded with a random subset of 200 seed 
URLs from a pool of 500 seed URLs (distinct from those used in test bed construction). Each benchmark method was 
trained as described in Table 5 to identify pertinent content based on the 4,000 expert-labeled URLs. 

In Table 6 and Figures 7 and 8, we evaluated the performance of the HealthSense system and benchmarks by 
comparing precision, recall, and f-measure metrics. In Table 6, the AUC values in the first three columns are the areas 
under the curve for the f-measure, precision, and recall curves depicted in Figure 7 and 8 – a measure of the overall 
shape of the curves, with percentages closer to 100% indicating better performance. Note that due to space limitations, 
we only plotted the top two comparison methods from each category. The HealthSense system attained 75.1% of all 
relevant pages for the PMDS task within the first 5 million URLs collected, with a precision of 72.6%. These figures 
are more than double those of the best comparison method, HGAN. For the opioid surveillance task, HealthSense was 
2.4x better than HGAN at 5 million URLs.  

At 10 million URLs collected, HealthSense identified 99.9% of all relevant pages for both tasks, while HGAN lagged 
behind at between 53-67%. HealthSense outperformed other advanced GNN and graph analytics methods by even 
wider margins. As may be seen Figure 7, this advantage is not limited to any particular channel, with HealthSense 
performing consistently across website, blog, forum, and social networking formats. With regard to timeliness, it is 
important to note that server response represent the sole bottleneck for collection – algorithm runtimes are significantly 
shorter than the time spent waiting on requested pages. Therefore, the time spent in collection is a linear function of 
the performance noted in Table 6 and Figures 7 and 8. For instance, HealthSense can reach 75% recall after collecting 
5 million pages – approximately 2.5x faster than HGAN, which would need to collect 12 million pages, and over 4x 
faster than a baseline BFS (22 million pages). Exact collection times are highly dependent on network and collection 
infrastructure.  

It is clear from the results that HealthSense is extremely effective and efficient at prioritizing and collecting relevant 
information for social listening tasks, significantly better than existing state of the art methods. As we later demonstrate 
with our field study, these performance lifts translate into significant improvements in downstream listening tasks – 
e.g. allowing key stakeholders to identify important adverse events faster and more accurately. In order to demonstrate 
how theory-guided design elements in HealthSense impact its overall performance, we performed an ablation analysis 
(Padmanabhan et al. 2022). Consistent with prior machine learning-oriented design evaluation (Yang et al. 2022),  we 
conducted a leave-out analysis at the module and individual component level, using ablation settings as described in 
Table 7. For module-level, we examined performance deltas attributable to excluding CAM and/or LAM modules 
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from HealthSense. Connecting to Table 2, this category of ablation analysis is analogous to excluding the entire 
columns related to requirement (2) and/or (3). Component-level ablation focused on the impact of excluding specific 
elements related to individual cells labeled in Table 2. 

The values depicted in Table 8 are the percentage degradation in performance when each component is excluded from 
HealthSense. Based on the first three rows (for each testbed), performance suffers significantly when excluding CAM 
or LAM, and even further if both are removed. Ablation of components (a) thru (j) highlight the importance of 
individual design elements (all paired t-test p-values < 0.01). The most impactful are elements i and j which relate to 
our extension to Activity Theory. This analysis demonstrates the significant value contained in multiplex interactivity 
relationships through which information propagates on online platforms. 

 

Table 6: Percentage AUC Values and F-measure, Precision, and Recall at 5 and 10 Million 

