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1 | INTRODUCTION

The Cahn—Hilliard equation has been a very well-known gradient flow, modeling spinodal decomposi-
tion and phase separation in a binary alloy [5,6]. A prominent advantage of this model, narrow diffusive
transition layers replace sharp interfaces, so that a theoretical analysis of the equation becomes more
feasible than the sharp interface counterparts. In addition, the phase field model shows great advantage
over the sharp interface counterpart if the surface energy density is a smooth function of the interface
normal and the anisotropy becomes sufficiently strong. In such a case, the Wulff shape (the shape that
minimizes the total surface energy for a given volume [7,47]) may have missing orientations. Regu-
larizing the sharp interface model to avoid discontinuity requires a complicated highly nonlinear term
that depends upon the curvature [37]. Nonetheless, strong anisotropy plays important roles in the mate-
rial properties of heterogeneous solids, and efficient, stable, and accurate numerical simulations are
required.

In this article, we focus on the strongly anisotropic Cahn—Hilliard model over a bounded domain
Q Cc RY, d = 2,3. The phase variable is given by ¢, and its gradient vector is denoted asp := V¢, for

simplicity of presentation. In turn, the unit normal vector n := £ (with respect to iso-contours of ¢)
has the following components, which is well-defined for any non-zero vector V¢:
w2 Py d
;= ===, i=1,..,d.
Vol Ipl

The strongly anisotropic, Kobayashi-type free energy [40] free energy is formulated as

2 2
E(¢) = / <f(¢) + %yz(n)lplz +ﬂ£2(A¢)2> dx, f(¢)= %((ﬁz — 1% y(m) = 1+al(m), (1.1)
Q

where ¢ > 0, f > 0, and @ > O stand for the interface transition width parameter, an anisotropy
regularization parameter (sometimes called a corner-rounding parameter), and the anisotropy strength,
respectively, and y(r) models the anisotropy in the interfacial energy function. The inclusion of the
higher order regularization term avoids the well-known difficulty associated with the possibility of
ill-posedness in the strong anisotropy regime due to a sign change of the surface stiffness [4,22,50,54].
Various options are available, including the simple bi-harmonic regularization [54] or the nonlinear
Willmore regularization [10,41,42,44,45,51]. A completely new formulation that uses the Willmore
regularization can be found in [46]. From the computational standpoint, at least, it is clear that the
biharmonic regularization is simpler, though the Willmore has better asymptotic properties. See the
relevant discussions in [51,53,54].
In the case of four-fold anisotropy, the anisotropy structure function I'(r) takes the form as

d
[(n) =Ty(n) :=4Y n} —3. (1.2)
i=1
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An extension of the analysis to more exotic forms of anisotropy, such as the eight-fold version, is
be straightforward, as will be demonstrated in later sections. If « > 0 is sufficiently large, missing
orientations appear on the Wulff shape. Without regularization, discontinuities in the derivatives of ¢
appear, and the PDE model may no longer be well-posed.

For the sake of convenience, we assume periodic boundary condition in this article. The H!
gradient flow of the anisotropic Cahn—Hilliard energy is

op=Au, u=¢ —¢—eV- (Ve +ym)|Ve|PV,y(n)) + fe* A, (1.3)

where V ,, is the gradient with respect ton, and P := I —n @ n, is the interface projection matrix, and
I is the identity matrix.

Many numerical works have reported interesting computational results for the anisotropic
Cahn—Hilliard equation, including [10,26,43,54], to name a few. Meanwhile, a theoretical justification
of the energy stability has always very challenging issue, due to the highly singular nature of the sur-
face energy. Among the existing works to address this issue, a convex splitting approach is applied to
the anisotropic system with a Willmore regularization in [14], while a theoretical proof for the energy
stability is only available for the isotropic flow. A stabilized scalar auxiliary variable (SAV) approach
is studied in [9,56], and a stability analysis has been provided for a numerically modified energy. On
the other hand, a uniform in time bound for the original energy functional (1.1) (in terms of the origi-
nal phase variable) is not theoretically available in this approach, so that a convergence analysis would
face serious difficulty. In addition, it is worthy of mentioning a recent work [20], in which a convex-
ity analysis is performed for the anisotropic surface energy part, so that an explicit treatment could be
applied to the corresponding chemical potential, combined with a first order regularization. In turn,
an energy stability is derived for the corresponding numerical scheme, and the numerical algorithm
is only weakly nonlinear, in the sense that the nonlinearity only appears in the double well energy
potential part.

Of course, the direct application of linear convex splitting leads to only first order accurate (in time)
numerical schemes, similar to the one reported in [11] for the no-slope-selection epitaxial thin film
growth model. In this article, we propose and analyze second order accurate, energy stable numerical
schemes for the anisotropic Cahn—Hilliard system, with the stability in terms of the original energy
functional (1.1). The standard second order backward differential formula (BDF2) temporal stencil
is applied, with all the chemical potential terms evaluated or approximated at time step #**!. This is
combined with the Fourier pseudo-spectral spatial approximation. To overcome a well-known dif-
ficulty associated with the highly nonlinear nature in the chemical potential of the surface energy
part, we recall a convexity analysis for y(n), which reveals that all its second order functional deriva-
tives stay uniformly bounded by a global constant. As a result of this convexity analysis, we are able
to approximate the nonlinear surface energy parts by an explicit extrapolation formula, combined
with a second order accurate Douglas-Dupont type regularization, in the form of —AsAy (¢! — ¢™).
Since all the second order functional derivatives of the nonlinear surface diffusion part have a uni-
form bound, a theoretical justification of the energy stability becomes available, under a constraint
for the artificial regularization parameter. Furthermore, such an energy stability is in terms of the
original phase variable, and no auxiliary variable needs to be introduced. This approach avoids an
implicit treatment of the nonlinear surface energy part, so that computational efficiency can be greatly
improved.

