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Control Barrier Function-Based Design of Gradient Flows
for Constrained Nonlinear Programming
Ahmed Allibhoy  Jorge Cortés

Abstract— This paper considers the problem of designing
a continuous-time dynamical system that solves constrained
nonlinear optimization problems and makes the feasible set
forward invariant and asymptotically stable. The invariance
of the feasible set makes the dynamics anytime, when
viewed as an algorithm, meaning it returns a feasible
solution regardless of when it is terminated. Our approach
augments the gradient flow of the objective function with
inputs defined by the constraint functions, treats the fea-
sible set as a safe set, and synthesizes a safe feedback
controller using techniques from the theory of control
barrier functions. The resulting closed-loop system, termed
safe gradient flow, can be viewed as a primal-dual flow,
where the state corresponds to the primal variables and the
inputs correspond to the dual ones. We provide a detailed
suite of conditions based on constraint qualification under
which (both isolated and nonisolated) local minimizers are
asymptotically stable with respect to the feasible set and the
whole state space. Comparisons with other continuous-time
methods for optimization in a simple example illustrate the
advantages of the safe gradient flow.

[. INTRODUCTION

Optimization problems are ubiquitous in engineering and
applied science. The traditional emphasis on the numerical
analysis of algorithms is motivated by the implementation
on digital platforms. The alternate viewpoint of optimization
algorithms as continuous-time dynamical systems taken here
also has a long history, often as a precursor of the synthesis
of discrete-time algorithms. This viewpoint has been fruitful
for gaining insight into qualitative properties such as stability
and convergence.

For constrained optimization problems, the picture is com-
plicated by the fact that algorithms may need to ensure
convergence to the optimizer as well as enforce feasibility
of the iterates. The latter is important in real-time applications,
when feasibility guarantees may be required at all times in
case the algorithm is terminated before completion, or when
the algorithm is implemented on a physical plant where the
constraints encode its safe operation. In this paper, we show that,
just as unconstrained optimization algorithms can be viewed as
dynamical systems, constrained optimization algorithms can be
viewed as control systems. Within this framework, the task of
designing an optimization algorithm for a constrained problem
is equivalent to that of designing a feedback controller for a
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nonlinear system. We use this connection to derive a novel
control-theoretic algorithm for solving constrained nonlinear
programs that combines continuous-time gradient flows to
optimize the objective function with techniques from control
barrier functions to maintain invariance of the feasible set.

Related Work: Dynamical systems and optimization are
closely intertwined disciplines [2]-[4]. The work [5] provides a
contemporary review of the dynamical systems approach to op-
timization for both constrained an unconstrained problems, with
an emphasis on applications where the optimization problem
is in a feedback loop with a plant, see e.g. [6]-[8]. Examples
of such scenarios are numerous, including power systems [7],
[8], network congestion [9], and transportation [10].

Flows for Equality Constrained Problems: For problems
involving only equality constraints, [11], [12] employ dif-
ferential geometric techniques to design a vector field that
maintains feasibility along the flow, makes the constraint set
asymptotically stable, and whose solutions converge to critical
points of the objective function. The work [13] introduces a
generalized form of this vector field to deal with inequality
constraints in the form of a differential algebraic equation, and
explores links with sequential quadratic programming.

Projected Gradient Methods: Another approach to solving
nonlinear programs in continuous time makes use of projected
dynamical systems [14] by projecting the gradient of the
objective function onto the cone of feasible descent directions,
see e.g., [15]. However, projected dynamical systems are, in
general, discontinuous, which from an analysis viewpoint re-
quires properly dealing with notions and existence of solutions,
cf. [16]. The work [17] proposes a continuous modification
of the projected gradient method, whose stability is analyzed
in [18]. However, this method projects onto the constraint set
itself, rather than the tangent cone, and may fail when it is
nonconvex. Another modification is the “constrained gradient
flow” proposed in [19], derived using insights from nonsmooth
mechanics, and is well-defined outside the feasible set. The
resulting method is related to the one presented here and
converges to critical points, though the dynamics are once
again discontinuous, and stability guarantees are only provided
in the case of convexity, which we do not assume.

Saddle-Point Dynamics: Convex optimization problems can
be solved by searching for saddle points of the associated
Lagrangian via a primal-dual dynamics consisting of a gradient
descent in the primal variable and a gradient ascent in the dual
one. The analysis of stability and convergence of this method
has a long history [2], [20], with more recent accounts provided
for discrete-time implementations [21] and continuous-time



ones [22]-[24]. These methods are particularly well suited for
distributed implementation on network optimization problems,
but they do not leave the feasible set invariant.

