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Abstract
This paper introduces a high-order immersed finite element (IFE) method to solve two-
phase incompressible Navier–Stokes equations on interface-unfitted meshes. In spatial
discretization, we use the newly developed immersed P2-P1 Taylor-Hood finite element.
The unisolvency of new IFE basis functions is theoretically established. We introduce an
enhanced partially penalized IFE method which includes the penalization on both interface
edges and the interface itself. Ghost penalties are also added for pressure robustness. In tem-
poral discretization, θ -schemes and backward differentiation formulas are adopted. Newton’s
method is used to handle the nonlinear advection. The proposed method completely circum-
vent re-meshing in tackling moving-interface problems. Thanks to the isomorphism of our
IFE spaces with the standard finite element spaces, the new method enables efficient updates
of global matrices, which significantly reduces the overall computational cost. Comprehen-
sive numerical experiments show that the proposed method is third-order convergent for
velocity and second-order for pressure in both stationary and moving interface cases.

Keywords Immersed finite element · Navier–Stokes equation · Interface problem · Moving
interface · Unfitted mesh

Mathematics Subject Classification 35R05 · 65N15 · 65N30

1 Introduction

Let � ⊂ R
2 be an open bounded domain, which is separated into �+(t) and �−(t) by an

evolving interface �(t). Consider the following unsteady Navier–Stokes interface problem
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in deformation tensor formulation:

∂tu + (u · ∇)u − ∇ · σ(u, p) = f, on � × [0, L], (1.1a)

∇ · u = 0, on � × [0, L], (1.1b)

u = 0, on ∂� × [0, L], (1.1c)

u(x, 0) = u0, p(x, 0) = p0, on �. (1.1d)

Here, the unknown u and p represent the velocity and the pressure of an incompressible
fluid motion, respectively. f , u0, and p0 denote the given surface tension, initial velocity, and
the initial pressure of the fluid. The stress tensor σ is defined by

σ(u, p) = 2νε(u) − pI, (1.2)

where I is the identity tensor, and ε(u) = 1
2 (∇u + (∇u)T ) denotes the strain tensor. The

fluid viscosity coefficient ν(x, t) is assumed to be discontinuous across the interface �(t).
Without loss of generality, we assume that ν is a piecewise-constant function as follows

ν(x, t) =
{

ν+, x ∈ �+(t),
ν−, x ∈ �−(t).

(1.3)

We assume that the movement of the fluid interface �(t) is governed by a velocity field
v(x, t), which is either given or part of unknowns, described as follows

dx
dt

= v(x, t), x ∈ �(t). (1.4)

Across the interface �(t), the homogeneous fluid interface jump conditions are imposed

[[u]]�(t) = 0, on �(t) × [0, L], (1.5a)

[[σ(u, p)n]]�(t) = 0, on �(t) × [0, L], (1.5b)

where the jump [[·]]�(t) is defined as [[v]]�(t) = (v|�+)�(t) − (v|�−)�(t), and n is the unit
normal vector pointing from �− to �+.

The two-phase flow interface problems, such as the Navier–Stokes interface problem
(1.1), have wide applications in fluid mechanics and computational fluid dynamics, such as
dispersionof bubbles [7], oil slick transportation [37], bloodflows [41], etc. For computational
simulations of these fluid flow interface problems, re-meshing and global interpolations
between meshes are inevitable for conventional finite element methods due to the large
deformation of the fluid interfaces. Therefore, numerical methods based on unfitted meshes
are particularly desirable for these simulations, such as immersed interface method (IIM)
[31, 32, 42], extended finite element method (XFEM) [10, 16, 38, 40], CutFEM [6, 8, 13, 15,
23], fictitious domain FEM [9, 14, 17], etc.

The immersed finite element method (IFEM) is a class of unfitted-mesh finite element
methods for solving interface problems. The key idea of IFEM is to locally modify approx-
imation functions to capture the non-smooth behavior of the solution at the interface. A
distinctive feature of IFEM from other unfitted finite element methods mentioned above is
that its approximating space is isomorphic to the standard finite element space on the same
mesh. Not only is the mesh independent of the interface, but also the number and the location
of degrees of freedom are intact. This distinguished feature enables a significant saving of
computational cost when applying IFEM for solving moving interface problems because
global interpolations between meshes are very efficient. The IFEM has been developed for
many PDE interface models including elliptic equations [11, 19, 21, 22, 34], linear elasticity
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equations [20, 35, 36], parabolic moving interface problems [18, 24, 33], hyperbolic moving
interface problems [4, 5], to name only a few.

Recently, IFEM has been extended for fluid flow interface problems governed by Stokes
equations. In [1], a Q1-Q0 IFE space was constructed and was used in the interior penalty
discontinuous Galerkin formulation for Stokes interface problems. A class of low-order
nonconforming IFE spaces was recently introduced in [28]. In [26], a priori error estimation
for Crouzeix-Raviart IFE scheme was provided. AQ1-Q0 immersed discontinuous Galerkin
scheme [2] and a mixed conforming-nonconforming IFEM [29, 30] have been presented
for Stokes moving interface problems. For the high-order approximation of Stokes interface
problems, we developed a high-order Taylor-Hood P2-P1 IFE space for Stokes interface
problems [12].

FormoregeneralmultiphaseNavier–Stokes equations, aCrouzeix-Raviart nonconforming
IFEM was introduced in [44], in which the backward Euler method was used for temporal
discretization. Despite its simple construction and algorithm, this method is of low-order
accuracy (first-order in time and second-order in space). In this paper, we develop a high-
order IFEM for solving the Navier–Stokes moving interface problem. The proposed method
is third-order accurate in velocity and second-order accurate in pressure. Since the velocity
and stress interface jump conditions (1.5) are the same for the Navier–Stokes equations as
for Stokes equations [27], we use the Taylor-Hood P2-P1 IFE spaces recently introduced
in [12]. Some important properties of these IFE spaces including the unisolvency and par-
tition of unity of IFE functions is proved in this paper. We introduce an enhanced partially
penalized immersed finite element (EPPIFE) scheme, in which penalty terms are added on
both interface edges and the interface itself. Penalization on the interface itself is critical
for high-order polynomial approximation [3, 12, 19]. In addition, ghost penalty terms for
both velocity and pressure are also added on interface edges and interface curves which yield
robust pressure approximation.We find that these new penalty terms are crucial in high-order
approximations for Navier–Stokes interface problems, which are carefully examined through
extensive numerical experiments.

For the time discretization, we adopt the θ -schemes and high-order Backward Differ-
entiation Formulas (BDF) methods. The Newton’s method is used to handle the nonlinear
advection terms. Due to the virtue of IFEM, re-meshing is not required throughout the whole
computational process. Thanks to the isomorphism of IFE space with the standard FE space,
the number and the location of degrees of freedom are independent of the interface. Only a
small portion of elements change the interface configuration in two consecutive time steps;
hence, only local modification from the previous global matrices is required instead of regen-
erating whole newmatrices. This is a prominent feature for IFEM and enables efficient global
matrices assembly.

The rest of this paper is organized as follows. In Sect. 2, we recall immersed P2-P1

finite element spaces. In Sect. 3, we analyze the unisolvency and partition of unity of the
immersedP2-P1 finite element spaces. In Sect. 4, we introduce a semi-discrete scheme using
the enhanced partially-penalized IFE method. Newton’s method and full-discrete schemes
are presented in Sect. 5. In Sect. 6, we provide some numerical experiments to test the con-
vergences and accuracies of our methods for both stationary and moving interface cases. A
brief summary is given in Sect. 7.
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2 Immersed Finite Element Spaces

In this section, we introduce some preliminaries and notations, and then recall Taylor-Hood
P2-P1 IFE spaces developed in [12].

