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Abstract— Walking in real-world environments involves
constant decision-making, e.g., when approaching a staircase, an
individual decides whether to engage (climbing the stairs) or
avoid. For the control of assistive robots (e.g., robotic lower-limb
prostheses), recognizing such motion intent is an important but
challenging task, primarily due to the lack of available
information. This paper presents a novel vision-based method to
recognize an individual's motion intent when approaching a
staircase before the potential transition of motion mode (walking
to stair climbing) occurs. Leveraging the egocentric images from a
head-mounted camera, the authors trained a YOLOVS object
detection model to detect staircases. Subsequently, an AdaBoost
and gradient boost (GB) classifier was developed to recognize the
individual's intention of engaging or avoiding the upcoming
stairway. This novel method has been demonstrated to provide
reliable (97.69%) recognition at least 2 steps before the potential
mode transition, which is expected to provide ample time for the
controller mode transition in an assistive robot in real-world use.

Keywords—staircase detection, intent recognition, YOLOVS,
neural network

I. INTRODUCTION

ITH the rapid aging of the population, mobility
impairment is becoming an increasingly challenging
health problem in the United States [1]. People may
suffer from the impaired ability of ambulation in daily living due
to a range of reasons, including limb loss [2], age-related muscle
strength decline [3], and neuromuscular pathologies (e.g.,
stroke) [4]. Motivated by this challenging problem, a variety of
wearable robots have been developed to restore the lost lower-
limb functions (for amputees) (e.g., [5]) and provide motion
assistance to supplement the users' lower-limb joint efforts [6].
As a wearable robot is directly coupled with the user' limbs
and joints, providing coordinated motion or motion assistance
based on the user's motion intent is extremely important.
However, recognizing the user's motion intent in complex real-
world environments is difficult. The majority of existing
methods rely on mechanical sensor signals (joint angle/velocity,
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foot pressure, etc.) [7] or muscle activation signals (measured
through electromyography) [8] to deduce the intended motion.
Such deductive methods tend to suffer from multiple significant
issues, such as low accuracy and long delay, as their inputs have
been limited to the physical and/or physiological signals
extracted from the user himself/herself. Without access to the
information on the environment, these intent recognition
methods may only react to the user's actions (which, in turn, are
reactions to the upcoming environmental features such as
staircases) and thus unable to predict the user's intended motion
to obtain smooth mode transitions in locomotion.

Motivated by this problem, multiple researchers investigated
the use of vision-based environment sensing for wearable robot
control. Laschowski et al. developed the ExoNet, an open-
source database of high-resolution images of human walking
environments [9]. Using such imagery information,
environment recognition systems have been developed, which
may serve the purpose of wearable robot control (e.g., [10]). On
the other hand, how to use environmental information for
motion intent recognition still remains an open question. As a
typical example, when an individual approaches a staircase, s/he
may still choose to avoid the staircase (i.e., not to go upstairs).
Recognizing such motion intent in an accurate and timely
manner is critical for the control of wearable robots.

In this paper, the authors present a novel vision-based
system for human motion intent recognition, using the staircase
approaching as a typical scenario. This specific use scenario was
chosen due to the ubiquitous presence of stairs in real-world
environments as well as the difficulty of mobility-challenged
individuals in stair climbing. Note that the assistance provided
by wearable robots constitutes a promising solution to overcome
such difficulty [11], and the effectiveness of wearable robot
assistance can be quantified with instrumented testbeds
(e.g.,[12]). The proposed vision-based intent recognition system
consists of two primary modules, including a staircase detection
with the You Only Look Once (YOLO) v5 model [13] and a
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Fig. 1: Overview of the vision-based intent recognizer. The “Staircase Detection” block uses the YOLOvVS5 model to detect
staircases from egocentric videos and generates bounding box-related information. The “Stair Climbing/Avoiding Intent
Recognition” block extracts features from the detected staircases’ bounding boxes and classifies user intention of either climbing or
avoiding the staircase using an AdaBoost/Gradient Boost (GB) algorithm.

bounding box-based intent classification algorithm constructed
with the AdaBoost and gradient boost (GB) methods. Fig. 1
illustrates the overview of the proposed method.

