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Control Barrier Function-Based Design of Gradient Flows

for Constrained Nonlinear Programming
Ahmed Allibhoy Jorge Cortés

AbstractÐ This paper considers the problem of designing
a continuous-time dynamical system that solves constrained
nonlinear optimization problems and makes the feasible set
forward invariant and asymptotically stable. The invariance
of the feasible set makes the dynamics anytime, when
viewed as an algorithm, meaning it returns a feasible
solution regardless of when it is terminated. Our approach
augments the gradient flow of the objective function with
inputs defined by the constraint functions, treats the fea-
sible set as a safe set, and synthesizes a safe feedback
controller using techniques from the theory of control
barrier functions. The resulting closed-loop system, termed
safe gradient flow, can be viewed as a primal-dual flow,
where the state corresponds to the primal variables and the
inputs correspond to the dual ones. We provide a detailed
suite of conditions based on constraint qualification under
which (both isolated and nonisolated) local minimizers are
asymptotically stable with respect to the feasible set and the
whole state space. Comparisons with other continuous-time
methods for optimization in a simple example illustrate the
advantages of the safe gradient flow.

I. INTRODUCTION

Optimization problems are ubiquitous in engineering and

applied science. The traditional emphasis on the numerical

analysis of algorithms is motivated by the implementation

on digital platforms. The alternate viewpoint of optimization

algorithms as continuous-time dynamical systems taken here

also has a long history, often as a precursor of the synthesis

of discrete-time algorithms. This viewpoint has been fruitful

for gaining insight into qualitative properties such as stability

and convergence.

For constrained optimization problems, the picture is com-

plicated by the fact that algorithms may need to ensure

convergence to the optimizer as well as enforce feasibility

of the iterates. The latter is important in real-time applications,

when feasibility guarantees may be required at all times in

case the algorithm is terminated before completion, or when

the algorithm is implemented on a physical plant where the

constraints encode its safe operation. In this paper, we show that,

just as unconstrained optimization algorithms can be viewed as

dynamical systems, constrained optimization algorithms can be

viewed as control systems. Within this framework, the task of

designing an optimization algorithm for a constrained problem

is equivalent to that of designing a feedback controller for a
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nonlinear system. We use this connection to derive a novel

control-theoretic algorithm for solving constrained nonlinear

programs that combines continuous-time gradient flows to

optimize the objective function with techniques from control

barrier functions to maintain invariance of the feasible set.

Related Work: Dynamical systems and optimization are

closely intertwined disciplines [2]±[4]. The work [5] provides a

contemporary review of the dynamical systems approach to op-

timization for both constrained an unconstrained problems, with

an emphasis on applications where the optimization problem

is in a feedback loop with a plant, see e.g. [6]±[8]. Examples

of such scenarios are numerous, including power systems [7],

[8], network congestion [9], and transportation [10].

Flows for Equality Constrained Problems: For problems

involving only equality constraints, [11], [12] employ dif-

ferential geometric techniques to design a vector field that

maintains feasibility along the flow, makes the constraint set

asymptotically stable, and whose solutions converge to critical

points of the objective function. The work [13] introduces a

generalized form of this vector field to deal with inequality

constraints in the form of a differential algebraic equation, and

explores links with sequential quadratic programming.

Projected Gradient Methods: Another approach to solving

nonlinear programs in continuous time makes use of projected

dynamical systems [14] by projecting the gradient of the

objective function onto the cone of feasible descent directions,

see e.g., [15]. However, projected dynamical systems are, in

general, discontinuous, which from an analysis viewpoint re-

quires properly dealing with notions and existence of solutions,

cf. [16]. The work [17] proposes a continuous modification

of the projected gradient method, whose stability is analyzed

in [18]. However, this method projects onto the constraint set

itself, rather than the tangent cone, and may fail when it is

nonconvex. Another modification is the ªconstrained gradient

flowº proposed in [19], derived using insights from nonsmooth

mechanics, and is well-defined outside the feasible set. The

resulting method is related to the one presented here and

converges to critical points, though the dynamics are once

again discontinuous, and stability guarantees are only provided

in the case of convexity, which we do not assume.

Saddle-Point Dynamics: Convex optimization problems can

be solved by searching for saddle points of the associated

Lagrangian via a primal-dual dynamics consisting of a gradient

descent in the primal variable and a gradient ascent in the dual

one. The analysis of stability and convergence of this method

has a long history [2], [20], with more recent accounts provided

for discrete-time implementations [21] and continuous-time
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ones [22]±[24]. These methods are particularly well suited for

distributed implementation on network optimization problems,

but they do not leave the feasible set invariant.

Contributions: We consider the synthesis of continuous-

time dynamical systems that solve constrained optimization

problems while making the feasible set forward invariant and

asymptotically stable. Our first contribution is the design of

the safe gradient flow for constrained optimization using the

framework of safety-critical control. The basic intuition is to

combine the standard gradient flow to optimize the objective

function with the idea of keeping the feasible set safe. To

maintain safety, we augment the gradient dynamics with inputs

associated with the constraint functions and use a control barrier

function approach to design an optimization-based feedback

controller that ensures forward invariance and asymptotic

stability of the feasible set. The approach is primal-dual, in

the sense that the states correspond to the primal variables and

the inputs correspond to the dual variables.

Our second contribution unveils the connection of the pro-

posed dynamics with the projected gradient flow. Specifically,

we provide an alternate derivation of the safe gradient flow as

a continuous modification of the projected gradient flow, based

on a design parameter. We show that, as the parameter grows

to ∞, the safe gradient flow becomes the projected gradient

flow.

In addition to establishing an interesting parallelism, we build

on this equivalence in our third contribution for understanding

the regularity and stability properties of the safe gradient

flow. We show that the flow is locally Lipschitz (ensuring the

existence and uniqueness of classical solutions), well defined on

an open set containing the feasibility region (which allows for

the possibility of infeasible initial conditions), that its equilibria

exactly correspond to the critical points of the optimization

problem, and that the objective function is monotonically

decreasing along the feasible set of the optimization problem.

Lastly, we prove that the feasible set is forward invariant and

asymptotically stable.

Our fourth contribution consists of a thorough stability

analysis of the critical points of the optimization problem

under the safe gradient flow. We provide a suite of constraint

qualification-based conditions under which isolated local min-

imizers are either locally asymptotically stable with respect

to the feasible set, locally asymptotically stable with respect

to the global state space, or locally exponentially stable. We

also provide conditions for semistability of nonisolated local

minimizers and establish global convergence to critical points of

the optimization problem. Our technical analysis for this builds

on a combination of the Kurdyaka-èojasiewicz inequality with

a novel angle-condition Lyapunov test to establish the finite

arclength of trajectories, which we present in the appendix.

A preliminary version of this work appeared previously

as [1]. The present work significantly expands the scope of the

stability analysis of isolated local minimizers under weaker

assumptions, as well as characterizes the stability of nonisolated

local minimizers, global convergence to critical points, and

highlights the advantages of the safe gradient flow over other

continuous-time methods in optimization.

Notation: We let R denote the set of real numbers. For

v, w ∈ R
n, v ≤ w (resp. v < w) denotes vi ≤ wi (resp.

vi < wi) for i ∈ {1, . . . , n}. We let ∥v∥ denote the Euclidean

norm and ∥v∥∞ = max1≤i≤n |vi| the infinity norm. For y ∈ R,

we denote [y]+ = max{0, y}, and sgn(y) = 1 if y > 0,

sgn(y) = −1 if y < 0 and sgn(y) = 0 if y = 0. We let

1m ∈ R
m denote the vector of all ones. For a matrix A ∈

R
n×m, we use ρ(A) and A† to denote its spectral radius

and its Moore-Penrose pseudoinverse, respectively. We write

A ⪰ 0 (resp., A ≻ 0) to denote A is positive semidefinite

(resp., A is positive definite). Given a subset C ⊂ R
n, the

distance of x ∈ R
n to C is distC(x) = infy∈C∥x− y∥. We let

C, int(C), and ∂C denote the closure, interior, and boundary

of C, respectively. Given X ⊂ R
n and f : X → R

m, the

graph of f is graph(f) = {(x, f(x)) | x ∈ X}. Similarly,

given a set-valued map F : X ⇒ R
m, its graph is graph(F) =

{(x, y) | x ∈ X, y ∈ F(x)}. Given g : Rn → R, we denote its

gradient by ∇g and its Hessian by ∇2g. For g : Rn → R
m,

∂g(x)
∂x

denotes its Jacobian. For I ⊂ {1, 2, . . . ,m}, we denote

by
∂gI(x)

∂x
the matrix whose rows are {∇gi(x)

⊤}i∈I .

II. PRELIMINARIES

We present notions on invariance, stability, variational

analysis, control barrier functions, and nonlinear programming.

The reader familiar with the material can safely skip the section.

A. Invariance and Stability Notions

We recall basic definitions from the theory of ordinary

differential equations [25]. Let F : Rn → R
n be a locally

Lipschitz vector field and consider the dynamical system

ẋ = F (x). Local Lipschitzness ensures that, for every initial

condition x0 ∈ R
n, there exists T > 0 and a unique trajectory

x : [0, T ] → R
n such that x(0) = x0 and ẋ(t) = F (x(t)). If

the solution exists for all t ≥ 0, then it is forward complete.

In this case, the flow map is defined by Φt : R
n → R

n such

that Φt(x) = x(t), where x(t) is the unique solution with

x(0) = x. The positive limit set of x ∈ R
n is

ω(x) =
⋂

T≥0

{Φt(x) | t > T}.

A set K ⊂ R
n is forward invariant if x ∈ K implies that

Φt(x) ∈ K for all t ≥ 0. If K is forward invariant and x∗ ∈ K
is an equilibrium, x∗ is Lyapunov stable relative to K if for

every open set U containing x∗, there exists an open set Ũ
also containing x∗ such that for all x ∈ Ũ ∩K, Φt(x) ∈ U ∩K
for all t > 0. The equilibrium x∗ is asymptotically stable
relative to K if it is Lyapunov stable relative to K and there

is an open set U containing x∗ such that Φt(x) → x∗ as

t→ ∞ for all x ∈ U ∩ K. We say x∗ is exponentially stable
relative to K if it is asymptotically stable relative to K and

there exists µ > 0 and an open set U containing x∗ such that

for all x ∈ U ∩K, ∥Φt(x)− x∗∥ ≤ e−µt∥x− x∗∥. Analogous

definitions of Lyapunov stability and asymptotically stability

can be made for sets, instead of individual points.

Consider a forward invariant set K and a set of equilibria S
contained in it, S ⊂ K. We say x∗ ∈ S is semistable
relative to K if x∗ is Lyapunov stable and, for any open
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set U containing x∗, there is an open set Ũ such that for

every x ∈ Ũ ∩ K, the trajectory starting at x converges to

a Lyapunov stable equilibrium in U ∩ S. Note that if x∗ is

an isolated equilibrium, then semistability is equivalent to

asymptotic stability. For all the concepts introduced here, when

the invariant set is unspecified, we mean K = R
n.

B. Variational Analysis

We review basic notions from variational analysis follow-

ing [26]. The extended real line is R = R ∪ {±∞}. Given

f : Rn → R, its domain is dom(f) = {x ∈ R
n | f(x) ̸=

∞,−∞}. The indicator function of C ⊂ R
n is δC : Rn → R,

δC(x) =

{

0 if x ∈ C,

∞ if x /∈ C.

