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Smart Lacelock: A Shoelace Tensioning Device
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Abstract— Shoe-mounted wearable sensors may serve
a variety of important purposes (activity recognition,
energy expenditure estimation, etc.) by providing rich
information about human locomotion. However, reliably
attaching such sensors to shoes still remains a challenge.
Further, pressure-sensing elements in such shoe sensor
systems often suffer from poor durability due to the large
dynamic load. This work presents a novel shoe-mounted
sensor named Smart Lacelock, which takes the form of a
common shoelace tensioning device (shoelace lock). With
its unique form factor, the Smart Lacelock can be securely
attached to the top of a shoe with minimal effort, enabling
its embedded inertia measurement unit to provide reliable
3D motion measurement of the foot. Further, the Smart
Lacelock incorporates a loadcell to measure the force
applied by the shoelace, providing valuable information
related to the ankle movement, foot/shoe shape change,
and ground force. Design details of the device are
presented, including the mechanical structure and
electronic circuitry. The authors also conducted a 10-
participant human study, in which signals were recorded
during free ankle swing, body weight shifting, sit-to-stand

Smart Lacelock Device

(STS), and overground walking. The results demonstrated the Smart Lacelock’s capability of providing consistent and
observable responses to single contributing factors (ankle movement and foot loading) as well as complex
movements with clearly defined events of interest (STS and walking). Such unique capability suggests that the Smart
Lacelock may serve as an important source of human movement information to support related applications such as

activity recognition and gait event detection.

Index Terms—locomotion sensing, Smart Lacelock, wearable sensors

I.  INTRODUCTION

NERTIA measurement unit (IMU) is a special type of micro

electro-mechanical system (MEMS) providing three-
dimensional acceleration and angular velocity measurements.
Commercial IMUs are becoming increasingly compact and
affordable, enabling their ubiquitous application in portable
electronic devices [1]-[6]. Benefiting from such technological
advances, IMU-based wearable motion sensors have been
developed to provide the 3D measurement of human
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movement, which displays multiple advantages over the
traditional marker-based motion capture systems (e.g., lower
cost and portability). However, reliably attaching wearable
IMU sensors to different parts of the human body still remains
a challenge. The traditional strap-based mounting method is
inconvenient to use, and a strap-mounted sensor may shift its
position during even mild human movement.

Presumably for the convenience of sensor attachment in
daily use, the majority of existing wearable motion sensors on
the commercial market are wrist-worn devices, including
smart watches and wrist bands. Through the measured wrist
movement, such sensors can potentially be used for physical
activity monitoring and energy expenditure estimation.
However, the performance of wrist sensors is less than
satisfactory, largely due to the fact that the underlying wrist
movement is a poor indicator of the wuser’s full-body
movement in locomotion.

As a promising alternative to wrist-worn sensors, footwear
(shoe)-mounted wearable sensors have received increasing
attention from researchers in both academia and industry.
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Footwear is an irreplaceable part of modern human life, which
acts as an interface between the ground and the wearer’s foot
and has direct involvement in full-body/lower-limb motion.
While the primary purpose of footwear was to protect the feet
[7], rich information (especially that related to human
locomotion) can be obtained by monitoring its motion and its
interaction with the environment. Attempts to obtain such
information by integrating wearable sensors in footwear
started in the 1990s, both in academic research and industrial
products [8], and have become an increasingly popular area of
research in recent years.

Footwear-based human locomotion monitor and various
analysis systems have been proposed and applied both to
healthy individuals and patients with neurological disorders
[8]-[16]. Typically, footwear-based wearable sensor systems
consist of pressure sensors for plantar pressure measurement
and inertial sensors (accelerometer and/or gyroscope) for
movement detection. Foot-worn IMUs and pressure sensors
are used to determine weight, posture allocation, physical
activity classification, and energy expenditure calculations,
among other parameters related to the motion of the foot (gait)
and/or person of the wearer. Hegde et al, developed an IMU
and Force Sensing Resistor (FSR) based insole monitor named
Smartstep, which can classify major postures and activities
[17], energy expenditure prediction [18], estimation of the
body weights (BW) [19], estimation of temporal gait
parameters of healthy and post-stroke individuals [8]. A
number of publications described the use of shoe-based sensor
systems for various applications such as monitoring of vertical
ground reaction forces [20]-[21], motion intent learning [22],
plantar pressure [23]-[24], falls detection [25], estimation of
the center of mass displacement during walking [26],
pedestrian navigation [27] and tracking [28], and rehabilitation
[291-[33].