2.1 Notations and Preliminaries

From now on, we assume that the domain � is polygonal, and that Th is a shape regular
triangulation of the domain � with mesh size h. Note that Th does not need to align with
the interface �(t) at any time t . As a result, the mesh Th are divided into two subsets: the
set of interface elements T i

h (t) = {T ∈ Th | T ∩ �(t) �= ∅} and the set of non-interface
elements T n

h (t) = Th\T i
h (t). Although the background mesh Th is time independent, T n

h (t)
and T i

h (t) are time dependent due to themovement of the interface. For each interface element
T ∈ T i

h (t), we denote the interface segment by �T (t) = �(t) ∩ T . Define F i
h(t) = {�T (t) |

T ∈ T i
h (t)} to be the set of interface segments on the mesh Th .

Let Eh be the collection of all edges of Th . Let E ih(t) = {e ∈ Eh | e∩�(t) �= ∅} be the set
of interface edges at time t , and En

h (t) = Eh\E ih(t) be the set of non-interface edges. Again,
E ih(t) and En

h (t) evolve with the moving interface. The collections of boundary edges and
interior edges are denoted by Eb

h and Eo
h , respectively. For each edge e ∈ Eh , a unit normal

vector is designated by ne. Note that the direction of the normal vector of an interior edge
has no effect under our context. The direction of the normal vector ne for a boundary edge
e ∈ Eb

h is defined to be outward of the domain �. For an interface segment �T ∈ F i
h(t), the

normal n� is assigned to point from �−(t) to �+(t).
We also define the jump operator [[·]] and the average operator {{·}} of a vector function w.

On an interior edge e ∈ Eo
h shared by two elements Te1 and Te2, we define

[[w]]e = w|Te1 − w|Te2 , {{w}}e = 1

2
(w|Te1 + w|Te2). (2.1)

Here, the neighboring elements Te1 and Te2 are assigned such that the normal vector ne points
from Te1 to Te2. On an interface segment �T ∈ F i

h(t), the jump and average operators are
defined as:

[[w]]�T = w|T− − w|T+ , {{w}}�T
= 1

2
(w|T+ + w|T−), (2.2)

where T+ = T ∩ �+(t) and T− = T ∩ �−(t). On a boundary edge e ∈ Eb
h associated with

the element Te, the jump and average are defined as:

[[w]]e = {{w}}e = w|e. (2.3)

We use standard Sobolev spaces notation in this paper. Let V be a normed vector space
equipped with norm ‖ · ‖V . Then we define time dependent Sobolev spaces as follows: for
1 < p < ∞

L p(0, L; V ) =
{
v : [0, L] 	→ V

∣∣∣∣
∫ L

0
‖v(·, t)‖p

V dt < ∞
}

. (2.4)

The space H1(0, L; V ) is defined as follows

H1(0, L; V ) =
{
v : [0, L] 	→ V

∣∣∣∣ v ∈ L2(0, L; V ) and ∂tv ∈ L2(0, L; V )

}
. (2.5)
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The space Hk(0, L; V ) with k > 1 can be defined in a similar way. We also introduce the
mesh dependent space Vh(t):

Vh(t) = {
(u, p) ∈ [L2(�)]3 : u|∂�

= 0 and (u, p) satisfies the following conditions (A1) − (A2)
}
. (2.6)

(A1) (u, p)|T ∈ [H1(T )]3, if T ∈ T n
h (t); (u, p)|T± ∈ [H1(T±)]3, for all T ∈ T i

h (t).
(A2) (u, p) is continuous on every non-interface edge e ∈ En

h (t).

To ensure the mesh sufficiently resolves the interface �(t), we assume that the triangulation
Th satisfies the following hypotheses [3, 10, 12, 44]:

(H1) The interface �(t) can only intersect an element with two points, and these two points
must be on different edges.

(H2) The interface �(t) is a piecewise C2 function, and the mesh Th is formed such that on
every interface element T ∈ T i

h (t), the interface segment �T is C2.

2.2 Fictitious Elements

We use fictitious elements to construct local IFE functions [3, 12, 45]. Given a time t , let T =
�A1A2A3 ∈ T i

h be an interface triangle with the homothetic center O . A fictitious element

of T , denoted by T λ, is defined by T λ = {X ∈ R
2 : ∃Y ∈ T such that

−→
OX = (1 + λ)

−→
OY }

where λ is a scaling constant. We denote �λ
T = �(t) ∩ T λ. These definitions are illustrated

in Fig. 1 (Right), where	Aλ
1 A

λ
2 A

λ
3 is the corresponding fictitious element of	A1A2A3, and

�T = D̃E , �λ
T = D̃λEλ. To this point, we need two more hypotheses under the context of

fictitious elements [19]:

(H3) At any time t , the interface can only intersect each interface element T and its fictitious
elementT λ at twodistinct points. These intersectionpointsmust locate on twodifferent
edges of T and T λ.

(H4) At any time t , there exists an integer N such that for each K ∈ Th , the number of
elements in the set {T ∈ T i

h (t) : K ∩ T λ �= ∅} is bounded above by N .

2.3 Taylor-Hood IFE Spaces

We briefly recall the P2-P1 vector-valued IFE spaces [12] for Stokes interface problems.
For a triangular element T ∈ Th with vertices A1, A2, and A3, let λi , i = 1, 2, 3 be the
barycentric coordinates. Define three midpoints by A4 = 1

2 (A1 + A2), A5 = 1
2 (A2 + A3),

A6 = 1
2 (A3 + A1). Let ψi , i = 1, 2, · · · , 6 be the quadratic Lagrange shape functions on T .

Then we have ψi = (2λi −1)λi , for i = 1, 2, 3 and ψ4 = 4λ1λ2, ψ5 = 4λ2λ3, ψ6 = 4λ3λ1.
The vector-valuedP2-P1 shape functions {ψ i,T , i ∈ I}with I = {1, 2, ..., 15} can bewritten
as

ψ i,T =
⎛
⎝ψi

0
0

⎞
⎠ 1 ≤ i ≤ 6, ψ i,T =

⎛
⎝ 0

ψi−6

0

⎞
⎠ 7 ≤ i ≤ 12,

ψ i,T =
⎛
⎝ 0

0
λi−12

⎞
⎠ 13 ≤ i ≤ 15.
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Fig. 1 An typical interface element (Left) and a fictitious element (Right)

These shape functions {ψ i,T , i ∈ I} are used on non-interface elements T ∈ T n
h (t).

On an interface element T ∈ T i
h (t), we construct piecewiseP2-P1 shape functions accord-

ing to the interface conditions (1.5). We define the nodes Ni such that Ni = Ai for 1 ≤ i ≤ 6,
Ni+6 = Ai for 1 ≤ i ≤ 6, and Ni+12 = Ai for 1 ≤ i ≤ 3. Every interface element is divided
into T+ := T ∩ �+(t) and T− := T ∩ �−(t) by the interface, as illustrated in the left plot
of Fig. 1. The index set I is split into I+ := {i ∈ I, Ni ∈ T+} and I− := {i ∈ I, Ni ∈ T−}.
We define the piecewise P2-P1 function space on T by:

P(T ) = {(u, p) : (u, p)|T+ ∈ [P2
(
T+)]2 × P1

(
T+) and

(u, p)|T− ∈ [P2
(
T−)]2 × P1

(
T−)} . (2.7)

For the convenience of construction, we introduce the following tensor-product space
S(T ):

S(T ) = [[P2(T )]2 × P1(T )] × [[P2(T )]2 × P1(T )]. (2.8)

It is obvious that S(T ) is an isomorphism of P(T ). A set of basis functions {ξ i,T }i∈I ∪
{ηi,T }i∈I of S(T ) can be written as follows

ξ i,T =
{ (

ψ i,T , 0
)
, if i ∈ I+,(

0,ψ i,T

)
, if i ∈ I−,

ηi,T =
{ (

0,ψ i,T

)
, if i ∈ I+,(

ψ i,T , 0
)
, if i ∈ I−.

