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Abstract— Healthy human locomotion functions with good
gait symmetry depend on rhythmic coordination of the left and
right legs, which can be deteriorated by neurological disorders
like stroke and spinal cord injury. Powered exoskeletons are
promising devices to improve impaired people’s locomotion
functions, like gait symmetry. However, given higher uncertain-
ties and the time-varying nature of human-robot interaction,
providing personalized robotic assistance from exoskeletons to
achieve the best gait symmetry is challenging, especially for
people with neurological disorders. In this paper, we propose a
hierarchical control framework for a bilateral hip exoskeleton
to provide the adaptive optimal hip joint assistance with a
control objective of imposing the desired gait symmetry during
walking. Three control levels are included in the hierarchical
framework, including the high-level control to tune three
control parameters based on a policy iteration reinforcement
learning approach, the middle-level control to define the desired
assistive torque profile based on a delayed output feedback
control method, and the low-level control to achieve a good
torque trajectory tracking performance. To evaluate the feasi-
bility of the proposed control framework, five healthy young
participants are recruited for treadmill walking experiments,
where an artificial gait asymmetry is imitated as the hemiparesis
post-stroke, and only the ’paretic’ hip joint is controlled
with the proposed framework. The pilot experimental studies
demonstrate that the hierarchical control framework for the
hip exoskeleton successfully (asymmetry index from 8.8% to -
0.5%) and efficiently (less than 4 minutes) achieved the desired
gait symmetry by providing adaptive optimal assistance on the
’paretic’ hip joint.

I. INTRODUCTION

Over the last two decades, there has been a flurry of
research efforts in developing wearable lower-limb exoskele-
tons to augment functions for healthy individuals [1], [2] or
provide rehabilitation/assistance for individuals with motor
deficits [3], [4]. Focusing on the hip joint, various powered
joint configurations, actuator designs, and control techniques
have been reported to assist gait rehabilitation and human
performance augmentation [5]–[9]. The rising research in-
terest on hip exoskeletons lies in 1) the hip is important for
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powering upright locomotion and postural control [10], 2) the
hip joint is capable of manipulating step length, step width,
and associated gait symmetry during walking, 3) compared
with the ankle joint, the hip joint needs higher metabolic
cost for the generation of similar mechanical joint power
owing to the differences in muscle characteristics [11], and
4) compared with ankle/knee exoskeletons, hip exoskeletons
add less mass to the leg, altering the leg dynamics to a
lesser degree. Typically, individuals with neurological dis-
orders caused by diseases or injuries such as a stroke and
spinal cord injury generally have muscle weakness, which
could lead to insufficient force or torque at the hip joints
during locomotion [12], which easily causes gait asymmetry,
increase metabolic cost, and poor balance control [13] that
deteriorate activities of daily living. Therefore, improving
gait symmetry is significant for individuals with neurological
impairments.

Many recent research studies have addressed gait sym-
metry improvement by using hip exoskeletons and three
main approaches, including joint trajectory-tracking control
[14], [15], finite-state-machine (FSM)-based assistive control
[16], [17], and adaptive frequency oscillators (AFO)-based
assistive control [18]–[21]. However, the trajectory-tracking
position control may cause discomfort or even injuries to
patient wearers who still have voluntary motor functions
although it is more appropriate for patient wearers with full
paraplegia, which potentially discourages active engagement
of the patients. In addition, most of the above studies utilize
the fixed and pre-defined assistance torque/force profiles
combined with discrete walking gait phases or continuous
gait phase detection or human motion intent to provide hip
joint assistance [22]. The discrete walking gait phases or con-
tinuous gait phase detection usually depends on the ground
reaction force (GRF) or insole force sensing resistor (FSR)
measurements, which typically increase the complexity of
the human-exoskeleton interaction system. Lim et al. [22]
proposed a delayed output feedback control method for a hip
exoskeleton to assist walking functions, where the assistive
level is determined by the scale gain of the orthogonal
function difference between both joints’ trajectories and a
time delay factor. Although it did not require additional gait
phase detection or human motion intent, control parameters
were still fixed for inter-subject experiments.

