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Abstract

This paper introduces a high-order immersed finite element (IFE) method to solve two-
phase incompressible Navier—Stokes equations on interface-unfitted meshes. In spatial
discretization, we use the newly developed immersed P,-P; Taylor-Hood finite element.
The unisolvency of new IFE basis functions is theoretically established. We introduce an
enhanced partially penalized IFE method which includes the penalization on both interface
edges and the interface itself. Ghost penalties are also added for pressure robustness. In tem-
poral discretization, 8-schemes and backward differentiation formulas are adopted. Newton’s
method is used to handle the nonlinear advection. The proposed method completely circum-
vent re-meshing in tackling moving-interface problems. Thanks to the isomorphism of our
IFE spaces with the standard finite element spaces, the new method enables efficient updates
of global matrices, which significantly reduces the overall computational cost. Comprehen-
sive numerical experiments show that the proposed method is third-order convergent for
velocity and second-order for pressure in both stationary and moving interface cases.

Keywords Immersed finite element - Navier—Stokes equation - Interface problem - Moving
interface - Unfitted mesh

Mathematics Subject Classification 35R05 - 65N15 - 65N30

1 Introduction

Let Q@ C R? be an open bounded domain, which is separated into Q7 (¢) and Q7 (¢) by an
evolving interface I" (). Consider the following unsteady Navier—Stokes interface problem
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in deformation tensor formulation:

ou+@-Vyu—V-o(,p) =f, onQ x [0, L], (1.1a)
V-u=0, onQx|[0,L], (1.1b)

u=20, ono2 x|[0, L], (1.1c)

u(x,0) = ug, px,0) = pg, on Q. (1.1d)

Here, the unknown u and p represent the velocity and the pressure of an incompressible
fluid motion, respectively. f, ug, and py denote the given surface tension, initial velocity, and
the initial pressure of the fluid. The stress tensor o is defined by

o(u, p) =2ve(u) — pl, (1.2)

where I is the identity tensor, and €(u) = %(Vu + (Vu)T) denotes the strain tensor. The
fluid viscosity coefficient v(x, ) is assumed to be discontinuous across the interface I'(¢).
Without loss of generality, we assume that v is a piecewise-constant function as follows

vt x e QT (),

v, xeQ (). (1.3)

v(x,t) = {

We assume that the movement of the fluid interface I'(¢) is governed by a velocity field
v(x, t), which is either given or part of unknowns, described as follows

X v, xerw (1.4)
— =v(x, 1), X . .
dt
Across the interface I'(¢), the homogeneous fluid interface jump conditions are imposed
[ullr¢y = 0, onI'(z) x [0, L], (1.5a)
o, )l = 0. onT() x [0, L], (1.5b)

where the jump [l is defined as [vV]r) = (Vle+)r@) — (Vle-)r(), and n is the unit
normal vector pointing from Q™ to Q7.

The two-phase flow interface problems, such as the Navier—Stokes interface problem
(1.1), have wide applications in fluid mechanics and computational fluid dynamics, such as
dispersion of bubbles [7], oil slick transportation [37], blood flows [41], etc. For computational
simulations of these fluid flow interface problems, re-meshing and global interpolations
between meshes are inevitable for conventional finite element methods due to the large
deformation of the fluid interfaces. Therefore, numerical methods based on unfitted meshes
are particularly desirable for these simulations, such as immersed interface method (IIM)
[31, 32, 42], extended finite element method (XFEM) [10, 16, 38, 40], CutFEM [6, 8, 13, 15,
23], fictitious domain FEM [9, 14, 17], etc.

The immersed finite element method (IFEM) is a class of unfitted-mesh finite element
methods for solving interface problems. The key idea of IFEM is to locally modify approx-
imation functions to capture the non-smooth behavior of the solution at the interface. A
distinctive feature of IFEM from other unfitted finite element methods mentioned above is
that its approximating space is isomorphic to the standard finite element space on the same
mesh. Not only is the mesh independent of the interface, but also the number and the location
of degrees of freedom are intact. This distinguished feature enables a significant saving of
computational cost when applying IFEM for solving moving interface problems because
global interpolations between meshes are very efficient. The IFEM has been developed for
many PDE interface models including elliptic equations [11, 19, 21, 22, 34], linear elasticity
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equations [20, 35, 36], parabolic moving interface problems [18, 24, 33], hyperbolic moving
interface problems [4, 5], to name only a few.

Recently, IFEM has been extended for fluid flow interface problems governed by Stokes
equations. In [1], a Q1-Qp IFE space was constructed and was used in the interior penalty
discontinuous Galerkin formulation for Stokes interface problems. A class of low-order
nonconforming IFE spaces was recently introduced in [28]. In [26], a priori error estimation
for Crouzeix-Raviart IFE scheme was provided. A Q;-Qq immersed discontinuous Galerkin
scheme [2] and a mixed conforming-nonconforming IFEM [29, 30] have been presented
for Stokes moving interface problems. For the high-order approximation of Stokes interface
problems, we developed a high-order Taylor-Hood P,-P; IFE space for Stokes interface
problems [12].

For more general multiphase Navier—Stokes equations, a Crouzeix-Raviart nonconforming
IFEM was introduced in [44], in which the backward Euler method was used for temporal
discretization. Despite its simple construction and algorithm, this method is of low-order
accuracy (first-order in time and second-order in space). In this paper, we develop a high-
order IFEM for solving the Navier—Stokes moving interface problem. The proposed method
is third-order accurate in velocity and second-order accurate in pressure. Since the velocity
and stress interface jump conditions (1.5) are the same for the Navier—Stokes equations as
for Stokes equations [27], we use the Taylor-Hood P,-P; IFE spaces recently introduced
in [12]. Some important properties of these IFE spaces including the unisolvency and par-
tition of unity of IFE functions is proved in this paper. We introduce an enhanced partially
penalized immersed finite element (EPPIFE) scheme, in which penalty terms are added on
both interface edges and the interface itself. Penalization on the interface itself is critical
for high-order polynomial approximation [3, 12, 19]. In addition, ghost penalty terms for
both velocity and pressure are also added on interface edges and interface curves which yield
robust pressure approximation. We find that these new penalty terms are crucial in high-order
approximations for Navier—Stokes interface problems, which are carefully examined through
extensive numerical experiments.

For the time discretization, we adopt the 6-schemes and high-order Backward Differ-
entiation Formulas (BDF) methods. The Newton’s method is used to handle the nonlinear
advection terms. Due to the virtue of IFEM, re-meshing is not required throughout the whole
computational process. Thanks to the isomorphism of IFE space with the standard FE space,
the number and the location of degrees of freedom are independent of the interface. Only a
small portion of elements change the interface configuration in two consecutive time steps;
hence, only local modification from the previous global matrices is required instead of regen-
erating whole new matrices. This is a prominent feature for IFEM and enables efficient global
matrices assembly.