In addition, we perform an optimal rate convergence analysis for the proposed second order numer-
ical scheme for the anisotropic Cahn—Hilliard system. In this analysis, the global bound for the second
order functional derivatives will also play an important role. This is the first such result for the second
order scheme for the anisotropic Cahn-Hilliard model, to the best of our knowledge.
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This article is organized as follows. In Section 2, we review a convexity analysis for the surface
diffusion coefficients. The fully discrete numerical scheme for the strongly anisotropic system is con-
sidered in Section 3, with Fourier pseudo-spectral spatial discretization. The unique solvability and
energy stability are theoretically justified. Moreover, an optimal rate convergence analysis is presented
in Section 4. Some numerical results are presented in Section 5, and concluding remarks are made in
Section 6.

2 | REVIEW OF THE CONVEXITY ANALYSIS
FOR THE SURFACE ENERGY

The highly singular and nonlinear nature of y(n) is a key difficulty for the anisotropic model. As stated
earlier, we focus on the four-fold anisotropy function

y(n) = I—3a+4a(n‘11+n‘2‘+n§), 05a<%:: ay.

The minimum of y(n) occurs for n% = n% = n% = %,
nifa > a;. Thus, a; = % can be considered a critical value of a. The eight-fold anisotropy function
would be treated similarly, though the precise details will differ.

For the four-fold function, a detailed expansion reveals that

and we observe that y(rn) < 0 for some orientations

44 4y b 44 pd 4 pdy2
y2m) = (1 - 3a) + 8a(l - 3a) A 2705 azi(pé b pg)A. 2.1
(Pl + D5 +p3) (p1 + D3 +P3)
This yields
¢P) =y mpI* = (1 — 3a)*|p|* + 8a(l — 3a)gV(p) + 16a°g? (p), 2.2)
4 4 4 4 4 452
+p;+ +p;3 +p3)
V(p) 1= Py thPyTP3 @) 1= pi+py +p3)° (2.3)

pl+pi+p3 (Pt +p3+03)?

In more details, the first order derivatives of gV and g® become

;TP = 2pi P
9,8 () = (2P P2 g 2.4)

(Z/ilp./g)z

3 3 3
@ 21):'2,-:119}‘ (41’7,221'=1Pj2 - 32;:11?;}) )
0,87 (p) = , i=1,2,3. (2.5)

(ki)

The following preliminary estimates are excerpted from a recent work [20]; they will be useful in
the energy theoretical analyses.

Lemma 2.1 ([20]). Define

D" := % DY’ :=2, DY :=6, DY :=3.
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The functions gV, g®, are twice continuously differentiable in RS 1= R3\ {0}, and
05,8 @) <D, =123, 105,05,8 @) < DY, ij=1.23, i#j. (2.6)
07,8 @)| < DY, =123, 105,05,8 @) < DY, ij=1.23,i#j. (27

for all p € R, In addition, for anyp,, p, € R3, we have
08" @) = 9,800 < (D = D) lail + D""Z il k=12, i=123 @8

with D" = 1 D" =2, D = 6, DY = 3,and g :=p, - p,.

To obtain a linear numerical scheme for the anisotropic model, we rewrite the surface free energy
as follows, which comes from the expansion for G(p) = y*(n)|p|* in (2.1)—(2.3):

Es(p) := /Q Gp) dx = (1 = 32)*||V||* + Es,1(¢), (2.9)

Esi(¢) := / (8a(l =3¢V () + 16a°¢P(p)) dx, p = V. (2.10)
Q

In turn, the following functional is introduced

Hy(¢) :=A[IVI* - Es1(¢p) = / (A2lpl* — 8a(1 = 3a)g"(p) — 162’ (p)) dx. (2.11)
Q

Therefore, the original energy (1.1) can be decomposed variously as

2 2
E(p) = (f(¢), 1) + %Es@) + ﬂ%qubu2
2 2 2
= (f($), 1) + %(1 — 30|V + iEm(qs) + ﬂiqubu2
2
= (f($), 1) + % [(1=30)* +A2] IVOI* - —Hz(¢> + ﬁ ||A¢|| (2.12)

In addition, the following convexity result is available.
Proposition 2.2 ([20]). The functional Hy(¢) is convex on R provided that
Ay > AY = 8a’Ag + 4a|l — 3a|B, (2.13)

where

Ao =12 and Bozg. (2.14)

Remark 2.3. For the remainder of the article, we will assume that A, = A} in the definition
of H. For A, > A3, the convexity of H, is still ensured, while a larger value of A, may
bring more numerical diffusion, so that we prefer A, = AJ.

To facilitate the notation, we represent the variational derivative of Eg; as
8pEs1 ==V - ((*(n) = (1 = 30)*)Ve + y(m)| VP[PV, y(n)). (2.15)

Moreover, a more detailed expansion of this term is needed in the later derivation, based on the
expansion in (2.1)—(2.3):
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8pEs1 ==V - (8a(l = 30)V,¢"(p) + 162°V ¢ (p))

09,8V (p) 95,82 ()
==V -|8a(l =3a)|a, ¢V @) |+ 160> |, ¢P @ || (2.16)
9,8V (p) 0,87 (p)

in which V ,, is the gradient with respect to p, and the expansions of d, g",i=1,2,3,j=1,2, could
be obtained in (2.4) and (2.5).

3 | THE PROPOSED NUMERICAL SCHEME

3.1 | Fourier pseudo-spectral spatial approximations

In comparison with the standard Fourier spectral method, the Fourier pseudo-spectral method (Fourier
collocation spectral method) complements the basis by an additional pseudo-spectral basis, so that
discrete functions are evaluated on the quadrature grid points. As a result, the computation of
certain nonlinear operators, such as those involving point-wise products or quotients, can be con-
siderably sped up, with the help of the fast Fourier transform (FFT). See the related descriptions
in [3,8,15,17,18,21,29-31,38].

