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Abstract— * Walking in real-world environments involves 

constant decision-making, e.g., when approaching a staircase, an 

individual decides whether to engage (climbing the stairs) or 

avoid. For the control of assistive robots (e.g., robotic lower-limb 

prostheses), recognizing such motion intent is an important but 

challenging task, primarily due to the lack of available 

information. This paper presents a novel vision-based method to 

recognize an individual's motion intent when approaching a 

staircase before the potential transition of motion mode (walking 

to stair climbing) occurs. Leveraging the egocentric images from a 

head-mounted camera, the authors trained a YOLOv5 object 

detection model to detect staircases. Subsequently, an AdaBoost 

and gradient boost (GB) classifier was developed to recognize the 

individual's intention of engaging or avoiding the upcoming 

stairway. This novel method has been demonstrated to provide 

reliable (97.69%) recognition at least 2 steps before the potential 

mode transition, which is expected to provide ample time for the 

controller mode transition in an assistive robot in real-world use. 
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I. INTRODUCTION 

ITH the rapid aging of the population, mobility 

impairment is becoming an increasingly challenging 

health problem in the United States [1]. People may 

suffer from the impaired ability of ambulation in daily living due 

to a range of reasons, including limb loss [2], age-related muscle 

strength decline [3], and neuromuscular pathologies (e.g., 

stroke) [4]. Motivated by this challenging problem, a variety of 

wearable robots have been developed to restore the lost lower-

limb functions (for amputees) (e.g., [5]) and provide motion 

assistance to supplement the users' lower-limb joint efforts [6]. 

 As a wearable robot is directly coupled with the user' limbs 

and joints, providing coordinated motion or motion assistance 

based on the user's motion intent is extremely important. 

However, recognizing the user's motion intent in complex real-

world environments is difficult. The majority of existing 

methods rely on mechanical sensor signals (joint angle/velocity, 
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foot pressure, etc.) [7] or muscle activation signals (measured 

through electromyography) [8] to deduce the intended motion. 

Such deductive methods tend to suffer from multiple significant 

issues, such as low accuracy and long delay, as their inputs have 

been limited to the physical and/or physiological signals 

extracted from the user himself/herself. Without access to the 

information on the environment, these intent recognition 

methods may only react to the user's actions (which, in turn, are 

reactions to the upcoming environmental features such as 

staircases) and thus unable to predict the user's intended motion 

to obtain smooth mode transitions in locomotion. 

 Motivated by this problem, multiple researchers investigated 

the use of vision-based environment sensing for wearable robot 

control. Laschowski et al. developed the ExoNet, an open-

source database of high-resolution images of human walking 

environments [9]. Using such imagery information, 

environment recognition systems have been developed, which 

may serve the purpose of wearable robot control (e.g., [10]). On 

the other hand, how to use environmental information for 

motion intent recognition still remains an open question. As a 

typical example, when an individual approaches a staircase, s/he 

may still choose to avoid the staircase (i.e., not to go upstairs). 

Recognizing such motion intent in an accurate and timely 

manner is critical for the control of wearable robots. 

  In this paper, the authors present a novel vision-based 

system for human motion intent recognition, using the staircase 

approaching as a typical scenario. This specific use scenario was 

chosen due to the ubiquitous presence of stairs in real-world 

environments as well as the difficulty of mobility-challenged 

individuals in stair climbing.  Note that the assistance provided 

by wearable robots constitutes a promising solution to overcome 

such difficulty [11], and the effectiveness of wearable robot 

assistance can be quantified with instrumented testbeds 

(e.g.,[12]). The proposed vision-based intent recognition system 

consists of two primary modules, including a staircase detection 

with the You Only Look Once (YOLO) v5 model [13] and a  
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Fig. 1: Overview of the vision-based intent recognizer. The “Staircase Detection” block uses the YOLOv5 model to detect 
staircases from egocentric videos and generates bounding box-related information. The “Stair Climbing/Avoiding Intent 
Recognition” block extracts features from the detected staircases’ bounding boxes and classifies user intention of either climbing or 
avoiding the staircase using an AdaBoost/Gradient Boost (GB) algorithm.

bounding box-based intent classification algorithm constructed 

with the AdaBoost and gradient boost (GB) methods. Fig. 1 

illustrates the overview of the proposed method.  