(2.9)

The following approximated interface conditions are used in the construction of IFE
function. As stated in the Sect. 2.2, the interface conditions are imposed on the fictitious
interface�λ

T . Two physical jump conditions (1.5) imply the continuity of velocity and viscous
stress tensor in normal direction:

[[u]]�λ
T

= [[σ(v, q)n]]�λ
T

= 0. (2.10)

Since the true solution u is divergence free, the finite element approximation of u is not
necessarily divergence free, but it is within each element. We also impose the continuity of
∇ · u across the interface:

[[∇ · u]]�λ
T

= 0. (2.11)
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As we use high-order approximation for the velocity, two physical jump conditions (1.5)
are insufficient to uniquely determine the IFE function; hence, we will need some additional
jump conditions. As in the Laplacian extended jump conditions for elliptic equations [3], we
use the following extended jump condition

[[∇ · σ(u, p)]]�λ
T

= 0. (2.12)

Finally, when the surface tension is small, we impose the continuity of pressure across the
interface [25, 43]:

[[p]]�λ
T

= 0. (2.13)

Combining these conditions (2.10) - (2.13), we define the following least-squares functional
Jλ(·, ·) : S(T ) × S(T ) 	→ R

+ to weakly enforce these approximating interface jump
conditions across the fictitious interface �λ

T :

Jλ((u, p), (v, q)) = ω0

∫
�λ
T

[[u]] [[v]] ds + ω1h
2
∫

�λ
T

[[∇ · u]] [[∇ · v]] ds

+ω2h
2
∫

�λ
T

[[σ(u, p)n]] [[σ(v, q)n]] ds

+ω3h
4
∫

�λ
T

[[∇ · σ(u, p)]] [[∇ · σ(v, q)]] ds + ω4h
2
∫

�λ
T

[[p]] [[q]] ds.

(2.14)

whereωi > 0, i = 0, · · · , 4 are the weights and the factors of h are used for scaling balance.
We construct the local IFE function φT (in tensor form) as follows

φT |v,c =
∑
i∈I

vi ξ i,T +
∑
i∈I

ciηi,T , (2.15)

where vi denotes the given function value at nodes Ni . The coefficients ci are solved from
the following linear system

Ac = −Bv, (2.16)

where

A = (Jλ

(
η j,T , ηi,T

))
i, j∈I ∈ R

|I|×|I|, B = (Jλ

(
ξ j,T , ηi,T

))
i, j∈I ∈ R

|I|×|I|.
(2.17)

It has been shown in [12] that ci obtained from (2.16) minimizes |φT |J with given values
of vi , where | · |J is the semi-norm induced by the bilinear form J (·, ·). This semi-norm
| · |J is a measure of fitness of interface jump conditions.

To find piecewise IFE function, we map functions in pairing form in space S(T ) into
piecewise function form in space P(T ) by an isomorphic mapping HT : S(T ) 	→ P(T ):

HT (φ+
T ,φ−

T ) =
{

φ+
T , on T+

φ−
T , on T−,

for all φT = (φ+
T ,φ−

T ) ∈ S(T ). (2.18)

Finally, these piecewise IFE functions on the interface element T ∈ T i
h can be written as:

φi,T = HT (φT |ei ,ci ), i ∈ I. (2.19)
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With the preparation of local IFE shape functions φi,T , we construct the local IFE space
Sh,T (t) for T ∈ Th :

Sh,T (t) =
{
Span{ψ i,T , i ∈ I} if T ∈ T n

h (t),

Span{φi,T , i ∈ I} if T ∈ T i
h (t).

(2.20)

Accordingly, the global IFE space Sh(t) is defined by

Sh(t) = {(u, p) ∈ [L2(�)]3 : (u, p) satisfies the following conditions (C1) − (C4)
}
.

(2.21)

(C1) (u, p)|T ∈ Sh,T (t), for all T ∈ Th .
(C2) (u, p) is continuous on every non-interface edge e ∈ En

h (t).
(C3) u is continuous at all vertices and midpoints of T ∈ Th .
(C4) p is continuous at all vertices of T ∈ Th .

For more details of Taylor-Hood P2-P1 IFE spaces, we refer readers to [12].

3 Unisolvency of Immersed Finite Element Spaces

In this section, we discuss the unisolvency and partition of unity of Taylor-Hood IFE spaces.
Let T ∈ T i

h (t) be an interface element. Let V1 = Span{ξ i,T : i ∈ I} and V2 = Span{ηi,T :
i ∈ I} where ξ i,T and ηi,T are defined in (2.9). Clearly, S(T ) can be decomposed to
S(T ) = V1 ⊕ V2. We denote the kernel of Jλ by Kλ = {φ ∈ S(T ) : |φ|Jλ = 0}.
Theorem 3.1 (Uniqueness) Let T ∈ T i

h (t) be an interface element. Assume that the interface
segment Tλ ∩�(t) is a non-degenerate curve, i.e., not a straight line segment. Then each IFE
function φT is uniquely determined by given nodal values.

Proof It suffices to show that the coefficient matrix A defined in (2.16) is nonsingular. We
prove this result in two cases of interface curves.

Case 1 Tλ ∩ � is a non-algebraic curve or an algebraic curve with order larger than two.

Suppose ((u1, p1), (u2, p2)) ∈ Kλ ∩ V2, then, u1 − u2 = 0 and p1 − p2 = 0 on Tλ ∩ �.
Since u1 − u2 ∈ P2 × P2 and p1 − p2 ∈ P1, they cannot vanish on an algebraic curve of
order larger than two or a non-algebraic curve. Thus, u1 − u2 = 0 and p1 − p2 = 0 on Tλ.
Therefore, u1, u2 must vanish on all nodal points Ai for 1 ≤ i ≤ 6, and p1, p2 vanishes on
all Ai for 1 ≤ i ≤ 3. This proves | · |Jλ is an inner product on V2. Thus, the coefficient matrix
A is positive definite.

Case 2 Tλ ∩ � is an algebraic curve of order two.

Suppose ((u1, p1), (u2, p2)) ∈ Kλ ∩V2. It remains valid that p1 = p2 ≡ 0 due to p1 − p2 ∈
P1. Since Tλ ∩ � is an algebraic curve of order two, it can be written as L(x, y) = 0 where
L is an irreducible second-order polynomial. Since u1 − u2 = 0 on Tλ ∩ �, we can express
u1 − u2 = (k1L, k2L), where k1 and k2 are constants. The fact ((u1, p1), (u2, p2)) ∈ Kλ

implies [[∇ · u]] = 0 on Tλ ∩ �. That is k1Lx + k2Ly = 0 on the curve Tλ ∩ �. Thus, the
vector (Lx , Ly) is orthogonal to the constant vector (k1, k2) on the interface curve. Since L
is irreducible, we have k1 = k2 = 0, and therefore u1 − u2 = 0 on Tλ. Thus, the coefficient
matrix A is positive definite. ��
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Fig. 2 Use the circle arc to approximate line

Remark 3.1 If Tλ∩�(t) is a degenerate curve, i.e., a straight line segment, the existence of IFE
functions still holds [12]. However, the construction of IFE functions might not be unique.
In fact, we find that the coefficient matrix A can be singular under certain configuration
of interface location and viscosity coefficients. In particular, when the intersection points
are D = (0.5, 0), E = (0.6403882032022076, 0.3596117967977924), and the viscosity
coefficients are ν+ = 0.03835954587269348, ν− = 1 in the reference triangular element,
the null space of A has a dimension of one. In this case, local IFE functions can still be
constructed but they are not unique. Moreover, in this case, there exist non-zero functions
in the IFE space such that they vanish at all degrees of freedom and satisfy the interface
conditions (1.5) exactly.

