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Abstract— Shoe-mounted wearable sensors may serve 
a variety of important purposes (activity recognition, 
energy expenditure estimation, etc.) by providing rich 
information about human locomotion. However, reliably 
attaching such sensors to shoes still remains a challenge. 
Further, pressure-sensing elements in such shoe sensor 
systems often suffer from poor durability due to the large 
dynamic load. This work presents a novel shoe-mounted 
sensor named Smart Lacelock, which takes the form of a 
common shoelace tensioning device (shoelace lock). With 
its unique form factor, the Smart Lacelock can be securely 
attached to the top of a shoe with minimal effort, enabling 
its embedded inertia measurement unit to provide reliable 
3D motion measurement of the foot. Further, the Smart 
Lacelock incorporates a loadcell to measure the force 
applied by the shoelace, providing valuable information 
related to the ankle movement, foot/shoe shape change, 
and ground force. Design details of the device are 
presented, including the mechanical structure and 
electronic circuitry. The authors also conducted a 10-
participant human study, in which signals were recorded 
during free ankle swing, body weight shifting, sit-to-stand 
(STS), and overground walking. The results demonstrated the Smart Lacelock’s capability of providing consistent and 
observable responses to single contributing factors (ankle movement and foot loading) as well as complex 
movements with clearly defined events of interest (STS and walking). Such unique capability suggests that the Smart 
Lacelock may serve as an important source of human movement information to support related applications such as 
activity recognition and gait event detection.  

 
Index Terms—locomotion sensing, Smart Lacelock, wearable sensors 

 

 

I.  INTRODUCTION 

NERTIA measurement unit (IMU) is a special type of micro 

electro-mechanical system (MEMS) providing three-

dimensional acceleration and angular velocity measurements. 

Commercial IMUs are becoming increasingly compact and 

affordable, enabling their ubiquitous application in portable 

electronic devices [1]–[6]. Benefiting from such technological 

advances, IMU-based wearable motion sensors have been 

developed to provide the 3D measurement of human 
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movement, which displays multiple advantages over the 

traditional marker-based motion capture systems (e.g., lower 

cost and portability). However, reliably attaching wearable 

IMU sensors to different parts of the human body still remains 

a challenge. The traditional strap-based mounting method is 

inconvenient to use, and a strap-mounted sensor may shift its 

position during even mild human movement.  

Presumably for the convenience of sensor attachment in 

daily use, the majority of existing wearable motion sensors on 

the commercial market are wrist-worn devices, including 

smart watches and wrist bands. Through the measured wrist 

movement, such sensors can potentially be used for physical 

activity monitoring and energy expenditure estimation. 

However, the performance of wrist sensors is less than 

satisfactory, largely due to the fact that the underlying wrist 

movement is a poor indicator of the user’s full-body 

movement in locomotion.   

As a promising alternative to wrist-worn sensors, footwear 

(shoe)-mounted wearable sensors have received increasing 

attention from researchers in both academia and industry. 
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Footwear is an irreplaceable part of modern human life, which 

acts as an interface between the ground and the wearer’s foot 

and has direct involvement in full-body/lower-limb motion. 

While the primary purpose of footwear was to protect the feet 

[7], rich information (especially that related to human 

locomotion) can be obtained by monitoring its motion and its 

interaction with the environment. Attempts to obtain such 

information by integrating wearable sensors in footwear 

started in the 1990s, both in academic research and industrial 

products [8], and have become an increasingly popular area of 

research in recent years. 