Attaching sensors to shoes in a reliable way is a major
challenge when developing shoe-based sensor systems. To
address this problem, a possible approach is to modify shoes
for direct sensor integration, but it is typically labor-intensive
and not feasible for large populations without the direct
involvement of shoe manufacturers. Besides, modification
may potentially diminish the original functionality of the shoe.
Commercial sensor-equipped shoes for example, PUMA
RS100 Computer Shoe [34] and Nike Lunar [35] minimized
such issues. However, the durability of these products was not
satisfactory due to high dynamic loads on the sensors during
physical activity.

Motivated by the limitations imposed by the existing
systems, the authors developed a novel wearable sensor,
namely Smart Lacelock, that can be easily attached to a user’s
shoe in the form of a shoelace tensioning device without any
modification of the shoe. The use of this sensor in people's
daily life is largely effortless and eliminates the need for tying
shoelaces or straps. Further, this sensor provides accurate
information on the wearer's lower body movement. The Smart
Lacelock incorporates an IMU to measure the spatial motion
of the shoe. Additionally, it also incorporates a force sensor
(load cell) to measure the tension in the shoelace. Usually, the

tension of the shoelace changes due to the change of the foot
shape and the shape of the foot changes due to ankle
movement and foot loading. Thus, by measuring the tension of
the shoelace, this sensor can provide valuable information
related to ankle movement and/or foot loading.

The advantage of this device is three-fold: 1) ensures
reliable inertial sensor data by providing secure and reliable
attachment of the IMU without any modification of the shoe;
2) introduces a novel shoelace tension measuring technique
that not only provides rich information about foot-loading and
ankle movement but also provides the unique capability to
recognize the unique nature of individual gait patterns/gait
signature; and 3) eliminates the use of insole-based force
measuring sensors to address the durability issue.

This paper details the development of the Smart Lacelock
along with the human subject testing aimed at characterizing
the performance of the device using gait data from an eight-
camera motion capture system and a force platform as
reference systems. The paper is organized as follows: Section
II presents the details overview of the Smart Lacelock design,
electronics hardware and sensor interfacing. Section III
presents experimental procedure, and data processing. Section
IV presents the results obtained in the human experiments that
characterize the performance of the Smart Lacelock. Section V
presents a discussion of the research and finally section VI
summarizes the conclusions.

Il. METHODS

A. Overview of the Smart Lacelock Design

For the design of the Smart Lacelock, the primary goal is to
provide the desired sensing and data processing/storage
functions with a package at a similar size/weight as regular
shoelace locks. Specifically, a miniature circuit board (with
IMU embedded) and the battery must be fully encapsulated in
the device, and a small-scale load cell must be embedded in
the load-bearing structure for force sensing. Further, the
device should have a separable structure, with two individual
pieces embedded in the shoelaces on the opposite sides of the
shoe. Further, the two pieces must be easy to detach and attach
to facilitate the device’s practical daily use.

To fulfill these requirements, a Smart Lacelock prototype is
shown in Fig. 1. The device comprises two assemblies:

1) Assembly A consists of a Lace Tensioner A (#5), a Load
Cell (#3), and a Female Coupler (#1), connected with 4 screws
(#6) as shown in Fig. 1(a). The Lace Tensioner A (#5) has
three holes to route the shoelace. In addition, an Electronics
Enclosure (#9), rigidly attached to the Lace Tensioner A or
Female Coupler, is also part of Assembly A. The Electronics
Enclosure (#9) houses an inertia measurement unit (IMU), a
load cell signal conditioning circuit, a microprocessor, a
battery, and the other electronic components and circuit boards
for sensor interfacing, data processing, and storage, as shown
in Fig 1(b) (right).

2) Assembly B consists of a Lace Tensioner B (#4) rigidly
attached with a Male Coupler (#2). Similar to the Lace
Tensioner A (#5), the Lace Tensioner B (#4) also has three
holes to route the shoelace as shown in Fig. 1(a).
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Fig. 1. (a) Shoelace sensor design (Exploded view); Components in
the figures above (#1) Female Coupler, (#2) Male Coupler, (#3) Load
Cell, (#4) Lace Tensioner B, (#5) Lace Tensioner A, (#6) Screws,
and (#9) Electronics Enclosure; (b) Smart Lacelock locking and
unlocking mechanism (left) and the Electronics Enclosure of the smart
lacelock (right); (c) The smart lacelock’s IMU orientation; (d) Locking
and unlocking mechanism (left) and the Smart Lacelock device is in
locked state ready for testing (right).