As the primary contribution, the vision-based intent recognizer 

in this paper, to the best of our knowledge, is the first work that 

explicitly identifies the user’s intention when interacting with 

the environment and its key elements (such as a staircase).  In 

existing works (such as [14]), after the vision system detects an 

important environmental element (stairs as a typical example), 

the user is expected to engage the element by default (i.e., 

ascending or descending stairs).  However, in real life, people 

may still choose to avoid the element (i.e., not to ascend or 

descend the stairs), and the potential misclassification of the user 

intent may significantly affect the assistive devices’ control 

performance and increase the risk of fall. To address this 

problem, the intent recognizer in this paper explicitly deduces 

the user’s motion intent when approaching a significant 

environmental element (such as a stairway) using egocentric 

images obtained from the vision system.  The egocentric images, 

compared with images from chest or waist-mounted cameras, 

better represent the user’s focus of attention and thus serve as a 

better indicator of his/her motion intent.  The proposed intent 

recognizer extracts bounding box features from the egocentric 

images and classifies the user intent using an AdaBoost 

/Gradient Boost classifier.  The method is simple to implement 

and can be easily adapted to other environmental elements (e.g., 

doors and chairs).  Further, as the proposed intent recognizer 

uses the images from the vision system as the sole input, it can 

work in conjunction with all types of assistive devices 

(prostheses, exoskeletons, etc.) and motion controllers 

(impedance control, torque control, etc.).  As such, it may 

become an important building block of wearable robot control 

systems to improve the robots’ performance and functionality in 

real-world use.   

For the development of this novel method of intent 

recognition, the research generated a number of technical 

contributions, including: 1) the establishment of the vision-base 

motion intent recognition framework comprising an 

environment-sensing module and an intent recognition module; 

2) developing the YOLOv5 staircase detection model; 3) 

identifying the most significant features of the bounding box that 

can help in detecting not only the intention of staircase   

engaging/avoiding but also other related intentions/decisions 

such as how to avoid crossing pedestrians; 4) lastly, a robust and 

highly accurate simple classification model for stair climb or 

avoid intention detection without heavy computational load. 

II. STAIRCASE DETECTION 

Identifying a staircase to prepare for the subsequent climbing 

motion is one of the fundamental challenges for the control of 

mobile robots and unmanned ground vehicles [15]. Lower-limb 

prostheses and assistive devices use different actuator control 

algorithms in different walking conditions, such as walking, 

running, stair climbing, and so on, to provide the most 

convenience to the user [16], [17]. So, to choose an appropriate 

control algorithm, it is crucial to detect the object, such as the 

staircase, and the user's intention to climb or avoid that staircase 

before the activity occurs.  

However, predicting the wrong intention can result in an 

improper control algorithm and wrong actuator control, 

compromising the user's safety. So, improving the accuracy of 

user intention recognition is a very active research field 

nowadays [18]–[20]. Also, combining environment information 

with the prosthesis or assistive device user's walking 

biomechanics or muscle activation improves intention 

classification accuracy and allows for more robust control 

systems [16], [21]-[22]. Thus, when a prosthesis or assistive 

device user approaches a staircase, for robust decision-making 

on user intention, the prosthesis or assistive device first has to 

identify the staircase and then classify the user's intention of 

either climbing or continuing usual ground walking.  
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Many existing approaches extract stair edges from RGB 

images to detect staircase [23]–[25]. Some use depth images to 

include range information and make the staircase detector model 

more robust [26], [27]. The problem with line extraction-based 

methods lies in the detected straight lines' reliability and the 

hypothesis that staircases are always parallel lines. Also, in 

sunlight, most depth cameras, like Kinect, do not work till the 

stair is just a few feet apart from the camera [28]. Considering 

these drawbacks, many researchers have applied deep learning 

in staircase detection, and these methods have demonstrated 

better performance [26], [29]. 

