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Abstract

We present a phase field model for vesicle growth or shrinkage induced by an osmotic
pressure due to a chemical potential gradient. The model consists of an Allen—Cahn
equation describing the evolution of the phase field parameter that describes the shape
of the vesicle and a Cahn—Hilliard-type equation describing the evolution of the ionic
fluid. We establish conditions for vesicle growth or shrinkage via a common tangent
construction using free energy curves. During the membrane deformation, the model
ensures total mass conservation of the ionic fluid, and we weakly enforce a surface
area constraint of the vesicle. We develop a stable numerical scheme and an efficient
nonlinear multigrid solver to evolve the phase and concentration fields, and we use
this to evolve the fields to near equilibrium for 2D vesicles. Convergence tests confirm
an O(t 4 h?) accuracy for our scheme and near-optimal convergence for our multigrid
solver. Numerical results reveal that the diffuse interface model captures the main fea-
tures of cell shape dynamics: for a growing vesicle, there exist circle-like equilibrium
shapes if the concentration difference across the membrane and the initial osmotic
pressure are large enough; while for a shrinking vesicle, there exists a rich collection
of finger-like equilibrium morphologies.
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1 Introduction

Membranes considered in this paper are composed of bilayer lipid molecules with
hydrophilic heads and two hydrophobic hydrocarbon chains. Lipid bilayers are the
basic structural component of biological membranes. It is a semipermeable barrier to
most solutes, including ions, proteins and other molecules. In an aqueous environ-
ment, a bilayer lipid membrane forms a vesicle (a closed bio-membrane containing
fluid) to reduce the energy of the hydrophobic edges. Because of their relatively simple
structure, vesicles are often used as a model system for studying fundamental physics
underlying complicated biological systems such as cells and microcapsules. In addi-
tion, vesicles have also been used as building blocks to engineer artificial cells, e.g.,
via biochemical microreactors operating in physiological environments (Elani et al.
2014).

Osmosis usually refers to the net movement of water molecules across a semiperme-
able membrane driven by a difference in concentration of solute on either side (Alberts
et al. 2022; Baumgarten and Feher 2012; Strange 2004). Tonicity is a related concept,
operationally defined as the ability of a solution to shrink or swell specified cells.
Hypotonicity describes any medium with a sufficiently low concentration of solutes to
drive water to move into a cell due to osmosis. Hypertonicity describes any medium
with a sufficiently high concentration of solutes to drive water to move out of a cell
due to osmosis (Alberts et al. 2022; Baumgarten and Feher 2012). In Fig. 1, we show
response of a human red blood cell to changes in tonicity with respect to the extra-
cellular fluid. Clearly, hypertonic solutions shrink cells; hypotonic solutions increase
cell volume; and isotonic solutions neither swell nor shrink the cell. Biologically, cells
change their volumes, due to different environmental conditions, through the influx
or efflux of water (the primary solvent) based on differing concentrations of an ionic
solute or pressure gradients (Hoffmann et al. 2009; Guo 2017). The mechanical prop-
erties of cells can change, as the volume changes. For example, the cell may become
more stiff as the volume is decreased, due to crowding of cellular structures (Hoff-
mann et al. 2009). Motivated by these volume changes, in this paper, we develop a
mathematical model to simulate the effects of growth or shrinkage coming from the
concentration gradient. For simplicity, in this first modeling effort, we will neglect
differences in cell rigidity due to changing volume.

Mathematical modeling of membrane deformation has become an important area
of research in biological materials for the past 15 years. At the continuum level,
the mathematical description of vesicle conformation and deformation is a highly
nonlinear, nonlocal moving boundary problem, where the bilayer membrane serves as
the moving boundary. Sharp interface models have been implemented to simulate the
motion of vesicles in fluids in (Veerapaneni et al. 2009a, b; Sohn et al. 2010; Salac and
Miksis 2011; Sohn et al. 2012; Li et al. 2012; HauBler et al. 2013; Liu et al. 2016; Gera
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Hypertonic Isotonic Hypotonic

Fig.1 Effect of different solutions on human red blood cells. The cell swells, shrinks or stays normal as water
moves into or out of the cell down its concentration gradient in hypotonic, hypertonic, or isotonic solutions,
respectively. From Wikipedia, the Free Encyclopedia. https://en.wikipedia.org/wiki/Tonicity (LadyofHats
2007)

and Salac 2018; Gera et al. 2022). For example, nonlinear wrinkling dynamics of a
vesicle in an extensional flow and tumbling mechanism of two-dimensional vesicles in
a shear flow are studied in Liu and Li (2014); Liu et al. (2017). These sharp interface
models can satisfy the interface and inextensibility conditions exactly. That is, the
volume enclosed by membrane is automatically conserved for an incompressible fluid.
The deformation based on the net mass transfer (gain or loss) across the membrane
has not been considered, to our knowledge. There are also sharp interface models
of membrane deformation based on osmosis and diffusion (Layton 2006; Vogl et al.
2014; Jayathilake et al. 2010a, b; Mori et al. 2001; Yao and Mori 2017; Wang et al.
2020; Quaife et al. 2021). For example, boundary integral simulations are used to
investigate the effects of water permeability on the hydrodynamics of an inextensible
membrane under a mechanical load in Quaife et al. (2021). An immersed boundary
method (Peskin 1977) for modeling convection and diffusion of mass transfer through
porous membranes under large deformations is proposed in a recent paper (Wang et al.
2020).

Phase field/diffuse interface models have also been used to simulate the equilibrium
configurations and the dynamics of vesicles (Du et al. 2004; Wang and Du 2008;
Lowengrub et al. 2009; Gu et al. 2016). Typically phase field models are constructed
so as to approximate a sharp interface counterpart, solutions of the former converging to
those of the later as the diffuse interface thickness, usually denoted ¢, goes to zero. The
interface separating the inside from the outside of a vesicle is modeled as a continuous,
diffuse boundary layer, in a phase field variable (Giga et al. 2017; Kobayashi 2010).
One advantage of the phase field approach is its simplicity in model formulation;
the interface problem is posed as a reaction-diffusion equation defined on the whole
computational domain without requiring special treatment at the interface. This makes
numerical implementation a simple matter, generally. In this approach, updating the
interface position is a simple matter of advancing the phase field in time (Shen et al.
2012; Kobayashi 2010; Provatas and Elder 2010). The well known Allen—Cahn (AC)
and Cahn—Hilliard (CH) equations are two diffuse interface gradient flow type PDEs
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describing the process of phase separation of a binary mixture. The field variable is
conserved in the CH equation, but non-conserved in AC equation (Giga et al. 2017;
Bartels 2015; Lee et al. 2014). More generally, the models are designed so that a free
energy is dissipated in time, while the phase field is either conserved or not, based on
the physics of the problem at hand.