As the primary contribution, the vision-based intent recognizer
in this paper, to the best of our knowledge, is the first work that
explicitly identifies the user’s intention when interacting with
the environment and its key elements (such as a staircase). In
existing works (such as [14]), after the vision system detects an
important environmental element (stairs as a typical example),
the user is expected to engage the element by default (i.e.,
ascending or descending stairs). However, in real life, people
may still choose to avoid the element (i.e., not to ascend or
descend the stairs), and the potential misclassification of the user
intent may significantly affect the assistive devices’ control
performance and increase the risk of fall. To address this
problem, the intent recognizer in this paper explicitly deduces
the user’s motion intent when approaching a significant
environmental element (such as a stairway) using egocentric
images obtained from the vision system. The egocentric images,
compared with images from chest or waist-mounted cameras,
better represent the user’s focus of attention and thus serve as a
better indicator of his/her motion intent. The proposed intent
recognizer extracts bounding box features from the egocentric
images and classifies the user intent using an AdaBoost
/Gradient Boost classifier. The method is simple to implement
and can be easily adapted to other environmental elements (e.g.,
doors and chairs). Further, as the proposed intent recognizer
uses the images from the vision system as the sole input, it can
work in conjunction with all types of assistive devices
(prostheses, exoskeletons, etc.) and motion controllers
(impedance control, torque control, etc.). As such, it may
become an important building block of wearable robot control
systems to improve the robots’ performance and functionality in
real-world use.

For the development of this novel method of intent
recognition, the research generated a number of technical

contributions, including: 1) the establishment of the vision-base
motion intent recognition framework comprising an
environment-sensing module and an intent recognition module;
2) developing the YOLOVS staircase detection model; 3)
identifying the most significant features of the bounding box that
can help in detecting not only the intention of staircase
engaging/avoiding but also other related intentions/decisions
such as how to avoid crossing pedestrians; 4) lastly, a robust and
highly accurate simple classification model for stair climb or
avoid intention detection without heavy computational load.

II. STAIRCASE DETECTION

Identifying a staircase to prepare for the subsequent climbing
motion is one of the fundamental challenges for the control of
mobile robots and unmanned ground vehicles [15]. Lower-limb
prostheses and assistive devices use different actuator control
algorithms in different walking conditions, such as walking,
running, stair climbing, and so on, to provide the most
convenience to the user [16], [17]. So, to choose an appropriate
control algorithm, it is crucial to detect the object, such as the
staircase, and the user's intention to climb or avoid that staircase
before the activity occurs.

However, predicting the wrong intention can result in an
improper control algorithm and wrong actuator control,
compromising the user's safety. So, improving the accuracy of
user intention recognition is a very active research field
nowadays [18]-[20]. Also, combining environment information
with the prosthesis or assistive device user's walking
biomechanics or muscle activation improves intention
classification accuracy and allows for more robust control
systems [16], [21]-[22]. Thus, when a prosthesis or assistive
device user approaches a staircase, for robust decision-making
on user intention, the prosthesis or assistive device first has to
identify the staircase and then classify the user's intention of
either climbing or continuing usual ground walking.



Many existing approaches extract stair edges from RGB
images to detect staircase [23]-[25]. Some use depth images to
include range information and make the staircase detector model
more robust [26], [27]. The problem with line extraction-based
methods lies in the detected straight lines' reliability and the
hypothesis that staircases are always parallel lines. Also, in
sunlight, most depth cameras, like Kinect, do not work till the
stair is just a few feet apart from the camera [28]. Considering
these drawbacks, many researchers have applied deep learning
in staircase detection, and these methods have demonstrated
better performance [26], [29].