However, deep learning-based methods require a vast amount 

of data to train the staircase detector model so the model can be 

generalized properly. Still, to the best of the authors' knowledge, 

no annotated dataset contains more than 10,000 staircase RGB 

images. Also, it is necessary to test the intent recognition model 

on a dataset that simulates a user approaching a staircase and 

then climbing or avoiding it. Again, to the best of the authors' 

knowledge, a dataset like that does not exist either. These 

limitations inspired us to create two datasets.  The first consists 

of 12187 still staircase images (640×480 resolution) annotated 

in YOLOv5 format taken from an egocentric perspective.  As 

most of existing stairs-related images are taken at lower heights 

(e.g., using chest-mounted cameras), our new dataset 

complements existing datasets and may improve the 

performance of visions systems using head-mounted cameras 

(e.g., cameras embedded in eyeglasses such as Google Glass).  

The second dataset consists of 375 egocentric videos taken with 

a head-mounted camera when the user approaches a staircase.  

Videos in this comprehensive staircase-approaching dataset 

cover a variety of approaching directions (approaching a 

staircase from the left/right side or in approximately the same 

direction as the staircase) and motion intents 

(ascending/descending stairs or avoiding the staircase).  

Different from still images of stairs, this dataset of videos 

exemplifies the visual perception of a human when approaching 

a staircase and making the related decision (engage/avoid) in 

real-world ambulation scenarios.  As such, it may be very useful 

to computer vision and wearable robot researchers in the 

development and testing of vision-based intent recognizers for 

wearable robots.  Further, it may be used as a typical example of 

humans’ visual perception of the environment when interacting 

with an important environmental element, and thus serve as a 

basis for future expanded datasets that cover a wider variety of 

real-life scenarios when interacting with other types of 

important environmental elements (such as doors and chairs). 

 

A. Training YOLOv5 for Staircase Detection  

Considering the intent recognizer’s target application of real-

time control of wearable robots, we selected YOLO as the 

method for detecting stairs, leveraging its very fast speed of 

processing [30].  We specifically used YOLOv5 in the 

development of the staircase detector to obtain high accuracy of 

detection, which is highly important for the control of wearable 

robots and assistive devices [13].  

For training the YOLOv5 model, we annotated the 12,187 

staircase still images using the 'imageLabeler' application in 

MATLAB and converted the annotations to the YOLOv5 image 

annotation format.  

We augmented the annotated images to increase variability 

and the number of images. By default, YOLOv5 applies 

different augmentations on the training images, such as 

changing hue, saturation, value, image rotation, translation, 

shear, and mosaic [31]. The rotation and sheer augmentation 

values were ±15°, and default values were used for the rest of 

the augmentations [31].  

In real world scenario, when we approach a staircase with a 

camera, sometimes the camera goes out of focus and makes the 

video blur. Also, image brightness and contrast differ 

considerably. Considering these situations, apart from the 

YOLOv5 augmentations, we applied blur, exposure, and noise 

augmentations. Out of 12,187 annotated staircase images, we 

used 80% or 9750 images for training and the rest for 

validation. After applying the three mentioned augmentations, 

the total number of training images became 29,250. 

We trained the YOLOv5s, YOLOv5l, and YOLOv5x models 

with pretrained weights for 500 epochs with a batch size of 8, 

SGD optimizer, and patience of 20 epochs. The models were 

pretrained on the MS COCO dataset [32]. 

 

B. Testing YOLOv5 Model for Staircase Detection  

To detect user intention for climbing or avoiding the staircase, 

we needed videos that show approaching the staircase and 

climbing or avoiding the staircase. So, based on how a person 

will approach a staircase, we divided the videos into three main 

categories: 

1) Heading straight to the stair 

2) Heading from the left side of the stair 

3) Heading from the right side of the stair 

These main categories were divided into five subcategories: 

one instance was climbing, and the rest were avoiding the 

staircase. So, 15 videos for each staircase. Finally, 375 videos 

were taken from 25 staircases inside the University of Alabama 

to create the testing dataset. All the videos were collected at 30 

FPS using a head-mounted camera (Campark X25) oriented in 

portrait mode. Fig. 2 illustrates the head-mounted camera setup 

for capturing egocentric videos. 

Then we tested the previously trained YOLOv5 models on 

these staircase videos and stored the bounding box (BB) 

properties of the detected staircase. As YOLOv5x displayed the 

best detection capability, we used that model's predicted BB 

properties for classifying stair climbing or avoiding intention 

detection. 