The rest of this paper is organized as follows. In Sect.2, we recall immersed P,-P;
finite element spaces. In Sect. 3, we analyze the unisolvency and partition of unity of the
immersed P,-P; finite element spaces. In Sect. 4, we introduce a semi-discrete scheme using
the enhanced partially-penalized IFE method. Newton’s method and full-discrete schemes
are presented in Sect.5. In Sect. 6, we provide some numerical experiments to test the con-
vergences and accuracies of our methods for both stationary and moving interface cases. A
brief summary is given in Sect.7.
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2 Immersed Finite Element Spaces

In this section, we introduce some preliminaries and notations, and then recall Taylor-Hood
P»-P1 IFE spaces developed in [12].

2.1 Notations and Preliminaries

From now on, we assume that the domain €2 is polygonal, and that 7j, is a shape regular
triangulation of the domain €2 with mesh size 4. Note that 7;, does not need to align with
the interface I'(#) at any time ¢. As a result, the mesh 7j, are divided into two subsets: the
set of interface elements 7}{(2) ={T € 7, | T NT'(t) # <} and the set of non-interface
elements 7" (t) = 7},\’2’; (¢). Although the background mesh 7, is time independent, 7," (t)
and 7}1’ () are time dependent due to the movement of the interface. For each interface element
T € 7;,’ (t), we denote the interface segment by I'r () = I'(¢) N T. Define ]-';; ) ={Cr ()|
T € 7}1’ (1)} to be the set of interface segments on the mesh 7y,.

Let &), be the collection of all edges of 7. Let “:/i; (t)={ec & | enl'(t) # T} be the set
of interface edges at time ¢, and &}/ (t) = Sh\éf}", (t) be the set of non-interface edges. Again,
5;; (t) and S,’Z (t) evolve with the moving interface. The collections of boundary edges and
interior edges are denoted by 5;: and &7, respectively. For each edge e € &, a unit normal
vector is designated by n,. Note that the direction of the normal vector of an interior edge
has no effect under our context. The direction of the normal vector n, for a boundary edge
e € E,ZI’ is defined to be outward of the domain 2. For an interface segment I'r € .7-',"1 (t), the
normal nr is assigned to point from Q7 (¢) to QT (¢).

We also define the jump operator [-] and the average operator {-} of a vector function w.
On an interior edge e € 5,‘1’ shared by two elements 7,1 and 7,5, we define

1
wl, =wlr, —wlz,,, (W}, = E(wm1 +wlT,). (2.1)

Here, the neighboring elements 7, | and 7, are assigned such that the normal vector n, points
from Te; to Tez. On an interface segment I'r € F; (¢), the jump and average operators are
defined as:

1
[wir, = wir- —wlr+, {wlp, = E(W|T+ +Wwlr-), (2.2)

where T+ = TN Q¥ (1) and T~ = T N Q7 (¢). On a boundary edge e € £ associated with
the element 7,, the jump and average are defined as:

(wle = {w}, = wle. (2.3)
We use standard Sobolev spaces notation in this paper. Let V be a normed vector space
equipped with norm || - ||y. Then we define time dependent Sobolev spaces as follows: for
l<p<oo
L
LP,L; V) = {v [0, L1+ V ‘ / lvC, DIy dt < oo} . (2.4)
0
The space HY(0, L:; V) is defined as follows

Hl(O,L;V):{v:[O,L]r—) 1%

veL*0,L; V)and 3,v € L*(©, L; V)} . (25
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The space H*(0, L; V) with k > 1 can be defined in a similar way. We also introduce the
mesh dependent space V,(¢):

Vi) = {(u, p) € [L2(Q)] : ulsq
= 0 and (u, p) satisfies the following conditions (A1) — (A2)}. (2.6)

(Al (u, p)lr e [HY(T)P,if T € T)(1); (w, p)lg= € [H'(TH)P, forall T € T} (1).
(A2) (u, p) is continuous on every non-interface edge e € &}/ (t).

To ensure the mesh sufficiently resolves the interface I'(¢), we assume that the triangulation
T;, satisfies the following hypotheses [3, 10, 12, 44]:

(H1) The interface I'(¢) can only intersect an element with two points, and these two points
must be on different edges.

(H2) The interface I'(t) is a piecewise C 2 function, and the mesh 7j, is formed such that on
every interface element 7 € 7;1’ (), the interface segment I'r is C 2,

2.2 Fictitious Elements

We use fictitious elements to construct local IFE functions [3, 12, 45]. Given atime t,let T =
AA1A2A3 € T, be an interface triangle with the homothetic center O. A fictitious element

of T, denoted by T*, is defined by T* = {X € R2 : 3Y € T such that OX = (1 + 1) OY)
where A is a scaling constant. We denote F% = I'(+) N T*. These definitions are illustrated
in Fig. 1 (Right), where A A} A% A% is the corresponding fictitious element of AA; A, A3, and

Iy = /575/, F% = D*E*. To this point, we need two more hypotheses under the context of
fictitious elements [19]:

(H3) Atany time, the interface can only intersect each interface element 7" and its fictitious
element T at two distinct points. These intersection points must locate on two different
edges of T and T?.

(H4) At any time ¢, there exists an integer N such that for each K € 7, the number of
elements in the set {T € ’Z;f(t) : K N T* # @} is bounded above by N.

2.3 Taylor-Hood IFE Spaces

We briefly recall the P,-P; vector-valued IFE spaces [12] for Stokes interface problems.
For a triangular element 7 € 7, with vertices A1, As, and A3, let A;,i = 1,2, 3 be the
barycentric coordinates. Define three midpoints by A4 = %(Al + Aj), As = %(Ag + Az),
Ag = %(A3 + Ayp). Lety, i =1,2,---, 6 be the quadratic Lagrange shape functions on T'.
Then we have 1//,‘ = (2)\,‘ - 1))\.1‘, fori = 1, 2, 3 and 1#4 = 4)\.1)»2, lﬂ5 = 4)»2)»3, W(, = 4)»3}\1.
The vector-valued 7,-P; shape functions {1//,-’7, i € Z}withZ = {1, 2, ..., 15} can be written
as

Vi 0
Yir=|0] 1<i<6, Y, r=|Vie| T<i=<I2,
0 0
0
vir=| 0 | B<i<1s
Ai—12
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4

Al A2

Fig.1 An typical interface element (Left) and a fictitious element (Right)

These shape functions {y; 7, i € Z} are used on non-interface elements 7' € 7, ().