In this paper, we develop a phase field model to simulate vesicle growth or shrink-
age based on osmotic pressure, which arises due to a chemical potential gradient.
In particular, we determine control conditions for growth and shrinkage via a com-
mon tangent construction. We simulate the growth and shrinkage effects subject to
total mass conservation and surface area constraint, while allowing the mass exchange
inside and outside the vesicle. Considering surface bending energy, osmotic pressure
energy, and a surface area constraint in addition to the surface energy used in the
classical AC and CH equations, we derive a coupled system of equations consisting
of an AC equation describing the evolution of the vesicle phase field and a conserved
CH equation describing the evolution of concentration field.

To avoid severe CFL-like time step restrictions, we employ a first-order (in time)
implict-explicit numerical scheme to advance the fields in time. We discretize space
using a standard second-order finite difference method. The scheme is solved by a Full
Approximation Storage (FAS) nonlinear multigrid scheme, like that proposed in Wise
(2010). More information on nonlinear multigrid methods can be found in Trottenberg
etal. (2001), Henson (2003), Kay and Welford (2006). The solver we constructed uses
a Gauss—Seidel-based smoother and a V-Cycle method for transferring information
among multigrid levels. In numerical tests, we demonstrate the nearly optimal com-
plexity of the multigrid solver, and we demonstrate convergence of the time-stepping
scheme, which is of first order in time and second order in space. Numerical results
reveal that for a growing vesicle, there exist circle-like equilibrium shapes if the con-
centration difference across the membrane and the initial osmotic pressure are large
enough; while for a shrinking vesicle, there exists a rich collection of finger-like equi-
librium morphologies.

This paper is organized as follows. In Sect.2, we define the model equations and
analyse conditions for vesicle growth or shrinkage by a common tangent construction.
In Sect. 3, the numerical scheme of the system and nonlinear multigrid algorithm are
presented. Numerical results are given in Sect. 4.

2 Model formulation
2.1 Evolution equations

We start by defining a Helmholtz free energy, F, over a computational domain,
Q c RY, d =2 or 3. The functions ¢, ¥ : © — R are the phase fields (order param-
eters) describing the vesicle shape and the concentration of ionic fluid occupying the
volume €2, respectively. {x : ¢ (x) = 0} determines the location of the membrane, while
{x : ¢ (x) = 1} represents the interior phase (inside the vesicle), and {x : ¢ (x) = —1}
represents the exterior phase (outside the vesicle). We consider the following free
energy densities (Cahn and Hilliard 1958; Du et al. 2004, 2005; Wang and Du 2008:
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3
g, V) = {( g(P) + = |V¢|2>, (2.1)
3 2
FP(p, Ap) = 1‘6C< g () — A¢> 2.2)
1
£, ) = AL (¢)f‘"(¢)+ —P (¢)f°“‘<w> 2.3)

where g is the standard double-well function g(¢) = % (¢2 — 1)2; ¢ is a small positive
constant characterizing the thickness of the diffuse interface; and fi"(y) and fOU(y/)
are quadratic functions

ym Vout

@) = T2 (W — Yin)? + Bin and W) = T (U — You) + Bouts

(2.4)

where Vin, ¥in, Bin, Youts Youts Bout are assumed to be positive parameters. The func-
tion p is an interpolation function satisfying p(1) = 1 (interior phase) and p(—1) =
—1 (exterior phase) and p’(—1) = p’(1) = 0, as well. Now, we define free energies

o= /Q Vourt £ (¢, V) dx, (2.5)

Fhend = /Q Wend f2M (¢, Ag) dx, (2.6)
2

Farea % ( /Q (b, V) dx — A) , 2.7)

FOsm .= /Q FO™ (@, V) dx. (2.8)

FST is the diffuse interface approximation of the total surface area of the vesicle.
Fbend s the diffuse interface approximation of the surface bending energy. A is the
initial surface area of the vesicle. F*? is the energy penalty to numerically enforce the
surface area constraint, since the surface area should remain approximately unchanged
for a vesicle with a fixed number of lipids. The constants Ysyf, Ybend» Varea are assumed
positive. The & dependencies in the free energy terms F* and FP*"d are chosen so
as to give the correct asymptotic limits as ¢ — 0. Specifically, in the limit ¢ — O,
these terms approximate singular sharp interface counterparts (see Du et al. 2005,
2004; Wang and Du 2008) for details. F*™ describes the osmotic energy arises in the
mixture fluids with different concentrations. The total Helmholtz free energy is thus
defined as

Flg, ¥] = F ] + FPM[p] + FY[p] 4+ FOT [, y]. (2.9)
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The dynamical equations are of gradient flow type with respect to the free energy,
F:

&hp=—Mpypu, (2.10)
pw=_34F, (2.11)
WY =V - (My($)Vv), (2.12)
v=25yF, (2.13)

where the phase variable ¢ is non-conserved and satisfies an Allen—Cahn equation,
while the variable 1, since it represents the ionic fluid, is conserved and satisfies
a Cahn—Hilliard-type mass conservation equation. We take homogeneous Neumann
boundary conditions on the computational boundary 2. Here the mobility My > 0
is a constant and My (¢) > 0 is a positive function of ¢. v and v are the chemical
potentials

= 8F = ysmf34£w - ybenf;f (58" @) - so)
s ([ 70,900 dx — 1) 22,
+ 2O (ingyy — gy, 2.14)
= —g’(¢>) —eAg, (2.15)
v=syF = O O ar w P+ =20 d;;m W. @16

It is reasonable to assume that the mobility for 1 degenerates in the interfacial region,
since mass flow is limited to small channels in the vesicle membrane. Therefore, we
assume that

My (¢) = 1 — Mo(¢* — 1)%, for some M € (0, 1), (2.17)

and it follows that My, > 1 — My > 0. The system (2.10)—(2.13) is free energy
dissipative, and the dissipation rate is

d,F=/Q{8F¢,8t¢+5F1/,3,¢}dx
- /Q (10,6 + Vi Jdx
= [ (M) + v (7 (v 7))} e

/ — Myl — My |V }dx

<0
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Fig. 2 Typical common tangent connection for the free energy densities for the interior f in¢ ) (left) and

exterior fOU'(y) (right) (2.4) phases. The vesicle will grow or shrink according to the initial (spatially

uniform) states for ¢ inside and outside the vesicle. Suppose that 1//}(“ and ¢ are the values of i where

the common tangent touches the respective free energy densities f in () (left) and £OU(y) (right)

Next, we analyse the conditions for vesicle growth or shrinkage via the common
tangent construction based on the osmotic free energy.