To use the Smart Lacelock, each assembly is attached to one
side of the shoe, with the shoelace routed through the holes in
the Lace Tensioners A and B (#5 and #4). Subsequently, the
two assemblies are securely attached to each other by inserting
the teeth of the Male Coupler (#2) into the slots in the Female
Coupler (#1), as shown in Fig. 1(b) (left). For the reliability of
attachment, both the Male Coupler (#2) and Female Coupler
(#1) have a magnet embedded on the mating surface, such that
the pulling force between the magnets ensures the assemblies
to stay together in the locked state. To unlock, the Assembly A
should be lifted upwards such that the teeth of the Male
Coupler slide out of the slots in the Female Coupler. As such,
the assemblies can be attached and detached with minimum
effort from the user.

B. Electronics Hardware and Sensor Interfacing

The electronics of the Smart Lacelock device consist of a
miniature loadcell - 500g, Straight Bar (TAL221), and a 9-
DOF IMU along with data acquisition electronics powered by
a 3.7 V Li-polymer battery of 100 mAh capacity. This system
also incorporated STM32L476RG, a Cortex-M4 Ultra-low-
power ARM processor (ST Microelectronics, Geneva,
Switzerland) with an 80 MHz CPU at 39 pA/MHz; a 32 GB
micro-SD card to store data sampled at 512 Hz by the
microcontroller unit (MCU); and a micro-USB interface to
control data collection, access sensor signals stored in the SD
card, update MCU timestamp, recharge the battery, and upload
the firmware. A small 4-layer PCB (32mm x 24 mm) was
designed and manufactured to incorporate all electronics
components of the device. The fully assembled PCB together
with the battery weighs 6g.

The mini loadcell was interfaced with the MCU through
HX711 (a precision 24-bit analog-to-digital converter) using
the serial interface. The motion tracking was performed by the
IMUs (MPU-9250, InvenSense Inc., San Jose, CA, USA),
each combining a 3-axis gyroscope and a 3-axis
accelerometer. The orientation of the IMU accelerometer and
gyroscope is shown in Fig. 1(c). The accelerometer and
gyroscope of the module were configured to have a £16 g and
+2000 dps measurement range, respectively, with 16 bits of
resolution. The IMU was interfaced with the MCU through
SPI interface.

lll. EXPERIMENTAL PROCEDURE

A. Experimental Protocol

To demonstrate the functionality and performance of the
proposed Smart Lacelock in the measurement of human
movement, we conducted a human study that involved ten
healthy participants (Anthropometric Data summarized in
TABLE I) with no physical and cognitive abnormalities.
Participants were informed about the research procedure and
signed a written consent form approved by the University of
Alabama Institutional Review Board. Participants were asked
to wear athletic clothing and running shoes.

Then, they were fitted with 34 reflective markers and the
Smart Lacelock. Markers were secured on the subject
skin/clothes using double-sided tape to record 3D motion with
an infrared motion tracking system at a sample frequency of
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TABLE |
ANTHROPOMETRIC DATA OF THE PARTICIPANTS
Subject | Gender | Age Weight | Height Shoe
(year) | (kg) (cm) Size
us)
1 Male 26 84 177.8 8.5
2 Male 30 64 175.25 8.5
3 Male 26 78 172.72 10
4 Female 30 55 169 8
5 Male 26 72 1.75.25 9
6 Female 27 84 167.64 8
7 Male 32 63.5 167.64 9
8 Male 25 61 162.56 8
9 Male 25 76 170.18 8.5
10 Male 28 68.5 167.64 9