To simplify the notation, we set the domain as Q = (0,1)%, with N, = N, = N, =: N € N
and N-h = 1,and N = 2K + 1, for some K € N. In fact, the analysis of an even inte-
ger N could be carried out in a similar manner, while more tedious details have to be included.
All the physical variables are evaluated on the standard 3D numerical grid Qy, given by (x;, y;, zx),
with x; = ih, y; = jh, zx = kh, 0 < i,j,k < 2K + 1. In addition, the grid function space is
denoted as

Cy 1= {f L7 SR s QN-periodic}. 3.1)

For any f € Gy, its discrete Fourier expansion is given by

K
Jijk = Z f';’,m,,, exp(27i(&x; + my; + nzy)). (3.2)
£ .mn=—K
where
v N-1
Fomn i=1 Y fijxexp(=2xi (€x; + mx; + nxi) ). (3.3)
i k=0

In turn, the collocation Fourier spectral first and second order derivatives of f turn out to be

K
.o\ N .
Difiji = Z Q7il) f g exp(27i(€x; + my; + nzy)), (3.4)
¢ mn=—K
K
Difijui= Y. (—42%¢%)F) 0 exp(27i(Ex; + my; + nzp)). (3.5)
¢ mn=—K

Similar definitions could be made for D,, D%, D,, and D%, the differentiation operators in the y
and z directions, respectively. Of course, the discrete Laplacian, gradient and divergence operators
become
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D.f h
Anf = (Di+ D5+ D2)f, Vaf :=|Dys| V- |fa| :=Dfi + Difo + D, (3.6)
D.f /3

at the point-wise level. It is obvious that Vy - Vyf = Axf.
Detailed calculations show that the following summation-by-parts formulas are valid (see the
related discussions in [11,13,30,31]):

(f.Ang) = —(Vnf. Vng),  (f.AYg) = (Anf.Ang), Vf.g € Gy. (3.7)

Definition 3.1. Define Cpe (2, R) := { f:Q->R | f is periodic and continuous on Q}
The grid projection Qy : Cper(Q, R) — Gy is defined via

On(@ijk += 8(Xi» V), 7). (3.8)
The discrete #2 inner product and norm are defined as follows:
N-1
(f.8) :=h> ) firu-gijur Wflla :=VFF). VY .gein. (3.9)
ijk=0

In particular, the zero-mean grid function subspace is denoted as Gy := { fEQCy ‘ (fily=:f= 0}.

In addition to the standard #2 norm, we also introduce the #7, 1 < p < o0, and #* norms for a grid
function f € Gy:

N—1 P
flle := maxlfisul.  IfIl, := <h3 > lf,-,,-,k|"> . 1<p<oo. (3.10)
ij:k 4
ij.k=0
For any periodic grid function f € Gy, the discrete H' and H? norms are given by
A7, = U3+ IVarf13, W7 = 111G, + I1ANFIIS. (3.11)

Since the anisotropic Equation (1.3) is an H~! gradient flow, we need a discrete version of the
(-, -)y-1 inner product and || - || -1 norm:

(f. )i = AN g) Wflloiw i= VFEoins  Vf.g € Cw. (3.12)
For any ¢ € Gy, the discrete energy for the PDE system (1.1) is defined as
1 1 1 2
En(¢) := Z”‘f’”i - 5||¢||% + 7191+ Esn(@) + ’%HAWH%, (3.13)
where
Esn(¢) 1= (1= 3a)*||Vndll> + Es1n(¢h), (3.14)
Esin := 8a(l = 3a)(gV(Vy), 1) + 16a* (P (Vy¢h), 1). (3.15)

Similarly, the following quantity is introduced

Hyn(9) = AsllVn@lI3 — Esin(d), (3.16)

so that the discrete energy functional could be rewritten as
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2 2 2
En($) = (f($), 1) + % [(1 =30 + A] Vo I3 — & Hon(e) + P AnapI2. (3.17)

2 2
Similar to the proof of Proposition 2.2, the following convexity result can be derived.

Proposition 3.2. The functional H n(¢) is convex, provided that (2.13) is satisfied.

3.2 | The fully discrete numerical scheme and the theoretical results

We propose the following semi-implicit, second-order-in-time numerical scheme, with Fourier
pseudo-spectral spatial approximation:

%¢n+1 _ 2¢n + d)n—l
S

= Avu™!, (3.18)

”n+1 — (¢n+1)3 _ (2¢Vl _ ¢n—1) _ (1 _ 3(1)262AN¢n+1 —ASAN(¢n+l _ ¢n) + ﬂ£2A12v¢n-+-l
—26°Vy - (4a(l = 30) V8 (Vyd™) + 8a°V 8P (V™)
+ €2V - (4a(l = 3a)V,g(Vyg"™) + 82 V,g @ (Vyd™™)). (3.19)

The following theoretical result of unique solvability and energy stability is available.

Theorem 3.3. Given ¢",¢""' € Cy with ¢* = ¢\, for any s > 0, there exists a
unique solution ¢"+' € Gy to the numerical scheme (3.18) and (3.19) satisfying the mass
conservation condition: ¢+ = ¢" = ¢"='. Furthermore, provided that

1 1/1 1 25\’

the scheme is modified-energy stable, in the sense that, Ex(¢™!, ¢") < En(@", ¢" D),
where the modified energy functional is defined as

* 2
AJe

2

Enldw) = En(@) + ﬁuqs —ylP i+ IVa(d — W)l + %Ilqﬁ — w3, (321
for all p,w € Gy satisfying ¢ = .

Proof. Suppose that ¢", ¢"~! € Gy are given, with ¢" = ¢!, We observe that (3.18)
and (3.19) can be rewritten as the solution of the following equation:

Na() = 4", (3.22)
where
Nu(@) 1= L =807 (3 =207+ 2971 + 6 = (1 3P + A0Avd + pe*2},

qn =2¢" — ¢n—1 — AsAng" + 262VN . (4(1(1 — 30!)V,,g(1)(VN¢”) + Sazvpg(z)(v,vdb"))
— 2V - (4a(1 = 30)V,g P (Vyg"™") + 8a? V8 (Vyg"™ ).