Remark 3.2 In the case of the straight line interface with degenerate rank of coefficient matrix
A, we can use the pseudo inverse to uniquely solve the linear system (2.16). Another approach
is to use a sequence of curves to geometrically approximate of a straight line segment. For
example, we may construct a family of circles whose centers Ci locates in the perpendicular
bisector of the line segment DE with the radius r = |Ci D|. The curvature of these circles
can be controlled by its radius. As increasing the value of r , the arc D̃E will approach to the
line segment DE . See the illustration in Fig. 2. Since the construction of IFE functions on
any arc D̃E is unique, the construction of IFE function on the limiting line segment is also
unique by letting the radius r → ∞.

Remark 3.3 In the linear interface case, it requires 16 equations to enforce all interface con-
ditions exactly (i.e. J ≡ 0). However, there are only 15 degrees of freedom for P2-P1
elements, which results in an overdetermined linear system. Moreover, all the 16 conditions
can be linear independent. This means, in some cases, there exists no piecewise polyno-
mial functions exactly satisfying all interface conditions. For example, in Fig.3, we plot an
IFE shape function for the velocity on the reference triangle cut by a straight line interface
�T : 2x + y + 27− 20

√
2 = 0. We can see that the two pieces are not continuous across the

straight line interface. More precisely, the least-squares functional J in this configuration
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Fig. 3 An IFE shape function with the straight line interface 2x + y + 27 − 20
√
2 = 0

returns to the value of 0.13821871726173554, which is nonzero. In other words, the conti-
nuity condition [[u]]�T = 0 is not satisfied exactly. This phenomenon is further explained in
Numerical Example 6.1.

Remark 3.4 The least-squares construction can be extended to the construction of higher-
order Pk-Pk−1 Taylor-Hood IFE spaces with k ≥ 3. However, this requires the further
investigation on specifying of high-order extended interface jump conditions in addition to
(2.12).

Theorem 3.2 (Partition of Unity) Let T ∈ T i
h (t) be an interface element. Under the assump-

tions of Theorem 3.1, the IFE shape functions φi,T satisfy the following partition of unity
property: ∑

i∈I
φi,T ≡ 1. (3.1)

Proof Let φT = ∑
i∈I φi,T , so H−1

T φT ∈ S(T ). We then write φT in the component form
φT = (φ1,T , φ2,T , φ3,T ). By direct computation, φ1,T (Ai ) = 1 for 1 ≤ i ≤ 6, φ2,T (Ai ) = 1
for 1 ≤ i ≤ 6, and φ3,T (Ai ) = 1 for 1 ≤ i ≤ 3. This is to say v = 1. By the existence of the
IFE functions [12], there exists a solution c, such that

ψT = H−1
T φT , φT = φT |1,c =

∑
i∈I

ξ i,T +
∑
i∈I

ciηi,T . (3.2)

We note that c = 1 is a solution due to the partition of unity of standard finite element shape
functions ψ i,T . By the uniqueness result in Theorem 3.1, c = 1 is the only solution. Thus
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φT = HT

(∑
i∈I

ξ i,T +
∑
i∈I

ηi,T

)
≡ 1, on T . (3.3)

��

4 Semi-Discrete Schemes

In this section, we develop a semi-discrete scheme of the Navier–Stokes interface problem
(1.1)–(1.5) using IFE spaces introduced above. We write the vector IFE space Vh(t) =
Wh(t) × Qh(t) and Sh(t) = Uh(t) × Ph(t). It is obvious that Sh(t) ⊂ Vh(t) at any time t .

For afixed time t ,multiplying (1.1a) and (1.1b) by test functionsv ∈ Wh(t) andq ∈ Qh(t),
respectively, and integrating over an element T ∈ Th , we obtain∫
T

∂tu · vdx +
∫
T
(u · ∇)u · vdx −

∫
T

(∇ · σ(u, p)) · vdx −
∫
T

(∇ · u) qdx =
∫
T
f · vdx.

(4.1)

If T ∈ T n
h (t) is a non-interface element, by the divergence theorem, we get
∫
T

(∇ · σ(u, p)) · vdx =
∫

∂T
(σ (u, p)n) · vds −

∫
T

σ(u, p) : ∇vdx. (4.2)

If T ∈ T i
h (t) is an interface element, we apply the divergence theorem separately on T± and

sum up with respect to s = ± to obtain∫
T

(∇ · σ(u, p)) · vdx =
∫

∂T
(σ (u, p)n) · vds

+
∫

�T

[[(σ (u, p)n) · v]] ds −
∫
T

σ(u, p) : ∇vdx (4.3)

Note on an interface edge e ∈ E ih(t) or an interface segment �T , we have∫
l
[[(σ (u, p)n) · v]] ds =

∫
l
{{σ(u, p)n}} · [[v]] ds, l = e or �T , (4.4)

since [[ f g]] = [[ f ]] {{g}} + {{ f }} [[g]] and the fact [[σ(u, p)n]]l = 0. Then, summing up (4.2)
over all non-interface elements T ∈ T n

h (t), summing up (4.3) over all interface elements
T ∈ T i

h (t), and using the fact (4.4) we obtain

−
∑
T∈Th

∫
T

(∇ · σ(u, p)) · vdx =
∑
T∈Th

∫
T
2νε(u) : ∇vdx +

∑
T∈Th

∫
T
p∇ · vdx

−
∑

e∈E i
h(t)

∫
e
{{2νε(u)n}} · [[v]] ds

−
∑

T∈T i
h (t)

∫
�T

{{2νε(u)n}} · [[v]] ds

+
∑

e∈E i
h(t)

∫
e
{{pn}} [[v]] ds +

∑
T∈T i

h (t)

∫
�T

{{pn}} [[v]] ds.

(4.5)
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Now we sum up (4.1) over all elements T ∈ Th and use (4.5), then we obtain the weak
formulation of the Navier–Stokes interface problem: find (u, p) ∈ H1(0, L;Wh(t)) ×
L2(0, L; Qh(t)) such that

(∂tu, v) + C(u,u, v) + K ((u, p), (v, q)) = L f (v), ∀(v, q) ∈ Wh(t) × Qh(t). (4.6)

In (4.6), the bilinear form K (·, ·) : Vh(t) × Vh(t) 	→ R is defined as:

K ((u, p), (v, q)) = A(u, v) + B(v, p) + B(u, q) + Ju(u, v) − Jp(p, q) (4.7)

where A(·, ·), B(·, ·), C(·, ·, ·), L f (·) are specified as follows:

A(u, v) =
∑
T∈Th

∫
T
2νε(u) : ε(v)dx −

∑
e∈E i

h (t)

∫
e
{{2νε(u)n}} · [[v]] ds

−
∑

e∈E i
h (t)

∫
e
{{2νε(v)n}} · [[u]] ds

+σ 0
e

|e|
∑

e∈E i
h (t)

∫
e
[[u]] · [[v]] ds + ε1

∑
T∈T i

h (t)

∫
�T

{{2νε(u)n}} · [[v]] ds

+ε1
∑

T∈T i
h (t)

∫
�T

{{2νε(v)n}} · [[u]] ds + σ 1
e

hT

∑
T∈T i

h (t)

∫
�T

[[u]] · [[v]] ds, (4.8)

B(v, p) = −
∑
T∈Th

∫
T
p∇ · vdx +

∑
e∈E i

h (t)

∫
e
{{pn}} [[v]] ds − ε1

∑
T∈T i

h (t)

∫
�T

{{pn}} [[v]] ds,

(4.9)

C(w,u, v) =
∑
T∈Th

∫
T
(w · ∇)u · vdx, (4.10)

L f (v) =
∫

�

f · vdx. (4.11)

The ghost penalty terms Ju(·, ·) and Jp(·, ·) in (4.7) are defined as:

Ju(u, v) =
∑

1≤ j≤ku

h2 j−1
T

⎡
⎢⎣σ 0

u, j

∑
e∈E i

h (t)

∫
e
{{ν}}
[[
∂
j
nu
]]

:
[[
∂
j
nv
]]
ds + σ 1

u, j

∑
T∈T i

h (t)

∫
�T

{{ν}}
[[
∂
j
nu
]]

:
[[
∂
j
nv
]]
ds

⎤
⎥⎦ ,

(4.12)

Jp(p, q) =
∑

0≤ j≤kp

h2 j+1
T

⎡
⎢⎣σ 0

p, j

∑
e∈E i

h (t)

∫
e

1

{{ν}}
[[
∂
j
n p
]]

·
[[
∂
j
nq
]]
ds + σ 1

p, j

∑
T∈T i

h (t)

∫
�T

1

{{ν}}
[[
∂
j
n p
]]

·
[[
∂
j
nq
]]
ds

⎤
⎥⎦

(4.13)

In the above formulas, ε1, σ 0
e , σ

1
e , σ

0
u, j , σ

0
p, j , σ

1
u, j and σ 1

p, j are penalty constants. ku and kp
are the order of polynomials for u and p. For P2-P1 element pair, ku = 2 and kp = 1.