100 Hz (Vicon Nexus and Vero infra-red Cameras, UK). The
Smart Lacelock were fitted on the participant’s shoes (left and
right). The two parts of the Smart Lacelock were separately
mounted by routing the shoelace through the holes in the
Smart Lacelock and then attached with each other through the
embedded locking mechanism, as shown in Fig. 1(d). Slight
adjustments were performed to make it comfortable as well as
to obtain the desired level of tightness. Once the laces were
adequately tensioned, the Smart Lacelock device was in a
locked state, ready for testing. A multi-axis force platform
(AccuGait Optimized™, AMTI, Watertown, MA, USA)
embedded at the center of a walkway was to record the ground
reaction force (GRF) at a sampling frequency of 1000 Hz.
Four activities were performed in random order by all
participants: 1) Free ankle swing, 2) Bodyweight shifting, 3)
Sit-to-stand, and 4) Overground walking. Free ankle swing
and bodyweight shifting activities were chosen to understand
the effect of ankle movement and foot loading on shoelace
tension. Indeed, the tension of the shoelace changes due to the
shape change of the foot, and the main reasons behind this
change are ankle movement and foot loading. Common
activities of daily living such as sit-to-stand and overground
walking were also selected because: 1) they involve ankle
movement and foot loading, thus the combined effect of ankle
movement and foot loading on shoelace tension can be
observed; and 2) they involve significantly different limb/joint
movements (small-range cyclical movements during walking,
and big-range, transitional movements in sit-to-stand/stand-to-
sit motion).
1) Free ankle swing:
Participants sat on a chair, raised one of their feet parallel
to the ground, and performed at least 20 plantarflexion
and 20 dorsiflexion while keeping the rest of the leg as
stationary as possible. This activity was then repeated for
the contralateral foot (total 80 trials).
2) Bodyweight shifting:
Participants stood beside the force plate and gradually
shifted the weight on it by keeping the ankle as stationary
as possible. Data were recorded for at least 10 successful
weight-shifting on the force platform with the right and
left feet (total of 20 trials). A trial was considered
successful if the subject ankle joint movement was
minimal or within a very small range (5 degrees).

3) Sit-to-stand:
Participants stood up on a force plate from a chair and
then sat down on the chair. The chair was positioned very
close to the force plate so that person could easily stand up
on the force plate. The sit-to-stand and stand-to-sit
motions were repeated 10 times (20 in total).

4) Overground walking:
Participants walked up and down the 7-m walkway. Data
were recorded for at least 5 successful strikes on the force
platform with the right and left feet (total of 10 trials). A
trial was considered successful if the subject did not make
any noticeable alterations in stride length during the trial
(i.e. no targeting) and contacted the platform with the
entire foot. Overground walking was repeated for self-
selected slow, normal, and fast speeds in a randomized
order. Familiarization trials were included in determining
the optimal starting positions. Subjects could rest at any
time during the experiment if they felt tired.

To observe the effect of shoes, two participants repeated the
experiments using different shoes (running Vs. walking
shoes).

To examine the influence of initial shoelace tension force
on sensor measurement, a separate study was conducted in
which a subject walked with the shoelaces tied tightly in one
trial and tied loosely in the other.

Each experimental session was videotaped with an iON
contour video camera at a 60fps capture rate. The Vicon
system, and video camera were time-synchronized with the
Smart Lacelock device by sending the same internet
timestamp to all the devices.

B. Data Processing

Both the Smart Lacelock device and the eight-camera
motion analysis system recorded the data simultaneously.
High-frequency noise was removed from markers coordinates
with a fourth-order Butterworth low-pass filter with a cut-off
at 10 Hz. Markers data were used to calculate 3D ankle and
knee Cardan joint angles.

During free ankle swing, the beginning of the cycle was
marked when ankle angle was zero before initiating the ankle
plantarflexion and the ending was marked when the ankle
angle becomes zero after finishing dorsiflexion as illustrated
in Fig.2.

During bodyweight shifting, the starting of the cycle was set
when the vertical ground reaction force started to increase by
putting the bodyweight on the force platform and the ending
was marked when the vertical ground reaction force became
minimum during the withdrawal of the bodyweight from the
force platform as shown in Fig.3.

During sit-to-stand, the cycle started at sitting position 2
seconds before initiating the sit-to-stand transition and ended
at sitting position 2 second after the stand-to-sit transition as
shown in Fig.4.

During overground walking, the onset of each gait cycle
was set when the anteroposterior position of the heel marker
reached its maximum value with respect to the sacrum marker,
as illustrated in Fig.5. Data concerning the stride initiated on
the force platform was used in the analysis.
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Fig. 2. Responses during free ankle swing: (a) Shoelace tension of left foot measured by Smart Lacelock (top figure) and ankle joint angle of the
left foot measured by vicon motion capture system (bottom figure); (b) Shoelace tension of right foot measured by Smart Lacelock (top figure) and
ankle joint angle of the right foot measured by vicon motion capture system (bottom figure).