Note that dom(δC) = C. For x ∈ dom(f) and d ∈ R
n, consider

the following limits

f ′(x; d) = lim
(h,y)→(0+,x)

f(y + hd)− f(x)

h
, (1a)

f ′′(x; d) = lim
(h,y)→(0+,x)

f(y + hd)− f(x)− hf ′(y; d)

h2
.

(1b)

If the limit in (1a) (resp. (1b)) exists, f is directionally differen-
tiable in the direction d (resp. twice directionally differentiable
in the direction d). By definition, f ′(x; d) = ∇f(x)⊤d if f is

continuously differentiable at x and f ′′(x; d) = d⊤∇2f(x)d
if f is twice continuously differentiable at x.

Given a dynamical system ẋ = F (x) and a function V :
R

n → R, the upper-right Dini derivative of V along solutions

of the system is

D+
F V (x) = lim sup

h→0+

1

h
[V (Φh(x))− V (x)] ,

where Φh is the flow map of the system. If V is directionally

differentiable then D+
F V (x) = V ′(x;F (x)), and if V is

differentiable then D+
F V (x) = ∇V (x)⊤F (x).

The tangent cone to C ⊂ R
n at x ∈ R

n is

TC(x) =
{

d ∈ R
n | ∃{tν}∞ν=1 ⊂ (0,∞), {xν}∞ν=1 ⊂ C

tν → 0+, xν → x,
xν − x

tν
→ d as ν → ∞

}

.

If C is an embedded submanifold of R
n, then the tangent

cone coincides with the usual differential geometric notion of

tangent space. Let ΠC : Rn
⇒ C, ΠC(x) =

{

y ∈ C | ∥x−y∥ =
distC(x)

}

, be the projection map onto C. The proximal normal
cone to C at x is

N prox
C (x) =

{

d ∈ R
n | ∃{tν}∞ν=1 ⊂ (0,∞),

{(xν , yν)}∞ν=1 ⊂ graph(ΠC),

tν → 0+, xν → x,
xν − yν

tν
→ d as ν → ∞

}

.

C. Safety Critical Control via Control Barrier Functions

We introduce here basic concepts from safety and a method

for synthesizing safe controllers using vector control barrier

functions. Our exposition here slightly generalizes [27], [28] to

set the stage for dealing with constrained optimization problems

later. Consider a control-affine system

ẋ = F0(x) +

r
∑

i=1

uiFi(x), (2)

with locally Lipschitz vector fields Fi : Rn → R
n, for i ∈

{0, . . . , r}, and a set U ⊂ R
m of valid control inputs. Let

C ⊂ R
n represent the set of states where the system can

operate safely and u : X → U be a locally Lipschitz feedback

controller, with X ⊂ R
n a set containing C. The closed-loop

system (2) under u is safe with respect to C if C is forward

invariant under the closed-loop system.

Feedback controllers can be certified to be safe by resorting

to the notion of control barrier function, which we here

generalize for convenience. Let C ⊂ X ⊂ R
n and m, k ∈ Z≥0.

A (m, k)-vector control barrier function (VCBF) of C on

X relative to U is a continuously differentiable function

ϕ : Rn → R
m+k such that the following properties hold:

(i) The safe set can be expressed using m inequality

constraints and k equality constraints:

C = {x ∈ R
n | ϕi(x) ≤ 0, 1 ≤ i ≤ m,

ϕj(x) = 0, m+ 1 ≤ j ≤ m+ k};

(ii) there exists α > 0 such that the map K : Rn
⇒ U ,

Kα(x) =
{

u ∈ U |

D+
F0
ϕi(x)+

r
∑

ℓ=1

uℓD
+
Fℓ
ϕi(x)+αϕi(x) ≤ 0,

D+
F0
ϕj(x) +

r
∑

ℓ=1

uℓD
+
Fℓ
ϕj(x) + αϕj(x) = 0,

1 ≤ i ≤ m, m+ 1 ≤ j ≤ m+ k
}

,

takes nonempty values for all x ∈ X .

In the special case where m = 1 and k = 0, this definition

coincides with the usual notion of control barrier function [28,

Definition 2], where the class K function is linear, and the Lie

derivative has been replaced with the upper-right Dini derivative.

In general, the problem of finding a suitable VCBF ϕ is

problem-specific: in many cases, the function naturally emerges

from formalizing mathematically the safety specifications one

seeks to enforce. The use of vector-valued functions instead of

scalar-valued ones allows to consider a broader class of safe

sets. If ϕ is a VCBF and u is a feedback where u(x) ∈ Kα(x),
it follows that along solutions to (2), d

dt
ϕi(x) ≤ −αϕi(x) for

1 ≤ i ≤ m and d
dt
ϕj(x) = −αϕj(x) for m+ 1 ≤ j ≤ m+ k,

which implies safety of C. This is stated formally in the next

generalization of [28, Theorem 2].

Lemma 2.1 (Safe feedback control): Consider the system

(2) with safety set C and let ϕ be a vector control barrier

function for C on X . Then, any feedback controller u : X → U
satisfying u(x) ∈ Kα(x) for all x ∈ X and such that
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x 7→ F0(x) +
∑m

i=0 ui(x)Fi(x) is locally Lipschitz renders C
forward invariant and asymptotically stable.

While Lemma 2.1 provides sufficient conditions for feedback

controller to be safe, it does not specify how to synthesize it.

A common technique [27] is, for each x ∈ X , to define u(x)
as the minimum-norm element of Kα(x). Here, we pursue an

alternative design of the form:

u(x) ∈ argmin
u∈Kα(x)

{
∥

∥

∥

r
∑

i=1

uiFi(x)
∥

∥

∥

2}

. (3)

This design has the interpretation of finding a controller which

guarantees safety while modifying the drift term in (2) as little

as possible. In general, Lipschitz continuity of the closed-loop

dynamics under either design is not guaranteed, cf. [29], so

additional assumptions may be needed to establish safety via

Lemma 2.1.

D. Optimality Conditions for Nonlinear Programming

We present the basic background on necessary conditions

for optimality [30]. Consider a nonlinear program of the form:

minimize
x∈Rn

f(x)

subject to g(x) ≤ 0

h(x) = 0,

(4)

where f : R
n → R, g : R

n → R
m, h : R

n → R
k are

continuously differentiable. Let

C = {x ∈ R
n | g(x) ≤ 0, h(x) = 0}, (5)

denote its feasible set. Necessary conditions for optimality can

be derived provided that the feasible set satisfies appropriate

constraint qualification conditions. Let the active constraint,

constraint violation, and inactive constraint sets be

I0(x) = {1 ≤ i ≤ m | gi(x) = 0},

I+(x) = {1 ≤ i ≤ m | gi(x) > 0},

I−(x) = {1 ≤ i ≤ m | gi(x) < 0},

respectively. We say that the optimization problem (4) satisfies

• the Mangasarian-Fromovitz Constraint Qualification

(MFCQ) if {∇hj(x)}
k
j=1 are linearly independent and

there exists ξ ∈ R
n such that ∇hj(x)

⊤ξ = 0 for all

j ∈ {1, . . . , k} and ∇gi(x)
⊤ξ < 0 for all i ∈ I0(x);

• the Extended Mangasarian-Fromovitz Constraint Qualifi-

cation (EMFCQ) if {∇hj(x)}
k
j=1 are linearly independent

and there exists ξ ∈ R
n such that ∇hj(x)

⊤ξ = 0
for all j ∈ {1, . . . , k} and ∇gi(x)

⊤ξ < 0 for all

i ∈ I0(x) ∪ I+(x);
• the Linear Independence Constraint Qualification (LICQ)

at x, if {∇gi(x)}i∈I0(x) ∪ {∇hj(x)}
k
j=1 are linearly

independent.

If x∗ ∈ C is a local minimizer, and any of the above

constraint qualification conditions hold at x∗, then there exists

u∗ ∈ R
m and v∗ ∈ R

k such that the Karash-Kuhn-Tucker
conditions hold,

∇f(x∗) +
∂g(x∗)

∂x

⊤

u∗ +
∂h(x∗)

∂x

⊤

v∗ = 0, (6a)

g(x∗) ≤ 0, (6b)

h(x∗) = 0, (6c)

u∗ ≥ 0, (6d)

(u∗)⊤g(x∗) = 0. (6e)

The pair (u∗, v∗) are called Lagrange multipliers, and the triple

(x∗, u∗, v∗) satisfying (6) is referred to as a KKT triple. We

denote the set of KKT points of (4) by

XKKT = {x∗ ∈ R
n | ∃(u∗, v∗) ∈ R

m × R
k

such that (x∗, u∗, v∗) solves (6)}.

III. PROBLEM FORMULATION

Our goal is to solve the optimization problem (4) by

designing a dynamical system ẋ = F (x) that converges to its

solutions. The dynamics should enjoy the following properties:

(i) trajectories should remain feasible if they start from a

feasible point. This can be formalized by asking the

feasible set C, defined in (5), to be forward invariant;

(ii) trajectories that start from an infeasible point should

converge to the set of feasible points. This can be

formalized by requiring that F is well defined on an open

set containing C, and that C as a set is asymptotically

stable with respect to the dynamics.

The requirement (i) ensures that, when viewed as an algorithm,

the dynamics is anytime, meaning that it is guaranteed to return

a feasible solution regardless of when it is terminated. The

requirement (ii) ensures in particular that trajectories beginning

from infeasible initial conditions approach the feasible set and,

if the solutions of the optimization (4) belong to the interior of

the feasible set, such trajectories enter it in finite time, never

to leave it again. The problem is summarized below:

Problem 1: Find an open set X containing C and design

a vector field F : X → R
n such that the system ẋ = F (x)

satisfies the following properties:

(i) F is locally Lipschitz on X;

(ii) C is forward invariant and asymptotically stable;

(iii) x∗ is an equilibrium if and only if x∗ ∈ XKKT;

(iv) x∗ is asymptotically stable if x∗ is a isolated local

minimizer.

IV. CONSTRAINED NONLINEAR PROGRAMMING VIA SAFE

GRADIENT FLOW

In this section we introduce our solution to Problem 1 in

the form of a dynamical system called the safe gradient flow.

We present two interpretations of this system: the first is from

the perspective of safety critical control, where we augment

the standard gradient flow with an input and design a feedback

controller using the procedure outlined in Section II-C. The

second is as an approximation of the projected gradient flow.

Interestingly, we show that both interpretations are equivalent.

A. Safe Gradient Flow via Feedback Control

Consider the control-affine system

ẋ = −∇f(x)−
∂g(x)

∂x

⊤

u−
∂h(x)

∂x

⊤

v. (7)
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(a) (b)

Fig. 1: Intuition behind the design of the safe gradient flow. Grey lines are
the level curves of the objective function and the shaded region is C. In (a),
the initial condition is x0 and the minimizer is x∗, with −∇f(x) in black
and −∇g(x) in gray at both points. In (b), the dashed line is a trajectory of
ẋ = −∇f(x)− u∇g(x) starting from x0. The black vectors are −∇f(x),
the gray vectors are −u∇g(x), and the red vectors are ẋ. Deep in the interior
of the feasible set, one has u ≈ 0, as following the gradient of f does not
jeopardize feasibility while minimizing it. As the trajectory approaches the
boundary, u increases to keep the trajectory in C.

One can interpret this system as the standard gradient flow of

f modified by a ªcontrol actionº. The intuition is that the drift

term takes care of optimizing f toward the minimizer, and this

direction can be modified with the input if the trajectory gets

close to the boundary of the feasible set, cf. Figure 1.