Onaninterface element T € ’Z}l’ (t), we construct piecewise P-P; shape functions accord-
ing to the interface conditions (1.5). We define the nodes N; suchthat N; = A; for1 <i <6,
Niye = Ajfor1l <i <6,and N;;12 = A; for 1 <i < 3. Every interface element is divided
intoTH:=TNQT(¢)and T~ := T N Q™ (¢) by the interface, as illustrated in the left plot
of Fig. 1. The index set Z is splitintoZ" :={i € Z, N; e T"}andZ~ :={i € Z, N; € T }.
We define the piecewise 7P>-P; function space on 7 by:

P(T) = {(, p) : (W, p)lg+ € [P2(TT)1* x P (TF)and
u, p)lr- € P (TP x P (T7)}. (2.7)

For the convenience of construction, we introduce the following tensor-product space
S(T):

S(T) = [[Po(T)]* x Pi(T)] x [[PoT)]* x P1(T)]. 2.8)

It is obvious that S(T') is an isomorphism of P(T'). A set of basis functions {&; r}iez U
{n; 7}iez of S(T') can be written as follows

| (¥ir.0), ifi €T, _ (0.9, 7). ifi eTT,
Sir = { (o,lwi,T), ifiez-, "I (1/;,.,;, 0).ifieZ". @9

The following approximated interface conditions are used in the construction of IFE
function. As stated in the Sect.2.2, the interface conditions are imposed on the fictitious
interface F);. Two physical jump conditions (1.5) imply the continuity of velocity and viscous
stress tensor in normal direction:

[ullp, = o (v, @)l =0. (2.10)

Since the true solution u is divergence free, the finite element approximation of u is not
necessarily divergence free, but it is within each element. We also impose the continuity of
V - u across the interface:

[V -l =0. 2.11)
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As we use high-order approximation for the velocity, two physical jump conditions (1.5)
are insufficient to uniquely determine the IFE function; hence, we will need some additional
jump conditions. As in the Laplacian extended jump conditions for elliptic equations [3], we
use the following extended jump condition

[V -o(u, p)]]ré =0. (2.12)

Finally, when the surface tension is small, we impose the continuity of pressure across the
interface [25, 43]:

[Pl =0. (2.13)

Combining these conditions (2.10) - (2.13), we define the following least-squares functional
TG, : S(T) x S(T) — R to weakly enforce these approximating interface jump
conditions across the fictitious interface F%:

Ji((u, p), (v, 9)) = @o /F [ull [vlds + w1k /F [V -ull[V - vlds
T T
+wyh? / o (u, pnl o (v, g)nllds
rj

+ w3h* /F [V -0, p)IIV-ov, g)lds + wsh? /r% [pl gl ds.

(2.14)
where w; > 0,i =0, --- , 4 are the weights and the factors of 4 are used for scaling balance.
We construct the local IFE function ¢4 (in tensor form) as follows
brlve =) vikir+ ) cimir, (2.15)
i€l iel

where v; denotes the given function value at nodes N;. The coefficients c; are solved from
the following linear system

Ac = —By, (2.16)
where

A= (jk ("j,T! ni»T))i,jeI e R\I\X\II’ B= (j)L (gj’T’ ni’T))i,jeI c RIZIXIZI
(2.17)

It has been shown in [12] that ¢; obtained from (2.16) minimizes |¢ |7 with given values
of v;, where | - | 7 is the semi-norm induced by the bilinear form 7(:, -). This semi-norm
| - |7 is a measure of fitness of interface jump conditions.

To find piecewise IFE function, we map functions in pairing form in space S(7') into
piecewise function form in space P(7") by an isomorphic mapping Hr : S(T) — P(T):

¢r, onT™

+ A7) —
’HT(¢T,¢T) - {¢;’ onT™,

forall ¢7 = (¢, ¢7) € S(T). (2.18)

Finally, these piecewise IFE functions on the interface element 7' € ’Th’ can be written as:

bir =Hr(Prlec) (€T (2.19)
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With the preparation of local IFE shape functions ¢; 1, we construct the local IFE space
Sh,T(t) for T € Ty

Span{y; 7, i € T} if T € T, (1),

Snr(t) = .
! Span{gy; 7. i €T} if T € T (1),

(2.20)

Accordingly, the global IFE space Sy () is defined by

S,(t) = {(u, p) € [L2(52)]3 : (u, p) satisfies the following conditions (C1) — (C4)} .
(2.21)

(Cl) (u,p)lr eSpr@),forall T € Ty.

(C2) (u, p) is continuous on every non-interface edge e € &/ ().
(C3) uis continuous at all vertices and midpoints of T € 7j,.
(C4) pis continuous at all vertices of T € 7p,.

For more details of Taylor-Hood 7,-P; IFE spaces, we refer readers to [12].

3 Unisolvency of Immersed Finite Element Spaces

In this section, we discuss the unisolvency and partition of unity of Taylor-Hood IFE spaces.
LetT € 7Z(t) be an interface element. Let Vi = Span{§; y : i € Z} and V, = Span{y;  :
i € I} where &; ; and n; p are defined in (2.9). Clearly, S(T') can be decomposed to
S(T) = V1 @ V,. We denote the kernel of 7, by Iy = {¢p € S(T) : |p| 5, =0}

Theorem 3.1 (Uniqueness) Let T € 'Z;l’ (t) be an interface element. Assume that the interface
segment T, NT'(t) is a non-degenerate curve, i.e., not a straight line segment. Then each IFE
Sfunction ¢ is uniquely determined by given nodal values.

Proof 1t suffices to show that the coefficient matrix A defined in (2.16) is nonsingular. We
prove this result in two cases of interface curves.

Case 1 T, NT is anon-algebraic curve or an algebraic curve with order larger than two.

Suppose ((uy, p1), (w2, p2)) € K, N Vs, then,u; —up; = 0and py — pp =0on T, NT.
Since u; —uy € P> x P, and p; — p» € Py, they cannot vanish on an algebraic curve of
order larger than two or a non-algebraic curve. Thus, u; —u; = 0and p; — p» =0on Tj.
Therefore, u;, u, must vanish on all nodal points A; for 1 <i < 6, and p;, p> vanishes on
all A; for 1 <i < 3. This proves |- |7, is an inner product on V. Thus, the coefficient matrix
A is positive definite.

Case2 T, NI isan algebraic curve of order two.

Suppose ((uy, p1), (U2, p2)) € K, NVs. It remains valid that p; = p» =0dueto p; — p> €
‘P1. Since T) N T is an algebraic curve of order two, it can be written as L(x, y) = 0 where
L is an irreducible second-order polynomial. Since u;y —u, = 0 on 7, N I", we can express
u; —up = (k1 L, ko L), where k; and kj are constants. The fact ((uy, p1), (uz, p2)) € K,
implies [V -u]] = 0on 7, NI". That is k; Ly + k2L, = 0 on the curve T, N I'. Thus, the
vector (Ly, Ly) is orthogonal to the constant vector (ki, k») on the interface curve. Since L
is irreducible, we have k| = kp = 0, and therefore u; — up = 0 on 7. Thus, the coefficient
matrix A is positive definite. O
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Fig.2 Use the circle arc to approximate line

Remark 3.1 If T, NT'(¢) is a degenerate curve, i.e., a straight line segment, the existence of IFE
functions still holds [12]. However, the construction of IFE functions might not be unique.
In fact, we find that the coefficient matrix A can be singular under certain configuration
of interface location and viscosity coefficients. In particular, when the intersection points
are D = (0.5,0), E = (0.6403882032022076, 0.3596117967977924), and the viscosity
coefficients are v = 0.03835954587269348, v~ = 1 in the reference triangular element,
the null space of A has a dimension of one. In this case, local IFE functions can still be
constructed but they are not unique. Moreover, in this case, there exist non-zero functions
in the IFE space such that they vanish at all degrees of freedom and satisfy the interface
conditions (1.5) exactly.