Using the vector IFE space Sh(t) = Uh(t) × Ph(t) to approximate the broken Sobolev
space Vh(t), we obtain the semi-discrete IFE scheme: find (uh, ph) ∈ H1(0, L;Uh(t)) ×
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L2(0, L; Ph(t)) such that

(∂tuh, vh) + C(uh,uh, vh) + K ((uh, ph), (vh, qh))

= L f (vh), ∀ (vh, qh) ∈ Uh(t) × Ph(t), (4.14)

subjected to the initial conditions:

uh(·, 0) = u0h, ph(·, 0) = p0h (4.15)

where (u0h, p0h) is an approximation of (u0, p0) inSh(�), such as the Lagrange interpolation
[12].

The proposed method (4.14)–(4.15) is an enhanced partially penalized immersed finite
element (EPPIFE) method. Comparing to classical PPIFE method [34], additional penalty
terms are added on interface segments �T in (4.8) and (4.9), aiming to penalize the discon-
tinuities of solution on the edges and interface introduced by our high order IFE spaces. In
addition, ghost penalties terms (4.12)–(4.13) are used to improve the stability of the scheme
especially for pressure terms. The effect of ghost penalties has been explored for Stokes
interface problems [12]. In Sect. 6, we further discuss the necessity of these penalty terms
for Navier–Stokes interface problems.

5 Newton’s Method and Full-Discrete Schemes

In this section, we first present the Newton’s method to handle the nonlinear advection term
C(uh,uh, vh). Then we introduce several temporal discrete schemes of (4.14).

5.1 Newton’s Method

For the convenience of the notation, we use the steady-state Navier–Stokes interface problem
to derive Newton’s method. Numerical examples for this steady-state case are also provided
in Sect. 6. To this end, we write the semi-discrete system (4.14) in the following operator
form: find (uh, ph) as the root of the following nonlinear operator equation:

G(uh, ph) = 0 (5.1)

where G : Sh(t) 	→ S∗
h(t) is the mapping Sh(t) to its dual space defined by

[G(u, p)] (v, q) = C(u,u, v) + K ((u, p), (v, q)) − L f (v) .

Note that 0 in (5.1) denotes the zero operator. The Newton iteration can be written as: given
(u(l−1), p(l−1)), seek for (u(l), p(l)) in

(u(l), p(l)) = (u(l−1), p(l−1)) −
[
G ′(u(l−1), p(l−1))

]−1 (
G(u(l−1), p(l−1))

)
(5.2)

where G ′(u(l−1), p(l−1))
(
hu, h p

) ∈ S∗
h(t) is the Gâteaux derivative of G at (u(l−1), p(l−1))

in the direction of (hu, h p), i.e.,

G ′(u(l−1), p(l−1))
(
hu, h p

) = lim
ε→0

G(u(l−1) + εhu, p(l−1) + εh p) − G(u(l−1), p(l−1))

ε

= K
(
(hu, h p), (v, q)

)+ C
(
hu,u(l−1), v

)
+ C

(
u(l−1),hu, v

)
.

(5.3)
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The Newton iteration (5.2) can be written as:

G ′(u(l−1), p(l−1))
(
u(l), p(l)

)
= G ′(u(l−1), p(l−1))

(
u(l−1), p(l−1)

)
− G

(
u(l−1), p(l−1)

)
.

(5.4)

Substituting (5.3) in (5.4) with (hu, h p) = (u(l), p(l)) and (hu, h p) = (u(l−1), p(l−1)),
respectively, we have the following iteration process: given (u(l−1), p(l−1)), compute
(u(l), p(l)) in

C(u(l)
h ,u(l−1)

h , vh) + C(u(l−1)
h ,u(l)

h , vh) + K
(
(u(l)

h , p(l)
h ), (vh, qh)

)

= C(u(l−1)
h ,u(l−1)

h , vh) + L f (vh) . (5.5)

Once (u(l), p(l)) and (u(l−1), p(l−1)) are sufficiently close, we recognize it as the solution of
Navier–Stokes interface problem.

5.2 �-Schemes

For temporal discretization, we partition the time domain [0, L] uniformly as follows

0 = t0 < t1 < ... < t N = L, τ = tn − tn−1, n = 1, 2, ..., N . (5.6)

Denote unh = uh(x, tn) and define

∂un+1/2
h = un+1

h − unh
τ

, un+θ
h = θun+1

h + (1 − θ)unh,

Cn+θ (uh,uh, vh) = θC
(
un+1
h ,un+1

h , vh
)

+ (1 − θ)C
(
unh,u

n
h, vh

) (5.7)

where θ ∈ (0, 1). The θ -schemes of the Navier–Stokes interface problem is written as: Find
(unh, p

n
h ) ∈ Sh(tn) such that(
∂un+1/2

h , vh
)

+ Cn+θ (uh,uh, vh) + K
(
(un+θ

h , pn+θ
h ), (vh, qh)

)
= L fn+θ (vh) (5.8)

for all (vh, qh) ∈ Sh(tn). We expand (5.8) and use Newton’s Method (5.5) to linearize it at
each time step:(

un+1
h , vh

)
+ τθ

[
C
(
un+1
h ,un+1

h , vh
)

+ K
(
(un+1

h , pn+1
h ), (vh, qh)

)]

= τ L fn+θ (vh) + (unh, vh)− τ(1 − θ)
[
C
(
unh,u

n
h , vh

)+ K
(
(unh, p

n
h ), (vh, qh)

)]
. (5.9)

We denote the related matrices and vectors as follows

(Mn)i j =
(
φn
u, j ,φ

n
u,i

)

(Kn)i j = A
(
φn
u, j ,φ

n
u,i

)
+ B

(
φn
u,i ,φ

n
p, j

)
+ B

(
φn
u, j ,φ

n
p,i

)

+ Ju
(
φn
u, j ,φ

n
u,i

)
− Jp

(
φn
p, j ,φ

n
p,i

)

(Fn+θ )i = θL fn+1(φn
u,i ) + (1 − θ)L fn (φ

n
u,i )

(KN(l)
n )i j = C(φn

u, j ,u
n,(l),φn

u,i ) + C(un,(l),φn
u, j ,φ

n
u,i )

(FN(l)
n )i = C(un,(l),un,(l),φn

u,i )

(FNn)i = C(un,un,φn
u,i ),
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where, φn
u,i and φn

p,i represent velocity and pressure components of the global IFE basis

function φi at time level tn , and (·, ·) represents standard L2 inner product. At each time
level, Newton’s method is used to find the solution Un+1 with initial value U(0)

n+1 = Un .
The fully-discrete θ -scheme with Newton’s iteration can be written in the matrix form as
follows: compute U(l)

n+1, l = 1, 2, ..., L in
[
Mn+1 + τθ

(
KN(l−1)

n+1 + Kn+1

)]
U(l)
n+1

= τFn+θ + [Mn − τ(1 − θ)Kn]Un − τ(1 − θ)FNn + τθFN(l−1)
n+1 .