For all movements, data in each cycle was time-interpolated
over 101 points. The Smart LaceLock data were filtered a
zero-phase lag second-order Butterworth low-pass filter with a
15 Hz cutoff frequency. The processed Smart Lacelock and
motion camera data were averaged across all trials for each
subject. The shoelace force data was calibrated to zero
position (excluding the walking trials intended to evaluate the
effect of initial shoelace tension force) when the foot was
relaxed and flat (meaning the ankle joint angle remains zero)
on the ground while sitting on a chair with no weight applied.

Finally, as an early attempt to investigate the fusion of the
shoelace force and IMU sensor signals for the gait analysis
purpose, the authors developed a simple Gaussian process
regression model to estimate the vertical Ground Reaction
Force (VGRF). The force plated-measured vGRF was used as
the ground truth for model training and validation. The
algorithm was developed and tested using the Statistical and
Machine Learning Toolbox in MATLAB (R2020a). For each
participant, approximately 67% of the data were used for the
training of the regression model, while the remaining data
were used for testing and performance evaluation. The results
are presented in the subsequent section.

IV. RESULTS

A. Free ankle swing

Fig.2 shows the shoelace tension of both feet measured by
the Smart Lacelock during free ankle swing, along with the
respective ankle joint angle measured by the vicon motion
capture system. The shoelace tension of both feet
demonstrates an observable change during ankle free swing
motion. Besides, the shape of the tension trajectory is

consistent over all the trials performed by the subject. A major
observation from the response is that the shoelace tension
increases for both plantarflexion and dorsiflexion. However,
the magnitude of the increase is higher for the plantarflexion
than the dorsiflexion.

B. Bodyweight shifting

Fig. 3. presents the shoelace tension (measured by Smart
Lacelock) and vertical ground reaction force (measured by
reference force plate) during the bodyweight shifting
experiment. The figure shows that the shoelace tension
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Fig. 3. Lace-lock loadcell response during body weight shifting (top
figure), and Vertical ground reaction force measured from reference
force platform (bottom figure).
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Fig. 4. The Smart Lacelock sensor outputs and the related external measurements during sit-to-stand and stand-to-sit transitions: (a) load cell-
measured shoelace force (top) and the corresponding GRF (middle) and ankle angle (bottom) trajectories; (b) IMU gyroscope (Gx, Gy, Gz)
signals.

reduces with respect to gradual weight shifting and becomes
minimum when full body weight is applied. As mentioned
earlier, the shoelace tension was calibrated to zero when the
foot was flat with no weight applied; hence the negative sign
does not indicate the opposite direction of the tension; instead,
it means the reduction of the tension from its initial state. It is
also observed that there is no significant change in the
response when the person tries to stay still by applying total
body weight. The shoelace tension increases when the person
gradually withdraws the weight from the force plate.

C. Sit-to-stand

The results of the sit-to-stand experiment are shown in Fig.
4. Fig. 4(a) shows the shoelace tension (top figure), the

Subject-1 right foot Subject-1 left foot
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reference ground reaction force from the force platform
(middle figure), and the ankle joint angle from the motion
capture system (bottom figure). The figure demonstrates a
specific shape of lace tension trajectory during sit-to-stand
motion for all trials performed by the participants. By
comparing the response with vertical ground reaction force,
the loadcell response shows an early sign of the motion even
before the person starts to stand up by putting weight on the
force plate. Similar to sit-to-stand, stand-to-sit shows a
specific shape of the lace tension trajectory. It is also
observable that during the standing part of the trajectory, lace
tension stays minimum which is clearly reflected by the
sensor’s loading condition response as described in the
bodyweight shifting experiment.
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Fig. 5. Lace-lock loadcell responses during overground walking for different participants (top row); Respective ankle joint angle (middle row);
and Respective vertical ground reaction force from reference force plate (bottom row).



IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

Subject1
Subject2
Subject3
Subject4
Subject5
Subject6
Subject7
Subject8

Subject9
Subject10

Shoelace Tension (N)
N

0 20 40 60 80
Walking Gait Cycle (Percentage)
Fig. 6. Shoelace tension trajectories (average of all walking trials of
each participant) for different participants during overground walking.
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The Smart Lacelock’s IMU gyroscope responses (Fig. 4(b))
are also compared against shoelace tension, vertical ground
reaction force, and reference ankle angle during sit-to-stand
and stand-to-sit motion. The figure shows that there are no
distinguishable responses from the gyroscope during this
activity mode.