Remark 3.2 In the case of the straight line interface with degenerate rank of coefficient matrix
A, we can use the pseudo inverse to uniquely solve the linear system (2.16). Another approach
is to use a sequence of curves to geometrically approximate of a straight line segment. For
example, we may construct a family of circles whose centers C; locates in the perpendicular
bisector of the line segment DE with the radius r = |C; D|. The curvature of these circles
can be controlled by its radius. As increasing the value of r, the arc DE will approach to the
line segment DE. See the illustration in Fig.2. Since the construction of IFE functions on

any arc DE is unique, the construction of IFE function on the limiting line segment is also
unique by letting the radius » — o0.

Remark 3.3 1In the linear interface case, it requires 16 equations to enforce all interface con-
ditions exactly (i.e. J = 0). However, there are only 15 degrees of freedom for P,-P;
elements, which results in an overdetermined linear system. Moreover, all the 16 conditions
can be linear independent. This means, in some cases, there exists no piecewise polyno-
mial functions exactly satisfying all interface conditions. For example, in Fig. 3, we plot an
IFE shape function for the velocity on the reference triangle cut by a straight line interface
[7 : 2x +y+27 — 20+/2 = 0. We can see that the two pieces are not continuous across the
straight line interface. More precisely, the least-squares functional 7 in this configuration
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0.8

1.0 0.0

Fig.3 An IFE shape function with the straight line interface 2x 4+ y 4+ 27 — 20/2 =0

returns to the value of 0.13821871726173554, which is nonzero. In other words, the conti-
nuity condition [u]lr, = 0 is not satisfied exactly. This phenomenon is further explained in
Numerical Example 6.1.

Remark 3.4 The least-squares construction can be extended to the construction of higher-
order Pi-Py_1 Taylor-Hood IFE spaces with k > 3. However, this requires the further
investigation on specifying of high-order extended interface jump conditions in addition to
(2.12).

Theorem 3.2 (Partition of Unity) Let T € ’J;l’ (t) be an interface element. Under the assump-
tions of Theorem 3.1, the IFE shape functions ¢; r satisfy the following partition of unity

property:
Y dir=1 3.1
i€l

Proof Let gy = ;.7 &; 7,50 H;lfﬁr € S(T). We then write ¢4 in the component form

¢ = (P11, 2.1, ¢3,7). By direct computation, ¢1,7(A;) = 1forl <i <6,¢7(A;) =1
for] <i <6,and ¢3 7(A;) = 1for 1 <i <3.Thisis to say v = 1. By the existence of the
IFE functions [12], there exists a solution ¢, such that

Vr =M 7. b7 =drh.e :Zgi,T+Zciﬂi,T- (3.2)
i€l i€l
We note that ¢ = 1 is a solution due to the partition of unity of standard finite element shape
functions ¥; . By the uniqueness result in Theorem 3.1, ¢ = 1 is the only solution. Thus
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1, onT. 3.3)

¢T_HT(zslT+zn, )

ieZ iel

4 Semi-Discrete Schemes

In this section, we develop a semi-discrete scheme of the Navier—Stokes interface problem
(1.1)—(1.5) using IFE spaces introduced above. We write the vector IFE space V(1) =
Wi (t) x Qn(t) and Sy, (1) = Uy (¢) x Pu(t). It is obvious that S, (1) C V(¢) at any time ¢.

Forafixed time 7, multiplying (1.1a) and (1.1b) by testfunctionsv € Wy, (t)andg € Q;(2),
respectively, and integrating over an element 7 € 7j,, we obtain

/8,u-vdx+/(u-V)u-vdx—/(V-o(u,p))-vdx—/ (V~u)qu:ff~vdx.
T T T T T
“4.1)

If T e 7, (¢) is a non-interface element, by the divergence theorem, we get
/ (V-o(u, p)) - vdx = / (o (u, p)n) - vds —/ o(u, p) : Vvdx. 4.2)
T aT T

IfT e 7}1’ (¢) is an interface element, we apply the divergence theorem separately on 7% and
sum up with respect to s = =+ to obtain

/ (V-o(u, p)) - vdx = / (o (u, p)n) - vds
T aT
+ / [(o(u, p)n) - v]ds —/ o(u, p):Vvdx (4.3)
Ir T
Note on an interface edge e € S}l (#) or an interface segment I'7, we have
/[[(a(u, p)n) -v]ds = f{a(u, pn}-[vlds, [ =eorlr, 4.4)
1 1

since [ fgll = [f1{g} + {f}[g]l and the fact [o (u, p)n]l; = 0. Then, summing up (4.2)
over all non-interface elements 7 € 7,"(¢), summing up (4.3) over all interface elements

T e 7}1‘ (1), and using the fact (4.4) we obtain

- Z/(V o(u, p))- VdX—Z/Zve(u) Vvdx + Z/pV vdx

TeTy TeTy TeTy,
— Z /{Zve(u)n}-[[v]]ds
0! ¢
4.5)
- Z / {2ve(u)n} - [v] ds
retion "7
s /{pn}uvnds+ 3 / (pm} [¥1 ds.
ecegin)”” TeT; (1) r
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Now we sum up (4.1) over all elements T € 7j, and use (4.5), then we obtain the weak
formulation of the Navier—Stokes interface problem: find (u, p) € H 10, L; Wy, (1)) x
L2(0, L; Qp(t)) such that

(0ru, v) + C(u, u,v) + K((u, p), (v, q)) = Le(v), V(v,q) € Wi(t) x Qu(?). (4.6)
In (4.6), the bilinear form K (-, -) : V;(t) x V;,(t) — R is defined as:
K((u, p), (v,q)) = A(u,v) + B(vV, p) + B(u, q) + Ju(u,v) — J,(p.q)  (47)
where A(-, -), B(-, ), C(-, -, -), L¢(-) are specified as follows:

A(a,v) = Z / 2ve(u) : €(v)dx — Z /{2ve(u)n}-[[v]]ds

TeT, ce€l)”*
— Z /{2ve(v)n} -allds
ees"(t) ¢
Z /[[u]] Ivlds+e Y / {2ve(wn} - [v] ds
- I'r
eeS’ (1) TeT, (1)