Patients with neurological disorders, like stroke, present
large variations in gait impairment and gait pattern [23],
[24]. This considerable inter-human variation emphasizes
the importance of customizing the robotic assistance on the
impaired hip joint, thus optimizing the user’s gait symmetry
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improvement. To provide personalized robotic optimal as-
sistance (OA), recent studies have developed new concepts
and automatic engineering approaches, of which two rep-
resentative ones are human-in-the-loop (HIL) optimization
approaches [25]–[31] and reinforcement learning (RL) ap-
proaches [32]–[35]. Specifically related to hip exoskeletons,
Ding et al. [29] proposed to use a Bayesian optimization
approach to tune the shape parameters of the hip extension
assistive torque for a wearable hip exosuit with a control
goal of minimizing human metabolic rate during walking.
Considering the same control goal, Gordon et al. [36] devel-
oped a musculoskeletal model-based online metabolic rate
estimation, which was combined with a Bayesian optimiza-
tion approach to tune the shape parameters of the hip flexion-
extension assistive torque. Tu et al. [34] and Zhang et al. [35]
proposed to implement a least square policy iteration (LSPI)-
based RL control framework to tune the shape parameters of
the hip extension and hip extension-flexion assistive torque
profiles, with the control goals of maximizing the transferred
power and imposing targeted hip joint trajectory, respectively.

Although the aforementioned approaches have demon-
strated the promising performance of automatic control
parameters tuning of exoskeletons, very few studies have
focused on maximizing gait symmetry by providing adaptive
optimal assistance from hip exoskeletons [37]. Given the
fact that people with motor impairments usually have limited
capability for a long time walking, can we personalize the
robotic assistance control fast for clinical applications? To
address this critical challenge, in this study, we proposed
a hierarchical control framework to optimally personalize
robotic assistance on the hip joint with a control objec-
tive of achieving desired/reference gait symmetry. There
are three control levels, where the high-level control is
to tune control parameters according to a policy iteration
RL approach; the middle-level control is to define the de-
sired robotic assistance torque profile based on a delayed
output feedback control (DOFC) approach; and the low-
level control is to achieve a good torque trajectory tracking
performance. To demonstrate the feasibility of the proposed
control framework for impaired individuals post-stroke, we
designed a scenario-equivalent study on unimpaired human
subjects with artificial imitation of hemiparesis post-stroke.
The main contributions of this study include 1) the dimension
reduction of tunable control parameters for providing both
hip flexion and extension assistance when compared to [35],
[38]; 2) the online inter-leg coordination-based assistance
torque profile generation; 3) the consideration of both gait
symmetry and control parameters increment as components
of the cost function, 4) the time-efficient control parameters
tuning procedure, and 5) the potential GRF- or FSR-free
implementations for daily locomotion tasks.

II. METHODS

The control framework design with three levels in this
study is shown in Fig. 1 and more details are given below.

Integral admittance
shaping-based torque

control
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feedback control

Low-level control
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Fig. 1. The hierarchical control framework that enables the personalization
of hip exoskeleton assistance to walk. (A) The high-level RL-based control
learns to personalize control parameters. (B) The middle-level delayed
output feedback control during walking generates the desired torque profile.
(C) The low-level intrinsic torque controller tracks desired assistive torque
generated from the middle-level control.