Our idea for the controller design is to only modify the drift

when the feasibility of the state is endangered. We accomplish

this by looking at the feasible set C as a safe set and using

ϕ = (g, h) : Rn → R
m+k as an (m, k)-vector control barrier

function to synthesize the feedback controller, as described

next.

Let α > 0 be a design parameter. For reasons of space, we

sometimes omit the arguments of functions when they are clear

from the context. Following Section II-C, define the admissible

control set as

Kα(x) =
{

(u, v) ∈ R
m
≥0 × R

k
∣

∣

−
∂g

∂x

∂g

∂x

⊤

u−
∂g

∂x

∂h

∂x

⊤

v ≤
∂g

∂x
∇f(x)− αg(x)

−
∂h

∂x

∂g

∂x

⊤

u−
∂h

∂x

∂h

∂x

⊤

v =
∂h

∂x
∇f(x)− αh(x)

}

.

(8)

The next result shows that ϕ is a valid VCBF for (7).

Lemma 4.1: (Vector control barrier function for (7)):
Consider the optimization problem (4). If MFCQ holds for all

x ∈ C, then there exists an open set X containing C such that

the function ϕ = (g, h) : Rn → R
m+k is a valid (m, k)-VCBF

for (7) on X relative to U = R
m
≥0 × R

k.

Proof: We begin by showing that inequalities parameter-

izing Kα(x) are strictly feasible for all x ∈ C, i.e., for each

x ∈ C, there exists ϵ > 0 and (u, v) ∈ R
m
≥0 × R

k such that

−
∂g

∂x

∂g

∂x

⊤

u−
∂g

∂x

∂h

∂x

⊤

v ≤
∂g

∂x
∇f(x)− αg(x)− ϵ1m (9a)

−
∂h

∂x

∂g

∂x

⊤

u−
∂h

∂x

∂h

∂x

⊤

v =
∂h

∂x
∇f(x)− αh(x). (9b)

Let g̃ = g(x)+ ϵ
α
1m. By Farka’s Lemma [31], (9) is infeasible

if and only if there exists a solution (u, v) to

−
∂g

∂x

∂g

∂x

⊤

u−
∂g

∂x

∂h

∂x

⊤

v ≥ 0 (10a)

−
∂h

∂x

∂g

∂x

⊤

u−
∂h

∂x

∂h

∂x

⊤

v = 0 (10b)

u ≥ 0 (10c)

u⊤
(

∂g

∂x
∇f − αg̃

)

+ v⊤
(

∂h

∂x
∇f − αh(x)

)

< 0. (10d)

Then (10a), (10b), and (10c) imply that

[

u
v

]⊤
[

∂g
∂x

∂g
∂x

⊤ ∂g
∂x

∂h
∂x

⊤

∂h
∂x

∂g
∂x

⊤ ∂h
∂x

∂h
∂x

⊤

]

[

u
v

]

≤ 0

but, since the matrix is positive semidefinite,

(u, v) ∈ ker

[

∂g
∂x

∂g
∂x

⊤ ∂g
∂x

∂h
∂x

⊤

∂h
∂x

∂g
∂x

⊤ ∂h
∂x

∂h
∂x

⊤

]

= ker
[

∂g
∂x

⊤ ∂h
∂x

⊤
]

. (11)

Next, by (11) and that x ∈ C, (10d) reduces to

− u⊤(αg(x)− ϵ1m) < 0, (12)

and by a second application of Farka’s Lemma, we see that

(10c), (11) and (12) are feasible if and only if the following

system is infeasible:

∂g(x)

∂x
ξ ≤ −αg(x)− ϵ1m

∂h(x)

∂x
ξ = 0. (13a)

We claim that a solution to (13) can be constructed if MFCQ

holds at x. Indeed, by MFCQ, there exists ξ̃ ∈ R
n such that

∂gI0
∂x

ξ̃ < 0 and ∂h
∂x
ξ̃ = 0, and for ϵ sufficiently small, there

exists γ > 0 such that ξ = γξ̃ solves (13). Thus (10) is

infeasible, and therefore (9) is feasible.

By strict feasibility and the fact that the matrix ∂h
∂x

∂h
∂x

⊤
has

full rank, it can be shown by [32, Theorem 2] that, for all

x ∈ C, the affine inequalities that parameterize Kα(x) are

regular1. Finally, since the affine inequalities parameterizing

Kα are continuous, Kα(y) is nonempty for any y sufficiently

close to x. Hence there exists an open set X such that Kα

takes nonempty values on X .

Since ϕ is a VCBF, we can design a feedback of the form (3)

to maintain safety of C while modifying the drift term as little

as possible. Formally,

[

u(x)
v(x)

]

∈ argmin
u,v∈Kα(x)

{

∥

∥

∥

∂g(x)

∂x

⊤

u+
∂h(x)

∂x

⊤

v
∥

∥

∥

2
}

. (14)

We refer to the closed-loop system (7) under the controller (14)

as the safe gradient flow. In general, the solution to (14) might

not be unique. Nevertheless, as we show later, the safe gradient

flow is well-defined because, the closed-loop behavior of the

system is independent of the chosen solution.

Comparing (7) with the KKT equation (6a) suggests that

(u(x), v(x)) can be interpreted as approximations of the dual

variables of the problem. With this interpretation, the safe

gradient flow can be viewed as a primal-dual method. We

use this viewpoint later to establish connections between the

proposed method and the projected gradient flow.

1Consider a linear system of inequalities of the form Cz ≤ c, Dz = d, and
a solution z0. The system is regular (c.f. [32]) if for C′, c′, D′, d′ sufficiently
close to C, c,D, d, the perturbed system C′z ≤ c′, D′z = d′ remains
feasible, and the distance of z0 to the solution set of the perturbed system is
proportional to the magnitude of the perturbation.
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Remark 4.2: (Connection with the Literature): The

work [11] considers the problem of designing a dynamical

system to solve (4) when only equality constraints are present

using a differential geometric approach. Here, we show that

the safe gradient flow generalizes the solution proposed in [11].

Under the assumption that h ∈ Cr and LICQ holds, the feasible

set C = {x ∈ R
n | h(x) = 0} is an embedded Cr submanifold

of R
n of codimension k. The approach in [11] proceeds by

identifying a vector field F : Rn → R
n satisfying: (i) F ∈ Cr

and F (x) ∈ TC(x) for all x ∈ C; and (ii) ḣ(x) = −αh(x)
along the trajectories of ẋ = F (x), where α > 0 is a

design parameter. The proposed vector field satisfying both

properties is

F (x) = −
(

I −
∂h

∂x

† ∂h

∂x

)

∇f(x)− α
∂h

∂x

†

h(x). (15)

To see that this corresponds to the safe gradient flow, note that

the admissible control set (8) in this case is

Kα(x) =
{

v ∈ R
k | −

∂h

∂x
∇f(x)−

∂h

∂x

∂h

∂x

⊤

v = −αh(x)
}

.

By the LICQ assumption, Kα(x) is a singleton whose unique

element is

v(x) = −
(∂h

∂x

∂h

∂x

⊤)−1(∂h

∂x
∇f(x)− αh(x)

)

.

Substituting this into (7), we obtain the expression (15). This

provides an alternative interpretation from a control-theoretic

perspective of the differential-geometric design in [11], and

justifies viewing the safe gradient flow as the natural extension

to the case with both inequality and equality constraints. •
Remark 4.3: (Inequality Constraints via Quadratic Slack

Variables): The work [13] pursues a different approach that the

one taken here to deal with inequality constraints by reducing

them to equality constraints. This is accomplished introducing

quadratic slack variables. Formally, for each i ∈ {1, . . . ,m},

one replaces the constraint gi(x) ≤ 0 with the equality

constraint gi(x) = −y2i , and solves the equality-constrained

optimization problem in the variables (x, y) ∈ R
n+m with a

flow of the form (15). While this method can be expressed

in closed form, there are several drawbacks with it. First,

this increases the dimensionality of the problem, which can

be problematic when there are a large number of inequality

constraints. Second, adding quadratic slack variables introduces

equilibrium points to the resulting flow which do not correspond

to KKT points of the original problem. •

B. Safe Gradient Flow as an Approximation of the

Projected Gradient Flow

Here, we introduce an alternative design in terms of a

continuous approximation of the projected gradient flow.

The latter is a discontinuous dynamical system obtained by

projecting the gradient of the objective function onto the tangent

cone of the feasible set. Later, we show that this continuous

approximation is in fact equivalent to the safe gradient flow.

Let x ∈ C and suppose that MFCQ holds at x. Then the

tangent cone of C at x is

TC(x) =
{

ξ ∈ R
n

∣

∣

∣

∣

∂h(x)

∂x
ξ = 0,

∂gI0(x)

∂x
ξ ≤ 0

}

.

For x ∈ C, let ΠTC(x) be the projection onto TC(x). In general,

the projection is a set-valued map, but the fact that TC(x) is

closed and convex makes the projection onto TC(x) unique in

this case. The projected gradient flow is

ẋ = ΠTC(x)(−∇f(x))

= argmin
ξ∈Rn

1

2
∥ξ +∇f(x)∥2

subject to
∂gI0(x)

∂x
ξ ≤ 0,

∂h(x)

∂x
ξ = 0.

(16)

In general, this system is discontinuous, so one must resort

to appropriate notions of solution trajectories and establish

their existence, see e.g., [16]. Here, we consider Carathéodory

solutions, which are absolutely continuous functions that

satisfy (16) almost everywhere. When Carathéodory solutions

exist in C, then the KKT points of (4) are equilibria of (16),

and isolated local minimizers are asymptotically stable.

Consider the following continuous approximation of (16) by

letting α > 0 and defining Gα by

Gα(x) = argmin
ξ∈Rn

1

2
∥ξ +∇f(x)∥2

subject to
∂g(x)

∂x
ξ ≤ −αg(x)

∂h(x)

∂x
ξ = −αh(x).

(17)

Note that (17) has a similar form to (16), and has a unique

solution if one exists. However, as we show later, unlike the

projected gradient flow, the vector field Gα is well defined

outside C and is Lipschitz.

We now show that Gα approximates the projected gradient

flow. Intuitively, this is because for inactive constraints j /∈
I0(x), one has gj(x) < 0 and hence the jth inequality con-

straint in (17), ∇gj(x)
⊤ξ ≤ −αgj(x), becomes ∇gj(x)

⊤ξ ≤
∞ as α → ∞ and the constraint is effectively removed,

reducing the problem to (16). This is formalized next.

Proposition 4.4 (Gα approximates the projected gradient):
Let x ∈ C and suppose MFCQ holds. Then

(i) Gα(x) ∈ TC(x).
(ii) limα→∞ Gα(x) = ΠTC(x)(−∇f(x)).

Proof: To show (i), note that if x ∈ C, then h(x) = 0 and

gI0(x) = 0, so the constraints in (17) imply that
∂h(x)
∂x

Gα(x) =

0 and
∂gI0 (x)

∂x
Gα(x) ≤ 0, and therefore Gα(x) ∈ TC(x).

Regarding (ii), for fixed x ∈ C, let J = I−(x) and consider

the following quadratic program

Px(ϵ) = argmin
ξ∈Rn

1

2
∥ξ +∇f(x)∥2

subject to
∂gI0(x)

∂x
ξ ≤ 0,

∂h(x)

∂x
ξ = 0

ϵ
∂gJ(x)

∂x
ξ ≤ −gJ(x).