(5.10)

Once ‖U(l)
n+1 − U(l−1)

n+1 ‖ ≤ tol, a prescribed tolerance, we set Un+1 = U(l)
n+1. The complete

procedure is summarized in Algorithm 1. Note that when θ = 1, this scheme is called
Backward Euler method. When θ = 1/2, this method is called Crank-Nicolson method.

Algorithm 1: θ -scheme for Navier-Stokes interface problem
Result: Solve U1,U2, ...,UN .

1 Compute U0, K0,M0, F0, FN0 from initial condition;
2 for n = 0, 1, 2, ..., N − 1 do
3 Update Kn+1,Mn+1, Fn+1;
4 Fn+θ ← θFn+1 + (1 − θ)Fn ;
5 U(0) ← Un ; l ← 0;

6 while ‖Ul − Ul−1‖ ≥ tol or l ≤ L do
7 l ← l + 1;

8 Compute KN(l−1)
n+1 , FN(l−1)

n+1 ;

9 A(l)
n+1 ← Mn+1 + τθ

(
KN(l−1)

n+1 + Kn+1

)
;

10 b(l)
n+1 ← τFn+θ + (Mn − τ(1 − θ)Kn)Un − τ(1 − θ)FNn + τθFN(l−1)

n+1 ;

11 Solve A(l)
n+1U

(l)
n+1 = b(l)

n+1;
12 end

13 Un+1 ← U(l)
n+1;

14 Compute FNn+1;
15 end

Remark 5.1 This algorithm is set under general assumption, i.e. the moving interface case.
For a fixed interface case, there is no need to repeatedly computeKn+1 andMn+1 in the step
line 3 since these two matrices are independent with n.

Remark 5.2 We could slightly modify the above algorithm to save the computational cost
when certain θ value is taken. For example, when θ = 1, we do not need to compute FNn .

Remark 5.3 One apparent advantage of unfitted-mesh methods is that there is no need to
regenerate mesh for a new interface location when assembling global matrices and vectors
(line 3 of Algorithm 1). Moreover, with careful coding, one could further reduce the compu-
tational cost since it is unnecessary to re-assemble matrices Kn+1 and Mn+1 from scratch.
In fact, only O(h−1) elements need to be updated when moving from time step tn to tn+1,
so that we only need to update those local matrices and substitute them in Kn+1 and Mn+1,
compared withO(h−2) elements computation under body-fitted mesh methods. This process
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is written in Algorithm 2. Note that in real computation, we have Kn = An + Pn where An

is non-penalized stiff matrix, Pn is the penalization matrix. It is easy to see from tn to tn+1,
we need only to update interface elements at two time steps.

Algorithm 2: Fast Updating of Kn+1 andMn+1

Result: Kn+1 and Mn+1.
1 id ← {T i

h at tn} ∪ {T i
h at tn+1};

2 for element in id do
3 Assemble Ãn and M̃n for local DOF of element under basis function at tn ;
4 Assemble Ãn+1 and M̃n+1 for local DOF of element under basis function at tn+1;

5 end
6 Compute Penalization Matrix Pn+1 at tn+1;
7 Kn+1 ← An − Ãn + Ãn+1 + Pn+1;
8 Mn+1 ← Mn − M̃n + M̃n+1;

5.3 Backward Differentiation Formulas

Backward Differentiation Formulas (BDF) can also be used for temporal discretization of
NS equation. In particular, the 2-step scheme BDF2 is

D2vn = 3vn+1 − 4vn + vn−1

2τ
. (5.11)

Approximating the derivative of ∂tu by D2u, the BDF2 scheme is written as: for n =
1, 2, ..., N − 1, for ∀ (vh, qh) ∈ Sh(t),

(
D2un, vh

)+ Cn+1 (uh,uh, vh) + K
(
(un+1

h , pn+1
h ), (vh, qh)

)
= L fn+1 (vh) . (5.12)

We linearize this system using Newton’s method at each time step n as above, then we can
write the full-discrete scheme in the matrix form: find U(l)

n+1 in[
3Mn+1 + 2τ

(
KN(l−1)

n+1 + Kn+1

)]
U(l)
n+1

= 2τFn+1 + 4MnUn − Mn−1Un−1 + 2τFN(l−1)
n+1 . (5.13)

Whenn = 0,we canuse theBackwardEulermethod to computeU1. Since the local truncation
error is O(τ 2), it provides sufficiently accurate initial approximations to ensure the global
second-order convergence in time. The complete procedure is written in Algorithm 3.

For higher-order approximation in time, we can use the following 3-step scheme BDF3:

D3vn = 11vn+1 − 18vn + 9vn−1 − 2vn−2

6τ
. (5.14)

We approximate derivative of ∂tu by D3u, then the BDF3 scheme can be written as[
11Mn+1 + 6τ

(
KN(l−1)

n+1 + Kn+1

)]
U(l)
n+1

= 6τFn+1 + 18MnUn − 9Mn−1Un−1 + 2Mn−2Un−2 + 6τFN(l−1)
n+1 . (5.15)
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Algorithm 3: BDF2 scheme for Navier-Stokes interface problem
Result: Solve U1,U2, ...,UN .

1 Compute U0, K0,M0, F0, FN0 from initial condition;
2 Compute U1,M1, from last step using Algorithm 1 with θ = 0.5 or 1.0 and N = 1;
3 for n = 1, 2, ..., N − 1 do
4 Update Kn+1,Mn+1, Fn+1;

5 U(0) ← Un ; l ← 0;

6 while ‖Ul − Ul−1‖ ≥ tol or l ≤ L do
7 l ← l + 1;

8 Compute KN(l−1)
n+1 , FN(l−1)

n+1 ;

9 A(l)
n+1 ← 3Mn+1 + 2τ

(
KN(l−1)

n+1 + Kn+1

)
;

10 b(l)
n+1 ← 2τFn+1 + 4MnUn − Mn−1Un−1 + 2τFN(l−1)

n+1 ;

11 Solve A(l)
n+1U

(l)
n+1 = b(l)

n+1;
12 end

13 Un+1 ← U(l)
n+1;

14 end

To start the iteration, we use Crank-Nicolson method to findU1 andU2. The Crank-Nicolson
method has a local truncation error of order O(τ 3) which provides sufficient accurate ini-
tial approximations to ensure the overall third-order convergence. This whole procedure is
summerized in Algorithm 4.

Algorithm 4: BDF3 scheme for Navier-Stokes interface problem
Result: We would like to solve U1,U2, ...,UN .

1 Compute U0, K0,M0, F0, FN0 from initial condition;
2 Compute U1, K1,M1, F1, FN1 and U2,M2 from last step using Algorithm 1 with θ = 0.5 and N = 2;
3 for n = 2, ..., N − 1 do
4 Update Kn+1,Mn+1, Fn+1;

5 U(0) ← Un ; l ← 0;

6 while l == 0 or ‖Ul − Ul−1‖ ≥ tol and l ≤ L do
7 l ← l + 1;

8 Compute KN(l−1)
n+1 , FN(l−1)

n+1 ;

9 A(l)
n+1 ← 11Mn+1 + 6τ

(
KN(l−1)

n+1 + Kn+1

)
;

10 b(l)
n+1 ← 6τFn+1 + 18MnUn − 9Mn−1Un−1 + 2Mn−2Un−2 + 6τFN(l−1)

n+1 ;

11 Solve A(l)
n+1U

(l)
n+1 = b(l)

n+1;
12 end

13 Un+1 ← U(l)
n+1;

14 end

6 Numerical Examples

In this section, we report the performance of the proposed IFE schemes. All numerical
experiments are carried out on the rectangular domain � = [−1, 1]2 and the time interval
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[0, 1]. We use Cartesian triangular meshes which are obtained by first partitioning � into
N × N uniform rectangles, and then cut each rectangle into two triangles by the diagonal
connecting the upper left and lower right vertices. The mesh size h = 2/N . The parameters
in computing the least-squares IFE basis functions (2.14) are ω0 = max(ν+, ν−), ω1 = 1,
ω2 = max(ν+, ν−), ω3 = 1, ω4 = 100max(ν+, ν−). The fictitious element parameter is set
to be λ = 1.0, and the threshold of Newton method is tol = 10−8.