 



III. HUMAN INTENT RECOGNITION 

 For intention detection, a common practice is to use 

electromyography (EMG) collected from the residual limb and 

inertial measurement units (IMUs) [33]–[36]. However, these 

methods are highly user-dependent, and the signals are typically 

delayed, resulting in delayed prediction [34]. On the other hand, 

vision-based intention detection methods are mostly user-

independent [37]. However, all these methods typically depend 

on online adaptation and dataset expansion for accurate 

intention detection [20]. Also, they are trained only on a subset 

of possible sensor data related to all possible prosthesis 

configurations [20]. Thus, even with the large datasets and 

complex deep learning-based classifiers, it is not guaranteed that 

the existing models would detect intentions in all possible real-

world situations. These shortcomings motivated us to develop a 

simple linear classifier that does not depend on the user; 

instead,the classifier uses the properties of the bounding box of 

the detected object and classifies the user's intention of either 

engaging or avoiding it. We hypothesize that when a person 

approaches an object in the environment (in our case, staircases), 

the properties, i.e., width, centroid coordinates, and area of the 

bounding box increase to some extent. Suppose the person 

engages that object (climbing the staircase). In that case, the 
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Fig. 2. Camera setup for egocentric video capture: (a) front 
view, (b) side view, (c) 2-point perspective view. 

 

bounding box properties go close to maximum, and if that 

person avoids the staircase (continues ground walking), the 

property of the bounding box goes to minimum and vanishes at 

some point. Thus, by extracting features from those bounding 

box properties in the time domain, we should be able to detect 

the user intention using a linear classifier.  

A. Bounding Box Property Extraction   

When the YOLOv5 model detects the staircase in the test 

videos, it provides four features of the bounding box 

surrounding the staircase. The four features are, normalized 

bounding box centroid coordinates along the horizontal and 

vertical axis and normalized width and height of the bounding 

box. By observing the bounding boxes in the detected videos, 

we realized the area of the bounding box could be another 

essential property to detect the user's intention. So, from the 

normalized height and width of the bounding box, we also 

calculated the area of the bounding box.  

In some frames of a staircase video, the YOLO model detected 

more than one bounding box. In cases like that, we took the 

highest height, width, and average centroid value. For the area, 

we calculated the total area using the following equation: 

AR1 = WR1 * HR1 (2) 

Total area = AR1+ AR2 - AI (3) 

Here, AR1 and AR2 represent the area of the 1st and 2nd 

rectangles, WR1 is the width of the rectangles, HR1 is the height 

of the 1st rectangle, and AI is the intercepting/overlapping area 

between rectangles.  

WR1 = abs (l1.x – r1.x) (4) 

HR1 = abs (l1.y – r1.y) 
(5) 

Here, l1.x is the x-axis coordinate on the left side, and r1.x is 

the x-axis coordinate on the right side. l1.y is the y-axis 

coordinate on the left side, and r1.y is the y-axis coordinate on 

the right side.  

Similarly, the 2nd rectangle area was calculated. Next, we 

calculate the intercepting/overlapping area between rectangles 

using the following equations,  

WI = min(r1.x, r2.x) – max(l1.x, l2.x) (6) 

HI = min(r1.y, r2.y) – max(l1.y, l2.y) (7) 

AI = WI * HI (8) 

If WI or HI is negative, then the two rectangles do not 

intersect. In that case, the AI is 0. With these data, we calculated 

the total area using (3). 

Due to the frame-to-frame fluctuation of detected the 

bounding box, we observed high-frequency noise in the 

bounding box property values when plotted against frames. We 

applied a fifth-order moving average filter to remove the high-

frequency noise without compromising the original bounding 

box properties (Fig. 3).  
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B. Feature Extraction from bounding box Properties 

We ran a sliding window on the bounding box property plots 

to get the feature values. In this experiment, we used five 

different widths of sliding windows and compared them to get 

the best result. The widths of the windows were 5, 10, 15, 20, 

and 30 frames. We applied overlapping windows with a stride 

value of 2 during feature extraction. 

We extracted simple and computationally less intensive time 

domain features from the bounding box properties in this paper, 

i.e., mean and the difference between the maximum and 

minimum peak of the plots in each sliding window. We 

extracted the features and plotted box plots to analyze data 

variability for the two classes. Fig. 4 illustrates the box plot of 

the features for 15 frame sliding window. 