(18)

When ϵ = 0, the feasible sets of (18) and (16) are the

same. Since the objective functions are also the same,

Px(0) = ΠTC(x)(−∇f(x)). Furthermore, for all α > 0,

Px(
1
α
) = Gα(x). Finally, since the QP defining Px has a

unique solution, and satisfies the regularity conditions in
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Fig. 2: Projected gradient flow versus continuous approximation. The solution
of the projected gradient flow is in black and solutions of ẋ = Gα(x) for
varying values of α are in the colors corresponding to the colorbar. All solutions
start from the same initial condition, marked by the black dot.

[33, Definition 2.1], Px is continuous at ϵ = 0 by [33,

Theorem 2.2]. Hence limα→∞ Gα(x) = limϵ→0+ Px(ϵ) =
Px(0) = ΠTC(x)(−∇f(x)).

A consequence of Proposition 4.4 is that solutions of ẋ =
Gα(x) approximate the solutions of the projected gradient flow,

with decreasing error as α increases, cf. Figure 2.

C. Equivalence Between the Two Interpretations

Here we establish the equivalence between the two interpre-

tations of the safe gradient flow. Specifically, we show that

the control barrier function quadratic program (14) can be

interpreted as a dual program corresponding to the continuous

approximation of the projected gradient flow in (17).

Let L : Rn × R
m
≥0 × R

k × R
n → R be

L(ξ, u, v;x) =
1

2
∥ξ +∇f(x)∥2

+ u⊤
(∂g(x)

∂x
ξ + αg(x)

)

+ v⊤
(∂h(x)

∂x
ξ + αh(x)

)

.

Then for each x ∈ R
n, the Lagrangian of (17) is (ξ, u, v) 7→

L(ξ, u, v;x).
For each x ∈ R

n, the KKT conditions corresponding to the

optimization (17) are:

ξ +∇f(x) +
∂g(x)

∂x

⊤

u+
∂h(x)

∂x

⊤

v = 0 (19a)

∂g(x)

∂x
ξ + αg(x) ≤ 0 (19b)

∂h(x)

∂x
ξ + αh(x) = 0 (19c)

u ≥ 0 (19d)

u⊤
(

∂g(x)

∂x
ξ + αg(x)

)

= 0 (19e)

Because the (17) is strongly convex, the existence of a triple

(ξ, u, v) satisfying (19) is sufficient for optimality of ξ. Since

the optimizer is unique, for any triple (ξ, u, v) satisfying these

conditions, ξ = Gα(x).
Let Λα : Rn

⇒ R
m
≥0 × R

k be defined by

Λα(x) = {(u, v) ∈ R
m
≥0 × R

k |∃ξ ∈ R
n such that

(ξ, u, v) solves (19)}.
(20)

By definition, Λα(x) is the set of Lagrange multipliers of (17)

at x ∈ R
n. When Λα(x) ̸= ∅, then the conditions (19)

are also necessary for optimality of (17). As we show next,

this necessity follows as a consequence of the constraint

qualification conditions.

Lemma 4.5 (Necessity of optimality conditions): For α >
0, if (4) satisfies MFCQ at x ∈ C (resp. EMFCQ at x ∈ R

n),

then there is an open set U containing x such that Λα(x
′) ̸= ∅

for all x′ ∈ U ∩ C (resp. x′ ∈ U ).

Proof: Let I = I0(x). If MFCQ holds at x ∈ C, there

exists ξ ∈ R
n such that ∇gi(x)

⊤ξ < 0 for all i ∈ I and

∇hj(x)
⊤ξ = 0 for all j ∈ {1, . . . , k}. Next, for every j ∈

I−(x), let ϵj > 0 be defined as

ϵj ≤

{

−αgj(x)
∇gj(x)⊤ξ

∇gj(x)
⊤ξ > 0,

1 ∇gj(x)
⊤ξ ≤ 0.

Then taking 0 < ϵ ≤ minj∈I−(x){ϵj} and ξ̃ = ϵξ, satisfies

∂g(x)

∂x
ξ̃ < −αg(x)

∂h(x)

∂x
ξ̃ = −αh(x). (21)

The above means that the constraints of (17) satisfy Slater’s

condition [34, Chapter 5.2.3] at x, so the affine constraints

are regular [32, Theorem 2]. This implies that there exists

an open set U containing x on which (17) is feasible and

Λα(x
′) ̸= ∅ for all x′ ∈ U . The proof for the case where

EMFCQ holds at x ∈ R
n is identical to the above reasoning

with I = I0(x) ∪ I+(x).
We use the optimality conditions to show that (14) is actually

the dual problem corresponding to (17) in the appropriate sense.

Proposition 4.6: (Equivalence of two constructions of the
safe gradient flow): If Λα(x) ̸=∅,

(i) If (u, v) ∈ Λα(x), then (u, v) solves (14);

(ii) Gα is the closed-loop dynamics corresponding to the

implementation of (14) over (7).

Proof: To show (i), let (u, v) ∈ Λα(x). Then there

is ξ ∈ R
n such that (ξ, u, v) solves (19). By (19a), ξ =

−∇f(x) − ∂g(x)
∂x

⊤
u − ∂h(x)

∂x

⊤
v and substituting ξ into the

constraints of (17), it follows immediately that (u, v) ∈ Kα(x),
defined in (8). We claim that (u, v) is also optimal for (14).

To prove this, let (u′, v′) be a solution of (14) and, reasoning

by contradiction, suppose

∥

∥

∥

∂g(x)

∂x

⊤

u+
∂h(x)

∂x

⊤

v
∥

∥

∥

2

>
∥

∥

∥

∂g(x)

∂x

⊤

u′ +
∂h(x)

∂x

⊤

v′
∥

∥

∥

2

.

Then, ξ′ = −∇f(x) − ∂g(x)
∂x

⊤
u′ − ∂h(x)

∂x

⊤
v′ satisfies the

constraints in (17) and ∥ξ′ +∇f(x)∥ < ∥ξ +∇f(x)∥, which

contradicts the fact that ξ is optimal for (17).

To show (ii), suppose that (u, v) solves (14), and ξ =

−∇f(x) − ∂g(x)
∂x

⊤
u − ∂h(x)

∂x

⊤
v. We claim that ξ is optimal

for (17). Indeed, if ξ̃ is the optimizer of (17), since Λα(x) ̸= ∅,

there exists (ũ, ṽ) ∈ Λα(x) such that (ξ̃, ũ, ṽ) solves (19). Note

that (ũ, ṽ) is feasible for (14), and

∥ξ +∇f(x)∥2 =
∥

∥

∥

∂g(x)

∂x

⊤

u+
∂h(x)

∂x

⊤

v
∥

∥

∥

2

≤
∥

∥

∥

∂g(x)

∂x

⊤

ũ+
∂h(x)

∂x

⊤

ṽ
∥

∥

∥

2

= ∥ξ̃ +∇f(x)∥2,

where the inequality follows by optimality of (u, v). It follows

that ξ is optimal, but since the optimizer of (17) is unique,



8 , VOL. XX, NO. XX, XXXX 2022

ξ = Gα(x). Hence, Gα(x) = −∇f(x) − ∂g(x)
∂x

⊤
u− ∂h(x)

∂x

⊤
v,

which is the closed-loop implementation of (14) over (7).

Remark 4.7: (Lagrange Multipliers of Continuous Approx-
imation to Projected Gradient): The notion of duality in

Proposition 4.6 is weaker than the usual notion of Lagrangian

duality. While the result ensures that the Lagrange multipliers

of (17) are solutions to (14), the converse is not true in general.

This is because if (u, v) solves (14), then (Gα(x), u, v) might

not satisfy the transversality condition (19e), in which case

(u, v) ̸∈ Λα(x). An example of this is given by the following

constrained problem with objective f and inequality constraints

g(x) ≤ 0, where

f(x) = ∥x∥2 g(x) =

[

0 1
0 −1

]

x−

[

1
1

]

.

The constraints satisfy LICQ for all x ∈ R
n. The solution is

x∗ = 0 and Λα(x
∗) = {(0, 0)}. However, (1, 1) is an optimizer

of (14), even though (1, 1) /∈ Λα(x
∗). •

Remark 4.8: (Lagrangian Dual of Continuous Approxima-
tion to Projected Gradient): The safe gradient flow can also

be implemented using the Lagrangian dual of (17). This is

obtained by replacing the feedback controller (14) with

[

u(x)
v(x)

]

∈ argmin
(u,v)∈R

m
≥0

×Rk

{

1

2

[

u
v

]⊤
[

∂g
∂x

∂g
∂x

⊤ ∂g
∂x

∂h
∂x

⊤

∂h
∂x

∂g
∂x

⊤ ∂h
∂x

∂h
∂x

⊤

]

[

u
v

]

+

u⊤
(

∂g

∂x
∇f − αg(x)

)

+ v⊤
(

∂h

∂x
∇f − αh(x)

)

}

and considering its closed-loop implementation over (7).

Though this controller no longer has the same intuitive

interpretation as the CBF-QP (14), it has the advantage that

its values correspond exactly with Λα(x). •

Proposition 4.6 shows that there are two equivalent inter-

pretations of the safe gradient flow. The first is as the closed-

loop system corresponding to (7) with the controller (14),

which maintains forward invariance of the feasible set C while

ensuring the dynamics is as close as possible to the gradient

flow of the objective function. The second interpretation is as

an approximation of the projection of the gradient flow of the

objective function onto the tangent cone of the feasible set.

Both interpretations are related by the fact that the Lagrange

multipliers corresponding to the approximate projection are

the optimal control inputs solving (7). Beyond the interesting

theoretical parallelism, this interpretation is instrumental in

our ensuing discussion when characterizing the equilibria,

regularity, and stability properties of the safe gradient flow.

V. STABILITY ANALYSIS OF THE SAFE GRADIENT FLOW

Here we conduct a thorough analysis of the stability

properties of the safe gradient flow and show that it solves

Problem 1. We start by characterizing its equilibria and

regularity properties, then focus on establishing the stability

properties of local minimizers, and finally characterize the

global convergence properties of the flow.

A. Equilibria, Regularity, and Safety

We rely on the necessary optimality conditions introduced

in Section IV-C to characterize the equilibria of Gα.

Proposition 5.1: (Equilibria of safe gradient flow corre-
spond to KKT points): If MFCQ holds at x∗ ∈ C, then

(i) Gα(x
∗) = 0 if and only if x∗ ∈ XKKT;

(ii) If x∗ ∈ XKKT, then Λα(x
∗) is the set of Lagrange

multipliers of (4) at x∗.

Proof: Suppose that Gα(x
∗) = 0. By Lemma 4.5, there

exists (u∗, v∗) ∈ Λα(x
∗) such that (0, u∗, v∗) satisfies the

necessary optimality conditions in (19), which reduce to

∇f(x∗) +
∂g(x∗)

∂x

⊤

u∗ +
∂h(x∗)

∂x

⊤

v∗ = 0 (22a)

αg(x∗) ≤ 0 (22b)

αh(x∗) = 0 (22c)

u∗ ≥ 0 (22d)

(u∗)⊤(αg(x∗)) = 0 (22e)

Because α > 0, it follows immediately that (22) implies that

(x∗, u∗, v∗) satisfy (6) and x∗ ∈ XKKT.