Contributions: We consider the synthesis of continuous-
time dynamical systems that solve constrained optimization
problems while making the feasible set forward invariant and
asymptotically stable. Our first contribution is the design of
the safe gradient flow for constrained optimization using the
framework of safety-critical control. The basic intuition is to
combine the standard gradient flow to optimize the objective
function with the idea of keeping the feasible set safe. To
maintain safety, we augment the gradient dynamics with inputs
associated with the constraint functions and use a control barrier
function approach to design an optimization-based feedback
controller that ensures forward invariance and asymptotic
stability of the feasible set. The approach is primal-dual, in
the sense that the states correspond to the primal variables and
the inputs correspond to the dual variables.

Our second contribution unveils the connection of the pro-
posed dynamics with the projected gradient flow. Specifically,
we provide an alternate derivation of the safe gradient flow as
a continuous modification of the projected gradient flow, based
on a design parameter. We show that, as the parameter grows
to oo, the safe gradient flow becomes the projected gradient
flow.

In addition to establishing an interesting parallelism, we build
on this equivalence in our third contribution for understanding
the regularity and stability properties of the safe gradient
flow. We show that the flow is locally Lipschitz (ensuring the
existence and uniqueness of classical solutions), well defined on
an open set containing the feasibility region (which allows for
the possibility of infeasible initial conditions), that its equilibria
exactly correspond to the critical points of the optimization
problem, and that the objective function is monotonically
decreasing along the feasible set of the optimization problem.
Lastly, we prove that the feasible set is forward invariant and
asymptotically stable.

Our fourth contribution consists of a thorough stability
analysis of the critical points of the optimization problem
under the safe gradient flow. We provide a suite of constraint
qualification-based conditions under which isolated local min-
imizers are either locally asymptotically stable with respect
to the feasible set, locally asymptotically stable with respect
to the global state space, or locally exponentially stable. We
also provide conditions for semistability of nonisolated local
minimizers and establish global convergence to critical points of
the optimization problem. Our technical analysis for this builds
on a combination of the Kurdyaka-t.ojasiewicz inequality with
a novel angle-condition Lyapunov test to establish the finite
arclength of trajectories, which we present in the appendix.

A preliminary version of this work appeared previously
as [1]. The present work significantly expands the scope of the
stability analysis of isolated local minimizers under weaker
assumptions, as well as characterizes the stability of nonisolated
local minimizers, global convergence to critical points, and
highlights the advantages of the safe gradient flow over other
continuous-time methods in optimization.
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Notation: We let R denote the set of real numbers. For
v,w € R*, v < w (resp. v < w) denotes v; < w; (resp.
v; <w;) fori € {1,...,n}. We let ||v|| denote the Euclidean
norm and ||v||cc = maxj<;<p |v;| the infinity norm. For y € R,
we denote [y]+ = max{0,y}, and sgn(y) = 1 if y > 0,
sgn(y) = —1 if y < 0 and sgn(y) = 0 if y = 0. We let
1,, € R™ denote the vector of all ones. For a matrix A €
R™ ™ we use p(A) and A’ to denote its spectral radius
and its Moore-Penrose pseudoinverse, respectively. We write
A > 0 (resp., A > 0) to denote A is positive semidefinite
(resp., A is positive definite). Given a subset C C R", the
distance of z € R™ to C is distc(x) = inf ec|lz — y||. We let
C, int(C), and OC denote the closure, interior, and boundary
of C, respectively. Given X C R™ and f : X — R™, the
graph of f is graph(f) = {(=, f(z)) | = € X}. Similarly,
given a set-valued map F : X = R™, its graph is graph(F) =
{(z,y) | x € X,y € F(x)}. Given g : R” — R, we denote its
gradient by Vg and its Hessian by V2g. For g : R* — R™,
a%f) denotes its Jacobian. For I C {1,2,...,m}, we denote
by agéi(m) the matrix whose rows are {Vg;(x) " }scr.

X

[I. PRELIMINARIES

We present notions on invariance, stability, variational
analysis, control barrier functions, and nonlinear programming.
The reader familiar with the material can safely skip the section.

A. Invariance and Stability Notions

We recall basic definitions from the theory of ordinary
differential equations [25]. Let F' : R® — R™ be a locally
Lipschitz vector field and consider the dynamical system
& = F(z). Local Lipschitzness ensures that, for every initial
condition xy € R, there exists 7' > 0 and a unique trajectory
2 : [0,T] = R™ such that 2(0) = z¢ and &(t) = F(x(t)). If
the solution exists for all £ > 0, then it is forward complete.
In this case, the flow map is defined by &, : R™ — R™ such
that ®,(x) = x(t), where z(t) is the unique solution with
x(0) = . The positive limit set of x € R™ is