2.2 Conditions for growth or shrinkage

Suppose that /" and "¢ are the equilibrium concentration values for the interior and
exterior regions obtained via the common tangent construction (Provatas and Elder
2010; Pelton 2019), and let us further assume that

<yt (2.18)

* * ’

as shown in Fig.2. Now, suppose that we choose the following initial conditions for

v
Y =0) = yi" <y and YO = 0) = Y = YU (2.19)

This is the case that is illustrated in Fig. 3. The exterior phase is at its bulk equilibrium
value, but the interior phase is not. The osmotic free energy is decreased as the con-
centration in the interior region goes up from the initial value W(i)n to the equilibrium
value 1,". Therefore mass will flow from outside the vesicle to the inside until a global
equilibrium is attained. In this case, the mass will be transferred into the interior region
(the volume of the vesicle will increase), though its surface area will ideally remain
unchanged.
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Fig.3 Anexample of volumetric growth. The black dashed regions show the initial state, and the red shows

the final state. x(i)m is the initial position of the interface; xfii[::al is the position of the interface after global

equilibrium is attained. The total mass is conserved; mass from the black region is transferred into the red
region. The interface moves to the right, and the concentration in the inner phase increases (color figure
online)

The shrinkage case is analogous and is illustrated in Fig.4. Suppose the initial
conditions for this case are

YN =0) = Y > ¢ and YOl = 0) = Y§t = YU (2.20)

In this case, the mass will be transferred into the exterior region, and the interior
region will shrink (the volume of the vesicle decreases with constant surface area)
as the osmotic free energy decreasing, while the concentration in the interior region
decreases from its initial value w(i)“ to the equilibrium value 1//1“.

3 Numerical method

In this section, we describe a semi-implicit Euler scheme for time discretization and
a centered difference finite difference method for spatial discretization to get a semi-
implicit numerical scheme, then solve the discrete system by anonlinear FAS multigrid
method, which is the combination of a nonlinear Gauss—Seidel smoothing (relaxation)
operator and V-cycle multigrid solver. There have been many numerical works for the
Allen—Cahn and Cahn-Hilliard equations based on convex splitting (Wise 2010; Hu
et al. 2009) and other approaches. Two important properties that convex splitting
schemes generally inherit are unconditional energy stability and unconditional unique
solvability. The convex splitting methods require the splitting of the free energy into
purely convex and concave pieces. But, for our model, the convex splitting approach is
difficult to apply due to the fact that such a splitting is highly nontrivial. Alternatively,
we could employ an scalar auxiliary variable (SAV) approach, which makes the process
of finding stable and even linear schemes much easier (Shen et al. 2018). However, in
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Fig. 4 An example of volumetric shrinkage. The black dashed regions show the initial state, and the red
shows the final state. x(‘)"‘ is the initial position of the interface; x}l‘}]tal is the position of the interface after
global equilibrium is attained. The mass is conserved; mass from the black region is transferred into the
red region. The interface moves to the left and the concentration in the inner phase decreases (color figure
online)

this paper, the design of theoretically stable numerical methods is not the focus, and
we will save these issues for a follow-up paper.

3.1 Discretization of time

The evolution equation are expected to be numerically stiff, since they are nonlinear
parabolic equations of fourth-order. To eliminate some of the numerical stiffness, we
must use at least a semi-implicit time-stepping approach. It is not necessary that the
resulting system is linear, since the nonlinear multigrid solver can handle nonlinearities
and non-constant-coefficient linear terms in a straightforward manner. Determining
which terms to treat implicitly is a balance between expereince and trial and error. We
propose the following time-discrete, space-continuous scheme of (2.10)—(2.13)

P — gk = —SM¢ka+l, 3.0
k+1
W = o 4y <a’8_2g// <¢k) _ Aa)k+1> 3 (Bk _ A) Wkl
P (¢k) in (, k out (1 k
o (1) - ()]
o = ég/@"“) —eAght, (3.3)
Yk gk — gy (M¢(¢k)Vvk+1) , (3.4)

k+1 _ l+p (¢k) dfin k1 1—p (¢k) dfout .
' _TW(W >+Tw(w ). 69
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where s is the time step, y| = Ysurf * 25, ¥2 = Ybend * 257 V3 = yam%i, BF =
/‘Q fsurf (d)k’ V¢k) dx, and 8n¢k+l S —
on 9<2.

3.2 Discretization of two-dimensional space
3.2.1 Notation and definitions
Here we follow the notation and definitions of grid functions and difference operators

used in Wise (2010). Consider 2 = (0, Ly) x (0, Ly) C R2, withL, =m - h, Ly=
n - h, where h > 0 is the spatial resolution and m, n are positive integers. First, let us

define
Cm={<i—l>-h|i=1,...,m}, (3.6)

2
C,;,:{(i—%)-hh’:O,...,m—i—l}, 3.7)
En=1{i-h|i=0,..,m). (3.8)

Cy, and Cy; are sets of cell-centered points of the interval [0, L,]. E,, is a set of
edge-centered points of [0, L,]. Analogously, C, and Cj contain the cell-centered
points of [0, L], and E), is a uniform partition of [0, L] of size n. We will consider
cell-centered points as the domain of our discretized functions. We define the function
spaces

Conxn =19 : Cp x C — R}, Caxn =1{¢ : Cin x C; — R}, (3.9
Ciasxn=1{¢p:Cy x C, > R}, Cnxii = {¢ : Cpy x Cii > R}, (3.10)
EN oy ={f:EnxCy— R}, EN o =1{f:CnxE, — R}. (3.11)

The functions of Cy,xn, Ciiixii» Civxn» and Cy, xji are called cell-centered functions.