Conversely, if x∗ ∈ XKKT, then for any (u∗, v∗) such that

(x∗, u∗, v∗) solves (6), we have that (0, u∗, v∗) solves (19),

which implies that Gα(x
∗) = 0 and (u∗, v∗) ∈ Λα(x

∗).
Proposition 5.1(i) shows that the safe gradient flow meets

Problem 1(iii). The correspondence in Proposition 5.1(ii)

between the Lagrange multipliers of (17) and the Lagrange

multipliers of (4) means that the proposed method can be

interpreted as a primal-dual method when implemented via (17).

This is because the state of the system (7) corresponds to

the primal variable of (4), and the inputs to the system (7)

correspond to the dual variables.

We next establish that Gα is locally Lipschitz on an open set

containing C when the MFCQ condition holds. This ensures

the existence and uniqueness of classical solutions to the safe

gradient flow.

Proposition 5.2 (Lipschitzness of safe gradient flow): Let

α > 0 and suppose that (4) satisfies MFCQ for all x ∈ C, f, g
and h are continuously differentiable, and their derivatives

are locally Lipschitz. Then Gα is well defined and locally

Lipschitz on an open set X containing C.

Proof: By the proof of Lemma 4.5, if MFCQ holds at

x ∈ C, there is an open neighborhood Ux containing x on

which the constraints of (17) satisfy Slater’s condition. Then,

Gα is the unique solution to (17) on Ux, and by [35, Theorem

3.10], Gα is Lipschitz on Ux. The desired result follows by

letting X =
⋃

x∈C Ux.

Proposition 5.2 verifies that the safe gradient flow meets

Problem 1(i). Next, we show that under slightly stronger

constraint qualification conditions at KKT points, the triple

satisfying (19) is unique and Lipschitz near them.

Proposition 5.3 (Lipschitzness of the solution to (19)): Let

x∗ ∈ XKKT and suppose (4) satisfies LICQ at x∗. Then, there

exists an open set U containing x∗ and Lipschitz functions

u : U → R
m
≥0, v : U → R

m such that (Gα(x), u(x), v(x)) is

the unique solution to (19) for all x ∈ U .

Proof: We claim that the variational equation (19) is

strongly regular [36] for all x∗ ∈ XKKT. Strong regularity
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implies, cf. [36, Corollary 2.1], that there exists an open set U
containing x∗ and Lipschitz functions ξ : U → R

n, u : U →
R

m
≥0, v : U → R

k such that (ξ(x), u(x), v(x)) is the unique

triple solving (17). Since the solution (17) is unique, if such a

triple exists, then ξ(x) = Gα(x). To prove the claim, we begin

by noting that (17) satisfies the strong second-order sufficient

condition since ∇2
ξξL(ξ, u, v;x) = I ≻ 0. Let (x∗, u∗, v∗) be a

KKT triple of (4). By Proposition 5.1, (0, u∗, v∗) satisfies (19).

Since the ith inequality constraint of (17) is ∇gi(x
∗)⊤ξ +

αgi(x
∗) ≤ 0, when ξ = 0 the constraint is active if and only

if gi(x
∗) = 0. It follows that when x∗ ∈ XKKT, the indices

of the active constraints of (17) are the same as those of (4).

Moreover, for all ξ ∈ R
n,

∂

∂ξ
(∇gi(x

∗)⊤ξ + αgi(x
∗)) = ∇gi(x

∗)⊤,

∂

∂ξ
(∇hj(x

∗)⊤ξ + αhj(x
∗)) = ∇hj(x

∗)⊤,

so the gradients of the binding (i.e., the active inequality and

equality) constraints of (17) and (4) are also the same. By LICQ,

the gradients of the binding constraints are linearly independent,

which along with the strong second-order condition implies

that (19) is strongly regular by [36, Theorem 4.1].

The significance of Proposition 5.3 is twofold. First, it

establishes that, under certain conditions, the Lagrange mul-

tipliers of (17) are Lipschitz as a function of x, which

ensures the existence of a locally Lipschitz continuous feedback

solving (14). Secondly, the result establishes conditions for

uniqueness of the Lagrange multipliers in a neighborhood of

an equilibrium x∗. These facts will play an important role in

the stability analysis of local minimizers in the sequel.

We are now ready to show that the safe gradient flow also

meets Problem 1(ii).

Theorem 5.4: (Safety of feasible set under safe gradient
flow): Consider the optimization problem (4). If MFCQ is

satisfied on C, then C is forward invariant and asymptotically

stable under the safe gradient flow.

The proof of this result follows from applying Lemma 2.1

with ϕ = (g, h) as a VCBF, cf. Lemma 4.1, and the construction

of the feedback controller (14) yielding the closed-loop system

locally Lipschitz, cf. Proposition 5.2.

Remark 5.5: (Advantages of safe gradient flow over pro-
jected gradient flow): Unlike the projected gradient flow, the

vector field Gα is locally Lipschitz, so classical solutions to ẋ =
Gα(x) exist, and the continuous-time flow can be numerically

solved using standard ODE discretization schemes. Secondly,

under mild conditions, Gα is well defined for initial conditions

outside C, allowing us to guarantee convergence to a local

minimizer starting from infeasible initial conditions. Finally,

because both (16) and (17) are least-squares problems of the

same dimension subject to affine constraints, the computational

complexity of solving either one is equivalent. •
Remark 5.6: (Discretization of safe gradient flow and role

of parameter α): When considering discretizations of the safe

gradient flow, the parameter α plays an important role since its

value impacts the behavior of its trajectories. By construction,

trajectories of the safe gradient flow beginning at infeasible

initial conditions converge to C at an exponential rate α > 0,

meaning that larger values of α ensure faster convergence

toward the feasible set. On the other hand, smaller values of α
result in a design that enforces safety more conservatively

and hence, intuitively, this should allow for larger stepsizes.

Our preliminary numerical experiments with the forward-Euler

discretization x+ = x + hGα(x) confirm these intuitions,

showing that larger choices of α reduce the range of allowable

stepsizes h that preserve the invariance of the feasible set C
and stability of local minimizers. In particular, we have noticed

that the maximal allowable stepsize h∗α such that 0 < h < h∗α
ensures stability and approximate safety, satisfies h∗α → 0
as α → ∞. For space reasons, we leave to future work the

formal characterization of suitable stepsizes. •

B. Stability of Isolated Local Minimizers

Here we characterize the stability properties of isolated local

minimizers under the safe gradient flow. The following result

shows that the safe gradient flow meets Problem 1(iv).

Theorem 5.7 (Stability of isolated local minimizers):
Consider the optimization problem (4). Let x∗ be a local

minimizer and an isolated KKT point, and let U be an open

set such that x∗ is the only KKT point contained in U . Then,

(i) If MFCQ holds for all x ∈ U ∩ C, then x∗ is asymptoti-

cally stable relative to C;

(ii) If EMFCQ holds for all x ∈ Ū , then x∗ is asymptotically

stable relative to R
n;

(iii) If LICQ, strict complementarity, and the second-order

sufficient condition hold at x∗, then x∗ is exponentially

stable relative to R
n.

We divide the technical discussion leading up to the proof

of the result in three parts, corresponding to each statement.

1) Stability of Isolated Local Minimizers Relative to C: Here we

analyze the stability of local minimizers relative to the feasible

set. We start by characterizing the growth of the objective

function along solutions of the safe gradient flow.

Lemma 5.8: (Growth of objective function along safe
gradient flow): Let x ∈ R

n such that Λα(x) ̸= ∅. Then,

• For all (u, v) ∈ Λα(x),

D+
Gα
f(x) = −∥Gα(x)∥

2 + αu⊤g(x) + αv⊤h(x).

• If x ∈ C then,

D+
Gα
f(x) ≤ 0,

with equality if and only if x ∈ XKKT.

Proof: For x ∈ X (with X given by Proposition 5.2)

such that (u, v) ∈ Λα(x) ̸= ∅, (Gα(x), u, v) solves (19). Next,

D+
Gα
f(x) = Gα(x)

⊤∇f(x)

(a)
= −Gα(x)

⊤
(

Gα(x) +
∂g(x)

∂x

⊤

u+
∂h(x)

∂x

⊤

v
)

(b)
= −∥Gα(x)∥

2 + αu⊤g(x) + αv⊤h(x),

where (a) follows by rearranging (19a), and (b) follows

from (19c) and (19e).

To show the second statement, note that if x ∈ C, then

g(x) ≤ 0 and h(x) = 0 . Since u ≥ 0, it follows αu⊤g(x) +
αv⊤h(x) ≤ 0 and therefore

D+
Gα
f(x) ≤ −∥Gα(x)∥

2 ≤ 0.
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Finally, D+
Gα
f(x) = 0 if and only if Gα(x) = 0, which by

Proposition 5.1, is equivalent to x ∈ XKKT.

As a consequence of Lemma 5.8, the objective function

decreases monotonically along the solutions starting in C. We

use this fact to show that isolated local minimizers that are

isolated equilibria are asymptotically stable relative to C.

Proof: [Proof of Theorem 5.7(i)] By hypothesis and using

Lemma 4.5, Λα(x) ̸= ∅ for all x ∈ U ∩ C. Because x∗ is the

unique strict minimizer of f on U ∩ C, and by Lemma 5.8,

D+
Gα
f(x) < 0 for all x ∈ U∩C\{x∗}, it follows by Lemma A.1

that x∗ is asymptotically stable relative to C.

2) Stability of Isolated Local Minimizers Relative to R
n:

Here we establish the asymptotic stability of isolated local

minima relative to R
n. To do so, we cannot rely any more

on the objective function f as a Lyapunov function. This is

because outside of C, there may exist points x ∈ R
n \ C

where f(x) < f(x∗). Therefore, to show stability relative

to R
n, we need to identify an alternative function whose

unconstrained minimizer is x∗. In fact, the problem of finding

a function whose unconstrained minimizers correspond to the

local minimizers of a nonlinear program is well studied in the

optimization literature [37]: such functions are called exact
penalty functions. Our discussion proceeds by constructing an

exact penalty function that is also a Lyapunov function for the

safe gradient flow.

Let Ω ⊂ R
n be a compact set. A function V : Ω×(0,∞) →

R is a strong exact penalty function relative to Ω if there exists

ϵ∗ > 0 such that for all 0 < ϵ < ϵ∗, x∗ ∈ int(Ω) is a local

minimizer of Vϵ(x) := V (x, ϵ) if and only if x∗ is a local

minimizer of (4). The following result gives a strong exact

penalty function for (4) whose upper-right Dini derivative along

Gα is well defined on Ω.

Lemma 5.9: (Existence of strong exact penalty function):
Let Ω ⊂ R

n be compact such that int(Ω)∩C ≠ ∅. Suppose (4)

satisfies EMFCQ at every x ∈ Ω and let V : Ω× (0,∞) → R,

V (x, ϵ) = f(x) +
1

ϵ

m
∑

i=1

[gi(x)]+ +
1

ϵ

k
∑

j=1

|hj(x)|. (23)

Then, V is a strong exact penalty function relative to Ω, V is

directionally differentiable on Ω, and

D+
Gα
Vϵ(x) = D+

Gα
f(x)

+
1

ϵ

∑

i∈I+(x)

D+
Gα
gi(x) +

1

ϵ

k
∑

j=1

sgn(hj(x))D
+
Gα
hj(x), (24)

for all x ∈ Ω.