A. Problem formulation & middle-/low-level control design

Individuals with hemiparesis following post-stroke usually
exhibit weakness in local lower-limb joints, like the limited
motion of the right hip joint shown in Fig. 2 (a). Compared
to the unimpaired hip joint, although the motion amplitude of
the impaired hip joint is constrained, its cyclic motion pattern
and cadence are still maintained similarly to the unimpaired
side. Individuals with hemiparesis are more vulnerable to
external disturbances, so a slight mismatch between their
intended motion and the robotic assistance can be fatal. To
compensate for the limited motion of the impaired hip joint
while considering the motion coordination between bilateral
hip joints, an further modified intuitive middle-level delayed
output feedback controller (DOFC) that directly responds to
the wearer’s hip joint motion patterns, proposed initially in
[22], is applied here. As shown in Fig. 1 (B), this middle-
level control will facilitate a unified assistance design for the
impaired hip joint but require customized control parameters
to achieve the best gait symmetry.

Assume the impaired (right side) and unimpaired (left
side) hip joint trajectories are represented by θr(t) and θl(t),
respectively, the intermediate output feedback signal y(t) that
represents the projected hip motion is given as

y(t) = sin(θr(t))− sin(θl(t)). (1)

Then the assistance torque for the impaired hip joint τd(t)
will be generated through a combination of appropriate time
delays ∆t, a control amplification gain k, and a vertical shift
gain A as

τd(t) = k ∗ y(t −∆t)+A. (2)

Here, the three tunable parameters k, ∆t, and A are adjusted
according to the RL-based high-level control. To ensure
walking stability and avoid potential adverse effects, the
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Fig. 2. (a) Typical non-paretic (red) and paretic (blue) hip joint trajectories
during walking of people with hemiparesis following post-stroke. The red
or blue regions represent the walking stance phases of the non-paretic and
paretic sides, while the purple regions represent the double support phases.
(b) The desired assistance torque generation on the paretic hip joint, where
green regions represent the walking stance phases.

adjustment ranges for these three parameters are set as
k ∈ [0, 15]N ·m, ∆t ∈ [0, 0.4] seconds, and A ∈ [−5, 5]N ·m,
respectively. By adding the supplementary assistance torque
to the biological torque of the paretic hip joint, the expected
roll output would be an increased extension and flexion peak
values, thus increasing the range of motion (ROM) on the
paretic hip joint, which leads to a better gait symmetry.

At the low-level control, as shown in Fig. 1 (C), an in-
trinsic integral admittance shaping-based closed-loop torque
control, as detailed in [34], [39], is applied, which is capa-
ble of achieving good torque tracking performance of the
modular actuation unit of the hip exoskeleton during the
dynamic locomotion tasks. For the motor itself, the closed-
loop velocity control is used, where input signals include the
position error (between the admittance reference position and
real joint position) and admittance reference velocity, while
the output signal is the real joint velocity. The stiffness and
damping parameters in the low-level control are adjusted to
ensure the near 1:1 scale-up of the sensitivity function.

B. RL-based high-level control design

As shown in Fig. 1 (A), we consider achieving the
best ROM-associated gait symmetry as the control objective
through RL-based automatic tuning of three control param-
eters in (2). The definition of gait symmetry is given as:

GS = (ROMUI −ROMI)/(2∗ (ROMUI +ROMI)), (3)

where ROMUI and ROMI represent the ROM of the unim-
paired and impaired hip joints, which is defined as the
difference between the peak flexion and peak extension.
Compared to other gait parameters (such as step length,
stance time, etc.)-associated gait symmetry calculation, the
main advantage of the ROM-associated gait symmetry is that
it only requires onboard encoders measurement, which is

beneficial for avoiding extra sensors and maximizing the ex-
oskeleton’s portability. Assuming the desired gait symmetry
as GSd , the state variable, x ∈R, is formulated according to
the differences between the desired and real gait symmetry
variables as x = GS−GSd .