Of course, ¢ € Gy and the mass conservation condition, ¢+ = ¢* = ¢!, is required.
Since NMy(¢) — ¢" is the gradient of a strictly convex functional, namely,
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+ ol
ﬁe

2
1= 5|30 -297 4 o

-LN

+%<(1—3a)262+As>||VN¢||%+ AN — (q", }), (3.23)

the unique solvability of (3.18) and (3.19) comes from a standard convexity analysis.
To obtain the energy stability analysis, a discrete inner product with (3.18) by
(=AN) 1@ — ¢") is needed. An application of summation-by-parts yields

0= <(¢n+1)3,¢n+1 _ ¢n> _ <2¢n _ ¢n—l’¢n+1 _ ¢n> _ (1 _ 3(1)262<AN¢"+1,¢”+1 _ ¢n>
+ ﬂ62<A12v¢n+l,¢n+l _ ¢n> _AS<AN(¢VL+1 _ d)”)’ ¢n+1 _ ¢n>
L /3 n 11 —1/ gn+1 n
+L(Zgrt o2 Ly o @ - o)
- 52(VN . (4(}((1 - 3a)Vpg(1)(VN¢n) + SaZVpg(Q)(VNd)n))’(an _ ¢n)

—da(l = 30)eX(Vy - (V8" (V™) — Vg V(Vyd™™)), ¢™' — ¢")
— 8(1262(VN . (Vpg(z)(VN(l)n) _ Vpg(Z)(VNd’n_l)), ¢n+l _ ¢n> (3.24)

The following convexity estimates and identities are valid:

("1, " — ")y > = | ¢n+1|| %”d)"”i’ (3.25)

o B ¢n_1H; (3.26)

- ||¢"||%> ~ 2]

— (ag g =gy = 3 <||VN¢"“|12 ~||vve"

_ <2¢n _ ¢n—l’¢n+1 d)n) > <

z> U YA D) [CEY)

2
— (@™ = ¢ = @) = || V@™ - ¢ (3.28)
For the BDF2 temporal stencil term, the following inequality can be derived:
._l § n+l _ n 1 n—1 ¢_ =l gn+l _ gn
L= ¢ 20"+ S¢" (AN (¢ "
s \2 2
1/3 ., w_ Loan e 1 gn n
= (F@ =0 - @ =g AT - )
3 n n 1 n n— - n: n
=5l = @M1y = (9" = @ (AN T @™ = @)y
3 1 _
> 2 z ™! = #1205 = 3=l = & 12+ 197 = @120
1 7| s 2 ” (3.29)
~s\4 N LN ’
in which the H~' inner product and || - [|-;x norm (3.12) have been utilized.

The rest of our work will be focused on the nonlinear surface diffusion terms.
The convexity property of the discrete quantity Hpy (given by Proposition 3.2)
reveals that

—(8Hon (™M), @' = @) > —(Han(¢"") — Hon (™). (3.30)
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4016 Wl LEY CHENG ET AL.

Furthermore,

L :=—(Vy - (8a(1 = 3a)V,g PV (Vye") + 16a°V,g@(Vyg"), ¢" ! — ¢")
+2A3(Ang", d" — B")
> Esin(@"") — Esin(@™) — AS (V@™ 13 = 11 VNg"113). (3.31)

On the other hand, the following identity is always valid

2A5(AP", " — ¢y = —AZ(IVNd™ 113 — [IVNg"[13) + AT (I VA (™ — @3, (3.32)

which in turn implies that

I 1= —(Vy - (8a(l - 30)V,g " (Vng") + 16a°V,¢® (Vyg")). "+ — ¢")
> Esin(@"™") — Esin(@™) — AX V(@™ — ¢MII3. (3.33)
For the last two terms associated with the nonlinear surface diffusion, we have to evalu-

ate the difference of V ,g)(Vy¢) between time steps 7" and #"~!, for i = 1, 2, respectively.
In more details, the first part could be expanded as

I :=(Vy - (Vg (Vng") = VgD (Vng™ ™), ¢"' = ¢")
= —(V,g (Vg™ = VgD (Vg™ ), V(@™ — ¢™)
= —(0p,8"(@" - 9y, @" . pi* = )
— (0,8 (" = 0,8V (" ). p5*" - p3)
— (0,80 @") — 0,8V @" ). p5 - P5), (3.34)
in which we have introduced the notation p* = (@ ps,ph)7 = Vygt =

(D, qubk, D.¢"T,n—1 < k < n+ 1, for simplicity of presentation. For the first
expansion term, we apply (2.8) (from Lemma 2.1) and get

105,80 — 3, gV @O < DV Ipt — pi + DY (Iph — Py + Ipt - pi7h), (3.35)

at a point-wise level. A summation in space implies that

Ly 2= (9,80 @" = 05,8 V"D = p1)

D ) e
<= ( Pt =pi||, + |t - 1(2>
W
D 1112 _ 2
+22< P —ph '||2+|Ip’§—p§ i+ 2||pt = pt 2)- (3.36)

The bounds for the two other nonlinear expansion terms could be similarly derived:

Liz 1= (05,870 = 9,8 0" ). 5" — p3)

(1)
D 2 -2
Sé( pitl —ph 7t ph — ph 1‘2>
(1)
D _111? — 2
+—22 < P —=pt 1||2+ Ips — pa 13 + 2|5t — ps 2>’ (3.37)

and
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1= (0,0 0" = 0,8V @™, 1
oY
<2
Dy
+7
2

A combination of (3.36)—(3.38) leads to

n+1 n 2
P3 —P3 )

- ph

_12
2

_ -1 2+||n 1” +2
Pr ||, T P2~ 2

n+1 n

2
—ph 2). (3.38)

I =(Vy- (V8" (Vyg") — V,,gm(vw"'l)),«»"“ —¢")

D( ) (HV (¢n+l — ¢

s+ w90

+ 0y <||VN<¢"+1 —g"| + |vwio - ¢"—1>||2>

-2 (HVN(qb"“ ¢

lmer-ef). e

since
By = D" + 2D

The other nonlinear surface diffusion term can be analyzed in the same fashion, with the
help of inequality (2.8) in Lemma 2.1:

Is = |(VN- (V,82(Vad") — V@ (Tug™™)., ¢+ — ¢y

<20 <||V(¢"+' -

i + HV(¢" - ¢"—1)||§>. (3.40)

For the bi-harmonic regularization term, the following equality is available:

U n n 1 n n 1 71
(AR, 0! — ¢y = SUIANG™ I = 1 Avg" I + 1A = ¢IP). (3:41)
A substitution of all these estimates into (3.24) leads to

(1 = 3a)2€?