In component form these functions are identified via ¢; ; := ¢ (xi, y j) where x; =
(i — %) h,y; = (j — %)oh, and i and j are integers. The functions of &Y, and 5
are called east—west edge-centered functions and north—south edge-centered functions,

respectively. In component form east—west edge-centered functions are identified via

f; +1 = f (xl. 41 y j> , and north—south edge-centered functions are identified via

fi/+— ::f(x,-,y/+ ) wherex+1 =1i-h, yj—(j—l)-h xi:(i—%)-h,

Yipl = Jj-h,andi and j are integers. Slmllarly, we define the edge-to-center difference
operators dy : gy, = Cimxn and dy : E5Y, = Ciuxn component-wise via

defij = f f,%_j> , dyfij= % <f,j+% - flj,%) )

=1,. j=1,....n. (3.12)

1
h
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The x-dimension center-to-edge average and difference operators, respectively,

. — (3% 1
Ay, Dy : Cixn — &5, are defined component-wise as

1 1
Ax¢,‘+%_/‘ =3 (pij + div1)) Dx¢,‘+%,j =5 (Giv1.j — 1)),
| =0,....m, j=1,...,n. (3.13)

~

Likewise, the y-dimension center-to-edge average and difference operators, respec-

tively, Ay, Dy : Cuxn — Epny,, are defined component-wise as

1
(pi,j + bij+1) Dy¢,-,j+% = (hi,j+1 — 0ij)
=1,...,m, j=0,... n. (3.14)

1
Avdi iy = 5

~

The standard 2D discrete Laplacian, Ay, : Ciixii —> Cxn, is defined as

Andi,j = dy (Dx); ; +dy (Dyoi. )
1
=12 (i1 + i1+ i j41 +bij—1 — 41 j)
i=1,....m, j=1,....n. (3.15)

The spatial approximation of the 2D surface energy B in (3.2) is denoted B;l‘ :
Cimxn — R and is defined as

2 2
mon Dyo* ) +(Dx¢(< | )
3ﬁ 1 e ( i+5,] i=7,]
k . 2 2 2
By i=h*y Y == gg(¢>,-,,-)+EL 5
i=1 j=1
2 2
k k
(Dyd’i.j-ké) + (Dyd)ljé)
n ) (3.16)

2

The spatial approximation of A in (3.2) is denoted Aj and is defined as Aj, := B,?.

3.2.2 Boundary conditions

In this paper, we use grid functions satisfying homogeneous Neumann boundary con-
ditions on €2, that is, the cell-centered function ¢ € C;;«j; satisfies

bo.j =b1,j, byl =bmj, j=1,...,n, (3.17)
Di0=90i1, Pint1 =¢in, i=0,....m+1, ’

we use the notation n - V;,¢¢ = 0 to indicate that ¢ satisfies (3.17). Periodic boundary
conditions could be used as well.
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3.2.3 Fully-discrete scheme

With the notation defined above, the fully-discrete scheme for the Egs. (3.1)—(3.5) is:
given ¢, Y* € Cjixi, find the grid functions ¢*+1, pk+1 @kl gkl ol c oo -
such thatn - V¢t =n . V,uft = n . vyt = n- vy it = n. vkt =0,
and

¢k+l _ ¢k — —SM¢,lLk+1, (3.18)
W = f 4y, (%g/ (¢k) _ Ahwk+l> tys (Blhc -~ Ah) N
+ %d)k) [fin <wk> _ foul (dﬂ()] , (3.19)
Wk égl(¢k+l) oA, (3.20)
P gk — {dx (Mw (Axd)k) vak+1) +dy (Mw (Ay¢’<) Dyvk+l>} :
(3.21)
S+l HPT@”C)% (wk+1> + I_PT(‘f’k)‘iif_;m (wk—H). (3.22)

3.3 Multigrid solver

We now rewrite (3.18)—(3.22) as the following component form: find pFtl kel
o1 k1 and vA+ in € o with boundary conditions n- V¢t = n- thkH
n- Vot =n. v,k = n. v,k = 0 whose components solve

¢H1 + M, M’.‘Jﬁl = ¢ ., (3.23)

k+1
i =+

J
o; ) + 3 (B;, Ah)] M1y VzAhwk+l

¢ (o
_ (¢f,)[ ( vk )_ out (w,-k,,-)], (3.24)

(07 e
vl = sdi (my (Ax¢k> vak“) sdy (My (4,0%) D, "“)” =V,
T (3.26)
vt{c,j'—l o 1+ pz(_(pfj) *¥in + p2<¢lkj> Yout V’zkj_l
k
= —wmwm p2<¢ ) YouWout- (3.27)
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Let ¢ = (¢, w,¥,v)T, define the 5 x m x n nonlinear operator N =
(N(l), N(Z), NG), N(4), N(S)) as
&) k+1 k+1
Nij=¢; TsMpu; i, (3.28)
2 V2
Ni(,j) = Mfﬂj—l - [)/1 + 8—28” (¢,kj> +9 <B;,c - Ah):l a)ikjl + yzAha)ﬁfl, (3.29)
(3) k11 k1) k+1 k+1
Ni,j N c <(¢i,j ) - ¢i,j > + 8Ah¢>,-,j ) (3.30)
Nl'(4/') = 1plk_JH — sdx (M‘/f (Ax¢k> vak+1). = sdy (MW (Ay¢k) Dyvk_H), B
' ' L, : ’ i,j
(3.31)
1+ (9f)) 1= p (o))
5 L] i, j
Ni(, j) = Vik,";l - > *Vin + > - Yout wlﬁrl, (3.32)
and the 5 x m x n source § = (S, §@ @ §&H §O)) a5
1
S\ =gt (3.33)
/ k
p (di ) ,
2 i :
S =—5" [f‘“ (I/I,-",,-) A (t/f,"‘,,-)], (3.34)
S =0, (3.35)
4
sty =t (3.36)
k k
s _ LtP (‘pi’f) I=p (‘7’:',/)
Si,j = ——2 YinYin — —2 YoutVout - (3.37)

Then, the system (3.23)—(3.27) is equivalent to N(¢* 1) = S(¢).