To formulate the RL control solution for assistive torque
control parameters tuning, we consider the human-hip ex-
oskeleton system as a discrete-time dynamic model

x(n+1) = f (x(n), u(n)),
u(n) = h(x(n)), n = 0, 1, 2... (4)

where n represents the discrete time index (measurement
sample) in iterative control updates, f (·, ·) represents the
transition function that maps state and action variables at the
current measurement sample to the upcoming state variable,
and h(·) represents the corresponding tuning policy that
determines the action variables according to the current
state variable. The domain of f (·, ·) is denoted as D ≜
(x, u)|x∈X , u∈U , where X and U are compact sets with
dimensions of 1 and 3, respectively. In this study, control
parameters are updated every four consecutive gait cycles,
within which state variables are calculated and averaged
across gait cycles after applying low-pass filtering to real-
time hip joint trajectory measurements. The tuning policy h
is updated every 20 measurement samples (80 gait cycles).
Each measurement sample is considered as four consecutive
gait cycles. During the nth sample, the control action u(n) ∈
R3 is defined as u(n) = [δk(n), δ∆t(n), δA(n)]T . The initial
control parameters of k(0), ∆t(0), and A(0) are selected
randomly within the aforementioned ranges and conditions.

The temporal control performance is assessed iteratively
by defining the stage cost at the measurement sample index
n in a quadratic form

r(x(n), u(n)) = xT (n)Mxx(n)+uT (n)Muu(n), (5)

where Mx ∈R and Mu ∈R3×3 are all positive definite weight-
ing matrices. Given a deterministic policy h(i) (i = ⌊n/20⌋),
the state-action value function (Q-function) Qh(i) is defined
across all possible state and action variables. The Q-function
of a policy h(i) indicates the expected and discounted total
cost when taking action u(n) in the state x(n), thereafter [40]

Qh(i)(n) = r(x(n), u(n))+
∞

∑
t=n+1

γ
t−nr (x(n), u(n))

= r(x(n), u(n))+ γQh(i)(x(n+1), u(n+1)), (6)

where γ is the discount factor. The goal of RL control is to
acquire an optimal policy, h∗, that will be used to minimize
the Q-function, noted as Q∗(x(n), u(n)), as below

Q∗(n) = min
h

Qh(i)(x(n), u(n))

= r(x(n), u(n))+ γ min
u(n+1)

Qh(i+1)
(x(n+1), u(n+1))

= r(x(n), u(n))+ γQ∗ (x(n+1), h∗ (x(n+1))) . (7)

During each iteration, the policy evaluation step com-
putes the Q-function Qh(i) by solving the Bellman equation
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approximately and the policy improvement step defines the
improved greedy policy h(i+1) over Qh(i) as

h(i+1) (x(n)) = argmin
u(n)

Qh(i)(n), (8)

where u(n) is selected from the admissible compact set
U . By using the quadratic basis functions (QBFs), policy
improvement step is equivalent to solving a quadratic pro-
gramming problem. Therefore, the policy h(i+1) is at least as
good as h(i), if not better. The two steps are repeated until
there is no change in the policy, thus reaching the optimal
policy h∗.

C. Solution for online LSPI with policy approximation

In conventional LSPI, Q-functions are approximated by
using a linear parameterization as

Q̂(x(n), u(n)) = φ
T (x(n), u(n))θ , (9)

where φ (x(n), u(n))∈RN is a vector of N QBFs and θ ∈RN

is a parameter vector. Similar to existing model-free LSPI-
based RL approaches [34], [35], [40]–[43] that do not depend
on the exact model knowledge about the controlled system
or the optimal solution, we applied no prior knowledge about
the optimal policy or more generally about good policies to
address the personalization problem, called online LSPI with
policy approximation [44]. Consider a linearly parameterized
policy

ĥ(x(n)) = ψ
T (x(n))ϑ , (10)

where ψ(x(n)) = [ψ1(x(n)), ...,ψNs(x(n))]
T is a vector that

contains Ns state-dependent quadratic basis functions, and ϑ

is the policy parameter vector. Although a scalar action is
assumed here, the parameterization can be easily extended
to multiple action variables. If there is no available prior
knowledge of the policy, approximate policy improvement
can be performed by solving the unconstrained linear least
square problem that is given by

ϑl+1 = ϑ
∗, ϑ

∗ ∈ argmin
ϑ

Ns

∑
n=1

(ψT (x(n))ϑ −u(n)), (11)

where u(n) ∈ argmax
u

φ T (x(n), u(n))θl . The parameter ϑl+1

leads to a policy improvement, and {x(1), x(2),..., x(Ns)} is
a set of samples to be used for policy improvement.