D. Overground walking

The response of the Smart Lacelock device during the
overground walking condition of different participants, the
respective vertical ground reaction force and ankle angle
trajectories are shown in Fig. 5. Fig. 5 demonstrates that the
shoelace tension trajectory maintains a specific shape for
each participant during walking. The shape is consistent
among both feet for all trials. As illustrated in Fig.6, the
shapes of thelace tension trajectories are different between
participants. The shape remains the same for each person in all
different trials which indicate that the Smart Lacelock sensor
may be able to distinguish different walking profile among
different participants.

In order to observe the effect of different shoes on the
device, participants used different shoes to repeat the
experiments. Fig. 7 shows the comparison between shoelace
tension trajectory during walking while the same person was
wearing two different shoes. Although the amplitudes of the
trajectories are little different, but the shape remains similar

Subject-1 (M) left foot

Shoe1 (Subject-1) Shoe2 (Subject-1)

Force (N)
o
Force (N)

-2 -2
0 50 100 0 50

Gait Percentage Gait Percentage
Fig. 7. Smart Lace-lock loadcell response during for same subject with
different shoes during overground walking condition.

100

for both shoes, which further validates the Smart Lacelock’s
ability to detect person’s specific walking gait profile without
any significant effect from the shoe.

The IMU of the Smart Lacelock device measures the overall
motion of the wearer's leg and foot during the walking cycle.
There have been numerous research that shows inertial sensor
responses on the back of the foot. Hence, this paper focuses
more on the shoelace tension trajectory. But the data collected
from the IMU shows consistency among participants during
different trials. The IMU accelerometer z-axis responses of
different subjects during walking are shown in Fig. 8.

E. Overground walking with different initial shoelace
tenisions

Fig. 9 depicts the responses of the Smart Lacelock device
during overground walking with laces tied loosely versus
tightly by the same participant. The result demonstrates that
the shape of the shoelace tension trajectory is unaffected by
initial lace tension forces. On the other hand, the average
peak-to-peak range of shoelace force trajectory increases from
1.87 N at the low initial tension to 2.28 N at the high initial
tension, suggesting a scaling effect associated with the initial
tension. After removing the initial tension and scaling the
signal based on the initial tension, the processed shoelace
force trajectories display good consistency, despite the
different initial tensions.

F. Estimation of vGRF during walking

Table II summarizes the performance of the vGRF
estimation algorithm. The correlation coefficient and the root
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Fig. 8. Smart Lace-lock accelerometer z-axis response during overground walking of different participants.
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Fig. 9. Lace-lock loadcell responses during overground walking for
two different initial shoelace tensions.

mean squared error (RMSE) were calculated as the
performance measures. Considering the unique capability of
measuring the shoelace force provided by the Smart Lacelock,
the regression algorithm was developed under two conditions:
with and without the shoelace force as an input, with the
purpose of quantifying the contribution from the shoelace
force signal. As can be observed in the table, fusing the
shoelace force signal with the IMU signals clearly improves
the performance (compared with IMU-only estimation).
Overall, the average correlation coefficients were calculated as
0.89 (IMU-only) and 0.90 (IMU and shoelace force fusion),
and the average RMSE were 0.17 body weight (BW) (IMU-
only) and 0.16 BW (IMU and shoelace force fusion). The
typical performance of the VGRF estimation (estimated vs
estimated vGRFs) is shown in Fig. 10. Note that the
regression modeling was conducted using the basic Gaussian

TABLE I
THE PERFORMANCE OF THE VGRF ESTIMATION ALGORITHM

Subject | Correlation coefficient Root mean square error
ID BW)
IMU IMU and IMU IMU and
data loadcell data data loadcell data
1 0.8710 0.9150 0.1689 0.1353
2 0.9571 0.9571 0.1686 0.1497
3 0.8519 0.8765 0.1770 0.1628
4 0.7152 0.7783 0.2449 0.2124
5 0.9463 0.9440 0.1195 0.1228
6 0.8871 0.8659 0.2016 0.2172
7 0.8433 0.8115 0.2313 0.2534
8 0.9344 0.9600 0.1302 0.1010
9 0.9585 0.9487 0.0933 0.1026
10 0.9261 0.9188 0.1256 0.1267

process regression technique. In the future, more advanced
machine learning technique may be used to further improve
the vGRF estimation performance.