Footwear-based human locomotion monitor and various 

analysis systems have been proposed and applied both to 

healthy individuals and patients with neurological disorders 

[8]–[16]. Typically, footwear-based wearable sensor systems 

consist of pressure sensors for plantar pressure measurement 

and inertial sensors (accelerometer and/or gyroscope) for 

movement detection. Foot-worn IMUs and pressure sensors 

are used to determine weight, posture allocation, physical 

activity classification, and energy expenditure calculations, 

among other parameters related to the motion of the foot (gait) 

and/or person of the wearer. Hegde et al, developed an IMU 

and Force Sensing Resistor (FSR) based insole monitor named 

Smartstep, which can classify major postures and activities 

[17], energy expenditure prediction [18], estimation of the 

body weights (BW) [19], estimation of temporal gait 

parameters of healthy and post-stroke individuals [8]. A 

number of publications described the use of shoe-based sensor 

systems for various applications such as monitoring of vertical 

ground reaction forces [20]-[21], motion intent learning [22], 

plantar pressure [23]-[24], falls detection [25], estimation of 

the center of mass displacement during walking [26], 

pedestrian navigation [27] and tracking [28], and rehabilitation 

[29]–[33].  

Attaching sensors to shoes in a reliable way is a major 

challenge when developing shoe-based sensor systems. To 

address this problem, a possible approach is to modify shoes 

for direct sensor integration, but it is typically labor-intensive 

and not feasible for large populations without the direct 

involvement of shoe manufacturers. Besides, modification 

may potentially diminish the original functionality of the shoe. 

Commercial sensor-equipped shoes for example, PUMA 

RS100 Computer Shoe [34] and Nike Lunar [35] minimized 

such issues. However, the durability of these products was not 

satisfactory due to high dynamic loads on the sensors during 

physical activity. 

Motivated by the limitations imposed by the existing 

systems, the authors developed a novel wearable sensor, 

namely Smart Lacelock, that can be easily attached to a user’s 

shoe in the form of a shoelace tensioning device without any 

modification of the shoe. The use of this sensor in people's 

daily life is largely effortless and eliminates the need for tying 

shoelaces or straps. Further, this sensor provides accurate 

information on the wearer's lower body movement. The Smart 

Lacelock incorporates an IMU to measure the spatial motion 

of the shoe. Additionally, it also incorporates a force sensor 

(load cell) to measure the tension in the shoelace. Usually, the 

tension of the shoelace changes due to the change of the foot 

shape and the shape of the foot changes due to ankle 

movement and foot loading. Thus, by measuring the tension of 

the shoelace, this sensor can provide valuable information 

related to ankle movement and/or foot loading.   

The advantage of this device is three-fold: 1) ensures 

reliable inertial sensor data by providing secure and reliable 

attachment of the IMU without any modification of the shoe; 

2) introduces a novel shoelace tension measuring technique 

that not only provides rich information about foot-loading and 

ankle movement but also provides the unique capability to 

recognize the unique nature of individual gait patterns/gait 

signature; and 3) eliminates the use of insole-based force 

measuring sensors to address the durability issue. 

This paper details the development of the Smart Lacelock 

along with the human subject testing aimed at characterizing 

the performance of the device using gait data from an eight-

camera motion capture system and a force platform as 

reference systems. The paper is organized as follows: Section 

II presents the details overview of the Smart Lacelock design, 

electronics hardware and sensor interfacing. Section III 

presents experimental procedure, and data processing. Section 

IV presents the results obtained in the human experiments that 

characterize the performance of the Smart Lacelock. Section V 

presents a discussion of the research and finally section VI 

summarizes the conclusions. 

II. METHODS 

A. Overview of the Smart Lacelock Design 

For the design of the Smart Lacelock, the primary goal is to 

provide the desired sensing and data processing/storage 

functions with a package at a similar size/weight as regular 

shoelace locks. Specifically, a miniature circuit board (with 

IMU embedded) and the battery must be fully encapsulated in 

the device, and a small-scale load cell must be embedded in 

the load-bearing structure for force sensing. Further, the 

device should have a separable structure, with two individual 

pieces embedded in the shoelaces on the opposite sides of the 

shoe. Further, the two pieces must be easy to detach and attach 

to facilitate the device’s practical daily use. 