III. HUMAN-IN-THE-LOOP EXPERIMENTAL STUDY
DESIGN AND IMPLEMENTATION

A. Human participants and experimental protocol

The treadmill walking protocol was approved by the
Institutional Review Board (IRB) of the North Carolina
State University (IRB approval number: 24671). Five young,
healthy participants (mass: 73.9 ± 8.1 kg, height: 170.2 ±
3.7 cm, age: 26.6 ± 5.6 years old, identified as participants
A01, A02,..., A05) without any neurological disorders were
recruited in this study. All participants were familiarized with
the experimental details and signed the consent form before
any experimental studies. Each participant wore the bilateral

Fig. 3. Experimental setup of the walking task on the instrumented
treadmill with the split belts.

hip exoskeleton and practiced walking in a transparent mode
(zero assistance) on an instrumented treadmill (Bertec Corp.,
Columbus, OH, USA) at 1.0 m/s a day before the experimen-
tal sessions to ensure the participant felt comfortable walking
with the exoskeleton.

Figure 3 presents the experimental setup, where partici-
pants wear a bilateral hip exoskeleton throughout walking
experiments. The exoskeleton consists of two degrees of
freedom for flexion/extension motion on two hip joints,
and each one could provide a continuous output torque
of 34 N·m, a peak torque of approximately 57 N·m, and
an angular velocity of up to 300 °/s. Detailed design and
corresponding characteristics of the hip exoskeleton can be
referred to [34], [35]. Given the advantages of the bilateral
configuration of the hip exoskeleton, separate assistance
patterns can be applied to the left and right hip joints,
which facilitates the rationale of generating artificial gait
asymmetry for unimpaired human subjects. Each participant
walked on the treadmill at 1.0 m/s under four different
conditions, including (1) transparent mode/zero assistance
on both hip joints (C1), (2) artificial gait asymmetry by
adding consistent unilateral assistance on the left hip joint
while the right hip joint remains unassisted (C2), (3) RL-
based control parameters tuning on the right hip joint while
keeping the consistent assistance on the left hip joint (C3),
(4) Personalized assistance on the right hip joint after RL-
based tuning while keeping the consistent assistance on the
left hip joint (C4). Under C1, C2, and C4, each participant
walked stably for 100 gait cycles separately. Under condition
C3, an up to 25-minute RL-based control parameters tuning
procedure was conducted on each participant. Breaks of 5
minutes or as needed were given to participants between two
consecutive conditions or after 5 minutes of walking under
condition C3 to avoid any fatigue.

B. Artificial gait asymmetry generation

To imitate the similar results of post-stroke patients that
were reported in [45] with an average of 9% gait asymmetry,
we added consistent unilateral assistance on a left hip joint to
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introduce artificial gait asymmetry while the right hip joint
remained unassisted under the walking condition C2. The
consistent unilateral assistance was generated by using the
finite-state-machine impedance control as

τu(t) = kp(θl(t)−θe)+ kd θ̇l(t), (12)

where kp, kd , and θe denote the stiffness, damping, and
equilibrium position parameters during either hip extension
or flexion phases, respectively.