In the first experiment, we consider a steady-state Navier–Stokes interface equations with
a straight line interface. We would like to see if the new EPPIFE scheme can recover the
exact solution if it is a piecewise quadratic polynomial in velocity and piecewise linear in
pressure.

Example 6.1 (Steady problem with a straight line interface) In this example, we consider a
straight line interface �(x) : 2x + y − c = 0 which separates the domain � into two sub-
domains �+ = {(x, y) ∈ � : 2x + y − c > 0} and �− = {(x, y) ∈ � : 2x + y − c < 0}.
We choose c = √

2 and the viscosity coefficient (ν+, ν−) = (100, 1). The exact solution of
this problem is

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

(
(2x + y − c)2/(2ν+)

−(2x + y − c)2/ν+
)

, x ∈ �+
(

(2x + y − c)2/(2ν−)

−(2x + y − c)2/ν−
)

, x ∈ �−,

and

p(x) = x − y.

One can verify that the interface jump conditions (1.5) are satisfied. Note that the exact
solution (u, p) ∈ Sh(�); hence, we expect our EPPIFE method recover the exact solution.
For comparison, we also solve this problem using “non-penalized" and “reduced-penalized"
IFE schemes. Table 1 reports numerical results using the classical IFE scheme in which all
consistency terms and penalty terms excluded. Table 2 contains the classical PPIFE solution
with only penalization on interface edges, but not on the interface segment or ghost penalty,
i.e., ε1, σ 1

e , σ 0
u, j , σ

1
u, j , σ

0
p, j , σ

1
p, j are taken to be 0. The full EPPIFE scheme (4.7) with ghost

penalty is used to generate Table 3. We can see that errors in Table 3 are apparently much less
than Tables 1 and 2. In fact, only round-off errors are observed when using enhanced PPIFE
scheme; hence, the enhanced PPIFE scheme recovers the exact solution if the solution is in
the IFE space. Neither the “reduced" PPIFE scheme nor the classical “non-penalized" IFE
scheme can recover the true solution, as indicated in Table 3 and Table 1. The accuracy of
the PPIFE solution is still better than that of classical IFE solutions, and this indicates the
significance of penalization in IFE scheme. However, for high-order approximations (P2 for
velocity), penalization over the interface curve itself is also necessary. We note that for even
for straightline interface, the penalty on interface itself is necessary, since the construction
of IFE spaces using least-squares does not guarantee pointwise continuity of the interface
conditions, as stated in Remark 3.3.

Example 6.2 (Steady problem with a curved interface) In this example, we test our enhanced
PPIFE method on a curved interface. This example was also used in [44]. The domain � is
split into �+ and �− by a circular interface � = {(x, y) ∈ � : x2 + y2 − r2 = 0} such that
�+ = {(x, y) ∈ � : x2 + y2 − r2 > 0} and �− = {(x, y) ∈ � : x2 + y2 − r2 < 0}, where
r = √

0.3. The viscosity coefficient is chosen as (ν+, ν−) = (10, 1). The exact solutions are
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Table 1 Classical “non-penalized” IFE solution of a line interface in Example 6.1

λ N ‖u1h − u1‖L2 order ‖u2h − u2‖L2 order ‖ph − p‖L2 order

1.0 10 1.06 × 10−2 6.20 × 10−3 5.80 × 10−1

20 8.70 × 10−3 0.28 5.27 × 10−3 0.24 1.24 × 100 −1.10

40 2.69 × 10−3 1.69 1.74 × 10−3 1.60 3.16 × 10−1 1.97

N |u1h − u1|H1 order |u2h − u2|H1 order |ph − p|H1 order

10 1.14 × 10−1 4.95 × 10−2 1.72 × 101

20 1.34 × 10−1 −0.23 8.73 × 10−2 −0.82 7.39 × 101 −2.10

40 4.85 × 10−2 1.47 5.58 × 10−2 0.65 3.49 × 101 1.08

Table 2 Classical PPIFE solution of a line interface in Example 6.1

λ N ‖u1h − u1‖L2 order ‖u2h − u2‖L2 order ‖ph − p‖L2 order

1.0 10 1.59 × 10−3 1.07 × 10−3 1.33 × 10−1

20 5.87 × 10−4 1.44 3.95 × 10−4 1.43 3.99 × 10−2 1.73

40 1.41 × 10−4 2.06 9.46 × 10−5 2.06 1.82 × 10−2 1.14

N |u1h − u1|H1 order |u2h − u2|H1 order |ph − p|H1 order

10 1.23 × 10−2 8.12 × 10−3 3.55 × 100

20 7.65 × 10−3 0.68 5.75 × 10−3 0.50 1.66 × 100 1.10

40 4.46 × 10−3 0.78 3.75 × 10−3 0.62 1.63 × 100 0.02

Table 3 EPPIFE solution of a line interface in Example 6.1

λ N ‖u1h − u1‖L2 order ‖u2h − u2‖L2 order ‖ph − p‖L2 order

1.0 10 2.64 × 10−13 4.27 × 10−13 1.77 × 10−10

20 4.23 × 10−13 - 8.44 × 10−13 - 1.10 × 10−11 -

40 1.93 × 10−12 - 3.87 × 10−12 - 5.40 × 10−12 -

N |u1h − u1|H1 order |u2h − u2|H1 order |ph − p|H1 order

10 6.35 × 10−12 5.72 × 10−12 4.66 × 10−9

20 1.29 × 10−12 - 1.46 × 10−12 - 4.78 × 10−10 -

40 2.03 × 10−12 - 2.66 × 10−12 - 4.69 × 10−10 -

chosen as

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

(
y(x2 + y2 − r2)/ν+

−x(x2 + y2 − r2)/ν+
)

, x ∈ �+
(

y(x2 + y2 − r2)/ν−
−x(x2 + y2 − r2)/ν−

)
, x ∈ �−,
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Fig. 4 Convergence of the EPPIFE solution of a circular interface in Example 6.2

Fig. 5 The velocity fields of line and circular interface in Examples 6.1 and 6.2

and

p(x) = 1

10
(x3 − y3).

The convergence results are presented in Fig. 4. The dash lines are reference line indicating
the expected orders of convergence. These results indicate that our enhanced PPIFE scheme
for steady-state Navier–Stokes interface problem has optimal convergence rates, i.e.,

‖u1h − u1‖L2 + ‖u2h − u2‖L2 + h‖ph − p‖L2 ≈ O(h3),

and

|u1h − u1|H1 + |u2h − u2|H1 + h|ph − p|H1 ≈ O(h2).

Illustration of the velocity fields for Examples 6.1 and 6.2 are depicted in Fig. 5.

Example 6.3 (Unsteady problem with a stationary curved interface) In this example, we
consider an unsteady Navier–Stokes interface problem with a stationary circular interface.
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Fig. 6 Convergence of the enhanced PPIFE solutions in L2 norm (top) and H1 norm (bottom) at t = 1 of a
circular interface in Example 6.3

The exact solutions are given as

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

(
y(x2 + y2 − r2) sin(t)/ν+

−x(x2 + y2 − r2) sin(t)/ν+
)

, x ∈ �+
(

y(x2 + y2 − r2) sin(t)/ν−
−x(x2 + y2 − r2) sin(t)/ν−

)
, x ∈ �−,

and

p(x, t) = 1

10
(x3 − y3) sin(t).