To fulfill these requirements, a Smart Lacelock prototype is 

shown in Fig. 1. The device comprises two assemblies: 

1)  Assembly A consists of a Lace Tensioner A (#5), a Load 

Cell (#3), and a Female Coupler (#1), connected with 4 screws 

(#6) as shown in Fig. 1(a). The Lace Tensioner A (#5) has 

three holes to route the shoelace. In addition, an Electronics 

Enclosure (#9), rigidly attached to the Lace Tensioner A or 

Female Coupler, is also part of Assembly A. The Electronics 

Enclosure (#9) houses an inertia measurement unit (IMU), a 

load cell signal conditioning circuit, a microprocessor, a 

battery, and the other electronic components and circuit boards 

for sensor interfacing, data processing, and storage, as shown 

in Fig 1(b) (right). 
2) Assembly B consists of a Lace Tensioner B (#4) rigidly 

attached with a Male Coupler (#2). Similar to the Lace 

Tensioner A (#5), the Lace Tensioner B (#4) also has three 

holes to route the shoelace as shown in Fig. 1(a). 
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To use the Smart Lacelock, each assembly is attached to one 

side of the shoe, with the shoelace routed through the holes in 

the Lace Tensioners A and B (#5 and #4). Subsequently, the 

two assemblies are securely attached to each other by inserting 

the teeth of the Male Coupler (#2) into the slots in the Female 

Coupler (#1), as shown in Fig. 1(b) (left). For the reliability of 

attachment, both the Male Coupler (#2) and Female Coupler 

(#1) have a magnet embedded on the mating surface, such that 

the pulling force between the magnets ensures the assemblies 

to stay together in the locked state. To unlock, the Assembly A 

should be lifted upwards such that the teeth of the Male 

Coupler slide out of the slots in the Female Coupler. As such, 

the assemblies can be attached and detached with minimum 

effort from the user. 

B. Electronics Hardware and Sensor Interfacing 

The electronics of the Smart Lacelock device consist of a 

miniature loadcell - 500g, Straight Bar (TAL221), and a 9-

DOF IMU along with data acquisition electronics powered by 

a 3.7 V Li-polymer battery of 100 mAh capacity. This system 

also incorporated STM32L476RG, a Cortex-M4 Ultra-low-

power ARM processor (ST Microelectronics, Geneva, 

Switzerland) with an 80 MHz CPU at 39 µA/MHz; a 32 GB 

micro-SD card to store data sampled at 512 Hz by the 

microcontroller unit (MCU); and a micro-USB interface to 

control data collection, access sensor signals stored in the SD 

card, update MCU timestamp, recharge the battery, and upload 

the firmware. A small 4-layer PCB (32mm x 24 mm) was 

designed and manufactured to incorporate all electronics 

components of the device. The fully assembled PCB together 

with the battery weighs 6g.  

The mini loadcell was interfaced with the MCU through 

HX711 (a precision 24-bit analog-to-digital converter) using 

the serial interface. The motion tracking was performed by the 

IMUs (MPU-9250, InvenSense Inc., San Jose, CA, USA), 

each combining a 3-axis gyroscope and a 3-axis 

accelerometer. The orientation of the IMU accelerometer and 

gyroscope is shown in Fig. 1(c). The accelerometer and 

gyroscope of the module were configured to have a ±16 g and 

±2000 dps measurement range, respectively, with 16 bits of 

resolution. The IMU was interfaced with the MCU through 

SPI interface.  

III. EXPERIMENTAL PROCEDURE 

A. Experimental Protocol 

To demonstrate the functionality and performance of the 

proposed Smart Lacelock in the measurement of human 

movement, we conducted a human study that involved ten 

healthy participants (Anthropometric Data summarized in 

TABLE I) with no physical and cognitive abnormalities. 

Participants were informed about the research procedure and 

signed a written consent form approved by the University of 

Alabama Institutional Review Board. Participants were asked 

to wear athletic clothing and running shoes.  