5 UV I3 = 1IVae" 1)

1 |
2 21" 1T = 19718 = U™ 13 = 19"112) +
82 n+1 n 1 n n—112
+ 5 (Esin(@™) = Esin(@") = lle" = ¢" 113
& 71 7 7 71
ﬂ (1ANG™ 115 = 1ANG" 1P + | AN (@™ = &MII3)
1 -3« n n
+ ((2) - A7) IV - #E -
L3
s \ 4
Meanwhile, an application of the Cauchy inequality reveals that
2
! =
s 2

Inserting this estimate, we have

*2

[ Va(@" — ¢" D3

¢n+l _ ¢n 2 1
-IN 4

- l” Ly >+ASIIVN(¢”+l -l (B42)

n+1_n2 n+1_n2
o o o - o

oy (3.43)

+ As|[Vaig! - ¢
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_ 2.2
02 (8™ 1= 191D = (16" 1 = 19718 + =221V ™13 = 190 1)
+£—2(E ("H—E (ﬂ)).,.l wrl _ all® |l pnet]?
5 (Esan ¢ s1N(P " |¢ ¢ o |¢> & ‘—LN

5 2
+ 2 (1ang™ 1B = 1avg 1) + 2 av@™! - 9013

a2
N ((1300 _ 3A2*> 2|V (g™ — ¢")I13

2 2
A€ (193 = #3 ~ 19w - 7 DIE)
) N 2 N 2
DY 1 — g2 2 b (g — g2 — g — g
+(2VA=2) 1™ = 9713+ 5 (1™ = 67113 - 1" = 471 113). (3.44)

Under the constraint (3.20) for A, we see that

2
T i= Pl = @0l + (2VA - 2 ) 19! - 9711

1
> ¢ /g (2va- 5)||VN(¢”+' — "3

(1-3a? 3

2|~ SAT|E2IIVNE" = ¢ (3.45)

In turn, the desired energy estimate is obtained:
Ev(@", ") — En(e", 9" < 0. (3.46)
This finishes the proof of Theorem 3.3. ]

Remark 3.4. For the strongly anisotropic flow, the energy stability has to rely on the
bi-harmonic surface diffusion term. This is expected, since bi-harmonic regularization is
required for well-posedness of the PDE. The constraint (3.20) for the artificial stabiliza-
tion parameter A depends on both f and €. In more detail, we observe that a smaller value
of f# and larger value of € would lead to a larger value of A to satisfy the constraint.

In most practical computational examples, both § and € are small parameters, of scale
1072 to 1073, Extensive numerical experiments have demonstrated that selecting A = O(1)
is sufficient to ensure the energy stability in the simulations.

Remark 3.5. There have been extensive works related to second-order-accurate-in-time,
energy stable numerical schemes for various gradient flows. Most of these numerical meth-
ods are based on the standard Crank—Nicolson temporal discretization with certain modifi-
cations; see the related works for the isotropic Cahn—Hilliard model [21,24,34], phase field
crystal (PFC) equation and the modified phase field crystal (MPFC) equation [1,2,25,39];
epitaxial thin film growth models [13,17,48,52]; non-local gradient flow models [32,33];
phase field model coupled with fluid flow [12,23,35,36]; et cetera. In this approach, the
unique solvability is established by the convexity argument or the monotonicity analy-
sis, while the energy stability could be derived by an inner product with the numerical
chemical potential.

Meanwhile, a few more recent works of the BDF2-type schemes have been reported
for certain gradient flow models, such as Cahn—Hilliard [16,55], slope-selection thin film
equation [28], square phase field crystal [19], in which the energy stability was theoreti-
cally established. Similar to this article, a Douglas-Dupont type regularization has to be
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included in the numerical scheme, while a careful analysis reveals its energy stability at a
modified level. Such a BDF2-type approach turns out to be a very robust numerical tool
in the study of gradient flows.

4 | THE OPTIMAL RATE CONVERGENCE ANALYSIS

Let @ be the exact periodic solution of the strongly anisotropic CH Equation (1.3). For the convenience
of the convergence analysis, we also define @y( - ,7) := Py®( - ,¢) as the (spatial) Fourier projection
of the exact solution into the space

BX = { f is a trigonometric polynomial ‘ deg(f) <K }, N=2K+1.
In more details, suppose that @ has the following Fourier series representation on €2:

DY, 20) = D0 oo Ph (DT E XH 347,

A ‘ , 4.1
with @y, () = ?12' Jo @Cx, y, z, ye=2mk ¥ yAm) gy dy dz.
The (finite Fourier) projection of @ onto the space BX is defined as
K
Dy(x,y,2,1) 1= Py@, Y, 2,0) i= ) Dpp(t)e? ik w1 m), (4.2)

k,,m=—K
In turn, the initial data for the numerical scheme (3.18) and (3.19) could be taken as the grid projections
of by att=0andt =s;
@’ = OyON(-,1=0) and @' = QyDn(-,1=29).

One advantage of this choice could be observed in the fact that, the || - ||—; 5y norm is well defined for
the error function between the numerical solution ¢" and the exact projection solution ®y, because

(¢k,1):/d>(-,k~s)dx, k=0,1.
Q

If the initial data has sufficient regularity, the following regularity assumption is made for the exact
solution:

®ER :=H(0,T;Coer(Q)) NH? (0, T; Cher(Q)) N L™ (0, T; Hpe®(Q)),  with
Cla(Q) = {f isperiodicon Q |f € CK(Q)}, Hi(Q) = {f is periodic on Q |f € HX(Q)}.
(4.3)

Theorem 4.1. Let ® be the exact periodic solution with of the strongly anisotropic CH
Equation (1.3), with the initial data ®(0) = ¢ € H[')’QG(Q), and with the regularity class
R given by (4.3). Suppose ¢ is the fully discrete numerical solution of (3.18) and (3.19).
Then the following error estimate is valid:

" 1/2
D% — ¢"ll-1n + (ﬂe2s2||AN(d>N - ¢>||%) < C(s* +h™), (4.4)
k=0
where the constant C > 0 is independent of s and h but depends on the exact solution.

