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Improved time integration for phase-field crystal models of solidification
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We optimize a numerical time-stabilization routine for a class of phase-field crystal (PFC) models of solidification. By
numerical experiments, we demonstrate that our simple approach can improve the accuracy of underlying time integration
schemes by a few orders of magnitude. We investigate different time integration schemes. Moreover, as a prototypical
example for applications, we extend our numerical approach to a PFC model of solidification with an explicit temperature
coupling.
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1 Introduction

The so-called phase-field crystal (PFC) model [1-3] is a prominent framework for describing crystal structures at large (diffu-
sive) timescales through a continuous, periodic order parameter representing the atomic density. The PFC model is based on
a Swift-Hohenberg-like free energy functional [1-3], which can be written as

f A ¢_4 + 2 (=2VeP + (v3)°) dr. (1)

The scalar order parameter ¢(r, t)l is related to the atomic number density, and 2 € R™ (n = 2 in this work). A set of
parameters A, x > 0 characterizes the phase space and material properties. A plays the role of the quenching depth, while
is a constant that scales the elastic moduli, both expressed here in dimensionless units. (See also reference [4] for additional
details on the free-energy parameterization.) In this formulation an equilibrium length scale of 27/qo with ¢o = 1 is enforced.
Together with appropriate boundary and initial conditions, the dynamical equation for v, producing evolution of crystalline
systems at diffusive timescales, is described via a mass-conservative (H~') gradient flow of F. The time evolution reads
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where L[] and N[t] are linear and nonlinear differential operators, respectively:

L[y] = (A\V? + 25V* + kV°) ¢,
¥ -v (- 2). ®

onp = VP——= = L[] + N[¢], 2

2 3

Numerical solutions of the partial differential equation (2) can be computed using a Fourier pseudo-spectral method for
spatial discretization, enforcing periodic boundary conditions in combination with a suitable time discretization [5-8]. We
denote by k the Lo-norm of the spatial Fourier vector (k1, ko), and f is the spatial Fourier transform of the periodic function f.
It follows that

Lly] = K¢,
__ AR “
N[Y] = —k* | —— + =
[¢] ( Nk
where K is a polynomial in k:
K(k) = (=Ak* + 26k* — kk®) . Q)
Regarding time stepping schemes, we consider three variants: a linear first-order semi-implicit IMEX) scheme
~ D + AN ]
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Fig. 1: Convergence study of standard time stepping schemes (C1 = C> = 0) compared to their improved versions for equation (2) with
a Fourier pseudo-spectral space discretization and a simulation setup similar to Figure 2. (a) (C-)IMEX scheme (b) (C)-ETD1 scheme (c)
(C-)ETD2RK scheme (d) corresponding C'i, Cs values.

a first-order exponential time integration method (ETD1)

- ~ ke, ottt -1
Yng1 = Ype” 7" + N[%]T; (N
and a second-order exponential time integration method of Runge Kutta type (ETD2RK) [9]
~ ~ KA KAt 1
O = Pne 2+ N[y | ———,
K ®)
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We denote by At the time step size, and f,, represents the time-dependent function f(x,t) at time ¢, that is, f(-,t,).
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We will utilize the numerical time-stabilization routine presented in [10], but with an important difference. The method
of [10] may be expressed as follows: the previous method is altered by adding and subtracting a simple constant-coefficient
linear operator in the definitions of L and N. The additional terms are controlled by the parameters C; and C:

L — L+ CV?—C,V4,

9
N*—>N—01V2+C2v4, ®
which read in Fourier space
K — K = (K — C1k* — Cok?) 9,
(10)

m — Jm + (Cﬂfg + Cgk4) '(Z}\

We show in the following that the parameters can be tuned to achieve an improved numerical accuracy over the base case
C1 = Cy = 0. In particular, we demonstrate that the best performances are here obtained for negative values.

In [10], positive values for C, Cy were introduced in order to stabilize an underlying time stepping scheme by “slowing
down" the dynamics of the evolution equation and therefore allowing for larger time-step sizes. However, large time step sizes
can slow down the underlying dynamics intrinsically. As a consequence, one has to accept a lower accuracy of the resulting
numerical solution [10]. By allowing negative values for C7, Cs, as we do in this study, we slightly accelerate the computed
dynamics of the evolution equation and therefore compensate for the aforementioned slow-down effects. As a result, we obtain
a better numerical accuracy with respect to reference solutions.

For every time integration scheme, we determine optimal C';, Co by minimizing the difference of the error (least square of
the difference) in the free energy decay with respect to a high-accuracy numerical reference solution and denote the resulting
time stepping schemes reported in (6), (7), and (8) by C-IMEX, C-ETD1, and C-ETD2RK, respectively.