Then, they were fitted with 34 reflective markers and the 

Smart Lacelock. Markers were secured on the subject 

skin/clothes using double-sided tape to record 3D motion with 

an infrared motion tracking system at a sample frequency of 

 

 (a) 
 

  

 (b) 
 

 

 (c) 
 

    

 (d) 
 

Fig. 1.  (a) Shoelace sensor design (Exploded view); Components in 
the figures above (#1)  Female Coupler, (#2) Male Coupler, (#3) Load 
Cell, (#4)  Lace Tensioner B, (#5) Lace Tensioner A, (#6) Screws, 
and (#9) Electronics Enclosure; (b) Smart Lacelock locking and 
unlocking mechanism (left) and the Electronics Enclosure of the smart 
lacelock (right); (c) The smart lacelock’s IMU orientation; (d) Locking 
and unlocking mechanism (left) and the Smart Lacelock device is in 
locked state ready for testing (right). 

Assembly A 

Assembly B 
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100 Hz (Vicon Nexus and Vero infra-red Cameras, UK). The 

Smart Lacelock were fitted on the participant’s shoes (left and 

right). The two parts of the Smart Lacelock were separately 

mounted by routing the shoelace through the holes in the 

Smart Lacelock and then attached with each other through the 

embedded locking mechanism, as shown in Fig. 1(d). Slight 

adjustments were performed to make it comfortable as well as 

to obtain the desired level of tightness. Once the laces were 

adequately tensioned, the Smart Lacelock device was in a 

locked state, ready for testing. A multi-axis force platform 

(AccuGait Optimized™, AMTI, Watertown, MA, USA) 

embedded at the center of a walkway was to record the ground 

reaction force (GRF) at a sampling frequency of 1000 Hz. 

Four activities were performed in random order by all 

participants: 1) Free ankle swing, 2) Bodyweight shifting, 3) 

Sit-to-stand, and 4) Overground walking. Free ankle swing 

and bodyweight shifting activities were chosen to understand 

the effect of ankle movement and foot loading on shoelace 

tension. Indeed, the tension of the shoelace changes due to the 

shape change of the foot, and the main reasons behind this 

change are ankle movement and foot loading. Common 

activities of daily living such as sit-to-stand and overground 

walking were also selected because: 1) they involve ankle 

movement and foot loading, thus the combined effect of ankle 

movement and foot loading on shoelace tension can be 

observed; and 2) they involve significantly different limb/joint 

movements (small-range cyclical movements during walking, 

and big-range, transitional movements in sit-to-stand/stand-to-

sit motion). 

1) Free ankle swing: 

Participants sat on a chair, raised one of their feet parallel 

to the ground, and performed at least 20 plantarflexion 

and 20 dorsiflexion while keeping the rest of the leg as 

stationary as possible. This activity was then repeated for 

the contralateral foot (total 80 trials). 

2) Bodyweight shifting: 

Participants stood beside the force plate and gradually 

shifted the weight on it by keeping the ankle as stationary 

as possible. Data were recorded for at least 10 successful 

weight-shifting on the force platform with the right and 

left feet (total of 20 trials). A trial was considered 

successful if the subject ankle joint movement was 

minimal or within a very small range (5 degrees). 

3) Sit-to-stand: 

Participants stood up on a force plate from a chair and 

then sat down on the chair. The chair was positioned very 

close to the force plate so that person could easily stand up 

on the force plate. The sit-to-stand and stand-to-sit 

motions were repeated 10 times (20 in total). 

4) Overground walking: 

Participants walked up and down the 7-m walkway. Data 

were recorded for at least 5 successful strikes on the force 

platform with the right and left feet (total of 10 trials). A 

trial was considered successful if the subject did not make 

any noticeable alterations in stride length during the trial 

(i.e. no targeting) and contacted the platform with the 

entire foot. Overground walking was repeated for self-

selected slow, normal, and fast speeds in a randomized 

order. Familiarization trials were included in determining 

the optimal starting positions. Subjects could rest at any 

time during the experiment if they felt tired. 

To observe the effect of shoes, two participants repeated the 

experiments using different shoes (running Vs. walking 

shoes).  

To examine the influence of initial shoelace tension force 

on sensor measurement, a separate study was conducted in 

which a subject walked with the shoelaces tied tightly in one 

trial and tied loosely in the other. 