  

From Fig. 4, we observe that the most variability between 

classes was in the mean area, width, and centroid Y coordinate 

feature. Thus, these features were used to train and test the 

classifiers. 

C. Intention Recognition Classifiers 

Our goal was to prove that computationally inexpensive 

models can robustly classify user intention from bounding box 

properties which is user independent. Also, from Fig. 4, we 

observe that the stair climbing and avoid data have considerable 

differences that simple classification models can address. So, we 

trained and compared the results of AdaBoost and gradient-

boosted (GB) tree classifiers as they are renowned for their faster 

training speed, low memory usage, and higher efficiency [38]- 

[39]. 

 

D. Dataset for Intention Recognition Classifiers 

We annotated the first 35% of each bounding box property 

data as 'walk' and the last 35% of the signals as either 'walk' or 

'climb.' We used the leave-one-out approach for training the 

classifier. So all the bounding box property data from one 

staircase was separated for testing, and the rest of the bounding 

box property data from the other 24 staircases were used for 

training the classifiers. After training, the classifiers were 

tested on the left-out staircase data. This process was repeated 

25 times to get results for all 25 test videos.  

 

E. Training Parameters of the Classifiers  

1) AdaBoost Classifier: 

The AdaBoost algorithm uses poor learners and 

adaptively adjusts them by maintaining a collection of 

weights during the training [38]. We performed a grid 

search for the optimum parameters of the AdaBoost 

algorithm. In the grid search, the different number of 

learners were 5, 10, 20, 30, 50, 100, 200, learning rates 

were 0.025, 0.05, 0.1, 0.2, 0.3, and the maximum number 

of splits were 2, 5, 10, 20. The optimum hyperparameters 

for the AdaBoost classifier were this: number of learners 

50, learning rate 0.05, and maximum number of split 5.  

2) Gradient Boosting Classifier (GB): 

In the GB algorithm, the decision procedure combines 

the outcome of many weak models to provide a more 

accurate estimation of the response variable. The 

principle of this algorithm is to update the new base 

models in a way that correlates with the negative 

gradient of the loss function, which represents the whole 

ensemble [39]. Again, we performed a grid search to find 

the optimum hyperparameters. The sub-sampling factors 

tested in the grid search were 0.1, 0.15, 0.5, 0.75, 1; 

different learning rates were 0.025, 0.05, 0.1, 0.2, 0.3, 

and different maximum tree depths were 2, 3, 5, 7, 10. 

The best result was found for the sub-sampling factor of 

0.15, the learning rate of 0.25, and the maximum tree 

depth of 2. 

F. Majority Voting for Final Decision   

Till now, the proposed approach classified the user 

intention only based on the features of the bounding box 

property signal inside the sliding window. Due to noise 

or other factors like, incorrect object detection, the 

bounding box features can change rapidly and as a result 

the classifier can repeatedly change its decision. 

However, to supply a robust control signal to the 

prosthesis controller, the classifier should not change its 

decision too often. So, to improve the robustness, we 

introduced majority voting, i.e., the consecutive 

classifier decisions voted either climb or walk to decide 

the final intention. In this study, we experimented with 

four sets of number of classifier predictions to decide the 

final intention class. The number of votes (predictions) 

in those four sets are 5, 10, 15, or 30. The class that got 

the most votes were chosen as final class. If the classes 

received equal number of votes, then the last class that 

was selected from majority voting was chosen as final 

intention. 

 

Fig. 3. Raw and filtered normalized area of the bounding box 
Vs. frame number 
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Fig. 4. Box plot of features: (a) Max-min peak difference of the bounding box area; (b) Max-min peak difference of the bounding 

box width; (c) Max-min peak difference of the bounding box X coordinate; (d) Max-min peak difference of the bounding box Y 

coordinate; (e) Mean of the bounding box area; (f) Mean of the bounding box width; (g) Mean of the bounding box X coordinate; 

(h) Mean of the bounding box Y coordinate. 

IV. RESULT 

First, we compared different YOLOv5 model performances to 

determine the best model and used the model for further 

analysis. Next, we determined three performance metrics 

representing real-world requirements from an intention detector, 

like detection time and robustness. Then we compared the 

classifier's performance for different lengths of feature 

windows. Finally, we compared different voting lengths to get 

the best possible outcome from the classifiers.  