1

> {2ve(v)n} - [u] ds + Z—e 3 [ull - [v] ds, (4.8)

reTiny T retin "
B(v, p) = prv vdx + Z /{pn}[[v]]ds—el Z / {pn}[vlds,
TeT;, ece€i)”’ TeT} (1) '
4.9
C(w,u,v) = Z (wW-V)u - vdx, (4.10)
TeTy, r
Le(v) = / f - vdx. “4.11)
Q
The ghost penalty terms Jy (-, -) and J, (-, -) in (4.7) are defined as:
vy = > 0!
I<j<ku
of.j Z /{v} |[8,{u]|:l[8] ]lds-i—au] Z / {v} |[0] ]] ,
eesiin ¢ TeTi (1)
4.12)
Lp.)= Y. hf"!
0<jskp
j j
p/ Z /{ }|[0 p]l anq]lds—i-ap/ Z / {} anp]l I[B ]l
eES (1)
(4.13)
In the above formulas, €1, 00 a] 00 ao . ~and 0! . are penalty constants. ky and k)

are the order of polynomlals for u and p- For Pz Pi element pair, ky =2 and k), = 1.
Using the vector IFE space S (#) = Uy, () x P, (t) to approximate the broken Sobolev
space Vj, (1), we obtain the semi-discrete IFE scheme: find (u;,, py) € H Lo, L; U, (1)) x
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L2(0, L; Py(1)) such that

(0puy, vp) + C(up, uy, vy) + K (g, pr), (Vi, qn))
= Lt(va), Y (i, qn) € Up(t) x Pp(1), 4.14)

subjected to the initial conditions:

u,(-,0) = uwon, pr(,0) = pon 4.15)

where (g, pon) is an approximation of (ug, po) in Sy (€2), such as the Lagrange interpolation
[12].

The proposed method (4.14)—(4.15) is an enhanced partially penalized immersed finite
element (EPPIFE) method. Comparing to classical PPIFE method [34], additional penalty
terms are added on interface segments I'r in (4.8) and (4.9), aiming to penalize the discon-
tinuities of solution on the edges and interface introduced by our high order IFE spaces. In
addition, ghost penalties terms (4.12)—(4.13) are used to improve the stability of the scheme
especially for pressure terms. The effect of ghost penalties has been explored for Stokes
interface problems [12]. In Sect. 6, we further discuss the necessity of these penalty terms
for Navier—Stokes interface problems.

5 Newton’s Method and Full-Discrete Schemes

In this section, we first present the Newton’s method to handle the nonlinear advection term
C(uy, up, vp). Then we introduce several temporal discrete schemes of (4.14).

5.1 Newton'’s Method

For the convenience of the notation, we use the steady-state Navier—Stokes interface problem
to derive Newton’s method. Numerical examples for this steady-state case are also provided
in Sect. 6. To this end, we write the semi-discrete system (4.14) in the following operator
form: find (uy, pp) as the root of the following nonlinear operator equation:

G(up, pp) =0 (5.1
where G : S;(t) — S} (t) is the mapping S, (¢) to its dual space defined by
[G(u, p)](v,q) = C(u,u,v) + K ((u, p), (v,q)) — Lt (V) .
Note that 0 in (5.1) denotes the zero operator. The Newton iteration can be written as: given
(u(l_l), p(]_l)), seek for (u(l), p(l)) in
@®, p0y = @Y, pt=Dy _ [G/(u(l_l), p<l—1>)]’l (G(u”—”, pa—l))) (5.2)
where G'(u/=D, p@=D) (hy, 1)) € S} (1) is the Gateaux derivative of G at (=1, p@=1)
in the direction of (hy, hp), i.e.,

GV + ehy, p=V +ehp) — Gl=D, pt=b)
&

-1 -1 :
G'@h, p D) (b, 1) = lim

= K ((ha, 1), (v, @) + € (ha, w0, v) + € (w0, by, v).
(5.3)
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The Newton iteration (5.2) can be written as:
G' @D, pt=n) (ua), p(l)) = G'@lD, pt-D) (uu—l)’ p<1—1)) -G (uu—l), pu—l)).
(54)

Substituting (5.3) in (5.4) with (hy, hp) = D, pD) and (hy, h,) = @D, pl=D),
respectively, we have the following iteration process: given (u’=1, pU=1D) compute
@®, p®)in

(-1 -1y l
cay ul ™ v+ ey ul v + K (@ o), v an)
- -1
= C(uy ™" w7 i) + Le (i) (5.5)
Once (u?, p®@yand ¢V, p¢=D) are sufficiently close, we recognize it as the solution of

Navier—Stokes interface problem.

5.2 6-Schemes

For temporal discretization, we partition the time domain [0, L] uniformly as follows
0=t"<t'<..<tN=L t=1"-1"" n=12_.N. (5.6)
Denote u; = uy(x, ¢") and define

w2 W —up W = !
T .

™ (i wp, vi) = 0C (W wi ) + (1= 0)C (uf, uh vi)

where 8 € (0, 1). The 6-schemes of the Navier—Stokes interface problem is written as: Find
(u}!, p}) € Sy (t") such that

(™7 v ) + € wnwa i) + K (@ pi ), Vs an)) = Lywss () (5.8)

for all (v, gn) € Sp(¢"). We expand (5.8) and use Newton’s Method (5.5) to linearize it at
each time step:

<u2+1 )+10 |:C( n+1 uz+l h) +K((lln+l,ph+ ) (Vh (Jh)>]
= TLguro (Vi) + (u, vi) — (1 = ) [C (w), wt, vi) + K (W), pj), (Vi gn))]. (5.9)
We denote the related matrices and vectors as follows
(Mn)ij = ( ﬁ,]’, ﬁ,)
Koy = A (90 00,) + B (04,95, ) + B (40, 95.)
+ Ju( u ﬁz) —Jp ( INT I;,i)
(Fat0)i = 0Lgna(dy ;) + (1 —0)Len (@, )
(KND);j = C(¢y 0D ¢s )+ C™ D ¢r i)

(FNf,l))i — C(un,(l) un,(l) ¢n )
’ 4 ll,l

(FN,); = CQu",u", ¢! )
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where, ¢y, ; and ¢ ; represent velocity and pressure components of the global IFE basis

p,l
function ¢; at time level ", and (-, -) represents standard L? inner product. At each time
level, Newton’s method is used to find the solution U, with initial value U,(zo+)1 = U,.

The fully-discrete 6-scheme with Newton’s iteration can be written in the matrix form as
follows: compute Uffil, l=1,2,...,Lin
-1 I
(M1 + 76 (KNP + Ko ) | UL,

= tFup9 + M, — t(1 — 0)K,] U, — t(1 — §)FN, + t6FN! ).

(5.10)

Once ||UfllJ)rl - Uff_:ll) || < tol, a prescribed tolerance, we set U, | = Ug}rl. The complete
procedure is summarized in Algorithm 1. Note that when 6 = 1, this scheme is called

Backward Euler method. When 6 = 1/2, this method is called Crank-Nicolson method.

