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We will utilize the numerical time-stabilization routine presented in [10], but with an important difference. The method

of [10] may be expressed as follows: the previous method is altered by adding and subtracting a simple constant-coefficient

linear operator in the definitions of L and N . The additional terms are controlled by the parameters C1 and C2:

L ÞÑ L` C1∇
2 ´ C2∇

4,

N ÞÑ N ´ C1∇
2 ` C2∇

4,
(9)

which read in Fourier space

K pψ ÞÑ rK pψ “
`
K ´ C1k

2 ´ C2k
4
˘ pψ,

zN rψs ÞÑ zN rψs `
`
C1k

2 ` C2k
4
˘ pψ.

(10)

We show in the following that the parameters can be tuned to achieve an improved numerical accuracy over the base case

C1 “ C2 “ 0. In particular, we demonstrate that the best performances are here obtained for negative values.

In [10], positive values for C1, C2 were introduced in order to stabilize an underlying time stepping scheme by “slowing

down" the dynamics of the evolution equation and therefore allowing for larger time-step sizes. However, large time step sizes

can slow down the underlying dynamics intrinsically. As a consequence, one has to accept a lower accuracy of the resulting

numerical solution [10]. By allowing negative values for C1, C2, as we do in this study, we slightly accelerate the computed

dynamics of the evolution equation and therefore compensate for the aforementioned slow-down effects. As a result, we obtain

a better numerical accuracy with respect to reference solutions.

For every time integration scheme, we determine optimal C1, C2 by minimizing the difference of the error (least square of

the difference) in the free energy decay with respect to a high-accuracy numerical reference solution and denote the resulting

time stepping schemes reported in (6), (7), and (8) by C-IMEX, C-ETD1, and C-ETD2RK, respectively.

2 Numerical parameter study

A convergence study of the considered numerical methods is reported in Figure 1, for a specific set of model parameters leading

to the growth of a crystal in a domain Ω “ r´200, 200s2 (initial condition as in Figure 2 (a)). The numerical simulations are

performed on an uniform grid with an element size of ∆x “ ∆y “ 0.78125 and for time steps ∆t P r10´2, 5s. Figure 1 shows

the residual of ψ, Rψ , evaluated as the discrete L2 distance from a numerical reference solution for different ∆t. The baseline

schemes IMEX, ETD1 and ETD2RK (C1 “ C2 “ 0) and the corresponding “optimized" schemes via the splitting (10),

C-IMEX, C-ETD1, and C-ETD2RK are compared, with a reference solution corresponding to the C-ETD2RK scheme with

∆t “ 0.01. As expected, the (C-)IMEX and (C-)ETD1 schemes converge linearly, and the (C-)ETD2RK scheme converges

quadratically for a decreasing time step size ∆t. For a fixed ∆t, the C-IMEX and C-ETD1 schemes give two orders of

magnitude smaller errors than the IMEX and ETD1 schemes, respectively, whereas the C-ETD2RK scheme gives a half order

of magnitude smaller error than the ETD2RK scheme. By fixing an accuracy instead, the C-IMEX and C-ETD1 scheme allow

for two orders of magnitude larger timesteps than the IMEX and ETD1 scheme, respectively, whereas the C-ETD2RK scheme

allows for two times larger time stepsize than the ETD2RK scheme. Note, that the (C)-IMEX and (C)-ETD1 integration

schemes show similar computational costs for a time step update. Due to an additional intermediate step, the time step updates

for the method (C)-ETD2RK integration schemes are twice as expensive as the (C)-IMEX or (C)-ETD1 approaches.

3 Extension to an explicit temperature coupling

So far, a basic formulation of the PFC model has been considered. However, many extensions have been proposed involving

coupling of equation (2) with additional equations. For instance, in the context of crystal growth during solidification, an

extension of the classical PFC model (1) including heat transfer through a temperature field has been proposed in [4, 11].

Therein, the (dimensionless) Helmholtz free energy functional reads

F rψ, T s :“ F rψs ´

ż

Ω

ϑlnpT q `
1

T
γpψ ` 1qdr, (11)

where T pr, tq is the dimensionless temperature with T “ 1 at the melting point, and ϑ, γ ą 0 are additional parameters. Such

energy functional is proposed to obtain a linear dependence of the internal energy on temperature and density. As a result ϑ is

related to the latent heat, whereas γ is related to the specific heat capacity [11]. The dynamics are then given by the coupled

evolution of T and ψ, reading

ϑBtT ´ γBtψ “ M∇
2T,

Btψ “ ∇
2
δF rψ, T s

δψ
,

(12)
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