However, deep learning-based methods require a vast amount
of data to train the staircase detector model so the model can be
generalized properly. Still, to the best of the authors' knowledge,
no annotated dataset contains more than 10,000 staircase RGB
images. Also, it is necessary to test the intent recognition model
on a dataset that simulates a user approaching a staircase and
then climbing or avoiding it. Again, to the best of the authors'
knowledge, a dataset like that does not exist either. These
limitations inspired us to create two datasets. The first consists
of 12187 still staircase images (640%480 resolution) annotated
in YOLOVS format taken from an egocentric perspective. As
most of existing stairs-related images are taken at lower heights
(e.g., using chest-mounted cameras), our new dataset
complements existing datasets and may improve the
performance of visions systems using head-mounted cameras
(e.g., cameras embedded in eyeglasses such as Google Glass).
The second dataset consists of 375 egocentric videos taken with
a head-mounted camera when the user approaches a staircase.
Videos in this comprehensive staircase-approaching dataset
cover a variety of approaching directions (approaching a
staircase from the left/right side or in approximately the same
direction as the staircase) and motion intents
(ascending/descending stairs or avoiding the staircase).
Different from still images of stairs, this dataset of videos
exemplifies the visual perception of a human when approaching
a staircase and making the related decision (engage/avoid) in
real-world ambulation scenarios. As such, it may be very useful
to computer vision and wearable robot researchers in the
development and testing of vision-based intent recognizers for
wearable robots. Further, it may be used as a typical example of
humans’ visual perception of the environment when interacting
with an important environmental element, and thus serve as a
basis for future expanded datasets that cover a wider variety of
real-life scenarios when interacting with other types of
important environmental elements (such as doors and chairs).

A. Training YOLOVS for Staircase Detection

Considering the intent recognizer’s target application of real-
time control of wearable robots, we selected YOLO as the
method for detecting stairs, leveraging its very fast speed of
processing [30]. We specifically used YOLOvVS in the
development of the staircase detector to obtain high accuracy of

detection, which is highly important for the control of wearable
robots and assistive devices [13].

For training the YOLOvVS5 model, we annotated the 12,187
staircase still images using the 'imageLabeler' application in
MATLAB and converted the annotations to the YOLOvV5 image
annotation format.

We augmented the annotated images to increase variability
and the number of images. By default, YOLOvVS5 applies
different augmentations on the training images, such as
changing hue, saturation, value, image rotation, translation,
shear, and mosaic [31]. The rotation and sheer augmentation
values were £15°, and default values were used for the rest of
the augmentations [31].

In real world scenario, when we approach a staircase with a
camera, sometimes the camera goes out of focus and makes the
video blur. Also, image brightness and contrast differ
considerably. Considering these situations, apart from the
YOLOVS5 augmentations, we applied blur, exposure, and noise
augmentations. Out of 12,187 annotated staircase images, we
used 80% or 9750 images for training and the rest for
validation. After applying the three mentioned augmentations,
the total number of training images became 29,250.

We trained the YOLOvVS5s, YOLOvVS5], and YOLOv5x models
with pretrained weights for 500 epochs with a batch size of 8,
SGD optimizer, and patience of 20 epochs. The models were
pretrained on the MS COCO dataset [32].

B. Testing YOLOvS5 Model for Staircase Detection

To detect user intention for climbing or avoiding the staircase,
we needed videos that show approaching the staircase and
climbing or avoiding the staircase. So, based on how a person
will approach a staircase, we divided the videos into three main
categories:

1) Heading straight to the stair
2) Heading from the left side of the stair
3) Heading from the right side of the stair

These main categories were divided into five subcategories:
one instance was climbing, and the rest were avoiding the
staircase. So, 15 videos for each staircase. Finally, 375 videos
were taken from 25 staircases inside the University of Alabama
to create the testing dataset. All the videos were collected at 30
FPS using a head-mounted camera (Campark X25) oriented in
portrait mode. Fig. 2 illustrates the head-mounted camera setup
for capturing egocentric videos.