Proof. A combination of Taylor expansion in time and Fourier projection estimate gives
the following truncation error
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3 gn+l 1 31—
SOy —2d>1”v+5¢1"v

N

Ay (@1 — @@y — @) — (1 = 3a)’ 2 AN DN + pe AR D!
—26*Vy - (4a(1 = 3a)V,gV(VyD}) + 8a7V,gP(VyD}))
+ €2V - (4a(l = 3a)V,gV(Vy@F ) + 822 V,g@ (Vy@" ™))
—AsAN(@Y — @) + 7", (4.5)
with ||7"|| < C(s®> + h™). The numerical error function is defined as
ko= <I>f‘\, - qbk, at a point-wise level.
Then, subtracting (3.18) and (3.19) from (4.5) yields

3n+1 —2e" + enl
2

p — AN (((@X;f-])z + q)1r<1+l¢n+l + (¢n+l)2) en+l _ (26” _ en—])

— (1 =3a)’?Aye™! + pe? A e — AsAy(e™ — ")
—26’Vy - (4a(1 = 3a) (V,gV(Vy®@") — V,g " (Vyd™))

+8a? (V82 (Vy®") — V82 (Vyg™))

+e2Vy - (4a(l = 3a) (Vg (Vy@"™") = V,gV (Vyg"™))
+8a? (V,g2(Vy@" ™) — V,g@(Vyg™™))) + 7" (4.6)

Since the exact solution to the PDE system (1.3) is mass conservative, we conclude that
the projection solution @y preserves the same property:

Jo @nx, 1) dx = [ X, 1) dx = [, D(x,0) dx = [, Dy(x,0) dx, V1>0,

e 2 (4.7)
Oy = [, Py(x.1) dx = [, Dy(x,0) dx =D}, Vk>0,

in which the fact that ®%, € B has been applied. Meanwhile, the numerical solution (3.18)
and (3.19) is mass conservative at a discrete level, as proved in Theorem 3.3. These facts
imply that the numerical error function has zero-mean, at a discrete level:

k=0, thatis, ¢ eCy, Vk>O0. (4.8)

Subsequently, yw* := (—Ay)~!e* € Gy could be introduced. A discrete inner product with
the error evolutionary Equation (4.6) by 2y"*! leads to

3 1
2< g 4 Lon=1 (LA 3l n+1>
2¢ e+ e »(—AN)T

+2(1 = 3a)%e%s|| Vae™ 3 + 2pe%s|| Ave™ |3 — 24€25% (An(e™! — "), et
— _23<((¢X,+1)2 + ¢7V+1¢n+1 + (¢n+l)2) en+1,en+l> +25(2¢" — en—l,en+l>
— 16a(1 — 30)e”5(V,8 (VN DY) — V,8(Vne"), Ve ™)
— 320%€%5(V g2 (VN DY) — VgD (Vng™), Ve )
+8a(l — 30)e’s(V,g V(Vy @y ") = V,g(Vyg" ™), Vye™!)
+ 16a%€%5(V gD (VN @) = V,6P(Vyd"™"), Vye™ 'y + 25(z", y™+). (4.9)

The BDF2 temporal stencil term could be analyzed as follows:
<§en+1_2en+; n—1 ( A ) 1 n+1>

2
3 n+1 1 n— n+l>
= 2"+ =

<2 ¢ 2 ¢ -LN
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12 2 1 2 ~12
=7 (e M2y = N2 + 112" = eml12) = 112¢" — "M 12y

+le =2e" + 12 ) (4.10)
The bound for the truncation error term is standard:

12 2
2 Nt ||T"||—1.N)-

4.11)
For the last term on the left hand side of (4.9), the following inequality is available:

(@) <l - IV 2 = 12" ooy - e o < 5 (lle

2

—(An(e" = e, e ) = (Vi(e™! =), Ve ) 2 o (||VNe"+1 I3 = 1IVell3).  (4.12)
The first term on the right hand side always keeps non-positive:
_<(((Dn+l)2 + q)n+1¢n+1 + (¢n+1)2> €n+1, €n+1> S 0’ (413)

which comes from the fact that (®@"*!)? + @™ ¢+! 4 (¢*1)? > 0. The Cauchy inequality
could be applied to the concave expansive term:

1+l 1 12 2 —1)2
(2e" — ", e") < 2 (3lle™M15 + 201115 + 11" 113)

2

12 2 —112
=7 (31VNe I3 + 211 Ve I3 + 1 Vae"]13)
-2
€ 12 2 —12
+ = Glle™ 2y + 2012y + e 2 ), (4.14)
since [|e*]13 < Ve llo - [le!]]-1m <—||VNe"||2+ IIe"IIﬂ,N, k=n—1nn+1.

(4.15)

The next few estimates are focused on the nonlinear error terms. At time step #”, the
following expansion is valid:

— (VgD (V D) = Vg (Vyd™), Vive™ )
= —(0,, 8 (VN DY) — 0, 8 (V™). De™") — (0,8 (VN D) — 0,8 (V™) Dye™)

— (0,8 (VN @) — 0,8V (Vy@™), D ™). (4.16)
For the first expansion term, we apply (2.8) from Lemma 2.1 and get

105, 8V (VN ®") — 9,8V (Vnd™)| < D\"|De"| + DY (IDye| + | D), (4.17)
at a point-wise level. This in turn implies that

(05,8 (Va3 = 0,8 (Vg™ Die™)|

< (Dﬁ”nvxe I+ DY (D, 12 + 1Dee”[12)) I1Dse”2
(1) D(l)
=D I3 + D™ 13 + == (IIDye" I3 + D€ I3 + 20 Dee™ 13). (4.18)

The bounds for the two other nonlinear expansion terms could be similarly derived:

(00,8 (V@) = 9,8V (Vi) Dye™)|
D(ll) n2 n+12 D(Zl) ny2 ny2 n+12
< == (IDye" I3 + IDwe™ 113) + == (IDsell3 + 1D:€"13 + 2IDye™ H13),  (4.19)
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(05,8 (VN @R) = 0,8V (Vg™ Dee™)|

D(ll) ny 2 n+112 D(Ql) n|2 ny 2 n+112
< == (ID="l13 + ID=e"113) + == (IDee" I3 + IDye" 13 + 21ID:e™13). (4.20)
A combination of (4.18)—(4.20) leads to

(1)
‘(V g( )(VNq) )— pg(l)(VN¢") VNen+l>‘ (”VNE ||2+ ||VN€n+1|| >

+D“> (IVne" I3 + I Vae™ 13)
_B
= (Va3 + Vv 13), (42D
in which the identity, By = D(ll) + 2D, has been applied again.