Next, we apply the nonlinear FAS multigrid method to solve N+ = S(¢k ) for
a given ¢k. The main points of this method are: (1) we first need a smoothing operator
for generating smoothed approximate solutions of N(¢) = S, here we use a nonlinear
Gauss—Seidel method with Red-Black ordering; (2) we then use this smoothing oper-
ator on each hierarchical grid to get better approximation of ¢**!. For further use, we
represent the smoothing operator as

é = Smooth (¢, N, S, 1), (3.38)

where X is the number of smoothing sweeps. Next, let’s give the details of this operator.
Here, ¢ is the index for iterative step, and we set

e = A k ns = A, k
¢i+%,j x¢i+%,/’ ¢i,j+% >¢i,j+%

ew  ._ ew ns . ns
M¢i+%,j = My (¢i+é,j> , Ml//i,j—%% = My (¢i.j+;> .
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The Gauss—Seidel smoothing works as following: for every (i, j), stepping lexicogr-
phically from (1, 1) to (m, n), find /5", i ", o', ¢! and v/ that solve

iMoo @iy o Vigo
off! +omguf$ =517 (#"). 339
i = [ B (o) +m (8= ) + 2 ot = 53 (o)
- Z—i[ Wl F o] ol +oltl 1] (3.40)
Wt - [ @)% + }asfjl =52 (¢) - 2o,
- ;—2 [¢f+1 JHO +¢’fﬁ1]’ (3.41)
Vi s [M,/,Hr SEMY M+ Ml,,;.‘fjf%] vt
= S,-(f? (¢k) el [Mw 41 Vit + My, j”f+11,
+ My +,vl jor M fjﬁl], (3.42)
k k
vﬁjﬁl - 1+ P2<¢i,j> - 1— P2(¢i,j> * Yout w’e;rl _ S(S) (¢ ) (3.43)

In practice, we use Cramer’s Rule to solve this 5 x 5 linear system (3.39)—(3.43) or use
Cramer’s Rule to solve 3 x 3 linear system (3.39)—(3.41) and solve 2 x 2 linear system
(3.42)—(3.43) simultaneously, since (3.39)—(3.41) and (3.42)—(3.43) are independent.

Multigrid works on a hierarchy of grids. We use the smoothing operator on each
level of the grids to get a better approximation. Here, we set minlevel < level < 0, 0
means the index of the finest grid, and minlevel is the index of the coarsest grid. We
also need to transform the results between two levels of grids. By Ilggl ! we denote
the restriction operator which is defined by cell-center averaging, and by 1}23371 we
denote the prolongation operator which is defined by piece-wise constant interpolation.
I%g’g ! transfers fine grid functions to the coarse grid, while Igg_l transfers coarse
grid functions to the fine grid. The following is the algorithm for our multigrid solver

(Wise 2010), in which g5+ 1"+ — FASVeycle (¢"+1*’", Nievels Stevels A, 1eve1) is the

level level
recursive FAS V-Cycle iteration operator and the superscript m is the V-Cycle loop
index.

3.4 Algorithm

RECURSIVE FAS V-CYCLE OPERATOR

level

LM+ — FASVeycle (¢{€etell’m, Nievel, Stevel, A, level)
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Pre-smoothing:

I k+1,
¢leve1 = Smooth (¢leve1' m’ NlCVCla Slevelv A)

Coarse-grid correction:
If level > minlevel

Sievel—1 = L™ (Stevel — Nievel) + Nieyel—1 (I}zzz}_l‘ileveo ; (3.44)

Bievel—1 = FASVeyele (195 Brevet: Nievel- 1, Sievet-1, 2 Tevel = 1), (3.45)

Prevel—1 = Prevei—1 — Lngl ' Plevels (3.46)

Brevel = Prevel + Hivel 1 Plevel 1 (3.47)

post-smooth: ¢rt L = Smooth (gi)]evel, Nievels Stevel, k) . (3.48)
end if

The combined algorithm of time stepping and the FAS V-Cycle iteration operator is
given as follows.

COMBINED TIME STEPPING AND FAS V-CYCLE ITERATION
ALGORITHM

Initialize ¢16=0 Time Step Loop: for k = 0, kpax — 1 set ¢15+1’m=0 = ¢’6
calculate S (¢f)
V-cycle Loop: for m = 0, mmax — 1
oh+1 ! — FASVeycle (¢’5+"m, No, So, 1, o)

if HSO (¢S+l’m+l) -No (¢’(§+l‘m+l> H2 , < T then

set pi ! = @61 and exit V-cycle Loop
end for V-cycle Loop
end for Time Step Loop

Here t > 0 is the stopping tolerance, and the norm is defined by

5 m n

R = |23 Y Y (k@) (3.49)

k=1i=1 j=1

where R(¢) := S (¢*) — N(¢) is the 5 x m x n residual array, and Rl.(? (@) are its
components.
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4 Numerical results

In this section, we discuss numerical results of the discrete system (3.18)—(3.22) solved
by the nonlinear FAS multigrid algorithm. We present the results of convergence tests
and perform sample computations. In all the tests below, we set Ly = L for simplicity,
and use the interpolation function p(¢) = —%¢3 + %q&, which satisfies p(1) = 1,
p(—=1) = —1, and p’(—1) = p’(1) = 0in (2.3). In the first set of tests in Sect. 4.1,
we show evidence that the multigrid solver converges with optimal (or near optimal)
complexity. In the second set of tests in Sect. 4.2, we provide evidence that the scheme
is convergent and the global error is of first order in time and second order in space.
We then present a series numerical studies on the growth and shrinkage cases using
the condition established in Sect.2.2.

4.1 Convergence and complexity of the multigrid solver

We perform six separate tests to demonstrate the convergence and near optimal com-
plexity (with respect to the grid size /) of the multigrid solver. We provide evidence
that the multigrid convergence rate is nearly independent of /. For all the tests we take
the initial data

0.18 — \/0.75(xl- —0.52+ (y; —0.5)2
V2e ’

Y =—¢p; x 0.14+0.7, (4.2)

¢ ; = tanh

4.1)

and set the parameters L, = Ly = 1.0, Ysurt = 1.0, Yarea = 1.0X 104, vin = 1.0x 103,
Yout = L.OX10%, ¥in = 0.1, You = 0.8, My = 0.5, My = 1.0, Bin = 0.0, Bour = 0.0.