C. Implementation of control parameters tuning

Under the walking condition C3, each human subject
walked on the treadmill in the transparent mode for both
hip joints during the first ten gait cycles. Then, the hip
exoskeleton began to provide consistent assistance on the
left hip joint and to tune these three parameters in (2) on the
right hip joint according to RL control policies. The tuning
goal was considered met when state and stage cost stayed
within the stopping rules (±0.02 for state value and 0.0005
for stage cost) for eight continuous iterations. If the stopping
rules were satisfied within 10 minutes, the training procedure
was deemed successful; otherwise, it was unsuccessful. The
discount factor was set as 0.9, and weighting coefficients as
mentioned in (5) were set as Mx = 1.0 and Mu = diag([0.1,
1.0, 0.2]).

The initial set of control parameters (k = 2N · m, ∆t =
0.1sec, and A= 0N ·m) and a pre-trained policy as the initial
policy were applied for the RL-based online tuning proce-
dures on all participants. To obtain the pre-trained policy, we
included an experienced hip exoskeleton user for five inde-
pendent training walking trials on the treadmill at 1.0 m/s.
The initial policy for these five trials was pseudo-randomly
generated, and the initial control parameters set was the same
as above. Therefore, five pre-training trials were performed
with different pseudo-random initial policies. The policy
associated with the most recent successful trial was used
as the initial policy for all recruited human participants.
The RL-based control parameters tuning was implemented
in MATLAB (R2020a, MathWorks, MA, USA) at 500 Hz,
and the low-level admittance control of the hip exoskeleton
operated in C++ at 1000 Hz. The user datagram protocol
(UDP) was used for the data communication between the
high- and middle-level control programs.

D. Data collection, processing, and analysis

The featured benefit of the DOFC is the independence
of GRF when determining the desired hip joint assistance;
therefore, GRF data was not required for the control pa-
rameters tuning under condition C3. We only collected GRF
data at 1000 Hz from force plates (AMTI, Watertown, MA,
USA) for post-processing and gait analysis purposes. During
the control parameters tuning procedure via LSPI in C3, we
recorded the iterative updates of all state variables, action
variables, stage cost, and control parameters in every sample.
During all walking conditions, besides GRF data, we simul-
taneously recorded onboard signals from the hip exoskeleton,

Fig. 4. Results of symmetry and asymmetric treadmill walking before and
after adding consistent unilateral assistance under conditions C1 and C2.
The top plots show the left and right hip joint trajectories vs. normalized
gait cycle, while the bottom plots show the ROM of both hip joints vs. gait
cycle counts and the gait symmetry index vs. gait cycle counts.

including angular position, velocity, assistance torque, inter-
active torque, assistance power, and motor current at 500
Hz in MATLAB. Both GRF data and onboard signals were
low-pass filtered through a 4th-order Butterworth filter with
a cut-off frequency of 10 Hz in the post-processing.

The mean and standard deviation (SD) values of the hip
joint ROM-associated gait symmetry index were calculated
across all gait cycles under conditions C1, C2, and C4.
According to the Shapiro-Wilk parametric hypothesis test
(significance level α=0.05), the data followed the normal
distribution (p > 0.05). Therefore, we conducted a one-way
repeated-measure analysis of variance (ANOVA) followed by
Tukey’s honestly significant difference tests to evaluate the
effect across different conditions. The significant difference
level was chosen as p < 0.05 for all statistical tests.

IV. RESULTS AND DISCUSSIONS

A. Artificial gait asymmetry outcomes

By applying the consistent unilateral assistance mode
while the other hip joint remains unassisted, artificial gait
asymmetry could be generated. The impedance parame-
ters during in (12) were set as kp = 25N · m/rad, kd =
0.1N · m/(rad · s), qe = −0.2rad for hip extension phase
and kp = 25N ·m/rad, kd = 0.1N ·m/(rad · s), qe = 0.8rad
for hip flexion phase, respectively. Take one representative
participant as an example, shown in Fig. 4, the left hip
joint trajectory was modulated after adding assistance while
the right hip joint remained almost the same trajectory.
The left hip joint ROM was increased by around 12.2°
while the right side was reduced by around 3.1°, indicating
participants had some compensatory movements even though
no assistance was added to the right side. Eventually, the
unilateral assistance introduced an asymmetry of 10.1%.