Each experimental session was videotaped with an iON 

contour video camera at a 60fps capture rate. The Vicon 

system, and video camera were time-synchronized with the 

Smart Lacelock device by sending the same internet 

timestamp to all the devices. 

B. Data Processing 

Both the Smart Lacelock device and the eight-camera 

motion analysis system recorded the data simultaneously. 

High-frequency noise was removed from markers coordinates 

with a fourth-order Butterworth low-pass filter with a cut-off 

at 10 Hz. Markers data were used to calculate 3D ankle and 

knee Cardan joint angles. 

During free ankle swing, the beginning of the cycle was 

marked when ankle angle was zero before initiating the ankle 

plantarflexion and the ending was marked when the ankle 

angle becomes zero after finishing dorsiflexion as illustrated 

in Fig.2. 

During bodyweight shifting, the starting of the cycle was set 

when the vertical ground reaction force started to increase by 

putting the bodyweight on the force platform and the ending 

was marked when the vertical ground reaction force became 

minimum during the withdrawal of the bodyweight from the 

force platform as shown in Fig.3. 

During sit-to-stand, the cycle started at sitting position 2 

seconds before initiating the sit-to-stand transition and ended 

at sitting position 2 second after the stand-to-sit transition as 

shown in Fig.4. 

During overground walking, the onset of each gait cycle 

was set when the anteroposterior position of the heel marker 

reached its maximum value with respect to the sacrum marker, 

as illustrated in Fig.5. Data concerning the stride initiated on 

the force platform was used in the analysis. 

TABLE I 
ANTHROPOMETRIC DATA OF THE PARTICIPANTS 

Subject Gender Age 

(year) 

Weight 

(kg) 

Height 

(cm) 

Shoe 

Size 

(US) 

1 Male 26 84 177.8 8.5 

2 Male 30 64 175.25 8.5 

3 Male 26 78 172.72 10 

4 Female 30 55 169 8 

5 Male 26 72 1.75.25 9 

6 Female 27 84 167.64 8 

7 Male 32 63.5 167.64 9 

8 Male 25 61 162.56 8 

9 Male 25 76 170.18 8.5 

10 Male 28 68.5 167.64 9 
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For all movements, data in each cycle was time-interpolated 

over 101 points. The Smart LaceLock data were filtered a 

zero-phase lag second-order Butterworth low-pass filter with a 

15 Hz cutoff frequency. The processed Smart Lacelock and 

motion camera data were averaged across all trials for each 

subject. The shoelace force data was calibrated to zero 

position (excluding the walking trials intended to evaluate the 

effect of initial shoelace tension force) when the foot was 

relaxed and flat (meaning the ankle joint angle remains zero) 

on the ground while sitting on a chair with no weight applied. 

Finally, as an early attempt to investigate the fusion of the 

shoelace force and IMU sensor signals for the gait analysis 

purpose, the authors developed a simple Gaussian process 

regression model to estimate the vertical Ground Reaction 

Force (vGRF).  The force plated-measured vGRF was used as 

the ground truth for model training and validation.  The 

algorithm was developed and tested using the Statistical and 

Machine Learning Toolbox in MATLAB (R2020a).  For each 

participant, approximately 67% of the data were used for the 

training of the regression model, while the remaining data 

were used for testing and performance evaluation.  The results 

are presented in the subsequent section. 

IV. RESULTS 

A. Free ankle swing 

Fig.2 shows the shoelace tension of both feet measured by 

the Smart Lacelock during free ankle swing, along with the 

respective ankle joint angle measured by the vicon motion 

capture system. The shoelace tension of both feet 

demonstrates an observable change during ankle free swing 

motion. Besides, the shape of the tension trajectory is 

consistent over all the trials performed by the subject. A major 

observation from the response is that the shoelace tension 

increases for both plantarflexion and dorsiflexion. However, 

the magnitude of the increase is higher for the plantarflexion 

than the dorsiflexion. 