 

A. Performance evaluation of YOLOv5 Models 

The YOLOv5x is the largest model and had the best 

performance on the validation set. The following best was 

YOLOv5l, and the last was YOLOv5s, the smallest model 

(Table I). Thus, we applied the YOLOv5x on the test dataset of 

375 videos of approaching, climbing, or avoiding a staircase and 

stored the bounding box properties.  

 

B. Metrics for Quantifying Intention Classifier Performance 

We addressed three aspects of intention detection important 

for the control of an assistive or prosthetic device. First, the 

intention must be detected sometime before the actual intended 

action occurs so that the operating device has sufficient time to 

change its mode of operation according to the intended action.  

TABLE I.  
PERFORMANCE OF YOLOV5 MODELS 

Parameters YOLOv5s YOLOv5l YOLOv5x 

mAP_0.5 (%) 65.3 78.9 83.4 

mAP_0.5:0.95 (%) 28.6 48.2 51.8 

Precision 0.71 0.82 0.86 

Recall 0.65 0.73 0.74 

Here, mAP is mean average precision. 



Second, the intention detection must be precise, and 

misclassification should be as little as possible. Lastly, the 

classifier should not change its class too often after classifying 

an intended action. If the classifier changes the detected class 

multiple times, the prosthesis or assistive device would also 

switch the mode of operation, and the user would feel discomfort 

and fall in a worst-case scenario. These three metrics are directly 

related to user safety which is one of the prime concerns in a 

prosthesis design. That is why we addressed misclassification, 

mean prediction time before stepping on the staircase, and 

percentage of change of class while approaching a staircase as 

performance metrics of our classifier.  

To calculate the time between intention classification and 

action, first, we took the time of classification. Second, we 

recorded the time of the first step on the stairs. We defined the 

time between these two steps as the prediction time in advance 

of the action. Fig. 5 illustrates those two steps. 

Fig. 5(a) illustrates that the intention was detected on frame 

241, i.e., 8.03 seconds (30 FPS), and Fig. 5(b) illustrates the step 

on the staircase is at 289th frame, i.e., 9.64 seconds. So, the 

intention was classified about 1.61 seconds before the intended 

action occurred. 

For the misclassification calculation, if the final prediction by 

the classifier does not match the actual class, the outcome was 

classified as misclassification. As we tested using the leave-one-

out approach, we added all the misclassifications, divided the 

sumby the total number of test cases, and got the mean 

misclassification by the classifiers. 

Finally, we calculated the percentage of the classifier's change 

of decisions after predicting the class for the first time. To 

calculate it, we added the total number of times the decision was 

changed and then took the percentage to obtain the final 

percentage of change of class for climbing or avoiding a 

staircase.  

Table II shows the comparison of classifiers' performance for 

different lengths of feature windows. The GB model performs 

best in all three-performance metrics with only 0.45% 

misclassification. Although AdaBoost has a comparable 

outcome with GB on misclassification rate and percentage of 

change of class in each prediction, GB outperforms AdaBoostin 

all cases. 

Next, the feature collected with 15 frame window performs 

better in misclassification rate mean percentage of change of 

class performance metrics. The only metric the 15 frame signal 

window lags a bit in performance is the mean prediction time 

before stepping on the staircase, where features with 30 frames 

in each window perform better with the GB classifier. 

So, after analyzing the results from Table II, we can say that 

the GB is the best classifier in intention detection in this study, 

and the feature window with 15 frames displays the best possible 

outcome.  

As described above, we applied majority voting to improve the 

performance even further. Table III contains the outcome of 

majority voting with the different number of votes used for 

deciding the class. The table shows that although the mean 

prediction time before stepping on the staircase and percentage 

of change of class per staircase video metrics is improved with 

increased votes, the misclassification rate increases slightly. 

Plotting the GB classifier's output in one figure on all 25 test 

staircase videos will obscure it. So, we illustrated the GB 

classifier's outcome on one test video in Fig. 6, where the feature 

window had 15 frames, and 15 votes were used to decide the 

class. 