Then we tested the previously trained YOLOVS models on
these staircase videos and stored the bounding box (BB)
properties of the detected staircase. As YOLOvS5x displayed the
best detection capability, we used that model's predicted BB
properties for classifying stair climbing or avoiding intention
detection.



III. HUMAN INTENT RECOGNITION

For intention detection, a common practice is to use
electromyography (EMG) collected from the residual limb and
inertial measurement units (IMUs) [33]-[36]. However, these
methods are highly user-dependent, and the signals are typically
delayed, resulting in delayed prediction [34]. On the other hand,
vision-based intention detection methods are mostly user-
independent [37]. However, all these methods typically depend
on online adaptation and dataset expansion for accurate
intention detection [20]. Also, they are trained only on a subset
of possible sensor data related to all possible prosthesis
configurations [20]. Thus, even with the large datasets and
complex deep learning-based classifiers, it is not guaranteed that
the existing models would detect intentions in all possible real-
world situations. These shortcomings motivated us to develop a
simple linear classifier that does not depend on the user;
instead,the classifier uses the properties of the bounding box of
the detected object and classifies the user's intention of either
engaging or avoiding it. We hypothesize that when a person
approaches an object in the environment (in our case, staircases),
the properties, i.e., width, centroid coordinates, and area of the
bounding box increase to some extent. Suppose the person
engages that object (climbing the staircase). In that case, the

()
Fig. 2. Camera setup for egocentric video capture: (a) front
view, (b) side view, (¢) 2-point perspective view.

bounding box properties go close to maximum, and if that
person avoids the staircase (continues ground walking), the
property of the bounding box goes to minimum and vanishes at
some point. Thus, by extracting features from those bounding
box properties in the time domain, we should be able to detect
the user intention using a linear classifier.

A. Bounding Box Property Extraction

When the YOLOvS5 model detects the staircase in the test
videos, it provides four features of the bounding box
surrounding the staircase. The four features are, normalized
bounding box centroid coordinates along the horizontal and
vertical axis and normalized width and height of the bounding
box. By observing the bounding boxes in the detected videos,
we realized the area of the bounding box could be another
essential property to detect the user's intention. So, from the
normalized height and width of the bounding box, we also
calculated the area of the bounding box.

In some frames of a staircase video, the YOLO model detected
more than one bounding box. In cases like that, we took the
highest height, width, and average centroid value. For the area,
we calculated the total area using the following equation:

Ari = Wri * Hpy )
Total area = Ar;+ Arz2 - A; 3)

Here, Ag; and Ag; represent the area of the 1% and 2™
rectangles, Wz, is the width of the rectangles, Hg, is the height
of the 1% rectangle, and A; is the intercepting/overlapping area
between rectangles.

Wri = abs (11.x—rl.x) )
Hry=abs (1l.y—rl.y) 5)

Here, /1.x is the x-axis coordinate on the left side, and r/.x is
the x-axis coordinate on the right side. //.y is the y-axis
coordinate on the left side, and r/.y is the y-axis coordinate on
the right side.

Similarly, the 2™ rectangle area was calculated. Next, we
calculate the intercepting/overlapping area between rectangles
using the following equations,

Wi = min(rl.x, r2.x) — max(l1.x, 12.x) (6)
H; =min(rl.y, r2.y) —max(ll.y, [2.y) (7)
Ar=Wi*H; ®)

If W; or H; is negative, then the two rectangles do not
intersect. In that case, the 4;is 0. With these data, we calculated
the total area using (3).

Due to the frame-to-frame fluctuation of detected the
bounding box, we observed high-frequency noise in the
bounding box property values when plotted against frames. We
applied a fifth-order moving average filter to remove the high-
frequency noise without compromising the original bounding
box properties (Fig. 3).
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B. Feature Extraction from bounding box Properties

We ran a sliding window on the bounding box property plots
to get the feature values. In this experiment, we used five
different widths of sliding windows and compared them to get
the best result. The widths of the windows were 5, 10, 15, 20,
and 30 frames. We applied overlapping windows with a stride
value of 2 during feature extraction.