Algorithm 1: 6-scheme for Navier-Stokes interface problem

Result: Solve Uy, Uy, ..., Uy.
1 Compute Up, Ko, Mg, Fo, FN( from initial condition;
2forn=0,1,2,..., N —1do
3 Update Ky 41, Myt 1, Fy 15
4 Fn+9 <~ ‘9Fn+1 + (= 0)Fy;
5
6
7

v Uyl < 0;
while U/ —U'~!|| > rol or 1 < L do

l<—1+1;
8 Compute KNS;II), F N}Sl;]l);
AD <M 6 (KN'T + Kpir);
o nl < Matl +T n+1 +Knt1 )
10 b < tFypp + (M, — (1 — O)K,) Uy — (1 — O)FN, + r0FN'
O 1O @ .
11 Solve:AnJrlUn+1 _an,
12 end
U o .
13 n+l < Uyhyps
14 Compute FN,, 1 1;

15 end

Remark 5.1 This algorithm is set under general assumption, i.e. the moving interface case.
For a fixed interface case, there is no need to repeatedly compute K, | and M, in the step
line 3 since these two matrices are independent with 7.

Remark 5.2 We could slightly modify the above algorithm to save the computational cost
when certain 0 value is taken. For example, when 0 = 1, we do not need to compute FN,,.

Remark 5.3 One apparent advantage of unfitted-mesh methods is that there is no need to
regenerate mesh for a new interface location when assembling global matrices and vectors
(line 3 of Algorithm 1). Moreover, with careful coding, one could further reduce the compu-
tational cost since it is unnecessary to re-assemble matrices K41 and M,,4 from scratch.
In fact, only O(h~!) elements need to be updated when moving from time step #, to 41,
so that we only need to update those local matrices and substitute them in K, and M, 41,
compared with O(h~2) elements computation under body-fitted mesh methods. This process

@ Springer



19  Page 16 of 27 Journal of Scientific Computing (2024) 98:19

is written in Algorithm 2. Note that in real computation, we have K,, = A, + P, where A,
is non-penalized stiff matrix, P, is the penalization matrix. It is easy to see from 7, to 41,
we need only to update interface elements at two time steps.

Algorithm 2: Fast Updating of K1 and M,
Result: K, and M, .
1id < (T} atty} U{T) atty g );
2 for element in id do
3 Assemble Kn and I\N/In for local DOF of element under basis function at #,;
4 Assemble X,IH and M,,+1 for local DOF of element under basis function at #,, 41 ;

5 end

6 Compute Penalization Matrix Py, 1 at £, 1;
7 Kyl < Ay — A:,‘ +A’L+1 + Py

8 Mpy1 < Mp — My +Mpy1;

5.3 Backward Differentiation Formulas

Backward Differentiation Formulas (BDF) can also be used for temporal discretization of
NS equation. In particular, the 2-step scheme BDF2 is
3Vn+l — 4y Vn—]
Dyv" = + . (5.11)
2t
Approximating the derivative of d,u by Dyu, the BDF2 scheme is written as: for n =
1,2,..., N —1,for VY (v, qn) € Sp(t),

(D2u", i) + €™ s wi i) + K (@ g, ) = Ly )+ (5.12)

We linearize this system using Newton’s method at each time step n as above, then we can
write the full-discrete scheme in the matrix form: find Ul(fJ)r | in

[3Ma 1 + 27 (KNUL + Ko ) [ UL,
= 2tF, 41 +4M,U, — M, U,_; +2cFN{ ). (5.13)

Whenn = 0, we can use the Backward Euler method to compute Uj . Since the local truncation
error is O(t?), it provides sufficiently accurate initial approximations to ensure the global
second-order convergence in time. The complete procedure is written in Algorithm 3.
For higher-order approximation in time, we can use the following 3-step scheme BDF3:
11y — 18v" 4 9y =1 — oy =2
D3v" = 5 . (5.14)
T

We approximate derivative of d;u by D3u, then the BDF3 scheme can be written as

(1M1 + 67 (RNUZ + Ko ) UL,
=6tF, 4 + 18M,, U, — M, U, +2M,,2U, > + 6TFN:LI-;11)' (.15
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Algorithm 3: BDF2 scheme for Navier-Stokes interface problem
Result: Solve Uy, Uy, ..., Uy.

1 Compute Ug, Ko, My, Fo, FN( from initial condition;

2 Compute Uy, My, from last step using Algorithm 1 with® =0.50r 1.0and N = 1;

3forn=1,2,.... N—1do

4 | Update Ky 1, My 1, Fppp 1

s | UO Ui <o0;

6 | while |U' — U~ > rolori < Ldo

7 < I1+1;
8 Compute KNS_:II ), FN,(II_:I1 );
1 -1
9 AL < 3My +2r (KN;_H) + K,M);
10 b | < 20F, 41 +4MuUy — M, U,y +20FNY D
O 1O _ O .
u Solve A, 1 U, L1 =b, 415
12 end
o .
13 U,+1 <—U"_H,

14 end

To start the iteration, we use Crank-Nicolson method to find U; and U,. The Crank-Nicolson
method has a local truncation error of order O(z3) which provides sufficient accurate ini-
tial approximations to ensure the overall third-order convergence. This whole procedure is
summerized in Algorithm 4.

Algorithm 4: BDF3 scheme for Navier-Stokes interface problem
Result: We would like to solve Uy, Uy, ..., Uy.
1 Compute Uy, Ko, My, Fo, FN( from initial condition;
2 Compute Uy, Ky, My, Fi, FN| and Uy, M, from last step using Algorithm 1 with & = 0.5and N = 2;
3forn=2,...,N—1do
4 Update Ky 41, Myt 1, 15
s | UO Uil <o
6 | while/ ==0or |U' —U'~!|| > toland | < L do

7 <~ [+1;
8 Compute KNS_;IU, FN,(ql_:ll);
1 -1
9 AD < 1M, + 67 (KN’(1+1)+K,,+1);

b« 61F,4 1 + 18M, U, —9M,,_1U,_; +2M,_,U,_» + 6tFN' "D,

n+1 n+l1 >
@) 1O @ .
1 Solve An+1Un+1 = bn+] H
12 end
(O
13 Uyt < Un+l’

14 end

6 Numerical Examples

In this section, we report the performance of the proposed IFE schemes. All numerical
experiments are carried out on the rectangular domain € = [—1, 1]? and the time interval
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[0, 1]. We use Cartesian triangular meshes which are obtained by first partitioning €2 into
N x N uniform rectangles, and then cut each rectangle into two triangles by the diagonal
connecting the upper left and lower right vertices. The mesh size h = 2/N. The parameters
in computing the least-squares IFE basis functions (2.14) are wy = max(v™, v7), w; = 1,
@y =max(vT, v7), w3 = 1, ws = 100max(vT, v™). The fictitious element parameter is set
to be A = 1.0, and the threshold of Newton method is tol = 1073.

In the first experiment, we consider a steady-state Navier—Stokes interface equations with
a straight line interface. We would like to see if the new EPPIFE scheme can recover the
exact solution if it is a piecewise quadratic polynomial in velocity and piecewise linear in
pressure.