B. Performance of automatic tuning based on RL

The results regarding iterative changes of stage cost values,
state variables, and control parameters during the RL-base
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Fig. 5. Outcomes from the RL-based robotic assistance personalization
procedure under condition C3 on all five participants, including iterative
changes of stage cost, gait symmetry index, and control parameters. Each
curve represents corresponding data from each participant.

TABLE I
PERSONALIZED CONTROL PARAMETERS AND TUNING DURATION UNDER

THE CONDITION C3.

Participant Metrics at the stopping criteria
k (N ·m) ∆t (s) A (N ·m) Iteration Time (s)

1 9.59 0.151 -3.01 38 178
2 11.24 0.147 -3.40 28 129
3 2.90 0.149 -2.94 28 135
4 9.23 0.150 -0.40 48 213
5 6.73 0.148 -2.88 28 139

tuning procedure under condition C3 are presented in Fig. 5,
where each curve represents the data of each participant. It
shows that the tuning duration varied from person to person,
as the iteration numbers are 38, 28, 28, 48, and 28 for
five participants. Correspondingly, the policy update numbers
are 1, 1, 1, 2, and 1, respectively. Since the initial control
parameters were fixed and not optimal for each participant,
the state variable and reward values in the initial stages were
relatively high, and eventually, both the state variable and
stage cost converged within the thresholds aforementioned.
The personalized control parameters when meeting stopping
criteria, tuning iterations, and tuning time duration for all
five participants are summarized in Table I.

It is noted that fixed impedance parameters in (12) were
used to generate nearly consistent assistance on the left hip
joint, which is supported by results in Fig. 6 that presents the
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Fig. 6. Comparison results of gait cycle-normalized assistive torque and
power root mean square (RMS) values on both hip joints of A05 under
condition C3.

gait cycle-normalized assistance torque and power root mean
square (RMS) values on both hip joints during the training
procedure of participant A05. The torque/power variances
for the left and right hip joints are 0.017 N ·m/0.077 W and
0.952 N ·m/1.048 W , respectively, indicating the negligible
variations of the assistance on the left hip joint.

C. Evaluation of personalized robotic assistance

Considering the control goal in this work is to regenerate
the hip joint ROM-associated gait symmetry, we did not
require the accurate joint trajectory matching between the left
and right hip joints. In other words, the ROM match between
hip joints was more critical than the sequential trajectory
match. The relationship between the hip joint positions and
velocities on both sides under conditions C1, C2, and C4
from a representative participant are presented in Fig. 7,
where each curve represents averaged data across 100 gait
cycles. The good trajectory match and ROM match between
hip joints only occurred under condition C1, which implies
high gait symmetry. After introducing gait asymmetry un-
der condition C2, a significant ROM mismatch appeared,
indicating both flexion and extension on the left hip joint
were enhanced. After adding personalized optimal assistance
under condition C4, the ROM match was regenerated as C1,
but the trajectory mismatch remained. Similar joint kine-
matics results were also observed from other participants.
Fig. 8 summarizes the gait symmetry results (mean ± SD)
across 100 gait cycles under conditions C1, C2, and C4 intra-
subject and inter-subject. The gait symmetry index under C2
showed a significant increase when compared to C1 and C4;
however, it did not show any significant difference between
C1 and C4, both intra-subject and inter-subject. On average,
the personalized optimal assistance in C4 effectively reduced
the gait symmetry index from 8.8% to -0.5%. All significant
difference levels are marked in Fig. 8.