B. Bodyweight shifting 

Fig. 3. presents the shoelace tension (measured by Smart 

Lacelock) and vertical ground reaction force (measured by 

reference force plate) during the bodyweight shifting 

experiment. The figure shows that the shoelace tension 

 

 (a) 
                                                                                              

 (b) 
 

Fig. 2.  Responses during free ankle swing: (a) Shoelace tension of left foot measured by Smart Lacelock (top figure) and ankle joint angle of the 
left foot measured by vicon motion capture system (bottom figure); (b) Shoelace tension of right foot measured by Smart Lacelock (top figure) and 

ankle joint angle of the right foot measured by vicon motion capture system (bottom figure). 

 
 
Fig. 3.  Lace-lock loadcell response during body weight shifting (top 
figure), and Vertical ground reaction force measured from reference 
force platform (bottom figure). 
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reduces with respect to gradual weight shifting and becomes 

minimum when full body weight is applied. As mentioned 

earlier, the shoelace tension was calibrated to zero when the 

foot was flat with no weight applied; hence the negative sign 

does not indicate the opposite direction of the tension; instead, 

it means the reduction of the tension from its initial state. It is 

also observed that there is no significant change in the 

response when the person tries to stay still by applying total 

body weight. The shoelace tension increases when the person 

gradually withdraws the weight from the force plate. 

C. Sit-to-stand 

The results of the sit-to-stand experiment are shown in Fig. 

4. Fig. 4(a) shows the shoelace tension (top figure), the 

reference ground reaction force from the force platform 

(middle figure), and the ankle joint angle from the motion 

capture system (bottom figure). The figure demonstrates a 

specific shape of lace tension trajectory during sit-to-stand 

motion for all trials performed by the participants. By 

comparing the response with vertical ground reaction force, 

the loadcell response shows an early sign of the motion even 

before the person starts to stand up by putting weight on the 

force plate. Similar to sit-to-stand, stand-to-sit shows a 

specific shape of the lace tension trajectory. It is also 

observable that during the standing part of the trajectory, lace 

tension stays minimum which is clearly reflected by the 

sensor’s loading condition response as described in the 

bodyweight shifting experiment. 

 
Fig. 5.  Lace-lock loadcell responses during overground walking for different participants (top row); Respective ankle joint angle (middle row); 

and Respective vertical ground reaction force from reference force plate (bottom row). 

 

 (a) 
                                                                                              

 (b) 
 

Fig. 4. The Smart Lacelock sensor outputs and the related external measurements during sit-to-stand and stand-to-sit transitions: (a) load cell-
measured shoelace force (top) and the corresponding GRF (middle) and ankle angle (bottom) trajectories; (b) IMU gyroscope (Gx, Gy, Gz) 

signals. 
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The Smart Lacelock’s IMU gyroscope responses (Fig. 4(b)) 

are also compared against shoelace tension, vertical ground 

reaction force, and reference ankle angle during sit-to-stand 

and stand-to-sit motion. The figure shows that there are no 

distinguishable responses from the gyroscope during this 

activity mode. 

D. Overground walking 

The response of the Smart Lacelock device during the 

overground walking condition of different participants, the 

respective vertical ground reaction force and ankle angle 

trajectories are shown in Fig. 5. Fig. 5 demonstrates that the 

shoelace tension trajectory maintains a specific shape for  

each participant during walking. The shape is consistent 

among both feet for all trials. As illustrated in Fig.6, the 

shapes of thelace tension trajectories are different between 

participants. The shape remains the same for each person in all 

different trials which indicate that the Smart Lacelock sensor 

may be able to distinguish different walking profile among 

different participants.  
In order to observe the effect of different shoes on the 

device, participants used different shoes to repeat the 

experiments. Fig. 7 shows the comparison between shoelace 

tension trajectory during walking while the same person was 

wearing two different shoes. Although the amplitudes of the 

trajectories are little different, but the shape remains similar 

for both shoes, which further validates the Smart Lacelock’s 

ability to detect person’s specific walking gait profile without 

any significant effect from the shoe. 

The IMU of the Smart Lacelock device measures the overall 

motion of the wearer's leg and foot during the walking cycle. 