We use the temporal step size s = 5.0 x 1077, and study the numerical results
at the 20th time step. We vary the spatial step size & from 1.0/128 to 1.0/1024 and
compare the number of multigrid iterations required to reduce the norm of the residual
below the tolerance T = 1.0 x 10~%. Here, the stopping tolerance is |[R(¢)[2.« <
T =10x 10_8, where R(¢) and the norm are defined in (3.49) of Sect.3.4. A is the
number of multigrid smoothing sweeps in the multigrid solver, as defined in Sect. 3.3.
Based on our experience as well as established in Trottenberg et al. (2001), we expect
that the optimal value of A should be less than 5.

In Table 1, we show the number of multigrid iterations needed for various choices
of &, A, and ypend. We can see that for the smoothing parameter A = 2, the required
number of iterations is nearly independent of /. The detailed residual values for Test 2
and Test 6 in Table 1 are given in graphical form in Fig. 5, from which we observe for
A = 2 the norm of residual is reduced approximately the same factor at each iteration
regardless of 4. With A = 1, we do nothave this. By these features of multigrid operator
with optimal complexity in Kay and Welford (2006), Trottenberg et al. (2001), it is
evident that the multigrid solver here has near optimal complexity at A = 2.
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109\ —®—h=10/128 —®-h=1.0128 |
b —&—h =1.0/256 —%--h=1.0/256
—8—h=1.0/512 —-@-h=1.0/512
_ —&—h=1.0/1024 —A--h=1.0/1024
[ s
:a 10
[7]
(]
o
2
Z 10k
(o]
E
[]
T
o &
o 10%E
<
[
O
w
108
1o~10 L L L I 1 L L I I 1

1 2 3 4 5 6 7 8 9 10 11 12
Multigrid V-cycle Iteration

Fig. 5 The residual values per multigrid iteration in Test 2 and 6 at the 20th time step with step size
s = 5.0 x 107, The initial data are given by (4.1)-(4.2). The parameters are given in the text and in
Table 1. The results show that the residual reduction is nearly independent of /4 at & = 2, which suggests
the near optimal complexity of the solver

4.2 Convergence of the schemeass,h — 0

Next, we perform convergence tests of our scheme (3.18)—(3.22) as s, h — 0. We
expect that, at best, the global error in ¢ is e;—7 = O(s) + O(h?). To this end, we
perform four tests similar to those in Wise (2010), under the same conditions except
a refinement path of the form s = C h2. The initial data is given in (4.1)—(4.2) and
the parameters used are Ly = L, = 1.0; ¢ = 0.02; ypend = 0.1; ysur = 1.0;
Yarea = 1.0 X 10% yin = 1.0 x 10°; your = 1.0 x 10°; ¥in = 0.1; You = 0.8;
My = 0.5; My = 1.0; Bin = 0.0; Boue = 0.0;and T = 6.4 x 10~%; where T is
the final time. We set time step size to be s = 6.4 x 10~ and spatial step size to
be h = 1/128, and we check to see that the global error is reduced by a factor of 4
when /4 is reduced by a factor of 2 and s is reduced by a factor of 4. Results in Table 2
show evidence that the algorithm is convergent in space and the global error is indeed
ei—r = O(h?). Refinement study in time step also show a first order accuracy. In
other words, a global error of the form ¢;—7 = O(s) + O(h?) is consistent with the
test results.

4.3 Vesicle growth

In this section, we show the effect that the interior region of vesicle will expand, while
the arclength (surface area in 3D) remain roughly a constant. We use initial conditions
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Table 2 Errors and convergence rates of the scheme (3.18)—(3.22)

Grid sizes 1282-256% 2562-5122 5122-10242
Error 1.09 x 1072 2.87 x 1073 7.25 x 1074
Rate 1.93 1.98

Parameters are given in the text and the initial data is given by (4.1)—(4.2). Four tests with a refinement
step size s = C h? are presented. The error here is the global error between two nearby tests. The rate here
suggests second order convergence rate in £ is attained, i.e., ¢ = (’)(112)

and parameters as the growth case described in Sect.2.2. We take the initial condition
¢? j by evolving the initial data qb? ;a few time steps using the classical Cahn—Hilliard
equation:

=1, it Gy e = [yl —05+ ;- 05?2 <12} @3)

P =—1, if (x.y)) € Q\Q (4.4)
and

wi‘{j = —¢§{j x 0.35+ 045, (x;,y)) € Q (4.5)
where r = 0.18+0.03 cos(100) and 6 € [0, 27 ]. We use parameters L, = L, = 1.0;
h = 1.0/256;¢ = 0.01; ysurt = 1.0; Ybend = 0.05: Yarea = 5.0 x 10*; yin = 1.0x 107;
Yout = 1.0 X 10%; Youw = 0.8, My = 0.5; My = 1.0; Bin = 0.0; Bouww = 0.0;
s =1x 10_6; and the final time is T = 2.5 x 1072, In this case, the equilibrium
concentration values are wi“ = Yin and YO = Your.

The initial concentration of the outer phase is ¥* = 0.8 = ¥°", which is at
the equilibrium value. For the inner phase, the initial concentration is ¢ = 0.1.
We next perform two sample computations with the equilibrium concentration of the
inner phase wi“ =0.3or Wi“ = 0.65. According to the common tangent analysis in
Sect. 2.2, both cases will experience growth.

In Figs. 6 and 7, we show the result when wi" = 0.3 and wi“ = 0.65, respectively.
In both calculations, we can see the growth of inner regions from the shape evolution
(the evolution of ¢) in (a) of the two figures. The difference is that the vesicle in Fig.7
grows into a circle, which is the state with maximized volume when the interface
area stay unchanged; while the one in Fig. 6 does not. Data in (b)—(e) of both figures
explain how these changes and differences happen. (b) shows the evolution of energy
pout pbend - parea and posm respectively. It’s easy to see that the total energy drops
significantly, mainly due to the rapid decline of F™, while the surface energy, F5"',
remains roughly constant because of the penalty coefficient y,reqa. The detailed data
relevant to FSU, specifically, the arclength of the interface, are shown in (c). We note
that both changes are within 4 x 1073, that is within 0.265% compared to the original
value. (d) shows the mass changes in the domain €2, the interior region (white), and the
exterior region (black), respectively. The interior mass grows with the same amount
that is lost in the exterior region, i.e. the total mass is conserved. (¢) shows the evolution
of concentration of the interior region (™) and the concentration of the exterior region
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(a) Evolution of ¢
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Fig. 6 The evolution of ¢, energy, surface area, mass, and concentration in a growth case. The initial
condition is given in (4.3)-(4.5) and the parameters are in the text. The only initial difference with Fig.7
is that here we set ¥," = 0.3. In a, it shows the growth of inner region. The wrinkled interface stretches
gradually with permanent area. In b, the osmotic energy declines rapidly causing the interior growth. The