The results of gait symmetry improvement in this study are
comparable to or even better than the performance of existing
lower-limb exoskeletons studies, such as from 21.5%±3.3%
in artificially impaired condition to 3.4%±0.5% in assisted
condition [21], from 11.1%±0.7% in artificially impaired
condition to 3.9%±0.6% in assisted condition [46], and from
12.7% in artificially impaired condition to 7.4% in assisted
condition [46]. More importantly, this study provides an
adaptive optimal control framework to automatically tune
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Fig. 7. Kinematics limit cycles on both hip joints under conditions C1 (a),
C2 (b), and C4 (c). Data were averaged across 100 gait cycles under each
condition on A05.
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Fig. 8. ROM-associated gait symmetry results under conditions C1, C2,
and C4. Individual data were averaged across 100 gait cycles under each
condition. * represents the significant difference levels at p <0.05.

control parameters for a hip exoskeleton to provide personal-
ized optimal assistance that reproduces the desired gait sym-
metry. Compared to the approximate dynamic programming-
based adaptive control approach with one-dimensional con-
trol space in [37], we have a three-dimensional action space
in this study, which could cause tuning efficiency issues
by using the approach in [37]. As mentioned in previous
evidence [44], [47], the policy iteration has the advantage
of fast convergence over other classical RL algorithms, such
as value iteration and gradient-based policy search (including
the approximate dynamic programming). In this study, a total
of three control parameters were efficiently tuned online to
reach the optimal values individually between 2 to 4 minutes.
Considering the variations from person to person, it is
reasonable that personalized control parameters are different
for different participants, as shown in Fig. 5 and Table I.
According to [48], variations in the personalized control
parameters after RL-based tuning emphasized the nature of
the robotic assistance customization for an individual user
to yield similar walking gait symmetry, which infers the
necessity of assistance personalization.

This study is the first attempt to tune control parameters
for wearable exoskeletons that can provide optimal gait func-
tion assistance but do not depend on gait phases or human
motion intent detection, possibly opening a new avenue for
the HIL optimization problem out of the laboratory and in
real-world locomotion activities. Compared to existing HIL
optimization approaches like in [25], [28]–[30], RL-based
automatic control tuning has more time efficiency and can
easily be scaled when meeting various walking conditions,
like uneven terrain, speed change, or stairs [43]. More
importantly, after tuning on one human participant under
one condition, the optimal policy usually possesses higher

robustness and can be directly applied to the same walking
condition on a new participant or a new walking condition
on the same participant [43]. Although these preliminary
results in the pilot study were promising, some limitations
still exist. For example, the simulated spatial gait asymmetry
on unimpaired human participants, where we assumed the
enhanced side was the healthy side and the other side was
the affected side, may not have the exact mechanism as gait
asymmetry from people with motor impairments. Further
investigation on other gait symmetry metrics, such as tem-
poral and/or spatiotemporal symmetry will be necessary in
future work. Then, we did not quantify the human adaptation
to the varying robotic assistance given the short duration
of the RL-based tuning. In addition, we did not address
the systematic comparison between the proposed RL-based
control approach and HIL optimization approaches, which
will be interesting topics in future work.

V. CONCLUSION

In this work, we investigated a data-driven RL-based
hierarchical control framework to provide personalized as-
sistance from a hip exoskeleton, with the control objective
of regenerating desired gait symmetry during walking. Three
control levels were proposed to automatically tune three
control parameters iteratively according to the least square
policy iteration algorithm. Five young participants without
neurological disorders were recruited to validate the effec-
tiveness of the proposed control framework, where artificial
gait asymmetry during walking was generated by applying
consistent assistance mode on one hip joint, and the control
parameters tuning was applied on the other hip joint. Human-
in-the-loop experimental results during the tuning procedures
demonstrated a fast convergence speed between 2 minutes
and 4 minutes. Evaluation results illustrated that the control
framework could provide optimal personalized assistance on
the hip joint to drive the ROM-associated gait symmetry
approaching the desired values. Our next step will focus
on a more thorough evaluation of the proposed RL-based
control framework on individuals with a chronic stroke while
walking on the treadmill or overground.
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