We extracted simple and computationally less intensive time
domain features from the bounding box properties in this paper,
i.e., mean and the difference between the maximum and
minimum peak of the plots in each sliding window. We
extracted the features and plotted box plots to analyze data
variability for the two classes. Fig. 4 illustrates the box plot of
the features for 15 frame sliding window.

From Fig. 4, we observe that the most variability between
classes was in the mean area, width, and centroid Y coordinate
feature. Thus, these features were used to train and test the
classifiers.

C. Intention Recognition Classifiers

Our goal was to prove that computationally inexpensive
models can robustly classify user intention from bounding box
properties which is user independent. Also, from Fig. 4, we
observe that the stair climbing and avoid data have considerable
differences that simple classification models can address. So, we
trained and compared the results of AdaBoost and gradient-
boosted (GB) tree classifiers as they are renowned for their faster
training speed, low memory usage, and higher efficiency [38]-
[39].

D. Dataset for Intention Recognition Classifiers

We annotated the first 35% of each bounding box property
data as 'walk' and the last 35% of the signals as either 'walk' or
'climb." We used the leave-one-out approach for training the
classifier. So all the bounding box property data from one

staircase was separated for testing, and the rest of the bounding
box property data from the other 24 staircases were used for
training the classifiers. After training, the classifiers were
tested on the left-out staircase data. This process was repeated
25 times to get results for all 25 test videos.

E. Training Parameters of the Classifiers

1) AdaBoost Classifier:
The AdaBoost algorithm uses poor learners and
adaptively adjusts them by maintaining a collection of
weights during the training [38]. We performed a grid
search for the optimum parameters of the AdaBoost
algorithm. In the grid search, the different number of
learners were 5, 10, 20, 30, 50, 100, 200, learning rates
were 0.025,0.05,0.1,0.2, 0.3, and the maximum number
of splits were 2, 5, 10, 20. The optimum hyperparameters
for the AdaBoost classifier were this: number of learners
50, learning rate 0.05, and maximum number of split 5.
2) Gradient Boosting Classifier (GB):

In the GB algorithm, the decision procedure combines
the outcome of many weak models to provide a more
accurate estimation of the response variable. The
principle of this algorithm is to update the new base
models in a way that correlates with the negative
gradient of the loss function, which represents the whole
ensemble [39]. Again, we performed a grid search to find
the optimum hyperparameters. The sub-sampling factors
tested in the grid search were 0.1, 0.15, 0.5, 0.75, 1;
different learning rates were 0.025, 0.05, 0.1, 0.2, 0.3,
and different maximum tree depths were 2, 3, 5, 7, 10.
The best result was found for the sub-sampling factor of
0.15, the learning rate of 0.25, and the maximum tree
depth of 2.

F. Majority Voting for Final Decision

Till now, the proposed approach classified the user
intention only based on the features of the bounding box
property signal inside the sliding window. Due to noise
or other factors like, incorrect object detection, the
bounding box features can change rapidly and as a result
the classifier can repeatedly change its decision.
However, to supply a robust control signal to the
prosthesis controller, the classifier should not change its
decision too often. So, to improve the robustness, we
introduced majority voting, i.e., the consecutive
classifier decisions voted either climb or walk to decide
the final intention. In this study, we experimented with
four sets of number of classifier predictions to decide the
final intention class. The number of votes (predictions)
in those four sets are 5, 10, 15, or 30. The class that got
the most votes were chosen as final class. If the classes
received equal number of votes, then the last class that
was selected from majority voting was chosen as final
intention.
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IV. RESULT

First, we compared different YOLOvS model performances to
determine the best model and used the model for further
analysis. Next, we determined three performance metrics
representing real-world requirements from an intention detector,
like detection time and robustness. Then we compared the
classifier's performance for different lengths of feature
windows. Finally, we compared different voting lengths to get
the best possible outcome from the classifiers.