Weapply three full-discrete IFE scheme:Crank-Nicolson, BDF2,BDF3. For second-order
time discrete schemes, Crank-Nicolson and BDF2, we set τ = O(h3/2). More precisely, we
divide the time interval [0, 1] into M = �1/h3/2� subintervals, and set τ = 1/M in our
computation. For the third-order BDF3 scheme, we set τ = h. This is to ensure the error
in the temporal discretization is compatible with the error in the spatial discretization. All
errors are computed at the final time t = 1. Convergence of full-discrete IFE solutions are
reported in the Fig. 6.We observe optimal convergence rates in all three temporal-discretizing
schemes are similar in this example.

In the next three examples, we test our EPPIFE schemes for Navier–Stokes moving
interface problems. Three typical types of interface movements: translation, stretch, and
deformation, are considered in Examples 6.4, 6.5, and 6.6, respectively. Figure7 illustrates
these interface movements in which the dashed lines represent initial interface state while the
solid lines represent the final interface state. The EPPIFE-BDF3 scheme is used in the fol-
lowing three examples. All experiments are carried out on fixed Cartesian triangular meshes
without re-meshing.
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Fig. 7 Interface Movements: translation (left), stretch (middle), deformation (right)

Fig. 8 BDF3-PPIFE error of translating circular interface t = 1 for Example 6.4

Example 6.4 (Unsteady problem with moving interface: translation) In this example, the
interface is set to be a rising circle along y axis. The exact solution is follows

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

(
(y − q)[(x − s)2 + (y − q)2 − r2]/ν+
−(x − s)[(x − s)2 + (y − q)2 − r2]/ν+

)
, x ∈ �+(t),(

(y − q)[(x − s)2 + (y − q)2 − r2]/ν−
−(x − s)[(x − s)2 + (y − q)2 − r2]/ν−

)
, x ∈ �−(t),

and

p(x, t) = 1

10
(x3 − y3)

where

q(t) = qat + qb, s(t) = sat + sb

with r2 = 0.3, qa = −0.25, qb = 0.5, sa = sb = 0. The viscosity coefficients are set to be
(ν+, ν−) = (10, 1).

Optimal convergence rates for velocity and pressure are observed in both L2 and H1

norms. The convergence plots are shown in Fig. 8. The velocity fields at times t = 0, 0.5,
and 1.0 are depicted in Fig. 9.

Example 6.5 (Unsteady problemwithmoving interface: Stretch) In this example, the interface
is set to be a circle centered in (0, 0) with varying radius. We set the radius r(t) of circle to
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Fig. 9 The velocity fields of translating circular interface when T = 0, 0.5, 1.0 for Example 6.4

Fig. 10 BDF3-PPIFE error of stretching circular interface for Example 6.5

be a periodic function of time t . The exact solution is set to be

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

(
y(x2 + y2 − r2)/ν+

−x(x2 + y2 − r2)/ν+
)

, x ∈ �+(t),(
y(x2 + y2 − r2)/ν−

−x(x2 + y2 − r2)/ν−
)

, x ∈ �−(t),

and

p(x, t) = 1

10
(x3 − y3),

where

r(t) = r0
√
s · sin(2π t) + q,

with r20 = 0.3, s = 0.238, q = 2. The viscosity coefficients are set to be (ν+, ν−) = (10, 1).

The convergence rates are optimal which can be seen in Fig. 10. We also plot the velocity
fields at times t = 0, 0.3, 0.8 in Fig. 11.

Example 6.6 (Unsteady problem with moving interface: Deformation) In this example, we
test the case of interface deformation. The initial state of the interface is an ellipse. As time
goes on, it becomes a circle and reaches equilibrium. The true solution of this example is set
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Fig. 11 The velocity fields of a stretching circular interface when t = 0, 0.3, 0.8 for Example 6.5

Fig. 12 BDF3-PPIFE error of deforming elliptical interface at t = 1 for Example 6.6

to be

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

(
k(t)y(x2 + ky2 − r2)/ν+
−x(x2 + ky2 − r2)/ν+

)
, x ∈ �+(t),(

k(t)y(x2 + ky2 − r2)/ν−
−x(x2 + ky2 − r2)/ν−

)
, x ∈ �−(t),

and

p(x, t) = 1

10
(x3 − y3)

where

k(t) = 1 − kbe
−ka t

with r2 = 0.3, ka = 4, kb = 0.41. The viscosity coefficients are set to be (ν+, ν−) = (10, 1).

The convergence plots are shown in Fig. 12, and the velocity fields at times T = 0, 0.3, 1.0
are shown in Fig. 13. Once again, we observe optimal convergence rates in this deformation
case.

Example 6.7 (Moving interface: Deformation of Flower-shape Interface) In this example,
we consider the relaxation of a flower-shape interface. The level-set function of the interface
is

φ(x, y, t) = (x2 + y2)[a + b(t) sin(c arctan(y/x))] − d, (6.1)

123



Journal of Scientific Computing            (2024) 98:19 Page 25 of 27    19 

Fig. 13 Velocity field of deforming elliptical interface when t = 0, 0.3, and 1.0 for Example 6.6

Fig. 14 The evolution of interface and the velocity field of deforming flower-shape interface when t = 0.05,
0.1, and 1.0 for Example 6.7 (Right three subfigures)

where a = 1.0, c = 6, d = 0.3164 are constants, and the deformation parameter b(t) =
0.6e−4t . We define �+(t) = {(x, y) ∈ � : φ(x, y, t) > 0} and �−(t) = {(x, y ∈ �) :
φ(x, y, t) < 0}.

In previous examples, we test our scheme on problems with the analytic expression of
interface available. We realize that this is relatively difficult in the real world scenarios. In
this example, we restrict ourselves with interface is implicitly defined by level set function φ

in (6.1). Moreover, we are only accessible to the function value of φ(x, y, t) on a set of grid
points, for example {(xi , y j ) : 0 ≤ i, j ≤ 100}×{t0, t1, ..., tn}, where xi = −1+ i/50, y j =
−1 + j/50.

To handle this case, for each tn fixed, we interpolate φ(xi , y j , tn) using piecewise linear
polynomials. This continuous level set function could be used to construct the immersed
P2-P1 spaces. For numerical quadratures on curved polygons, we employ the technique
introduced by [39].

When t = 0, the initial state of the interface is a flower, then it is relaxed to a circle as
b(t) decays exponentially to 0. See the left one in Fig. 14. It is hard to construct the exact
solution for this example, so we directly solve this problem with homogenous Dirichlet
boundary condition and initial conditions u0(x, y, t) = 0, p0(x, y, t) = (x3 − y3)/10. It
is also assumed that there exists an external force f(x, y, t) = 100(x2 + y2) in the system.
We test our method with BDF2 time discretization on this example up to t = 1.0 with
parameters with ν+ = 1000 and ν− = 1. The quiver plots of simulated velocity field at time
points 0.05, 0.1, 1.0 are shown in the Fig. 14, while the deformation of velocity field can be
observed with the evolution of interfaces.

7 Conclusion

In this paper, we develop a P2-P1 enhanced partially penalized immersed finite element
method to solve Navier–Stokes moving interface problems. We establish the unisolvency of

123



   19 Page 26 of 27 Journal of Scientific Computing            (2024) 98:19 

the P2-P1 vector-valued IFE functions and the proved the partition of unity. Both θ -scheme
and BDF schemes are utilized for the time discretization. The resulting nonlinear system is
handled by the Newton method. Numerical simulations are carried out for both static and
moving interface cases. Optimal convergence rates of our method are observed frommultiple
example with different viscosity jumps and various interface dynamics.
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