V. DISCUSSION 

Our objective was to develop a robust intent recognization 

method that can be used to provide reliable detection of the 

user’s motion intent for control of wearable robots/assistive 

devices. Intention recognition from environmental features still 

requires computationally expensive deep learning models [20], 

[37], [40] We hypothesized that if an object, toward which a.  
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Fig. 5. Illustration of calculating intention classification time 
before stair climb. (a) Frame at which intention was detected. 
(b) Frame at which first stepped on the staircase. 
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TABLE II.   

PERFORMANCE COMPARISON OF THE CLASSIFIER FOR DIFFERENT FEATURE WINDOWS 

#of frames in 
feature windows 

Percentage of Misclassification 
(%) 

Mean prediction time before stepping on 
the staircase (s) 

Percentage of change of class per staircase 
video 

 AdaBoost Gradient Boost AdaBoost Gradient Boost AdaBoost Gradient Boost 

5 2.59 1.32 0.68 1.24 23.24 17.38 
10 1.86 0.56 0.95 1.51 18.08 11.26 
15 1.48 0.45 1.1 1.73 15.29 8.03 
20 1.32 0.47 1.33 1.77 14.83 13.04 
30 1.45 0.70 1.52 1.94 14.56 13.07 

 

person is moving, can be detected properly with a bounding box, 

the magnitude of the properties of that bounding box will 

increase when the person approaches closer to that object as the 

object would become more prominent to the detector. Then the 

features of the bounding box properties can be used to robustly 

detect the user's intention 

Vision-based object sensing does not suffer from drawbacks 

like low depth sensor range. YOLOv5x is the largest among the 

YOLOv5 models, contributing to its superior performance on 

the validation and test datasets (Table I) [41]. However, the 

YOLOv5l and YOLOv5s also show promising results, and they 

can be used to detect staircases on devices with less 

computational power. 

The staircase engaging/avoiding classifier was developed on 

the features of bounding box properties. It can be argued that 

the objectdetector might be unable to detect the staircase for 

some frames. Also, there can be possible misdetection of 

objects. Noises like this can be mitigated through the low-pass 

filter used before the feature extraction step. Also, this method 

of intention detection does not depend on the user gait cycle of 

other physiological data; instead, the proposed approach uses 

staircase video collected from a camera. So, we can argue that 

our approach should be able to detect any user's intention from 

any video that shows approaching a staircase. Thus, this makes 

the proposed approach user-independent. 

 

 

Fig. 6. GB classifiers output on a staircase video 

The GB outperforms the AdaBoost in all the performance 

evaluation metrics. The use of loss functions instead of 

penalizing misclassification and the sensitivity to the outliers of 

the AdaBoost algorithm might have contributed to the better 

performance of the GB algorithm. With 15 decision majority 

voting, the GB model can predict staircase climbing intention 

about 1.01 seconds before the staircase climbing on average. Its 

misclassification rate is only 1.37%, which shows that the 

proposed method not only predicts outcomes about 1 second in 

advance but also with high accuracy. Also, its tendency to 

change its prediction is only 2.31% which represents the 

robustness of the model and proves that this model fulfills the 

essential requirements in an intention predictor, i.e., robust, 

accurate, and predicts well in advance of the action. In the 

future, we will research creating an ensemble model to improve 

the classifier performance even more. If the application of the 

proposed method requires more accuracy, the user can easily 

switch to the no-voting option and get accuracy above 99%.  

On average, the mean prediction time before stepping on the 

staircase is higher for 30 frames feature window. That is 

because the feature window with 30 frames has more data and 

more significant features to distinguish between climbing and 

avoiding intention. Thus, the classifier can distinguish climbing 

intention early with 30 frame window, resulting in more time to 

decide the intention to stair climb before the actual climbing 

happens.  

On the other hand, the mean prediction time before stepping 

on the staircase decreases with an increased number of voting 

in Table III. This is because an increased number of voting 

means the method has to wait more time to get a majority vote 

to decide a class and come to a conclusion. So, more time is lost 

in getting the decision from the voting and thus less time before 

TABLE III.   