Proof: The fact that V is a strong exact penalty function

relative to Ω readily follows from [37, Theorem 4]. From [37,

Proposition 3], Vϵ is directionally differentiable on Ω and its

directional derivative in the direction ξ ∈ R
n is

V ′
ϵ (x; ξ) = ∇f(x)⊤ξ

+
1

ϵ

∑

i∈I+(x)

∇gi(x)
⊤ξ +

1

ϵ

∑

i∈I0(x)

[∇gi(x)
⊤ξ]+

+
1

ϵ

∑

j such that
hj(x) ̸=0

sgn(hj(x))∇hj(x)
⊤ξ +

1

ϵ

∑

j such that
hj(x)=0

|∇hj(x)
⊤ξ|.

We examine this expression in the case V ′
ϵ (x;Gα(x)) =

D+
Gα
Vϵ(x). For any 1 ≤ i ≤ m, the definition of Gα implies

∇gi(x)
⊤Gα(x) = D+

Gα
gi(x) ≤ −αgi(x).

Therefore, if i ∈ I0(x), then [∇gi(x)
⊤Gα(x)]+ = 0. Similarly,

for any 1 ≤ j ≤ k, the definition of Gα implies that

∇hj(x)
⊤Gα(x) = D+

Gα
hj(x) = −αhj(x),

so if hj(x) = 0, then |∇hj(x)
⊤Gα(x)| = 0, and the result

follows.

We now show that Vϵ is a Lyapunov function for ϵ sufficiently

small and use this fact to certify the asymptotic stability of

isolated local minimizers.

Proof: [Proof of Theorem 5.7(ii)] Assume, without loss

of generality, that U is bounded. By Lemma 5.9, the function

Vϵ defined in (23) is a strong exact penalty relative to U . By

definition, this means that there exists ϵ1 > 0 such that when

ϵ < ϵ1, x∗ is the only minimizer of Vϵ in U . Let x ∈ U
and (u, v) ∈ Λα(x). Then, using Lemmas 5.8 and 5.9 and the

definition of Gα, we have

D+
Gα
Vϵ(x) ≤− ∥Gα(x)∥

2 + αu⊤g(x) + αv⊤h(x)

−
1

ϵ

∑

i∈I+(x)

αgi(x)−
1

ϵ

k
∑

j=1

α|hj(x)|.

Let I = I0(x) ∪ I−(x). It follows that,

D+
Gα
Vϵ(x) ≤ −∥Gα(x)∥

2 + α
∑

i∈I

uigi(x) +

α
∑

i∈I+(x)

(

ui −
1

ϵ

)

gi(x) + α

k
∑

j=1

(

|vj | −
1

ϵ

)

|hj(x)|.

Next, choose 0 < ϵ2 <
1
B

where B > 0 satisfies the bound

given by Lemma B.1. Then, for ϵ < ϵ2,

∑

i∈I+(x)

(

ui −
1

ϵ

)

gi(x) +

k
∑

j=1

(

|vj | −
1

ϵ

)

|hj(x)| < 0,

Finally, since u ≥ 0, we have α
∑

i∈I uigi(x) ≤ 0. Thus,

D+
Gα
Vϵ(x) ≤ −∥Gα(x)∥

2 < 0,

for all x ∈ U \ {x∗}, whenever ϵ < min{ϵ1, ϵ2}. Therefore Vϵ
is a Lyapunov function on U and asymptotic stability of x∗

follows by Lemma A.1.

Remark 5.10: (Relationship to merit functions in numerical
optimization): In numerical optimization, the ℓ1 penalty func-

tion in (23) is often used as a merit function, i.e., a function

that quantifies how well a single iteration of an optimization

algorithm balances the two goals of reducing the value of the

objective function and reducing the constraint violation (cf.

[38, Section 15.4]). Typically, the stepsize on each iteration is

chosen so that the merit function is nonincreasing. Thus, if the

algorithm is viewed as a discrete-time dynamical system, the

merit function is a Lyapunov function. The ℓ1 penalty plays a

similar role for the continuous-time system described here. •
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3) Exponential Stability of Isolated Local Minimizers: We now

discuss the exponentially stability of isolated local minimizers.

Our first step is to identify conditions under which the safe

gradient flow is differentiable. To do so, we introduce the

notions of strict complementarity and second-order condition

on the optimization problem.

Definition 5.11: (Strict complementarity and second-order
sufficient conditions): Let (x∗, u∗, v∗) be a KKT triple of (4).

• The strict complementarity condition holds if u∗i > 0 for

all i ∈ I0(x
∗);

• The second-order sufficient condition holds if z⊤Qz > 0

for all z ∈ ker
∂gI0 (x

∗)

∂x
∩ ker ∂h(x∗)

∂x
, where

Q=∇2f(x∗)+
m
∑

i=1

u∗i∇
2gi(x

∗)+
k

∑

j=1

v∗i ∇
2hj(x

∗). (25)

When LICQ holds, strict complementarity together with the

second-order sufficient condition can be used to establish the

differentiability of a KKT triple of a nonlinear parametric

program with respect to the parameters [39]. When these

conditions are satisfied by (4), we show next that (17) is

differentiable and provide an expression for its Jacobian.

Lemma 5.12 (Jacobian of safe gradient flow): Let x∗ ∈
XKKT and u∗, v∗ be the associated Lagrange multipliers.

Suppose:

• LICQ holds at x∗;

• (x∗, u∗, v∗) satisfies the strict complementarity condition;

• (x∗, u∗, v∗) satisfies the second-order sufficient condition.

Then Gα is differentiable at x∗ and

∂Gα(x
∗)

∂x
= −PQ− α(I − P ),

where I is the n × n identity matrix, P is the orthogonal

projection matrix onto ker
∂gI0 (x

∗)

∂x
∩ ker ∂h(x∗)

∂x
, and Q is

defined in (25).

Proof: By Proposition 5.3, there is a neighborhood U
of x∗ where the unique KKT triple of (17) corresponding

to x ∈ U is (Gα(x), u(x), v(x)). From the proof of that result,

LICQ and the strong second-order sufficient condition hold for

(17) at x∗. Further, the indices of the active constraints of (4)

are the same as those of (17). Because (x∗, u∗, v∗) satisfies the

strict complementarity condition for (4), (0, u∗, v∗) satisfies

the strict complementarity condition for (17). Thus, by [40,

Corollary 1], the KKT triple is continuously differentiable with

respect to x, and the Jacobian of Gα can be computed using

the given expression for the derivative.

Using the result in Lemma 5.12, stability of an isolated local

minimizer can be inferred by showing that the eigenvalues of

the Jacobian of the safe gradient flow are all strictly negative.

Proof: [Proof of Theorem 5.7(iii)] By the second-order

sufficient condition, z⊤PQPz > 0 for all z ∈ im P \ {0}. It

follows that PQPz = 0 if and only if z ∈ kerP . Therefore

0 is an eigenvalue of PQP with multiplicity r and PQP
has n− r strictly positive eigenvalues, where r = dimkerP .

Let z1, . . . , zr be the eigenvectors corresponding to the zero

eigenvalues, and zr+1, . . . , zn be eigenvectors corresponding

to the positive eigenvalues, denoted λr+1, . . . , λn. Then

Pzi =

{

0 i = 1, . . . , r,

zi i = r + 1, . . . , n.

Let

µi =

{

0 i = 1, . . . , r,

λi − α i = r + 1, . . . , n.

Then, it follows that (PQP −αP )zi = µizi for all 1 ≤ i ≤ n.

Observe that PQP − αP = (PQ − αI)P has precisely the

same eigenvalues as P (PQ − αI) = PQ − αP . Therefore,

since µi is an eigenvalue of PQ− αP , it follows that µi + α
is an eigenvalue of

PQ− αP + αI = PQ+ α(I − P ) = −
∂Gα(x

∗)

∂x
.

Hence the eigenvalues of
∂Gα(x∗)

∂x
are

{−α,−α, . . . ,−α,−λr+1, . . . ,−λn},

where −α appears with multiplicity r. Since all the eigenvalues

are strictly negative, x∗ is exponentially stable.

C. Stability of Nonisolated Local Minimizers

We have characterized in Section V-B the stability under the

safe gradient flow of local minimizers that are isolated KKT

points. In general, if x∗ is strict local minimizer that is not

an isolated KKT point (for example, if there are an infinite

number of local maximizers arbitrarily close to x∗, cf. [41,

page 5]), or if x∗ is only a local minimizer, then there are no

guarantees on Lyapunov stability. However, as we show here,

nonisolated minimizers are stable under the safe gradient flow

under additional assumptions on the problem data.

When there are no constraints, the safe gradient flow reduces

to the classical gradient flow, where conditions for semistability

of local minimizers are well known: if the objective function

is real-analytic, then all trajectories of the gradient flow

have finite arclength, cf. [42], in which case the objective

function can be used to construct an arclength-based Lyapunov

function satisfying the hypotheses of Lemma A.2 to establish

semistability. In this section, we conduct a similar analysis for

the constrained case. Our main result is as follows.

Theorem 5.13: (Stability of nonisolated local minima):
Consider the optimization problem (4), and assume f , g and h
are real-analytic. Let S be a bounded set of local minimizers

on which f is constant and equal to f∗ such that

(i) There is an open set U and β > 0 such that U ∩XKKT =
S and f(x)− f∗ ≥ βdistS(x)

2 for all x ∈ U ∩ C;

(ii) LICQ is satisfied at all x∗ ∈ S;

(iii) TS(x
∗) ∩N prox

S (x∗) = {0} for all x∗ ∈ S .

Then there is α∗ > 0 such that every x∗ ∈ S is semistable

relative to R
n under the safe gradient flow Gα, for α > α∗.

To prove this result, we first discuss various intermediate

results. In particular, the growth condition in Theorem 5.13(i)

plays a crucial role in the construction of a Lyapunov function

to prove the result. Any x∗ ∈ S satisfying this property

is called a weak sharp minimizer of f relative to S. Weak

sharp minimizers play an important role in sensitivity analysis

for nonlinear programs as well as convergence analysis for

numerical methods in optimization [43], [44].

We review second-order optimality conditions for weak

sharp minimizers. Let x∗ ∈ XKKT, suppose that LICQ holds
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at x∗, and let (u∗, v∗) be the unique Lagrange multipliers

of (4) associated to x∗. Define the index set of strongly active
constraints as

I+0 (x∗) = {1 ≤ i ≤ m |u∗i > 0}.

The critical cone is

Γ(x∗) = {d ∈ R
n | ∇hj(x

∗)⊤d = 0, j = 1, . . . k,

∇gi(x
∗)⊤d = 0, i ∈ I+0 (x∗),

∇gj(x
∗)⊤d ≤ 0, j ∈ I0(x

∗) \ I+0 (x)}.

(26)

Lemma 5.14: (Second-order necessary condition for con-
strained weak sharp minima [44, Proposition 3.5]): Con-

sider (4) and let S ⊂ C be a set on which f is constant. Suppose

that x∗ ∈ ∂S is a weak sharp local minimizer of f relative

to S and LICQ is satisfied at x∗. Let u∗, v∗ be the Lagrange

multipliers and define ℓ(x) = f(x) + (u∗)⊤g(x) + (v∗)⊤h(x).
Then, there exists γ > 0 such that, for all d ∈ Γ(x∗),

ℓ′′(x∗; d) ≥ γdistTS(x∗)(d)
2.