V. DISCUSSIONS

A novel wearable Smart Lacelock device was designed,
fabricated, and tested in this study. The device provides
reliable inertial sensing through the secure and reliable
attachment of an IMU to a shoe. It also incorporates a
shoelace tension sensor to provide valuable information about
foot-loading and ankle movement without using insole-based
foot pressure measurement.

Measured vGRF | ]
Estimated vGRF

Body Weight

0 1 L L 1 1 1
0 10 20 30 40 50 60

Gait Percentage

Fig. 10. Typical vGRF estimation performance (the vGRF amplitude is
body weight (BW) normalized).

The free ankle swing experiment demonstrates how
shoelace tension changes with ankle movement. Associated
with 40° plantarflexion, the shoelace tension increases by
approximately 6 N. The shoelace tension also increases during
dorsiflexion. Associated with ~20° dorsiflexion, the shoelace
tension increases by 1.75 N. The difference in the shoelace
tension increase (plantarflexion versus dorsiflexion),
combined with the related IMU measurement, may potentially
be used to estimate the ankle movement during gait analysis.

Different from free ankle swing, which increases the
shoelace tension, the foot loading decreased the tension.
During the body weight shifting experiment, the participant's
complete body weight (about 745.56 N) causes the shoelace
tension to decrease by 0.5 N as shown in Fig.3.

Results from the sit-to-stand experiments highlighted the
usefulness of the shoelace force signal. The shoe-mounted
IMU generates weak signals during sit-to-stand or stand-to-sit
transition when the feet remain largely stationary. In contrast,
the shoelace force signal demonstrated a clear shape of lace
tension change during sit-to-stand motion for all trials, despite
the fact that the feet remained motionless during this activity.
In addition, the loadcell response revealed an early indication
of the motion before the subject started to stand up by shifting
the body weight to the feet, which may be exploited to identify
the intent of standing-up motion. The shoelace tension
trajectory also demonstrated a clear sign of loading and
unloading during this activity which helped to distinguish the
sitting part from the standing part.

The usefulness of the shoelace force signal also lies in its
fusion with the IMU signals to support gait analysis of
walking, which was demonstrated in the regression-based
VGRF estimation. Compared with IMU-only estimation, the
fusion of the shoelace force-IMU signals provides a relatively
small but clear improvement in the performance.
Additionally, from the results of overground walking
experiments, two observations can be made. First, the shoelace
tension trajectory maintained a specific shape (for both left
and right foot) for each person during walking, which
indicates the unique gait patterns of the individuals. Second,
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the shape did not change if the person changed the speed or
used different shoes. Hence, the Smart Lacelock showed great
promise in identifying the unique nature of individual gait
patterns or gait signatures.

Based on the results from this study, the authors envision
that the Smart Lacelock may serve a variety of applications in
the future. For example, based on the quantitative
measurement of walking gait, the Smart Lacelock may provide
daily-life monitoring and evaluation of the gait quality of older
adults and individuals with mobility impairments, and the gait
information may also support the identification of increased
risk of fall. Exploiting the unique patterns of shoelace force
and IMU signal trajectories associated with different activities,
the Smart Lacelock may enable accurate recognition of human
activities and provide more accurate estimate of energy
expenditure compared with existing wearable sensors.
Overall, the Smart Lacelock may become a highly useful and
accessible wearable sensor in the future and benefit people
with detailed and real-time accessible data about their walking
gait, physical mobility, and physical activities.

VI. CONCLUSIONS

This article presents the design and experimental testing of
a novel wearable Smart Lacelock device. Unlike existing shoe-
based wearable sensors, this device can be easily attached to a
user’s shoe in the form of a shoelace tensioning device
without any modification of the shoe. The device incorporates
an embedded IMU to provide reliable measurement of the
spatial motion of the foot. The force sensor of the device
measures the tension in the shoelace, which provides valuable
information related to the ankle movement and the foot
loading, thus eliminating the needs for low-durability insole-
based pressure sensor. The sit-to-stand experiment results
shows that shoelace tension maintain a specific shape during
this activity even when the foot remains stationary during this
transition. The result also demonstrates an early sign of the
motion even before the person starts to stand, which could be
useful information for sit-to-stand intent recognition. The
overground walking experiment validates the device’s ability
to recognize the unique nature of individual gait patterns. The
ability to recognize individual gait patterns presents a first step
towards establishing a powerful wearable device that can be
used as the basis for many future applications such as gait
quality monitoring, evaluation of the risk of fall, activity
recognition, and energy expenditure estimation.
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