The other nonlinear error term could be analyzed in the same fashion, with the help of
inequality (2.8) in Lemma 2.1:

(V8@ Tn@h) = V@ (Vya), Vaeh)| < 22 (I3 + 1Vhe™ ). @22)

Likewise, the estimates for the nonlinear surface diffusion error terms at time step 7"~ are
also available:

[V, Tn@5 ) = VgD, Ve ] < 22 (11Vae B + Ve B),  (423)

(V82 V@) = Ve (Tyd), Ve )| < 20 (I19ne™ 1 + Ve B). (424

A substitution of all these inequalities into (4.9) yields

12 2 1 2 112
5 (1™ 20y = e 12+ 112¢™ = €12,y = 112" = €12, )
2 2 2 2
+2p€%s]| Aye™ 13 + As*(| Ve |13 = || Vne"]3)
e 2 Ve 2 Ve —1112
< &% (C|Vne™ I3 + Cal| Ve (13 + Csl| Ve [13)

£ 12 2 —12 12 2
s (Blle™ M2y + 20l 12 n + e 12y ) +sAle™ 2y + 12128, (425)

where
C) 1= (21 = 30)” = 12a|1 — 3a|By — 24a®Ag — 3|,
Cy :=8all —3a|By + 16a%A + 1,
Cs 1= 4all —3a|By + 8a®A¢ + 3.
Meanwhile, based on the Sobolev interpolation inequality,

2/3
IVaFll2 < P2 - IANFIS,

we are able to apply Young’s inequality and obtain

23 i i~ i
CillVnet 13 < Cillef %y - l1ave s < == llefI2  + Zllave! . (4.26)
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fork =n—1, n,and n + 1. Going back (4.25), we arrive at

1

2
n n 3 1 _

+AS (Ve I3 = 1Vxe"l13) + S pe%slAne I3 = S sl Ave" I3 + [l Ane"15)

172 2 1 2 —12
(||€ler ||-1,N - ||@"||-1.N +]12¢" — €”||-1,N —|[2¢" —¢" H—l,N)

ﬁ_262

3 12 -3 2 73111112
< Eos (e 12,y + Bl + Cille™™ 12,

w

£ 12 2 —12 12 2
+ 58 (3||€”Jr 12w + 2012 + lle” ”—l,N) +s([le" 2y + (17" ]120 0)- (4.27)

Consequently, an application of a discrete Gronwall inequality leads to the desired con-
vergence estimate of the numerical scheme (3.18) and (3.19), in the £*(0, T;H[,I) N
£%(0, T;H,%,) norm: provided s > 0 is sufficiently small, there is a constant C > 0,
independent of s and A, such that

2 n
12+ Es Y lavet 13 < 6t + 1, (4.28)
k=0
for any n € N satistying n - s < T. The proof of Theorem 4.1 is finished. u

5 | NUMERICAL RESULTS

5.1 | Convergence order test

Some numerical tests are performed to verify the convergence and accuracy order of the numeri-
cal scheme (3.18) and (3.19), for a sufficiently large anisotropy value @ = 0.2. The biharmonic
regularization coefficient is taken as f§ = 1. In particular, one distinguished advantage of the pro-
posed numerical scheme is associated with the explicit treatment for the nonlinear singular parts g("
and g®, which leads to a great improvement in terms of numerical efficiency, in comparison with
an implicit computation. For the only nonlinear term in the numerical scheme, ¢3, we apply a pre-
conditioned steepest descent (PSD) solver [27] for the detailed implement, because this nonlinear
term corresponds to a strictly convex energy. The efficiency of the PSD solvers has been exten-
sively demonstrated in quite a few recent works [19,28] to deal with non-singular gradient flow
models.
In the convergence test, the exact solution for (1.3) is chosen as

Ge(x,y,1) = ZL sin(2zx) cos(2zy) cos(t), over a square domain Q = (0, 12 (5.1
7

1
Tc0

The surface diffusion coefficient and the artificial diffusion coefficient are given by £ = 0.05, A = - c

respectively, and we take the final time as 7 = 1.

Because of the spectral accuracy in space, the convergence test is focused on the temporal numer-
ical error. We fix the spatial resolution as N = 256 so that the spatial numerical error is negligible. In
turn, the solutions with a sequence of time step sizes: s = NlT (with N7 = 100 to Ny = 800 in incre-

ments of 100), are computed with the final time 7 = 1. Figure 1 displays the discrete #? norms of the
errors between the numerical solution (3.18) and (3.19) and exact solution (1.3). In more details, the
least square approximation to the CN;2 curve is displayed as the straight line in the figure, and a care-
ful calculation gives an approximate value of the slope as —2.0062. Therefore, a perfect second order
temporal accuracy is demonstrated in this experiment.
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FIGURE 1 Discrete £2 numerical errors for the ¢ at the final time T = 1, plotted versus Ny, for the second order numerical
scheme (3.18) and (3.19), with a fixed spatial resolution N = 256. The physical parameters: € = 0.05, f = 1, a = 0.2. The star
line represents the numerical error plot versus Ny, while the straight line is the least square approximation to the CN;2 curve.
The least square slope is calculated as —2.0062.