RESULTS AFTER APPLYING VOTING ON GB CLASSIFIER 

#of 
decisions 
used for 
voting 

Percentage of 
Misclassification 

(%) 

Mean prediction 
time before stepping 
on the staircase (s) 

Percentage of 
change of class 

per staircase 
video 

No voting 0.45 1.731 8.03 

5 0.91 1.383 6.88 

10 0.91 1.269 4.82 

15 1.37 1.012 2.31 

30 1.82 0.662 0.92 
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getting the final decision of intention detection. This 

phenomenon can also explain the decreasing accuracy with 

increasing voting. In the proposed approach, the accuracy is 

calculated based on the last frame, whether it is a climb or 

avoid. Here, misclassified classes play a more significant role 

when we use 30 votes to decide a class. So, suppose at the end 

part of a staircase video, the classifier misclassified a class. In 

that case, there is simply not enough data point left for the 

classifier to correct the classification as 30 vote majority voting 

requires at least 16 votes for deciding a class. 

Apart from this, our data suggests that we can make a robust 

predictor model with simple classifiers and minimum features 

of bounding box properties. To the best of our knowledge, this 

is the first time bounding box properties were used to classify 

stair climbing. or avoid intention. In the future, we will research 

how we can accurately classify intention with even fewer 

properties of the bounding box while increasing the robustness.  

For the future application of the proposed intent recognizer, 

it can be integrated into a typical hierarchical control system of 

a wearable robot to identify the user’s motion intent, which will 

enable the robot’s lower-level controller to calculate the 

specific control commands for its powered actuators (e.g., 

desired assistive torque or joint angle trajectory).  As the intent 

recognizer does not rely on external sensor signals to function, 

and thus can be used in conjunction with all types of wearable 

robots such as robotic lower-limb prosthesis and assistive 

ankle/knee orthoses/exoskeletons.  Currently the intent 

recognizer only identifies the user’s motion intent in engaging 

or avoiding stairs, but the algorithm can be adapted to the 

recognition of the user’s intent when countering other important 

environmental elements such as doors and chairs.  Another 

limitation is its hardware requirement.  YOLO, as the most 

popular object detection algorithm, provides multiple 

advantages such as fast processing and high accuracy of 

recognition.  On the other hand, YOLO also requires high-

performance hardware, which limits its use in real-time 

embedded systems.  Multiple YOLO models have been 

developed in recent years to enable the implementation in 

embedded system (e.g., the Fast YOLO [42] and the Efficient 

YOLO [43]).  YOLOv5 has been successfully deployed on 

standalone devices such as the Raspberry Pi 4 [44], and the 

integration of a Coral USB accelerator further enhances the 

detection speed on the Raspberry Pi 4 [45]. In addition, 

YOLOv5 can also be executed in compact portable devices like 

the Jetson Nano, equipped with a high-resolution camera such 

as the Waveshare IMX477 CSI [46]. Based on such recent 

trend, we envision that, with the fast technological advances in 

high-performance embedded microprocessor and computer 

vision, the proposed intent recognizer can be implemented in 

wearable robot control systems in the near future and 

significantly improve the robots’ performance in navigating 

real-world environments. 

For the future work, we plan to incorporate the proposed 

intent recognizer into complete control systems for wearable 

robots and characterize its performance in human testing.  Note 

that, as most assistive device users are expected to have normal 

vision (or nearly normal vision after correction), the way they 

perceive the environment during locomotion should remain 

largely unchanged, and thus we expect the proposed intent 

recognizer to be appliable to new users without needing much 

additional training. 

 

VI. CONCLUSION 

We have created a database of annotated staircase images and 

trained three YOLOv5 models to detect staircases. We also 

created a database of 375 videos of 25 staircases, simulating a 

person walking toward a staircase and avoiding or climbing it. 

We validated that the properties of the bounding box from a 

detected staircase can be used to create a simple but robust 

classifier to classify stair climbing or avoiding intentions. Our 

data shows that the intention detection classifier (GB) is highly 

accurate (97.69%), and on average, the classifier can detect 

intention about 1 second before the stair climb. These results 

advocate that the proposed method can be utilized to send a 

robust control signal for the prosthesis or assistive device. Our 

approach also discovered the essential features of bounding box 

properties for intention detection, leading to future research on 

intention detection with different types of objects. We also 

believe our created datasets would help create and test new 

staircase detection and intention classification models in the 

future.  
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