A. Performance evaluation of YOLOv5 Models

The YOLOvSx is the largest model and had the best
performance on the validation set. The following best was
YOLOVSI, and the last was YOLOvSs, the smallest model
(Table I). Thus, we applied the YOLOv5x on the test dataset of

375 videos of approaching, climbing, or avoiding a staircase and
stored the bounding box properties.

B. Metrics for Quantifying Intention Classifier Performance

We addressed three aspects of intention detection important
for the control of an assistive or prosthetic device. First, the
intention must be detected sometime before the actual intended
action occurs so that the operating device has sufficient time to
change its mode of operation according to the intended action.

TABLE 1.
PERFORMANCE OF YOLOVS5 MODELS

Parameters YOLOVSs YOLOVSI YOLOv5Sx
mAP 0.5 (%) 65.3 78.9 83.4
mAP 0.5:0.95 (%) 28.6 48.2 51.8
Precision 0.71 0.82 0.86
Recall 0.65 0.73 0.74

Here, mAP is mean average precision.



Second, the intention detection must be precise, and
misclassification should be as little as possible. Lastly, the
classifier should not change its class too often after classifying
an intended action. If the classifier changes the detected class
multiple times, the prosthesis or assistive device would also
switch the mode of operation, and the user would feel discomfort
and fall in a worst-case scenario. These three metrics are directly
related to user safety which is one of the prime concerns in a
prosthesis design. That is why we addressed misclassification,
mean prediction time before stepping on the staircase, and
percentage of change of class while approaching a staircase as
performance metrics of our classifier.

To calculate the time between intention classification and
action, first, we took the time of classification. Second, we
recorded the time of the first step on the stairs. We defined the
time between these two steps as the prediction time in advance
of the action. Fig. 5 illustrates those two steps.

Fig. 5(a) illustrates that the intention was detected on frame
241, 1i.e., 8.03 seconds (30 FPS), and Fig. 5(b) illustrates the step
on the staircase is at 289" frame, i.e., 9.64 seconds. So, the
intention was classified about 1.61 seconds before the intended
action occurred.

For the misclassification calculation, if the final prediction by
the classifier does not match the actual class, the outcome was
classified as misclassification. As we tested using the leave-one-
out approach, we added all the misclassifications, divided the
sumby the total number of test cases, and got the mean
misclassification by the classifiers.

Finally, we calculated the percentage of the classifier's change
of decisions after predicting the class for the first time. To
calculate it, we added the total number of times the decision was
changed and then took the percentage to obtain the final
percentage of change of class for climbing or avoiding a
staircase.

Table II shows the comparison of classifiers' performance for
different lengths of feature windows. The GB model performs
best in all three-performance metrics with only 0.45%
misclassification. Although AdaBoost has a comparable
outcome with GB on misclassification rate and percentage of
change of class in each prediction, GB outperforms AdaBoostin
all cases.

Next, the feature collected with 15 frame window performs
better in misclassification rate mean percentage of change of
class performance metrics. The only metric the 15 frame signal
window lags a bit in performance is the mean prediction time
before stepping on the staircase, where features with 30 frames
in each window perform better with the GB classifier.

So, after analyzing the results from Table II, we can say that
the GB is the best classifier in intention detection in this study,
and the feature window with 15 frames displays the best possible
outcome.

As described above, we applied majority voting to improve the
performance even further. Table III contains the outcome of
majority voting with the different number of votes used for
deciding the class. The table shows that although the mean

prediction time before stepping on the staircase and percentage
of change of class per staircase video metrics is improved with
increased votes, the misclassification rate increases slightly.
Plotting the GB classifier's output in one figure on all 25 test
staircase videos will obscure it. So, we illustrated the GB
classifier's outcome on one test video in Fig. 6, where the feature
window had 15 frames, and 15 votes were used to decide the
class.