bending energy drops during the swelling. The surface energy remain roughly a constant and F

area

stay

close to 0 due to the penalty coefficient yarea. In ¢, it presents the change of FSUT, je., the interface area,
is within 2 x 1073, 0.133% compared to the original surface area. In d, the interior mass grows with the
same amount lost in the exterior region, i.e., the total mass is conserved. In e, it shows that ¥'" increases

to the equilibrium value " = 0.3, while ¥°U! stays at the value of equilibrium U = 0.8
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(¥°"). Curves in Fig. 6e present that ¥ increases to its equilibrium value ¥" = 0.3
and " stays at the equilibrium value ¥ = 0.8, which is consistent with the
analysis in Sect.2.2.

In Fig. 7, the simulation results are different. The reason is that a significant amount
of net mass must be moved from the outer phase into the inner phase to attain the
equilibrium value " = 0.65 in the inner phase. However, the arclength inextensibility
here does not allow the inner concentration to increase to the expected equilibrium
value 0.65, because the vesicle already reaches a circular morphology, the shape with
the maximum area (volume in 3D) for the fixed arclength, and cannot accept any
additional mass from the exterior region.

For the same initial condition in (4.3)—(4.5), we now set ypend = 0.5 which means
a ten times bending energy F®" compared to the previous calculation, and other
parameters remain the same as those used in Fig.7. The results are summarized in
Fig. 8. Compared to Fig.7, the shape evolution in Fig. 8 are obviously different at the
first several time steps due to a much faster decline of F"d_ Eventually the interface
evolves into a circle.

In Fig.9, we show shape evolution of four vesicles with different initial config-
urations, and other parameters remain the same as those used in Fig.7. Numerical
experiments show the following: the white region will grow with the decline of osmotic
energy; the sharp corners will swell faster for a fast drop of bending energy; as long as
the inner equilibrium concentration ¥ and the initial osmotic energy F™ are large
enough, the inner region will grow into a circle with preserved arclength.

4.4 Shrinkage simulations

In this section, we study vesicle shrinking following the condition discussed in
Sect. 2.2. That is, the area of the vesicle will decrease with prescribed arclength.
We take the initial condition qbo i by evolving the initial data qbo a few time steps
using the classical Cahn—Hilliard equation:

9 =1, if (v e =[Gyt =05+ (- 0.5 =12} @46

¢§2j=—1. it (xi,y;) € Q\Q 4.7)

and
Yl = =), x 0.1+07, (xi.y)) € R 4.8)

where r = 0.3 4+ 0.01cos(100) and 6 € [0, 27 ]. We set parameters Ly = Ly, =
1.0; h = 1.0/256; ¢ = 0.01; Ysurt = 1.0; Ybenda = 0.1; Yarea = 5.0 X 10%; Yin =
1.0 x 105; Your = 1.0 X 105; Yin = 0.1; Youe = 0.8; Mo = 0.5; My = 1.0; Bin = 0.0;
Bout = 0.0; s = 1.0 x 107°; and the final time is 7 = 4.0 x 10~2. In this case, the
equilibrium concentration values are ¥\" = ¥, = 0.1 and ¥2"' = Yoy = 0.8.

In Fig. 10a, we show the shape evolution of ¢, which is obviously shrinking in area
while the arclength remains roughly constant. Consequently, the interface becomes
wrinkled. In Fig. 10b, we show the energy evolution curves of ST pbend = parea 4pq
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(a) Evolution of ¢
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Fig. 7 The evolution of ¢, energy, surface area, mass, and concentration in a growth case. The initial
condit@on is given in (4.3)—(4.5) and the parameters are in the text. The only initial difference with Fig. 6 is
that ¥\ = 0.65. In a, it shows the growth of inner region. The wrinkled interface stretches gradually with
permanent area and eventually the vesicle grows into a circle. In b, the osmotic energy declines rapidly
causing the interior growth. The bending energy drops until the wrinkled interface grows into a circle. The
surface energy remain roughly a constant and F™? stay close to 0 due to the penalty coefficient yarea. In ¢,
it presents the change of FS"" | i.e., the interface area, is within 4 x 1073,0.265% compared to the original
surface area. In d, the inside mass grows with the same amount lost in the outside region, i.e., the total mass
is conserved. In e, it shows that '™ increases toward the equilibrium value ¥\ = 0.65 but stays at about
0.6 while ¥°U stays close to but not at the value of equilibrium ¥ = 0.8, because the vesicle already
reaches a circular morphology (the shape with the maximum area with fixed arclength) and cannot accept
any additional mass from the exterior region
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(a) Evolution of ¢
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Fig. 8 The evolution of ¢, energy, surface area, mass, and concentration for another growth case. The
initial condition and the parameters are the same as those in Fig.7 except ypend = 0.5. In a, it shows the
similar growth effect as in Fig.7: the wrinkled interface stretches with permanent area and finally grows
into a circle. But the shapes at the first several time steps are obviously different due to a faster decline of
FYend 1 b, the decline of osmotic energy causes the interior growth. The bending energy drops until the
wrinkled interface grows into a circle. FSUf remain roughly a constant and F22 stay close to 0 due to the
penalty coefficient Yarea- In €-d, it presents the surface area constraint and mass conservation. In e, it shows
Y™ approaches the equilibrium value ¥!" = 0.65, and ¥°" stay close to the value of the equilibrium
Yo = (.8 as in Fig.7
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Fig. 9 Shape evolution of other growth examples with different initial conditions but same parameters as
in Fig. 7. The white regions grow because of the decline of osmotic energy; the sharp corners swell faster
for a fast drop of bending energy; as long as the inner equilibrium concentration ¥." and the initial osmotic
energy FOS™ are great enough, the inner region will grow into a circle with preserved surface area

Fosm_ pbend gliohtly increases at early times when Fo™ drop significantly, leading to
a shrinkage of the vesicle volume. F*"" however, stays roughly unchanged due to the
arclength constraint. The detailed data of the surface area could be checked in Fig. 10c.
Figure 10d gives the change of mass of the interior and exterior regions, as well as
the total mass conservation. In Fig. 10e, the inner concentration 1" is approaching
the equilibrium value ¥ = 0.1, while outer concentration ¥r°" roughly stays at the
equilibrium value 2" = 0.8.