Lemma 5.15: (Second-order sufficient condition for uncon-
strained weak sharp minima [44, Theorem 2.5]): Consider

W : Rn → R and suppose that W is constant on S . Suppose

x∗ ∈ ∂S and W ′′(x∗; d) > 0 for all d ∈ N prox
S (x∗) \ {0},

then x∗ is a weak sharp local minimizer of W relative to S .

We now proceed with the construction of the Lyapunov

function. Let T
(α)
C : Rn

⇒ R
n be the set-valued map where,

for each x ∈ R
n, T

(α)
C (x) is the constraint set of (17). Let

Jα : Rn × R
n → R be

Jα(x, ξ) = αf(x) +∇f(x)⊤ξ +
1

2
∥ξ∥2.

Consider the optimization problem

minimize
ξ∈T

(α)
C

(x)

Jα(x, ξ) (27)

As we show next, the solution to (27) is (17).

Lemma 5.16: (Correspondence between (27) and (17)):
Let x ∈ R

n. Then the program (17) has a solution at x
if and only if (27) has a solution, in which case Gα(x) =
argmin

ξ∈T
(α)
C

(x)
{Jα(x, ξ)}.

Proof: Note that the feasible sets of (27) and (17) coincide.

Next, for all (x, ξ) ∈ R
n × R

n:

Jα(x, ξ)−
1

2
∥ξ +∇f(x)∥2 = αf(x)−

1

2
∥∇f(x)∥2.

Since the difference of the objectives in (27) and (17) does

not depend on ξ, both problems have the same optimizer.

Lemma 5.16 shows that (27) is another characterization

of the safe gradient flow in terms of a parametric quadratic

program. Let Wα : X → R be the value function:

Wα(x) = inf
ξ∈T

(α)
C

(x)

{Jα(x, ξ)}

= αf(x) +∇f(x)⊤Gα(x) +
1

2
∥Gα(x)∥

2.

(28)

Our strategy to prove Theorem 5.13 consists of showing

that Wα is a Lyapunov function satisfying the hypotheses

in Lemma A.3 whenever α is sufficiently large. Towards this

end, we begin by computing the directional derivative of Wα.

Let Q : X×R
m
≥0×R

k → R
n×n be the matrix-valued function,

Q(x, u, v) = ∇2f(x) +

m
∑

i=1

ui∇
2gi(x) +

k
∑

j=1

vj∇
2hj(x).

Since the Lagrange multipliers, (u(x), v(x)) are unique in a

neighborhood of S, we slightly abuse notation by defining

Q(x) := Q(x, u(x), v(x)). By Lipschitzness of u and v, Q is

continuous on X . The proof of the next result follows from [40,

Theorem 2] and [45, Corollary 4.1] and is omitted for brevity.

Lemma 5.17 (Differentiability of Wα): Suppose that S sat-

isfies the hypotheses in Theorem 5.13, and X is an open

set containing S on which (Gα(x), u(x), v(x)) is the unique

solution to (19). Then

(i) For all x ∈ X , Wα is differentiable with

∇Wα(x) = −(αI −Q(x))Gα(x); (29)

(ii) For all x∗ ∈ S , Wα is twice directionally differentiable

in any direction d ∈ R
n, where

W ′′
α (x

∗; d) = min
ζ∈Rn

[

d
ζ

]⊤ [

αQ(x∗) Q(x∗)
Q(x∗) I

] [

d
ζ

]

s.t. α∇hj(x
∗)⊤d+∇hj(x

∗)⊤ζ = 0,

∀j = 1, . . . , k,

α∇gi(x
∗)⊤d+∇gi(x

∗)⊤ζ = 0,

∀i ∈ I+0 (x∗),

α∇gs(x
∗)⊤d+∇gs(x

∗)⊤ζ ≤ 0,

∀s ∈ I0(x
∗) \ I+0 (x∗).

(30)

Remark 5.18: (Dependence of Q(x) on α): In general, for

x ∈ X , the value of Q(x) depends on the choice of α, since

u(x) and v(x) depend on α. However, if x∗ ∈ XKKT, then

u(x∗), v(x∗) correspond to the Lagrange multipliers of (4) and

Q(x∗) is the Hessian of the Lagrangian of (4). In particular,

this means that for all x∗ ∈ XKKT, the value of Q(x∗) depends

only on the problem data and is independent of α. •
We now proceed with the proof of Theorem 5.13.

Proof: [Proof of Theorem 5.13] Let α∗ =
supx∗∈S{ρ(Q(x∗))}. For α > α∗, we have αI −Q(x∗) ≻ 0
for all x∗ ∈ S. Assume without loss of generality that

αI −Q(x) ≻ 0 for all x ∈ U (if not, since Q is continuous,

we can always find an open subset of U containing S for

which these property holds). We claim that Wα satisfies each

of the conditions (i)-(iii) in Lemma A.3 with K = R
n.

We begin by showing condition (iii). If x∗ ∈ U is a local

minimizer of Wα, then ∇Wα(x
∗) = (αI−Q(x∗))Gα(x

∗) = 0.

Since αI −Q(x∗) ≻ 0, from (29) we deduce Gα(x
∗) = 0, so

x∗ ∈ XKKT and therefore x∗ ∈ U ∩XKKT = S .

Conversely, suppose that x∗ ∈ S. Note that, by Propo-

sition 5.1, Wα(x) = αf(x) for all x ∈ S. Therefore, if

x∗ ∈ int(S), it follows that x∗ is a local minimizer of Wα.

Suppose instead that x∗ ∈ ∂S. For d ∈ R
n, let ζd be the

unique optimizer of (30). Then

W ′′
α (x

∗; d) = αd⊤Q(x∗)d+ 2ζ⊤d Q(x∗)d+ ∥ζd∥
2. (31)

From the constraints in (30), ζd + αd ∈ Γ(x∗). Because

x∗ ∈ ∂S is a weak sharp minimizer of f relative to S, by
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Lemma 5.14, there exists γ > 0 such that

ℓ′′(x∗; ζd + αd) = (ζd + αd)⊤∇2ℓ(x∗)(ζd + αd),

≥ γdistTS(x∗)(ζd + αd)2, ∀d ∈ R
n.

(32)

Since ∇2ℓ(x∗) = Q(x∗), we combine (31) and (32) to get

αW ′′
α (x

∗; d) ≥ζ⊤d (αI −Q(x∗))ζd + γdistTS(x∗)(ζd + αd)2.

Because αI −Q(x∗) ≻ 0, if W ′′
α (x

∗; d) = 0, then ζd = 0 and

d ∈ TS(x
∗). But TS(x

∗) ∩ N prox
S (x∗) = {0}, which means

W ′′
α (x

∗; d) > 0 for all d ∈ N prox
S (x∗)\{0}, so by Lemma 5.15,

x∗ is a weak sharp local minimizer of Wα.

Next we verify condition (ii) in Lemma A.3. For all x ∈ U ,

D+
Gα
Wα(x) = ∇Wα(x)

⊤Gα(x)

= −Gα(x)
⊤(αI −Q(x))Gα(x).

Without loss of generality, we can assume that U is bounded.

Then, we can choose c1, c2 > 0 so that

c1 < inf
x∈U

{λmin(αI −Q(x))}

c2 > sup
x∈U

{λmax(αI −Q(x))}.

It follows that D+
Gα
Wα(x) ≤ −c1∥Gα(x)∥

2 for all x ∈ U , but

since ∥∇Wα(x)∥ ≤ c2∥Gα(x)∥, we have for all x ∈ U ,

D+
Gα
Wα(x) ≤ −

c1
c2

∥∇Wα(x)∥∥Gα(x)∥.

Finally, we claim that Wα|U is a globally subanalytic function,

and therefore condition (i) holds by [46, Theorem 1], and the

fact that the class of globally subanalytic sets is an o-minimal

structure (cf. [46, Definition 1]). To prove the claim, first note

that, since f is real-analytic, Jα is real-analytic, and therefore

subanalytic [47, Definition 3.1]. Since U is bounded, and the

restriction of any subanalytic function to a bounded open set

is globally subanalytic [48], it follows that Jα|U is globally

subanalytic. Finally, since T
(α)
C |U : U ⇒ R

n is a globally

subanalytic set valued map, and

Wα|U (x) = inf
ξ∈T

(α)
C

|U (x)

{Jα|U (x, ξ)},

it follows that Wα|U is globally subanalytic. The statement

follows by applying Lemma A.3 with K = R
n.

D. Global Convergence

Finally, we turn to the characterization of the global

convergence properties of the safe gradient flow. We show

that when the problem data are real-analytic and the feasible

set is bounded, every trajectory converges to a KKT point.

Theorem 5.19: (Global convergence properties): Consider

the optimization problem (4), and assume C is bounded, f , g,

and h are real-analytic functions, and LICQ holds everywhere

on C. Let X be an open set containing C on which the safe

gradient flow is well defined. Then there is α∗ > 0 such that

for α > α∗, every trajectory of the safe gradient flow starting

in X converges to some KKT point.

To prove Theorem 5.19, we use the next result characterizing

the positive limit set of solutions of the safe gradient flow.

Lemma 5.20: (Convergence to connected component): Con-

sider the optimization problem (4), and assume C is bounded,

f , g, and h are real-analytic functions, and MFCQ holds

everywhere on C. Let X be an open set containing C on which

the safe gradient flow is well defined. Then for all x ∈ X ,

ω(x) is contained in a unique connected component of XKKT.

Proof: By Theorem 5.4, C is asymptotically stable and

forward invariant on X , and by Lemma 5.8, D+
Gα
f(x) ≤ 0

for all x ∈ C. Using the terminology from [49], f is a height
function of the pair (C,Gα).

Because f, g, and h are real-analytic and C is bounded, C is a

globally subanalytic set. Let f̂ = f + δC . Then f̂ is a globally

subanalytic function, f̂ is continuous on dom(f̂) = C, and

XKKT is precisely the set of critical points of f̂ . By the Morse-

Sard Theorem for subanalytic functions [50, Theorem 14],

XKKT has at most a countable number of connected components,

and f̂ is constant on each connected component. Since f(x) =
f̂(x) for all x ∈ C, f is also constant on each connected

component of XKKT, meaning that the connected components

of XKKT are contained in f (cf. [49, Definition 5]).

Hence, we can apply [49, Theorem 6], and conclude that

for all x ∈ X , the positive limit set ω(x) is nonempty and

contained in a unique connected component of E = {x ∈
C | D+

Gα
f(x) = 0}. However, by Lemma 5.8, E = XKKT,

concluding the result.

We are ready to prove Theorem 5.19.

Proof: [Proof of Theorem 5.19] By Lemma 5.20, for

x ∈ X , there is a connected component S ⊂ XKKT such

that ω(x) ⊂ S. Since LICQ holds on S, by Proposition 5.3

there is an open set U containing S and Lipschitz functions

(u, v) : U → R
m
≥0 × R

k such that U ∩ XKKT = S and

(Gα(x), u(x), v(x)) is the unique solution to (19) on U .

Let Wα be given by (28). By Lemma 5.17, Wα is differ-

entiable on U , and using the same reasoning as in the proof

of Theorem 5.13, Wα is a globally subanalytic function, and

satisfies the Kurdyka-èojasiewicz inequality. Furthermore, if

α > α∗ = supx∗∈S{ρ(Q(x∗))}, then there is some c > 0 such

that D+
Gα
Wα(y) ≤ −c∥∇Wα(y)∥∥Gα(y)∥ for all y ∈ U .