Example 6.1 (Steady problem with a straight line interface) In this example, we consider a
straight line interface I'(x) : 2x + y — ¢ = 0 which separates the domain €2 into two sub-
domains QT ={(x,y) € Q:2x+y—c>0}and Q™ = {(x,y) € Q:2x +y — ¢ < 0}.
We choose ¢ = +/2 and the viscosity coefficient (v, v™) = (100, 1). The exact solution of
this problem is

Qx+y—c)?/2vh)
B <—(2x—|—y—c)2/v+>’xEQ+
M= P x ty - 02/@v) o
—Qity—ePpm ) XET

and
pXx) =x—y.

One can verify that the interface jump conditions (1.5) are satisfied. Note that the exact
solution (u, p) € S;(£2); hence, we expect our EPPIFE method recover the exact solution.
For comparison, we also solve this problem using “non-penalized" and “reduced-penalized"
IFE schemes. Table 1 reports numerical results using the classical IFE scheme in which all
consistency terms and penalty terms excluded. Table 2 contains the classical PPIFE solution
with only penalization on interface edges, but not on the interface segment or ghost penalty,
ie., €y, oel, ol?’j, al}’j, quj, o;‘j are taken to be 0. The full EPPIFE scheme (4.7) with ghost
penalty is used to generate Table 3. We can see that errors in Table 3 are apparently much less
than Tables 1 and 2. In fact, only round-off errors are observed when using enhanced PPIFE
scheme; hence, the enhanced PPIFE scheme recovers the exact solution if the solution is in
the IFE space. Neither the “reduced" PPIFE scheme nor the classical “non-penalized" IFE
scheme can recover the true solution, as indicated in Table 3 and Table 1. The accuracy of
the PPIFE solution is still better than that of classical IFE solutions, and this indicates the
significance of penalization in IFE scheme. However, for high-order approximations (77, for
velocity), penalization over the interface curve itself is also necessary. We note that for even
for straightline interface, the penalty on interface itself is necessary, since the construction
of IFE spaces using least-squares does not guarantee pointwise continuity of the interface
conditions, as stated in Remark 3.3.

Example 6.2 (Steady problem with a curved interface) In this example, we test our enhanced
PPIFE method on a curved interface. This example was also used in [44]. The domain €2 is
split into Q1 and Q~ by a circular interface I' = {(x, y) €  : x> + y? — r> = 0} such that
Qt ={(x,y) eQ :xz—i-yz—r2 > 0}and Q7 = {(x, y) € Q:x2+y2—r2 < 0}, where
r = +/0.3. The viscosity coefficient is chosen as (v, v™) = (10, 1). The exact solutions are
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Table 1 Classical “non-penalized” IFE solution of a line interface in Example 6.1

A N lup —ubll,2 order lu? —u?|| ;2 order lpn = pllij2 order
1.0 10 1.06 x 1072 6.20 x 1073 5.80 x 107!
20 8.70 x 1073 0.28 527 x 1073 0.24 1.24 x 100 —~1.10
40 2.69 x 1073 1.69 1.74 x 1073 1.60 3.16 x 107! 1.97
N Iu}l - u1|H1 order |u% - L12|H] order lph — Pl order
10 1.14 x 10~! 4.95 x 1072 1.72 x 10!
20 1.34 x 107! —0.23 8.73 x 1072 —0.82 7.39 x 10! —2.10
40 4.85x 1072 1.47 5.58 x 1072 0.65 3.49 x 10! 1.08
Table 2 Classical PPIFE solution of a line interface in Example 6.1
A N llup —ubll 2 order lu? = u?| ;2 order llpn = pll;2 order
1.0 10 1.59 x 1073 1.07 x 1073 1.33 x 107!
20 5.87 x 1074 1.44 3.95 x 1074 1.43 3.99 x 1072 1.73
40 1.41 x 107% 2.06 9.46 x 1075 2.06 1.82 x 1072 1.14
N |u}ll — ul|H1 order |u% — u2|H1 order Iph — Pl order
10 1.23 x 1072 8.12 x 1073 3.55 x 100
20 7.65 x 1073 0.68 5.75 x 1073 0.50 1.66 x 109 1.10
40 4.46 x 1073 0.78 3.75 x 1073 0.62 1.63 x 109 0.02
Table 3 EPPIFE solution of a line interface in Example 6.1
A N llup — w2 order lu? —u?| )2 order Ilpn — pll;2 order
1.0 10 2.64 x 10713 427 x 10713 1.77 x 10710
20 423 x 10713 - 8.44 x 10713 1.10 x 1071 -
40 1.93 x 10712 - 3.87 x 10712 5.40 x 10712 -
N Iu}q —ul [t order \uﬁ — ”2‘H1 order Iph — plyt order
10 6.35 x 10712 572 x 10712 4.66 x 1079
20 1.29 x 10712 - 1.46 x 10~12 4.78 x 10~10 -
40 2.03 x 10712 - 2.66 x 10712 4.69 x 10710 -
chosen as

Y2 + 32 =) /vF
(—x(x2 £y oyt ) X

u(x) = 2,2 2y,
YTy =r9)/v xeo
x4 y? =rA)v7 )7 ’
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Fig.5 The velocity fields of line and circular interface in Examples 6.1 and 6.2

and
POO = (53 — 3.
10

The convergence results are presented in Fig. 4. The dash lines are reference line indicating
the expected orders of convergence. These results indicate that our enhanced PPIFE scheme
for steady-state Navier—Stokes interface problem has optimal convergence rates, i.e.,

ey, —u'll 2 + llujy = w?ll 2 + hllpn = pll2 & O,
and
luj, = g+ lujy = |y + Blpn = pln ~ O(h?).

Illustration of the velocity fields for Examples 6.1 and 6.2 are depicted in Fig. 5.

Example 6.3 (Unsteady problem with a stationary curved interface) In this example, we
consider an unsteady Navier—Stokes interface problem with a stationary circular interface.
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Fig. 6 Convergence of the enhanced PPIFE solutions in L2 norm (top) and H I horm (bottom) at t = 1 of a
circular interface in Example 6.3

The exact solutions are given as

Y2 4y = r?)sin() /v ot
(—)c()c2 +y2 =12 sin(t)/v"') s

nx, 1) = y(x? 4+ y? = r?)sin(t) /v~ o
(—x(x2 +y2 = r?)sin(t) /v~ ) PXES

and
p(x, 1) = Lo y?)sin(r)
’ 10 ’

We apply three full-discrete IFE scheme: Crank-Nicolson, BDF2, BDF3. For second-order
time discrete schemes, Crank-Nicolson and BDF2, we set 7 = O(h3/?). More precisely, we
divide the time interval [0, 1] into M = [1 /h3/ 2'| subintervals, and set T = 1/M in our
computation. For the third-order BDF3 scheme, we set t = h. This is to ensure the error
in the temporal discretization is compatible with the error in the spatial discretization. All
errors are computed at the final time ¢+ = 1. Convergence of full-discrete IFE solutions are
reported in the Fig. 6. We observe optimal convergence rates in all three temporal-discretizing
schemes are similar in this example.