PMDS Tasks 

Method AUC Values* @5M @10M 

F-Meas Prec Rec F-Meas Prec Rec F-Meas Prec Rec 

HealthSense 44.7 37.9 91.8 73.8 72.6 75.1 65.8 49.1 99.9 

Graph 

Neural 

Networks 

HGAN 33.2 26.0 79.1 35.9 35.2 36.7 42.9 31.7 66.3 

HGNN 31.3 24.3 76.3 33.7 32.5 35.0 40.2 29.4 63.4 

GSage 29.8 22.8 74.7 32.0 30.0 34.2 37.9 27.3 62.0 

GAT 28.9 22.0 73.9 31.2 29.0 33.9 36.8 26.3 61.3 

GCN 28.1 21.3 73.1 30.5 27.9 33.5 35.7 25.3 60.7 

Hyperlink 

Graph 

GBS 32.2 25.1 75.9 33.9 33.5 34.3 38.4 28.6 58.7 

CGM 28.3 20.5 70.2 23.3 23.0 23.6 31.5 23.4 48.1 

HFN 21.9 15.1 58.0 14.9 14.7 15.1 22.2 16.5 33.9 

Node 

Embedding 

N2V 25.3 18.1 64.1 19.8 19.5 20.0 25.4 18.9 38.7 

DW 24.0 16.3 63.1 15.4 15.2 15.6 23.0 17.1 35.2 

Link 

Context 

BERT 25.4 17.5 65.5 16.8 16.7 16.9 25.0 18.7 37.7 

NB 24.5 16.8 64.2 16.2 16.1 16.4 24.1 17.9 36.8 

KW 21.2 14.5 56.8 13.2 13.0 13.3 19.9 14.8 30.4 

VSM 19.9 13.3 55.0 10.3 10.2 10.4 16.0 11.9 24.4 

Baseline BFS 25.5 19.6 62.5 24.8 24.5 25.1 26.5 19.7 40.4 

PR 19.9 13.9 52.9 12.8 12.6 12.9 18.8 14.0 28.6 

Opioids Task 

Method AUC Values* @5M @10M 

F-Meas Prec Rec F-Meas Prec Rec F-Meas Prec Rec 

HealthSense 33.1 25.9 90.6 51.7 41.7 67.9 47.6 31.2 99.9 

Graph 

Neural 

Networks 

HGAN 21.3 14.5 73.8 21.9 17.5 29.2 24.8 16.1 53.8 

HGNN 19.8 13.2 72.5 20.3 15.7 28.6 22.4 14.3 51.8 

GSage 18.3 12.1 70.9 18.8 14.1 28.3 20.6 12.9 51.8 

GAT 18.1 11.9 70.4 18.5 13.8 27.9 20.3 12.7 51.2 

GCN 17.9 11.8 69.9 18.2 13.6 27.6 20.0 12.5 50.5 

Hyperlink 

Graph 

GBS 20.5 13.8 72.5 17.8 14.4 23.4 23.4 15.3 49.9 

CGM 18.4 12.0 67.0 16.4 13.2 21.5 19.4 12.7 41.3 

HFN 14.8 9.2 57.7 9.6 7.7 12.6 15.4 10.0 32.7 

Node 

Embedding 

N2V 17.4 11.3 63.8 15.3 12.3 20.0 18.2 11.9 38.7 

DW 16.6 10.3 63.1 11.8 9.6 15.6 16.5 10.8 35.2 

Link 

Context 

BERT 17.5 10.9 65.4 12.9 10.5 16.9 17.9 11.8 37.7 

NB 16.9 10.5 64.2 12.5 10.1 16.4 17.3 11.3 36.8 

KW 14.3 8.8 56.1 9.0 7.2 11.8 16.1 10.5 34.4 

VSM 13.3 8.2 54.1 7.5 6.1 9.9 12.3 8.0 26.1 

Baseline 
BFS 15.5 10.2 58.0 12.4 10.0 16.3 14.2 9.3 30.3 

PR 13.2 8.2 51.3 8.8 7.1 11.5 12.5 8.2 26.6 

* All AUC values are calculated as area under the relevant curve across all possible collection cutoffs 
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Figure 7: Recall Trends across Various Channels (PMDS Task – Opioid Results are Comparable) 

 

 

 
Figure 8: Performance Trends for HealthSense & Comparison Methods on PMDS (left) and Opioid (right) Tasks 
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Table 7: Ablation settings 
(a) Exclude author content features from topic/sentiment classifiers  

(b) Replace channel-specific classifiers with a single topic and sentiment classifier 

(c) Exclude channel/source features 

(d) Omit the lexicon-based semantic entity tags 

(e) Replace seed credibility scores with random values between 0-0.1 (similar to PageRank) and set α in eq. 7 to 0 

(f) Exclude topic and sentiment classifiers from RAM, replacing with single relevance classifier per channel 

(g) Omit topic and sentiment classification scores from LAM  

(h) Exclude author/site linkage features 

(i1) Omit bi-directional edge relations from GNNs (eqs. 2-3) and credibility graph (eq. 7) 

(i2) Exclude author and site graphs 

(j1) Exclude graph propagation, directly using only seed credibility scores in the GNN 

(j2) Remove graph embedding (eq. 4), replacing it with a standard dense layer  

 

 

Table 8: Ablation Analysis: Percent Degradation in HealthSense Performance by Excluded Component 
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* All AUC values are calculated as area under the relevant curve across all possible collection cutoffs 