Thus, we can apply Lemma A.3 with K = R
n to conclude

that there exists a neighborhood Ũ containing S such that every

trajectory starting in Ũ that remains in Ũ for all time converges

to a point in S. Finally, since ω(x) ⊂ S, there exists T > 0
such that ΦT (x) ∈ Ũ and Φt(ΦT (x)) = ΦT+t(x) ∈ Ũ for all

t > 0. Thus, there exists x∗ ∈ S such that ΦT+t(x) → x∗ as

t→ ∞, and the trajectory starting at x converges to x∗.

Remark 5.21: (Lower bounds on the parameter α to ensure
global convergence): Note that the proof of Theorem 5.19

yields the expression α∗ = supx∗∈S{ρ(Q(x∗))} for the lower

bound on α that guarantees global convergence. In general,

computing this expression requires knowledge of the primal and

dual optimizers of the original problem. However, reasonable

assumptions on f , g, and h allow us to obtain upper bounds

of α∗. For instance, if C is polyhedral and ∇f is ℓf -Lipschitz

on C, it follows that ∥∇2f(x)∥ ≤ ℓf , and ∇2gi(x) = 0 and

∇2hj(x) = 0 for all i = 1, . . .m and j = 1, . . . k. Therefore,

α∗ ≤ ℓf , and ℓf can be used instead as a lower bound on α
to ensure global convergence. •
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VI. COMPARISON WITH OTHER OPTIMIZATION METHODS

Here we compare the safe gradient flow with other

continuous-time flows to solve optimization problems. For

simplicity, we restrict our attention to an inequality constrained

convex program. Figure 3 shows the outcome of the comparison

on the same example problem taken from [5]. The methods

compared are the projected gradient flow, the logarithmic barrier

method (see e.g. [51, Section 3]), the ℓ2-penalty gradient flow

(see e.g. [52, Chapter 4]), the projected saddle-point dynamics

(see e.g., [24]), the globally projected dynamics (see e.g., [18]),

and the safe gradient flow.

Under the logarithmic barrier method, the feasible set

is forward invariant and the minimizer of the logarithmic

barrier penalty fbarrier(x;µ) = f(x) − µ
∑m

i=1 log(−gi(x)),
with µ > 0, does not correspond to the minimizer of (4). Under

the unconstrained minimizer of the ℓ2-penalty, fpenalty(x; ϵ) =
f(x)+ ϵ

2

∑m
i=1[gi(x)]

2
+, with ϵ > 0, does not correspond to the

minimizer of (4), and the feasible set is not forward invariant

under the gradient flow of fpenalty. Under the projected saddle-

point dynamics, the feasible set is not forward invariant, but

each trajectory converges to x∗. Under the globally projected

dynamics, the feasible set is forward invariant, trajectories

converge to x∗, and trajectories are smooth. However, unlike the

safe gradient flow, the globally projected dynamics is undefined

when the constraints are not convex.

VII. CONCLUSIONS

We have introduced the safe gradient flow, a continuous-time

dynamical system to solve constrained optimization problems

that makes the feasible set forward invariant. The system

can be derived either as a continuous approximation of the

projected gradient flow or by augmenting the gradient flow of

the objective function with inputs, then using a control barrier

function-based QP to ensure safety of the feasible set. The

equilibria are exactly the critical points of the optimization

problem, and the steady-state inputs at the equilibria correspond

to the dual optimizers of the program. We have conducted a thor-

ough stability analysis of the dynamics, identified conditions

under which isolated local minimizers are asymptotically stable

and nonisolated local minimizers are semistable. Future work

will generalize the safe gradient flow to nonsmooth problems

and distributed problems, explore its robustness properties,

and leverage convexity to obtain stronger global convergence

guarantees. Further, we hope to explore issues related to the

practical implementation of the safe gradient flow, including

interconnections of the optimizing dynamics with a physical

system, where the optimization problem is in a feedback loop

with a dynamically evolving plant, develop discretizations of

the dynamics and study their relationship with discrete-time

iterative methods for nonlinear programming, and extend the

framework to Newton-like flows for nonlinear programs which

incorporate higher-order information.

APPENDIX A

LYAPUNOV TESTS FOR STABILITY

Here we present Lyapunov based tests for stability of an

equilibrium. The first result is a special case of [53, Corollary

7.1], and establishes the stability of an isolated equilibrium.

(a) Projected gradient flow (b) Logarithmic barrier flow

(c) ℓ2-penalty gradient flow (d) Projected saddle-point dynamics

(e) Globally projected dynamics (f) Safe gradient flow

Fig. 3: Comparison of methods minimizing f(x) = 0.25∥x∥2 − 0.5x1 +
0.25x2 subject to x2 ≥ 0 and x1 ≤ x2 (see also [5, Figure 8] for a comparison
of additional methods). The blue-shaded region is the feasible set and the grey
curves are level sets of the objective function. The initial condition is denoted
by the purple dot, and the global minimizer is denoted by a blue dot. (a)
The trajectory converges to the global minimizer, and the trajectory remains
inside the feasible set for all time but it is nonsmooth. (b) The trajectory is
smooth and remains inside the feasible set but does not converge to the global
minimizer. However, by choosing µ small enough, the trajectory can be made
to converge arbitrarily close to the minimizer. (c) The trajectory is smooth, but
does not remain inside the feasible set or converge to the global minimizer.
However, by choosing ϵ small enough, the trajectory can be made to converge
arbitrarily close to the minimizer. (d) Initialized with u(0) = 0, the trajectory
does not remain inside the feasible set, but it converges to the global minimum.
(e) The trajectory is smooth, converges to the global minimizer, and remains
inside the feasible set. However, this method may not be well-defined for
nonconvex problems (f) The trajectory is smooth, converges to the global
minimizer, and remains inside the feasible set. Of the methods implemented
here and in [5, Figure 8], the safe gradient flow is the only nonconvex method
that satisfies all of these properties.

Lemma A.1 (Lyapunov test for relative stability): Let K be

a forward invariant set of ẋ = F (x) and x∗ an isolated

equilibrium. Let U ⊂ R
n be an open set containing x∗ and

suppose that V : U ∩ K → R is a directionally differentiable

function such that

• x∗ is the unique minimizer of V on U ∩ K.

• D+
F V (x) < 0 for all x ∈ U ∩ K \ {x∗}.

Then x∗ is asymptotically stable relative to K.

The next results provides a test for attractivity and stability

of a set of nonisolated equilibria, using an ªarclengthº-based

Lyapunov test [54, Theorem 4.3 and Theorem 5.2].

Lemma A.2 (Arclength-based Lyapunov test): Let K be a

forward invariant set of ẋ = F (x). Let S ⊂ K be a set

of equilibria and U ⊂ R
n an open set containing S where

U ∩ F−1({0}) = S. Let V : U ∩ K → R be a continuously

differentiable function such that
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(i) There exists a c > 0 such that for all x ∈ U ∩ K,

D+
F V (x) ≤ −c∥F (x)∥. (33)

Then every bounded trajectory that starts in U ∩K and remains

in U ∩ K for all time has finite arclength and converges to a

point in S . If in addition,

(ii) x∗ is a minimizer of V if and only if x∗ ∈ S .

then every x∗ ∈ S is semistable relative to K.

Kurdyka-èojasiewicz inequality2 (condition (i) in

Lemma A.3 below), we show that the condition in (33) for

the arclength-based Lyapunov test can be replaced with

D+
F V (x) ≤ −c∥F (x)∥∥∇V (x)∥. This is referred to as

the ªangle-conditionº and has been exploited [56], [57] to

show convergence of descent methods to solve nonlinear

programming problems. The name arises from the fact that the

inequality implies that the angle between F (x) and ∇V (x)
remains bounded in a neighborhood of the equilibrium. In

the next result, we show that the angle condition, together

with the Kurdyaka-èojasiewicz inequality, implies that every

trajectories of the system have finite arclength.

Lemma A.3: (Angle-condition-based Lyapunov test):. Let

K be a forward invariant set of ẋ = F (x). Let S ⊂ K be a

bounded set of equilibria and U ⊂ R
n a bounded open set

containing S where U ∩ F−1({0}) = S . Let V : U ∩ K → R

be a differentiable function such that

(i) There exists V ∗ ∈ R such that V (x) = V ∗ if and only if

x ∈ S , and there exists c1 > 0 and a strictly increasing,

differentiable function ψ : [0,∞) → R such that for all

x ∈ (U ∩ K) \ S:

ψ′(|V (x)− V ∗|)∥∇V (x)∥ ≥ c.

(ii) There is c2 > 0 such that for all x ∈ U ∩ K,

D+
F V (x) ≤ −c2∥∇V (x)∥∥F (x)∥.

Then every trajectory that starts in U ∩K and remains in U ∩K
for all time has finite arclength and converges to a point in S .

If, in addition,

(iii) x∗ is a minimizer of V if and only if x∗ ∈ S .

then every x∗ ∈ S is semistable relative to K.

Proof: Suppose (i) and (ii) hold and assume without

loss of generality that ψ(0) = 0. Define Ṽ : U ∩ K → R by

Ṽ (x) =











ψ(V (x)− V ∗) V (x) > V ∗

0 V (x) = V ∗

−ψ(V ∗ − V (x)) V (x) < V ∗.

Then for all x ∈ U with V (x) > V ∗, we have

D+
F Ṽ (x) = ψ′(V (x)− V ∗)D+

F V (x)

≤ −c2ψ
′(V (x)− V ∗)∥∇V (x)∥∥F (x)∥

≤ −c1c2∥F (x)∥.

A similar argument can be used to show that the above

inequality also holds when V (x) ≤ V ∗. Since ψ is increasing,

x∗ ∈ U ∩ K is a local minimizer of Ṽ if and only if x∗ is a

local minimizer of V . Hence, the result follows by applying

Lemma A.2 with the Lyapunov function Ṽ .

2The online version [55] discusses classes of functions for which the
Kurdyka-èojasiewicz inequality holds.

APPENDIX B

LOCALLY BOUNDED SET OF LAGRANGE MULTIPLIERS

The proof of Theorem 5.7(ii) requires the following result,

which establishes conditions under which Λα(x) is locally

bounded.

Lemma B.1: (Local boundedness of Λα(x)): Let x∗ ∈
XKKT and suppose MFCQ is satisfied at x∗. Let U be a

bounded, open set containing x∗ on which (17) is well defined

and Λα(x) ̸= ∅ for all x ∈ U . Then, there exists B <∞ with

sup
x∈U

{

sup
(u,v)∈Λα(x)

∥(u, v)∥∞

}

< B. (34)

Proof: By [58, Corollary 4.3], the solution map of (17),

x 7→ {Gα(x)}×Λα(x), satisfies the Lipschitz stability property

that there exists ℓ > 0 where

∥Gα(x)∥+ distΛα(x∗)(u, v) ≤ ℓ∥x− x∗∥, (35)

for all (u, v) ∈ Λα(x) and all x ∈ U . By Proposi-

tion 5.1, Λα(x
∗) is precisely the set of Lagrange multipliers

of (4) at x∗, so MFCQ implies that Λα(x
∗) is bounded [30].

Suppose by contradiction that (34) does not hold. Then there

exists a sequence {xν}∞ν=1 ⊂ U and (uν , vν) ∈ Λα(x
ν) where

∥(uν , vν)∥∞ → ∞ as ν → ∞. Since Λα(x
∗) is bounded,

∥Gα(x
ν)∥+distΛα(x∗)((u

ν , vν)) → ∞, which contradicts (35)

and the fact that U is bounded.
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