In the next three examples, we test our EPPIFE schemes for Navier-Stokes moving
interface problems. Three typical types of interface movements: translation, stretch, and
deformation, are considered in Examples 6.4, 6.5, and 6.6, respectively. Figure 7 illustrates
these interface movements in which the dashed lines represent initial interface state while the
solid lines represent the final interface state. The EPPIFE-BDF3 scheme is used in the fol-
lowing three examples. All experiments are carried out on fixed Cartesian triangular meshes
without re-meshing.
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Fig.7 Interface Movements: translation (left), stretch (middle), deformation (right)

107! E T T ————T—T— 10! £ T T ——r—r1—1—
F —8- U] —— U2 —— P [ F —8—- Ul —— Uy —— P |
oz b --- Ch®--- Ch3--- Ch? || oo L --- Ch?--- Ch2---Ch ||
1072 . E
o . E
2 = .
= —
M w04 [£a |
o~ — 1
= = ]
10~ = el
10-6 107t B “===-_’]
107 1 1 1 1 1 1 1 10-° L 1 1 1 1 1 1 1
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
N N

Fig. 8 BDF3-PPIFE error of translating circular interface ¢+ = 1 for Example 6.4

Example 6.4 (Unsteady problem with moving interface: translation) In this example, the
interface is set to be a rising circle along y axis. The exact solution is follows

0=l =92+ (=) =] v* +

u(x, 1) = (—(x =52+ (=)=t ) *E Qt (1),
U 0-ole = =2 =T o
—( =9l =9’ + (v —q)* =r*/v" )’ :

and
P ) = (= )
’ 10
where
q(t) =qat +qp, $(@) = sqt +5p

with 72 = 0.3, qa = —0.25, g = 0.5, s, = sp = 0. The viscosity coefficients are set to be
(ot v7) =10,1).

Optimal convergence rates for velocity and pressure are observed in both L? and H'
norms. The convergence plots are shown in Fig. 8. The velocity fields at times ¢t = 0, 0.5,
and 1.0 are depicted in Fig.9.

Example 6.5 (Unsteady problem with moving interface: Stretch) In this example, the interface
is set to be a circle centered in (0, 0) with varying radius. We set the radius r(¢) of circle to
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Fig. 10 BDF3-PPIFE error of stretching circular interface for Example 6.5

be a periodic function of time 7. The exact solution is set to be

yx24+y2 —rH vt
—x(@? +y? =)/t

> , X € QT(1),

ux,r) = _
( ) y(x2 + y2 _ r2)/v ‘e Q_(t)
x4 y* =)y )’ ’
and
O P
10
where

r(t) = roy/s - sin(@r) +¢,

with rg = 0.3, s = 0.238, g = 2. The viscosity coefficients are set to be (v, v™) = (10, 1).

The convergence rates are optimal which can be seen in Fig. 10. We also plot the velocity
fields at times t = 0, 0.3, 0.8 in Fig. 11.

Example 6.6 (Unsteady problem with moving interface: Deformation) In this example, we
test the case of interface deformation. The initial state of the interface is an ellipse. As time
goes on, it becomes a circle and reaches equilibrium. The true solution of this example is set
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Fig. 11 The velocity fields of a stretching circular interface when t = 0, 0.3, 0.8 for Example 6.5
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Fig. 12 BDF3-PPIFE error of deforming elliptical interface at = 1 for Example 6.6

to be
X 2 k 2 _ .2 +
(05 s
D=0 ky (4 ky? — ) Q= (1)
—x(24+ky? =y )7 *e 7
and
1
p(x, 1) = TO(XS -
where

k() = 1 — kpe k!
withr? = 0.3,k, = 4, k, = 0.41. The viscosity coefficients are set tobe (v, v7) = (10, 1).

The convergence plots are shown in Fig. 12, and the velocity fields attimes 7 = 0, 0.3, 1.0
are shown in Fig. 13. Once again, we observe optimal convergence rates in this deformation
case.

Example 6.7 (Moving interface: Deformation of Flower-shape Interface) In this example,
we consider the relaxation of a flower-shape interface. The level-set function of the interface
is

G (x, y, 1) = (x> + yH)[a + b(1) sin(c arctan(y /x))] — d, (6.1)
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Fig. 14 The evolution of interface and the velocity field of deforming flower-shape interface when r = 0.05,
0.1, and 1.0 for Example 6.7 (Right three subfigures)

where a = 1.0,c = 6,d = 0.3164 are constants, and the deformation parameter b(t) =
0.6e~#. We define Qt(t) = {(x,y) € Q: d(x,y,1) > 0} and Q= () = {(x,y € Q) :
¢(x,y,t) <0}.

In previous examples, we test our scheme on problems with the analytic expression of
interface available. We realize that this is relatively difficult in the real world scenarios. In
this example, we restrict ourselves with interface is implicitly defined by level set function ¢
in (6.1). Moreover, we are only accessible to the function value of ¢ (x, y, ¢) on a set of grid
points, for example {(x;, y;) : 0 < i, j < 100} x {19, t1, ..., t,}, where x; = —1+i/50, y; =
-1+ j/50.

To handle this case, for each #, fixed, we interpolate ¢ (x;, y;, t;) using piecewise linear
polynomials. This continuous level set function could be used to construct the immersed
P>-P; spaces. For numerical quadratures on curved polygons, we employ the technique
introduced by [39].

When ¢ = 0, the initial state of the interface is a flower, then it is relaxed to a circle as
b(t) decays exponentially to 0. See the left one in Fig. 14. It is hard to construct the exact
solution for this example, so we directly solve this problem with homogenous Dirichlet
boundary condition and initial conditions ug(x, y, 1) = 0, po(x, y,t) = 3 = y3)/10. It
is also assumed that there exists an external force f(x, y, 1) = 100(x? + y?) in the system.
We test our method with BDF2 time discretization on this example up to t = 1.0 with
parameters with v = 1000 and v~ = 1. The quiver plots of simulated velocity field at time
points 0.05, 0.1, 1.0 are shown in the Fig. 14, while the deformation of velocity field can be
observed with the evolution of interfaces.

7 Conclusion

In this paper, we develop a P»-P; enhanced partially penalized immersed finite element
method to solve Navier—Stokes moving interface problems. We establish the unisolvency of
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the P,-P; vector-valued IFE functions and the proved the partition of unity. Both 8-scheme
and BDF schemes are utilized for the time discretization. The resulting nonlinear system is
handled by the Newton method. Numerical simulations are carried out for both static and
moving interface cases. Optimal convergence rates of our method are observed from multiple
example with different viscosity jumps and various interface dynamics.
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