There have been numerous research that shows inertial sensor 

responses on the back of the foot. Hence, this paper focuses 

more on the shoelace tension trajectory. But the data collected  

from the IMU shows consistency among participants during 

different trials. The IMU accelerometer z-axis responses of 

different subjects during walking are shown in Fig. 8. 

E. Overground walking with different initial shoelace 
tenisions 

Fig. 9 depicts the responses of the Smart Lacelock device 

during overground walking with laces tied loosely versus 

tightly by the same participant. The result demonstrates that 

the shape of the shoelace tension trajectory is unaffected by 

initial lace tension forces. On the other hand, the average 

peak-to-peak range of shoelace force trajectory increases from 

1.87 N at the low initial tension to 2.28 N at the high initial 

tension, suggesting a scaling effect associated with the initial 

tension.  After removing the initial tension and scaling the 

signal based on the initial tension, the processed shoelace 

force trajectories display good consistency, despite the 

different initial tensions.   

F. Estimation of vGRF during walking  

Table II summarizes the performance of the vGRF 

estimation algorithm.  The correlation coefficient and the root 

 
 

Fig. 8. Smart Lace-lock accelerometer z-axis response during overground walking of different participants. 

 
Fig. 7. Smart Lace-lock loadcell response during for same subject with 
different shoes during overground walking condition. 

 
Fig. 6.  Shoelace tension trajectories (average of all walking trials of 
each participant) for different participants during overground walking. 
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mean squared error (RMSE) were calculated as the 

performance measures.  Considering the unique capability of 

measuring the shoelace force provided by the Smart Lacelock, 

the regression algorithm was developed under two conditions: 

with and without the shoelace force as an input, with the 

purpose of quantifying the contribution from the shoelace 

force signal.  As can be observed in the table, fusing the 

shoelace force signal with the IMU signals clearly improves 

the performance (compared with IMU-only estimation).  

Overall, the average correlation coefficients were calculated as 

0.89 (IMU-only) and 0.90 (IMU and shoelace force fusion), 

and the average RMSE were 0.17 body weight (BW) (IMU-

only) and 0.16 BW (IMU and shoelace force fusion).  The 

typical performance of the vGRF estimation (estimated vs 

estimated vGRFs) is shown in Fig. 10.   Note that the 

regression modeling was conducted using the basic Gaussian 

process regression technique.  In the future, more advanced 

machine learning technique may be used to further improve 

the vGRF estimation performance.  

V. DISCUSSIONS 

A novel wearable Smart Lacelock device was designed, 

fabricated, and tested in this study. The device provides 

reliable inertial sensing through the secure and reliable 

attachment of an IMU to a shoe. It also incorporates a 

shoelace tension sensor to provide valuable information about 

foot-loading and ankle movement without using insole-based 

foot pressure measurement. 

The free ankle swing experiment demonstrates how 

shoelace tension changes with ankle movement. Associated 

with 40° plantarflexion, the shoelace tension increases by 

approximately 6 N. The shoelace tension also increases during 

dorsiflexion. Associated with ~20° dorsiflexion, the shoelace 

tension increases by 1.75 N. The difference in the shoelace 

tension increase (plantarflexion versus dorsiflexion), 

combined with the related IMU measurement, may potentially 

be used to estimate the ankle movement during gait analysis. 

Different from free ankle swing, which increases the 

shoelace tension, the foot loading decreased the tension. 

During the body weight shifting experiment, the participant's 

complete body weight (about 745.56 N) causes the shoelace 

tension to decrease by 0.5 N as shown in Fig.3.  

Results from the sit-to-stand experiments highlighted the 

usefulness of the shoelace force signal.  The shoe-mounted 

IMU generates weak signals during sit-to-stand or stand-to-sit 

transition when the feet remain largely stationary. In contrast, 

the shoelace force signal demonstrated a clear shape of lace 

tension change during sit-to-stand motion for all trials, despite 

the fact that the feet remained motionless during this activity. 