6 .3  Fie ld  Study :  Hea l thSe nse  in  Act io n  

The results in the prior section demonstrate the potential for HealthSense to accurately and efficiently retrieve relevant 
information from a variety of online channels for social listening. To demonstrate the downstream value proposition 
of these gains, we performed a field study on the PMDS task in conjunction with a major US-based pharmaceutical 
manufacturer (who, for anonymity, we will refer to as PharmCo). A common use case for safety teams tasked with 
post-market drug surveillance is to use alternative data sources to examine and verify (or discredit) potential adverse 
event cases stemming from customer complaints, regulatory queries, or clinical data. Two common methods for 
examining event cases are (1) manual/qualitative examination of supporting evidence; (2) statistical disproportionality 
analysis of adverse drug mentions. We used HealthSense to perform field experiments related to both of these case 
examination methods. 
 

6 .3 .1  Fie ld  Ex per i ment  Tes t  Bed  

To create the test bed for the field experiment, a team of 5 experts from the global drug safety unit at PharmCo used 
the full PMDS data (encompassing over 37 million data points collected as described previously) to carefully and 
thoroughly examine 100 cases reported to them over a two-week period. The team used a two-step process to examine 
the cases. Initially, following standard internal protocols for examining potential adverse drug reaction accounts, team 
members independently examined the PMDS test bed via custom Tableau dashboards equipped with search 
capabilities and data visualization, zooming, and filtration functionalities. Each of the five team members individually 
categorized each case as a “true positive” (case with supporting evidence) or “false positive” (lacking sufficient 
evidence). The 5 experts then came together to discuss their case assessments and achieve consensus. Ultimately, in 
their assessment of 100 total cases, the team considered 21 cases to be true positives and the rest to be false positives. 
This set of cases formed the test bed for both the user experiment and disproportionality analysis described next. 

 

6 .3 . 2  User Ex per iment  

In all, 77 members of the global drug safety unit at PharmCo participated in the experiment. None of the 5 experts 
that assisted with test bed construction participated in the experiment. For purposes of the experiment, 20 cases were 
selected from the test bed: 10 true positive cases and 10 negatives as determined by the panel of experts. Participants 
were randomly assigned to one of three experiment groups, each provided with data from a different social listening 
method: HealthSense, GBS (benchmark), and BFS (baseline). As shown in Table 9, the groups were not significantly 
different from one another in terms of age, years of experience working on safety/ risk teams, and prior experience 
working with dashboards (one-way ANOVA p-values > 0.05). 
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Table 9: Summary Statistics for User Study Participants from PharmCo Global Safety Unit 
Group Age Safety/Risk Experience Dashboard Experience 

HealthSense Data Users 36.92 10.12 3.52 

GBS Data Users 35.77 9.95 3.61 

BFS Data Users 37.36 9.55 3.92 

Within the experiment, all participants used the same Tableau dashboards. Each participant was given 30 minutes of 

training on how to use the dashboards. They were also provided access to recorded videos with information on how 

to use various features and functions of the dashboards. For each of the three experimental groups, the @5M post-

marketing drug surveillance (PMDS) collection as described in Table 6 was loaded onto the dashboards. 

Participants were given 3 hours to examine the 20 cases in the user experiment test bed and categorize each as a “true 
positive” or “false positive” as previously defined. This duration was chosen to be consistent with the contiguous time 
blocks that safety team members routinely devote to examining cases. Following the firm’s internal protocols and 
procedures, each participant was also asked to provide written evidence/examples to support their categorizations. The 
participants’ categorizations and supporting responses were examined by the 5 experts. Only those true positive 
responses with appropriate evidence were considered correct. After the experiment, participants completed a short 
survey related to the usefulness of the PMDS data and dashboards provided. The results are summarized in Table 10. 
Participants using the HealthSense data were not only able to identify true positives with significantly higher precision 
and recall than those using GBS or BFS data, but were also significantly better at identifying false positive cases. 
These results suggest HealthSense effectively supports the societal benefits of faster, more effective adverse event 
identification while simultaneously reducing PMDS investigation costs. 