V. DISCUSSION

Our objective was to develop a robust intent recognization
method that can be used to provide reliable detection of the
user’s motion intent for control of wearable robots/assistive
devices. Intention recognition from environmental features still
requires computationally expensive deep learning models [20],
[37], [40] We hypothesized that if an object, toward which a.
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TABLE II.
PERFORMANCE COMPARISON OF THE CLASSIFIER FOR DIFFERENT FEATURE WINDOWS

#of  frames in Percentage of Misclassification Mean prediction time before stepping on Percentage of change of class per staircase
feature windows (%) the staircase (s) video
AdaBoost Gradient Boost AdaBoost Gradient Boost AdaBoost Gradient Boost

5 2.59 1.32 0.68 1.24 23.24 17.38

10 1.86 0.56 0.95 1.51 18.08 11.26

15 1.48 0.45 1.1 1.73 15.29 8.03

20 1.32 0.47 1.33 1.77 14.83 13.04

30 1.45 0.70 1.52 1.94 14.56 13.07

person is moving, can be detected properly with a bounding box,
the magnitude of the properties of that bounding box will
increase when the person approaches closer to that object as the
object would become more prominent to the detector. Then the
features of the bounding box properties can be used to robustly
detect the user's intention

Vision-based object sensing does not suffer from drawbacks
like low depth sensor range. YOLOVS5x is the largest among the
YOLOV5 models, contributing to its superior performance on
the validation and test datasets (Table I) [41]. However, the
YOLOVS51 and YOLOVSs also show promising results, and they
can be used to detect staircases on devices with less
computational power.
The staircase engaging/avoiding classifier was developed on
the features of bounding box properties. It can be argued that
the objectdetector might be unable to detect the staircase for
some frames. Also, there can be possible misdetection of
objects. Noises like this can be mitigated through the low-pass
filter used before the feature extraction step. Also, this method
of intention detection does not depend on the user gait cycle of
other physiological data; instead, the proposed approach uses
staircase video collected from a camera. So, we can argue that
our approach should be able to detect any user's intention from
any video that shows approaching a staircase. Thus, this makes
the proposed approach user-independent.

Predicted Results
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Fig. 6. GB classifiers output on a staircase video

The GB outperforms the AdaBoost in all the performance
evaluation metrics. The use of loss functions instead of
penalizing misclassification and the sensitivity to the outliers of
the AdaBoost algorithm might have contributed to the better
performance of the GB algorithm. With 15 decision majority
voting, the GB model can predict staircase climbing intention
about 1.01 seconds before the staircase climbing on average. Its
misclassification rate is only 1.37%, which shows that the
proposed method not only predicts outcomes about 1 second in
advance but also with high accuracy. Also, its tendency to
change its prediction is only 2.31% which represents the
robustness of the model and proves that this model fulfills the
essential requirements in an intention predictor, i.e., robust,
accurate, and predicts well in advance of the action. In the
future, we will research creating an ensemble model to improve
the classifier performance even more. If the application of the
proposed method requires more accuracy, the user can easily
switch to the no-voting option and get accuracy above 99%.

On average, the mean prediction time before stepping on the
staircase is higher for 30 frames feature window. That is
because the feature window with 30 frames has more data and
more significant features to distinguish between climbing and
avoiding intention. Thus, the classifier can distinguish climbing
intention early with 30 frame window, resulting in more time to
decide the intention to stair climb before the actual climbing
happens.

On the other hand, the mean prediction time before stepping
on the staircase decreases with an increased number of voting
in Table III. This is because an increased number of voting
means the method has to wait more time to get a majority vote
to decide a class and come to a conclusion. So, more time is lost
in getting the decision from the voting and thus less time before

TABLE III.