In addition, the loadcell response revealed an early indication 

of the motion before the subject started to stand up by shifting 

the body weight to the feet, which may be exploited to identify 

the intent of standing-up motion. The shoelace tension 

trajectory also demonstrated a clear sign of loading and 

unloading during this activity which helped to distinguish the 

sitting part from the standing part. 

The usefulness of the shoelace force signal also lies in its 

fusion with the IMU signals to support gait analysis of 

walking, which was demonstrated in the regression-based 

vGRF estimation.  Compared with IMU-only estimation, the 

fusion of the shoelace force-IMU signals provides a relatively 

small but clear improvement in the performance.  

Additionally, from the results of overground walking 

experiments, two observations can be made. First, the shoelace 

tension trajectory maintained a specific shape (for both left 

and right foot) for each person during walking, which 

indicates the unique gait patterns of the individuals. Second, 

 
Fig. 9.  Lace-lock loadcell responses during overground walking for 
two different initial shoelace tensions. 

  
Fig. 10. Typical vGRF estimation performance (the vGRF amplitude is 
body weight (BW) normalized). 

TABLE II 
THE PERFORMANCE OF THE VGRF ESTIMATION ALGORITHM  

Subject 

ID 

Correlation coefficient Root mean square error 

(BW) 

IMU 

data 

IMU and 

loadcell data 

IMU 

data 

IMU and 

loadcell data 

1 0.8710 0.9150 0.1689 0.1353 

2 0.9571 0.9571 0.1686 0.1497 

3 0.8519 0.8765 0.1770 0.1628 

4 0.7152 0.7783 0.2449 0.2124 

5 0.9463 0.9440 0.1195 0.1228 

6 0.8871 0.8659 0.2016 0.2172 

7 0.8433 0.8115 0.2313 0.2534 

8 0.9344 0.9600 0.1302 0.1010 

9 0.9585 0.9487 0.0933 0.1026 

10 0.9261 0.9188 0.1256 0.1267 
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the shape did not change if the person changed the speed or 

used different shoes. Hence, the Smart Lacelock showed great 

promise in identifying the unique nature of individual gait 

patterns or gait signatures. 

Based on the results from this study, the authors envision 

that the Smart Lacelock may serve a variety of applications in 

the future.  For example, based on the quantitative 

measurement of walking gait, the Smart Lacelock may provide 

daily-life monitoring and evaluation of the gait quality of older 

adults and individuals with mobility impairments, and the gait 

information may also support the identification of increased 

risk of fall.  Exploiting the unique patterns of shoelace force 

and IMU signal trajectories associated with different activities, 

the Smart Lacelock may enable accurate recognition of human 

activities and provide more accurate estimate of energy 

expenditure compared with existing wearable sensors.  

Overall, the Smart Lacelock may become a highly useful and 

accessible wearable sensor in the future and benefit people 

with detailed and real-time accessible data about their walking 

gait, physical mobility, and physical activities. 

VI. CONCLUSIONS 

This article presents the design and experimental testing of 

a novel wearable Smart Lacelock device. Unlike existing shoe-

based wearable sensors, this device can be easily attached to a 

user’s shoe in the form of a shoelace tensioning device 

without any modification of the shoe. The device incorporates 

an embedded IMU to provide reliable measurement of the 

spatial motion of the foot. The force sensor of the device 

measures the tension in the shoelace, which provides valuable 

information related to the ankle movement and the foot 

loading, thus eliminating the needs for low-durability insole-

based pressure sensor. The sit-to-stand experiment results 

shows that shoelace tension maintain a specific shape during 

this activity even when the foot remains stationary during this 

transition. The result also demonstrates an early sign of the 

motion even before the person starts to stand, which could be 

useful information for sit-to-stand intent recognition. The 

overground walking experiment validates the device’s ability 

to recognize the unique nature of individual gait patterns. The 

ability to recognize individual gait patterns presents a first step 

towards establishing a powerful wearable device that can be 

used as the basis for many future applications such as gait 

quality monitoring, evaluation of the risk of fall, activity 

recognition, and energy expenditure estimation. 
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