 

Table 10: Field Experiment Results for HealthSense and Comparison Methods 
Group PTP Precision PTP Recall PTP F-Measure FP Precision FP Recall FP F-Measure 

HealthSense Data Users 85.34 81.54 82.97 83.31 85.77 84.12 

GBS Data Users 70.24 65.00 65.99 69.05 71.15 68.87 

BFS Data Users 63.32 63.08 62.25 66.58 66.54 65.50 

 
6 .3 . 3  Disp ro po rt io na l i ty  Ana ly s i s  Ca se  S tudy  

In addition to its usefulness for vetting reported adverse drug events, many stakeholders, including pharmaceutical 
companies, regulators, and healthcare hedge funds, stand to benefit from early detection of such adverse events prior 
to reporting. Disproportionality analysis (Rothman et al. 2004) is a commonly used technique for automatically 
detecting adverse events from various data sources by comparing the occurrences and co-occurences of entities and 
outcomes in a corpus. To see how accurately these events could be detected solely based on data gathered by our 
social listening platform as compared to others, we performed disproportionality analysis using data from 
HealthSense, GBS, and BFS at the 5 million URL collection threshold. 

For purposes of the disproportionality analysis, we measured co-occurrence of drug and reaction tuples within 
documents using the reporting odds ratio (ROR) metric. Tuples with 95% confidence of ROR≥1.0 were considered 
positive predictions. Note that since disproportionality analysis was performed at the drug-reaction tuple level, cases 
comprised of more than one reaction related to a drug could allow for multiple drug-reaction true positives for the 
same case. Performance was evaluated using recall of the 21 possible true positive cases, and precision defined as 
proportion of all positive signals that related to true positives identified by the experts. Table 11 summarizes results. 
Relative to the user experiment, HealthSense demonstrated even higher performance gains. Using HealthSense data, 
recall for the disproportionality analysis was 36% higher and precision 81% higher than that achieved using GBS. 
Through the use of data efficiently gathered by HealthSense, it is clear that pharmaceutical companies or other 
stakeholders could effectively use social listening to discover significantly more true adverse events, while 
substantially reducing time and resources spent investigating false positives.  

  
Table 11: Event Detection Results for HealthSense and Comparison Methods 

ROR Data Unique Event Cases 

Detected 

True Positive 

Signals 

False Positive 

Signals 

Case 

Recall 

Signal 

Precision 

HealthSense Data 15 23 26 71.43 46.94 

GBS Data 11 14 40 52.38 25.93 

BFS Data 10 12 42 47.62 22.22 
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7  Discussion and Conclusion  

In this study, we propose HealthSense – an effective, efficient social listening platform that can be used to provide 
timely, granular, and actionable data for time-sensitive analysis in support of public health tasks. Through a variety of 
real-world use-cases, we demonstrate that it is capable of providing significant value and improvements in public 
health outcomes, especially in time-sensitive situations. It significantly outperforms currently available tools for social 
listening – creating new possibilities for aiding time-sensitive public health informatics. 

From a computational design perspective (Rai 2017; Padmanabhan et al. 2022), we make five distinct contributions 
to research and practice. First, we show that theory-guided social listening artifacts can seamlessly combine relevance, 
credibility, and cross-channel landscape assessment to enable markedly better public health sensing capabilities. In 
order to meet the challenges of the 21st century, including improving the social determinants of health (Wang and 
DeSalvo 2018), social listening platforms must shift from the data collection and information retrieval paradigm 
towards intelligent sensing. In the same vein as prior IS design research in societally impactful contexts such as 
emergency response (Chen et al. 2013), our work underscores the value of using Activity Theory to understand the 
complexities and nuances of online social activities and content creation via digital communication. The combination 
of the Activity Theory framework along with theories regarding contextual information quality were instrumental in 
facilitating more accurate and efficient listening capabilities in our proposed artifact. 

Second, through our design process, we develop and propose an extension to existing Activity Theory literature, which 
addresses gaps in its ability to describe communication activities on modern online platforms – specifically the ability 
to capture information hidden in the multiplex relationships between communication activities. As part of our design 
framework developed based on this extension, we propose novel credibility and relevance assessment mechanisms 
that use graph propagation and content-based classifiers in conjunction with state-of-the-art graph convolutional 
networks that employ node and edge-conditioned embeddings. We then use rigorous and detailed evaluation of our 
artifact to empirically demonstrate that the inclusion of these mechanisms based on our extension to Activity Theory 
drastically improves the capabilities of our proposed social listening artifact. This novel contribution back to theory 
and demonstration of its value opens new opportunities for researchers to use the Activity Theoretic lens to address 
further issues relating to communication activities on modern online platforms. 