Next, we study the shape evolution when ypena = 1, which is a ten times larger
bending energy compared with the previous computation. In Fig. 11, we find that
the inner phase shrinks with a very different pattern due to a much larger bending
energy. In particular, this change leads to the pinch-off and reattachment of bulbs
which may not be biologically realistic. In other words, this parameter, ypeng may be
out of range relative to the other parameters. The energy changes are similar to the ones
in Fig. 10b. In Fig. 11c, d, we present the surface area constraint and mass conservation.
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(a) Evolution of ¢
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Fig. 10 The evolution of ¢, energy, surface area, mass, and concentration in a shrinkage case. The initial
condition is given in (4.6)—(4.8) and the parameters are in the text. In a, it shows shrinkage effects where
the interface becomes wrinkled with prescribed surface area and the sharp corners shrink to form finger-like
structures. In b, the osmotic energy declines rapidly causing the inner region shrinking. The bending energy
slightly grows at first because of the shrinking. The surface energy remain roughly a constant and F3'?
stay close to 0 due to the surface area constraint. In c, it presents the change of FST js within 5 x 1073,
0.26% compared to the original surface area. In d, it implies the mass conservation. In e, ¥'" approaches
the equilibrium value ¥!" = 0.1, while U stays at the equilibrium value ¥"* = 0.8
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Fig. 11 The evolution of ¢, energy, surface area, mass, and concentration in another shrinkage case. The
initial condition and the parameters are the same as those in Fig. 10 except ypend = 1. In a, it shows the
similar shrinkage effect as in Fig. 10: the interface become wrinkled with permanent area, but the shape is
different due to a much greater F* bend Ty b, decline of the osmotic energy causes the inner region shrinking.
Fbend gecreases, FSU'T remains roughly a constant and F2"®* stays close to 0. In ¢—d, it presents the interface
area constraint and mass conservation. In e, 3™ approaches the equilibrium value 1" = 0.1, while y°"
stays at the equilibrium value "' = 0.8
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Fig.12 Shape evolution of other shrinkage examples with different initial morphology but same parameters
as those used in Fig. 10. They have a similar pattern: the inner region shrinks for the decline of osmotic energy
and the sharp corners shrink to form finger-like structure; the shrinking process is with preserved surface
area and mass; the concentrations of the inner and outer phases evolve to the corresponding equilibrium
valueslabelf

In Fig. 1 1e, we show that the concentrations inside and outside the interface approach
the equilibrium values ¥" and 2!, respectively.

In Fig. 12, we present shape evolution of several other shrinkage examples with
different initial morphology. They all follow the similar pattern: the white region will
shrink for the decline of osmotic energy; the sharp corners will shrink to form finger-
like structures; the shrinking process is always associated with arclength constraint
and total mass conservation. Note that the concentrations of the inner and outer phases
evolve to their corresponding equilibrium values.
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5 Conclusion

In this paper, we have developed a phase field model for vesicle growth or shrinkage
based on osmotic pressure that arises due to a chemical potential gradient. The primary
contribution is that we defined a novel form of osmotic energy (2.3) with two simple
quadratic functions (2.4). This allows us to control precisely the conditions for vesicle
volume growth or shrinkage, as determined by the common tangent construction. The
model is comprised of an Allen—Cahn-type equation, coupled to a Cahn—Hilliard-type
equation. We exhibited an implicit-explicit (IMEX) scheme and implemented a fast
nonlinear FAS multigrid method to update the system at each time step. We showed
detailed convergence tests for the solver and discretization scheme, and we presented
simulations of the evolution of the vesicle under growth or shrinkage conditions. The
proposed model provides an effective way for describing vesicle growth or shrinkage
in different situations by changing the parameters in the free energy.

Our IMEX scheme is obtained by balancing practical considerations, but it lacks a
theoretical analysis for stability. In the future, we plan to construct a new scheme based
on a convex splitting method of the discrete energy, or via an SAV-type approach, so as
to achieve theoretically provable energy stability. For the former, we will use the papers
(Wise 2010; Hu et al. 2009) for guidance. The convex splitting procedure requires
writing the energy as the difference of purely convex pieces. It is straightforward to
split the energy F (Wise 2010). There also exists a procedure for splitting F°end
(Feng et al. 2018). One key difficulty associated with the convex splitting of Fbend
is that a nonlinear energy functional term in the expansion is neither convex nor
concave. To overcome this subtle difficulty, two auxiliary terms were added to make
the combined term convex in Feng et al. (2018), which in turns yields a convex-concave
decomposition of the energy. In our model, it will be even more complex for the convex
splitting due to the fact that several terms in the energies F2®?, and F°™ are indefinite.
We will construct the convex pieces by adding auxiliary terms as suggested in Feng
etal. (2018). The SAV methodology of Shen and others offers a different strategy for
energy stability; and the key feature of that approach is that the resulting equations
are typically linear (Shen et al. 2018).

Second-order schemes will be used in the future, even if these are based on linear
IMEX constructions that may not lead to theoretical energy stability. It may be possible
to construct higher-order (in time) schemes with unique solvability and energy stability
properties as suggested in Guo et al. (2016), Yan et al. (2018), Guo et al. (2021), Cheng
et al. (2019), Shen et al. (2018). But these would be highly non-trivial. We plan to
investigate these issues in the next paper. In addition, we plan to extend this work to 3D
and a more complex temporal evolution by adding a Stokes-like equation, following
some ideas used in Chen et al. (2015), Yang (2021). This fluid—structure interaction
type model will enable a better realization of vesicle dynamics. The current model,
which is based only on diffusion, captures the free energy dissipation and may only
accurately predict equilibria. Furthermore, one could modify the model so that purely
biological considerations could alter the parameters so as to effect growth or shrinkage
based on a changing fluid microenvironment for the vesicle. This would require the
coupling of more biophysical equations to determine, for example, the electrolyte
concentrations dynamically.
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