2 Numerical parameter study

A convergence study of the considered numerical methods is reported in Figure 1, for a specific set of model parameters leading
to the growth of a crystal in a domain Q = [—200, 200]2 (initial condition as in Figure 2 (a)). The numerical simulations are
performed on an uniform grid with an element size of Az = Ay = 0.78125 and for time steps At € [1072, 5]. Figure 1 shows
the residual of 1), R, evaluated as the discrete Lo distance from a numerical reference solution for different A¢. The baseline
schemes IMEX, ETD1 and ETD2RK (C; = C3 = 0) and the corresponding “optimized" schemes via the splitting (10),
C-IMEX, C-ETDI1, and C-ETD2RK are compared, with a reference solution corresponding to the C-ETD2RK scheme with
At = 0.01. As expected, the (C-)IMEX and (C-)ETDI schemes converge linearly, and the (C-)ETD2RK scheme converges
quadratically for a decreasing time step size At. For a fixed At, the C-IMEX and C-ETD1 schemes give two orders of
magnitude smaller errors than the IMEX and ETD1 schemes, respectively, whereas the C-ETD2RK scheme gives a half order
of magnitude smaller error than the ETD2RK scheme. By fixing an accuracy instead, the C-IMEX and C-ETD1 scheme allow
for two orders of magnitude larger timesteps than the IMEX and ETD1 scheme, respectively, whereas the C-ETD2RK scheme
allows for two times larger time stepsize than the ETD2RK scheme. Note, that the (C)-IMEX and (C)-ETDI1 integration
schemes show similar computational costs for a time step update. Due to an additional intermediate step, the time step updates
for the method (C)-ETD2RK integration schemes are twice as expensive as the (C)-IMEX or (C)-ETD1 approaches.

3 Extension to an explicit temperature coupling

So far, a basic formulation of the PFC model has been considered. However, many extensions have been proposed involving
coupling of equation (2) with additional equations. For instance, in the context of crystal growth during solidification, an
extension of the classical PFC model (1) including heat transfer through a temperature field has been proposed in [4, 11].
Therein, the (dimensionless) Helmholtz free energy functional reads

F[6.7)i= F[6] = | 9la(T) + 79(0 + i an

Q
where T'(r, t) is the dimensionless temperature with T = 1 at the melting point, and 9, v > 0 are additional parameters. Such
energy functional is proposed to obtain a linear dependence of the internal energy on temperature and density. As a result ¢ is
related to the latent heat, whereas ~y is related to the specific heat capacity [11]. The dynamics are then given by the coupled
evolution of T" and v, reading

90, T — 0 = MV?T,
SF[, T (12)
8tw = VQ (E,l’l/; ]7
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with M > 0 a parameter corresponding to the thermal diffusivity assumed to be constant. We initialize 7" as spatially
homogeneous and consider periodic boundary conditions. In [4], similar numerical concepts to those illustrated in the previous
sections have been exploited and are here investigated further. Figure 2 (a)-(c) shows the density and temperature fields of a
growing crystal at intermediate time steps with the corresponding free energy evolution. We choose a model parameter set
according to Figure 2 in order to simulate solidification of a honeycomb structure with an underlying triangular symmetry in
an undercooled melt. The temperature decreases inside the solid phase and increases at the solid-liquid interface, which can
be explained by the Gibbs-Thompson effect, as already shown in [4]. Similar to equation (10) we introduce C7, Cs and report
a convergence study of the resulting (C-)IMEX and (C-)ETD1 approaches, in which we compare the residuals of 1) and 7T,
Ry and R, respectively, cf. Figure 3. The residuals are evaluated as the discrete Lo distance from a numerical reference
solution, corresponding to a C-IMEX scheme with At = 0.01. As expected, all schemes converge linearly for a decreasing
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Fig. 2: Numerical solution of equation (2) and (12) for a given set of parameters (A = 0.6, x = 0.45981, A = 0.849, v = 0.06, ¥ = 0.1,
To = 0.6, M = 0.1) and Q = [—200, 200]>. (a) density fields v during crystal growth att = 10%, ¢ = 3-10% and t = 10" for equation (2)
and (12) are shown (b) temperature fields 7" during crystal growth at ¢ = 10, ¢ = 3 - 10% and ¢ = 10? for equation (12) are shown (c) time
evolution of the free energies F' and F.
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time step size At. Moreover, for a fixed At, the C-IMEX approach gives two orders of magnitude smaller error than the
IMEX approach for ) and almost three orders of magnitude smaller error for T'. By fixing an accuracy instead, the C-IMEX
approach allows for two orders of magnitude larger timesteps than the IMEX approach, resulting in a further improvement
compared to the performances achieved for the numerical integrations as reported in [4]. For the C-ETD1 approach only small
performance improvements compared to the ETD1 approach are achieved.
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Fig. 3: Convergence study of standard time stepping schemes (C1 = C2 = 0) compared to their improved versions for equation (12) with
a Fourier pseudo-spectral space discretization and a simulation setup from Figure 2. The residuals of ¢ and T', R, and R are shown. (a)
(C-)IMEX scheme (b) (C)-ETD1 scheme (c) corresponding C, C> values.

4 Conclusion

We studied the numerical integration of the governing equations in the PFC model with different time discretizations and
featuring an extra numerical time-stabilization [10]. Also, we showcased by numerical examples that this approach works for
both first-order and second-order exponential time integration methods. We outlined the main criteria to determine numerical
parameters and investigate the performances for a prototypical simulation, which may be exploited as a benchmark. The
applicability to extended PFC models featuring the coupling with additional variables is shown for a model coupling Eq. (2)
with heat flow, as reported in [4]. Modified C-IMEX and a C-ETD1 integration schemes are considered. We note that, for the
C-IMEX integration scheme, a further improvement is here achieved compared to a similar approach exploited in [4], thanks
to an extended parametrization of the splitting (10).
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