Third, in designing our artifact, we contribute to knowledge on graph neural networks through two novel extensions 
to this methodology. First, to address issues related to label sparsity, we couple graph propagation methods with graph 
neural networks. This allows us to propagate sparsely known seeding information across the network, improving 
performance of GNNs which perform better in low-sparsity environments. This extends limited prior work in this area 
by Bojchevski et al. (2020). Second, we extend the GNN architecture to include bi-relational edge-enriched node 
embeddings informed by domain-adapted feature-based classifiers. This allows for parsimonious representation of 
crucial information about in- and out-bound links to be utilized in relevance and landscape assessment. Through our 
ablation analysis, both of these novel extensions were shown to add significant value to our social listening artifact. 

Fourth, we show that in dynamic environments involving machine learning applied to complex user-generated content, 
artifacts guided by human-centered theories and intuition remain critical complements to automated AI-driven 
techniques. State-of-the-art learning representations such as graph convolutional networks (Wu et al. 2021) using 
edge-conditioned node embeddings represent powerful new methods for deriving graph-based patterns related to 
credibility and relevance. However, in emergent contexts such as the early stages of social listening, these methods 
are at their best when used in combination with theory-supported methods to represent heterogeneity and extract 
context from limited available information. We believe our work is a microcosm of how technical research can 
combine cumulative knowledge with state-of-the-art machine learning methods in the era of large-scale pre-trained 
embeddings and multi-billion parameter universal language models. 

Finally, our results across data, user, and event experiments demonstrate the downstream value chain associated with 
effectively designed social listening artifacts. Calls from champions of the public health 3.0 movement for timely, 
granular, and actionable data point directly to the prospects of tangible value that may be obtained through improved 
public health outcomes (Wang and DeSalvo 2018). Yet, without direct evidence, the presumption of value from such 
data and related analyses remains unclear. In our study, we show that HealthSense identified over 90% of relevant 
information for specified tasks by analyzing less than 20% of data. Through our partnership with the 
pharmacovigilance team at a major US pharmaceutical manufacturer, we further are able to show how this 
improvement translates into actual improvements in the downstream value chain. Data gathered by HealthSense 
resulted in a 36% improvement in recall and 81% improvement in precision in automated analysis, and a 22% 
improvement in recall and 25% improvement in precision for downstream manual investigation of potential adverse 
drug reactions. These real-world improvements in both effectiveness and efficiency of downstream analytics point 
directly to the impacts on public health outcomes made possible by HealthSense. 
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Our work also has potential applications beyond those in the public health domain. Social listening capabilities can be 
beneficial in a variety of contexts—a prime example is digital marketing. Although social listening is prevalent in this 
context, marketing research and practice have largely focused on use cases that do not require near-real-time analytics, 
such as utilizing user generated content to complement or replace traditional market research (Tirunillai and Tellis 
2014). Alternatively, when near-real-time analysis is an important aspect of the use case, the focus is often on a single 
platform with ready access to data through native tools or APIs, such as in the case of targeted advertising and 
messaging based on social media activity (Adamopoulos et al. 2018). Our system has significant utility specifically in 
circumstances where time is of the essence and information is required from a wide variety of online channels. For 
instance, in identifying and responding to users omnichannel product discussions and purchase behaviors (Cui et al. 
2021; Sun et al. 2022), or in crisis identification and response, detecting groundswells of negative reaction to products 
or company activities (Hewett et al. 2016). Work in these areas has largely, to date, been focused on retrospective 
analysis, but in practice would require a social listening tool such as ours in order to enable near-real-time responses.  

Our work is not without its limitations. Importantly, our models are only able to account for a small portion of the 
totality of complexity present in online communications. For instance, beyond establishing norms that contextualize 
communications, online communities provide social structures within which authors and their contributions are 
evaluated, which provides further context. Complexities such as this are difficult to capture, but could provide 
significant value. Our artifact also requires startup costs in the form of the creation of small task-relevant training sets 
for seeding. So, while useful for monitoring time-sensitive information for stable tasks, it may be less effective for 
exploratory tasks devoid of domain knowledge. Future extensions could address this issue. Our listening testbeds also 
focused on text-based content. Recent work has underscored the importance of health-related video and audio content 
(Li et al. 2019, Liu et al. 2020), and we believe future work should extend public health listening to multimedia 
contexts. In sum, despite these acknowledged limitations, we believe this work has important implications for IS 
research at the intersection of design and data science that integrates social-technical concepts into novel domain-
adapted machine learning artifacts in societally impactful contexts, and for practitioners requiring data from online 
platforms to fuel time-sensitive informatics. 
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