RESULTS AFTER APPLYING VOTING ON GB CLASSIFIER

s Tecegeor  Menpredeion — Fretstes]
isclassification  time before stepping ;
used‘f or (%) on the staircase (s) per s{atrcase
votmg video
No voting 0.45 1.731 8.03
5 0.91 1.383 6.88
10 0.91 1.269 4.82
15 1.37 1.012 231
30 1.82 0.662 0.92




getting the final decision of intention detection. This
phenomenon can also explain the decreasing accuracy with
increasing voting. In the proposed approach, the accuracy is
calculated based on the last frame, whether it is a climb or
avoid. Here, misclassified classes play a more significant role
when we use 30 votes to decide a class. So, suppose at the end
part of a staircase video, the classifier misclassified a class. In
that case, there is simply not enough data point left for the
classifier to correct the classification as 30 vote majority voting
requires at least 16 votes for deciding a class.

Apart from this, our data suggests that we can make a robust
predictor model with simple classifiers and minimum features
of bounding box properties. To the best of our knowledge, this
is the first time bounding box properties were used to classify
stair climbing. or avoid intention. In the future, we will research
how we can accurately classify intention with even fewer
properties of the bounding box while increasing the robustness.

For the future application of the proposed intent recognizer,
it can be integrated into a typical hierarchical control system of
a wearable robot to identify the user’s motion intent, which will
enable the robot’s lower-level controller to calculate the
specific control commands for its powered actuators (e.g.,
desired assistive torque or joint angle trajectory). As the intent
recognizer does not rely on external sensor signals to function,
and thus can be used in conjunction with all types of wearable
robots such as robotic lower-limb prosthesis and assistive
ankle/knee orthoses/exoskeletons. Currently the intent
recognizer only identifies the user’s motion intent in engaging
or avoiding stairs, but the algorithm can be adapted to the
recognition of the user’s intent when countering other important
environmental elements such as doors and chairs. Another
limitation is its hardware requirement. YOLO, as the most
popular object detection algorithm, provides multiple
advantages such as fast processing and high accuracy of
recognition. On the other hand, YOLO also requires high-
performance hardware, which limits its use in real-time
embedded systems. Multiple YOLO models have been
developed in recent years to enable the implementation in
embedded system (e.g., the Fast YOLO [42] and the Efficient
YOLO [43]). YOLOVS has been successfully deployed on
standalone devices such as the Raspberry Pi 4 [44], and the
integration of a Coral USB accelerator further enhances the
detection speed on the Raspberry Pi 4 [45]. In addition,
YOLOVS can also be executed in compact portable devices like
the Jetson Nano, equipped with a high-resolution camera such
as the Waveshare IMX477 CSI [46]. Based on such recent
trend, we envision that, with the fast technological advances in
high-performance embedded microprocessor and computer
vision, the proposed intent recognizer can be implemented in
wearable robot control systems in the near future and
significantly improve the robots’ performance in navigating
real-world environments.

For the future work, we plan to incorporate the proposed
intent recognizer into complete control systems for wearable
robots and characterize its performance in human testing. Note

that, as most assistive device users are expected to have normal
vision (or nearly normal vision after correction), the way they
perceive the environment during locomotion should remain
largely unchanged, and thus we expect the proposed intent
recognizer to be appliable to new users without needing much
additional training.

VI. CONCLUSION

We have created a database of annotated staircase images and
trained three YOLOVS models to detect staircases. We also
created a database of 375 videos of 25 staircases, simulating a
person walking toward a staircase and avoiding or climbing it.
We validated that the properties of the bounding box from a
detected staircase can be used to create a simple but robust
classifier to classify stair climbing or avoiding intentions. Our
data shows that the intention detection classifier (GB) is highly
accurate (97.69%), and on average, the classifier can detect
intention about 1 second before the stair climb. These results
advocate that the proposed method can be utilized to send a
robust control signal for the prosthesis or assistive device. Our
approach also discovered the essential features of bounding box
properties for intention detection, leading to future research on
intention detection with different types of objects. We also
believe our created datasets would help create and test new
staircase detection and intention classification models in the
future.
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