5.2 | Simulation results of four-fold-anisotropy

The numerical simulation is performed for the anisotropic Cahn—Hilliard system (1.3) over Q =
(0,3.2)%, with the surface diffusion coefficient ¢ = 0.03 and anisotropic parameter & = 0.2. The initial
data are given by

(x—x0)> + (= y0)> — 1o
0.25¢

ox,y,t=0)=— tanh< >, with xp = yp = 1.6, 19 = 0.8. (5.2)
In addition, the biharmonic regularization coefficient is chosen as f = 0.0005, and the artificial regu-
larization parameter is taken to be A = 4. The temporal step size is given by s = 107>, and the spatial
resolution is set as 5122,

The time evolution snapshots of the phase variable computed by the second order numerical scheme
(3.18) and (3.19) are displayed in Figure 2. The circular profile evolves to an anisotropic, four-fold
shape with missing orientation at the four corners.

5.3 | Numerical comparison in terms of the biharmonic regularization parameter

The biharmonic regularization parameter f has always played an important role in the solution struc-
ture. For the two-dimensional, strongly anisotropic equation (1.3) with the initial data (5.2), we perform
a numerical test by taking a sequence of parameters: f = 0.004, 0.002, 0.001, and 0.0005. The
other physical parameters are taken the same as in Figure 2: ¢ = 0.03,Q = (0,3.2)%. At the final
time ¢ = 30, in which a steady state solution is reached, a comparison of the computational results
around the left corner is presented in Figure 3. In fact, similar behaviors have also been reported
in [14,20,54]; a smaller regularization coefficient always gives less corner rounding and a sharper
profile.
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t=0.05 t=0.1 t =30.0

FIGURE 2 Time evolution snapshots of the phase variable at the time sequence: 7 = 0.05, 0.1, and 30. The physical
parameters: @ = 0.2, # = 0.0005, € = 0.03,Q = (0, 3.2)%

12 1 1 | 1 NN |
07 075 08 085 09 095 1 1.06 11 115 12

FIGURE 3 Comparison of the ¢p = 0.0 iso-contour plots for numerical solutions obtained with four different corner
regularization parameters, f = 0.004, 0.002, 0.001, and 0.0005, at the final time ¢ = 30, with the initial data (5.2). The outer
solid line, the outer dashed line, the inner solid line and the inner dashed line stand for the numerical solutions f = 0.0005,
0.001, 0.002, and 0.004, respectively. The physical parameters: € = 0.03, Q = (0,3.2)%, and @ = 0.2.
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5.4 | Simulation results of eight-fold-anisotropy

In this section, the numerical results of symmetric eight-fold-anisotropic function are presented; see
the more detailed formulation of anisotropic function [14,44,49]

d
ym)=1+a(8) (8nf — 1078 +nf) +9 ). (5.3)

i=1
Again, the initial data (5.2) are taken, and the physical parameters are set as: ¢ = 0.03, « = 0.2,
B = 0.002, s = 10™*. The time snapshots of the evolution computed by the second order numerical
scheme (3.18) and (3.19), with spatial resolution 5122, are presented in Figure 4. It is clear that an
octagonal shape has emerges. In terms of a comparison the four-fold and eight-fold anisotropic gradient
flows, which are presented in Figures 2 and 4, respectively, it is clear that the evolution dynamics is
similar. An early structure is observed at ¢ = 0.05, an intermediate time scale structure becomes closer
to an anisotropic shape (¢ = 0.1 for the four-fold flow, r = 1 for the eight-fold flow), and a steady state
structure is reported at r = 30.

5.5 | Three-dimensional simulation results

We present some three-dimensional numerical simulation results. Similarly, the four-fold anisotropic
function (1.1) is taken, and the initial data are given by

t=0.05 =1.0 t =30.0

FIGURE 4 Time evolution snapshots of the phase variable at a time sequence: ¢t = 0.05, 1, and 30, with an eight-fold
symmetric anisotropic function (5.3). The parameters are set as € = 0.03, a = 0.2, Q = (0,3.2)%.

00O

t=0.05 t=0.1 t=1.0 t =10.0

FIGURE 5 The surface plots of ¢p = O for the 3-D anisotropic Cahn—Hilliard model at a time sequence: ¢ = 0.05, 0.1, 1, and
10. The four-fold symmetric anisotropic function is taken, as well as the initial data (5.4). The parameters are given by:
£=003,a=02Q=(0,32).
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_ _ (x=x0)*+(—y0)* +z—2)* 1o
by, 2,1 = 0) = tanh( 0952 ) (5.4)

X0 =Yoo =20 = 1.6, rop = 0.8.

The physical parameters are set as: ¢ = 0.03, a = 0.2, = 0.0005, s = 107>, The surface plots of
¢ = 0 for the numerical solution computed by the second numerical scheme (3.18) and (3.19), with
spatial resolution 1923, are presented in Figure 5.

6 | CONCLUDING REMARKS

A second order accurate in time, energy stable numerical scheme is proposed and analyzed for the
strongly anisotropic Cahn-Hilliard model, with Fourier pseudo-spectral spatial approximation. A
biharmonic regularization is included, to make the PDE system well-posed. A convexity analysis on
the anisotropic interfacial energy is reviewed, based on the subtle fact that all its second order func-
tional derivatives stay uniformly bounded by a global constant. Such a convexity analysis overcomes
a well-known difficulty associated with the highly nonlinear and singular nature of the anisotropic
surface energy, so that we are able to derive second order accurate numerical schemes while the-
oretically preserving the energy stability. In more details, the uniform bounds of the second order
functional derivatives lead to an explicit extrapolation for the nonlinear surface energy part, and a
Douglas-Dupont type regularization is added for the sake of numerical stability. A careful estimate
ensures a modified energy dissipation property with a uniform constraint for the regularization param-
eter A. Its combination with an implicit treatment for the nonlinear double well potential term makes
the numerical system weakly nonlinear. More importantly, the derived energy stability is in terms of
the energy potential in the original phase variable, with no auxiliary variable included in the numerical
scheme. In addition, an optimal rate convergence analysis and second order temporal error estimate are
derived for the proposed numerical scheme, which is the first such result for the strongly anisotropic
model.

A few numerical results have also been presented in this work, such as the convergence rate test,
simulation results of four-fold and eight-fold anisotropic functions, numerical comparison between
different biharmonic regularization parameters, et cetera.
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