w(z) = ﬂ {®(z) |t >T}.
T>0

A set £ C R” is forward invariant if x € K implies that
®,(x) € K for all ¢ > 0. If K is forward invariant and z* € K
is an equilibrium, x* is Lyapunov stable relative to K if for
every open set U containing z*, there exists an open set U
also containing z* such that for all z € UNK, ®;(z) € UNK
for all ¢ > 0. The equilibrium z* is asymptotically stable
relative to K if it is Lyapunov stable relative to K and there
is an open set U containing x* such that ®;(z) — z* as
t — oo for all x € U N K. We say z* is exponentially stable
relative to KC if it is asymptotically stable relative to K and
there exists ¢ > 0 and an open set U containing 2* such that
forall z € UNK, ||®(x) — z*|| < e ||z — z*||. Analogous
definitions of Lyapunov stability and asymptotically stability
can be made for sets, instead of individual points.

Consider a forward invariant set K and a set of equilibria S
contained in it, S C K. We say z* € S is semistable
relative to IC if x* is Lyapunov stable and, for any open
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set U containing z*, there is an open set U such that for
every r € UNK, the trajectory starting at x converges to
a Lyapunov stable equilibrium in U N S. Note that if z* is
an isolated equilibrium, then semistability is equivalent to
asymptotic stability. For all the concepts introduced here, when
the invariant set is unspecified, we mean K = R™.

B. Variational Analysis

We review basic notions from variational analysis follow-
ing [26]. The extended real line is R = R U {+oc}. Given
f:R" = R, its domain is dom(f) = {z € R" | f(x) #
00, —oc}. The indicator function of C C R™ is 6¢c : R* — R,

de(z) = {20

Note that dom(d¢) = C. For z € dom(f) and d € R", consider
the following limits

ifzxecd,
ifx¢C.

f(y+ hd) — f(x)

flad) = lim h : (1a)
neoooon . f(y+hd)—f(1’)—hfl(y;d)
fied) = (ot ) h? '
(1b)

If the limit in (1a) (resp. (1b)) exists, f is directionally differen-
tiable in the direction d (resp. twice directionally differentiable
in the direction d). By definition, f'(x;d) = Vf(x)"d if f is
continuously differentiable at x and f”(x;d) = d"V2f(z)d
if f is twice continuously differentiable at x.

Given a dynamical system & = F'(z) and a function V :
R™ — R, the upper-right Dini derivative of V along solutions
of the system is

DV () = lim sup% V(@n(2)) — V()]
h—0t+

where @, is the flow map of the system. If V' is directionally
differentiable then D}V (z) = V'(z;F(x)), and if V is
differentiable then D}V (z) = VV(z) F(xz).

The tangent cone to C C R™ at z € R" is

Te(x) = {d € B" | H{t*}52, C (0,00), {232, € C

v

" =07, 2" -z,
tlj

%dasu%oo}.

If C is an embedded submanifold of R"”, then the tangent
cone coincides with the usual differential geometric notion of
tangent space. Let Ile : R* = C, Tle(x) = {y € C | |z —y|l =

diste () }, be the projection map onto C'. The proximal normal
cone to C at x is

NcprOX(x) — {d c R™ | El{t” 1‘3021 C (0700)7
{2,912 © graph(Tle),

v 17

t =0t 2" = 2,

—das v — 00},

C. Safety Critical Control via Control Barrier Functions

We introduce here basic concepts from safety and a method
for synthesizing safe controllers using vector control barrier
functions. Our exposition here slightly generalizes [27], [28] to
set the stage for dealing with constrained optimization problems
later. Consider a control-affine system

2

with locally Lipschitz vector fields F; : R® — R", for ¢ €
{0,...,7}, and a set &Y C R™ of valid control inputs. Let
C C R” represent the set of states where the system can
operate safely and « : X — U be a locally Lipschitz feedback
controller, with X C R™ a set containing C. The closed-loop
system (2) under u is safe with respect to C if C is forward
invariant under the closed-loop system.

Feedback controllers can be certified to be safe by resorting
to the notion of control barrier function, which we here
generalize for convenience. Let C C X C R™ and m, k € Z>o.
A (m, k)-vector control barrier function (VCBF) of C on
X relative to U is a continuously differentiable function
¢ : R™ — R™** such that the following properties hold:

(i) The safe set can be expressed using m inequality
constraints and k equality constraints:

C={z eR"| ¢i(x) <0, 1 <i<m,
$i(z) =0, m+1<j<m+k}
(i1) there exists o > 0 such that the map K : R" =2 U,

Ko(z)={uel]|

D;ﬂ gi)i(x)—kz UgDE oi(x)+ap;(x) <0,

=1

T

D}quj(x) + ZuzDE(bj () + ag;(z) =0,
=1

1<i<m, m+1<j<m+k},

takes nonempty values for all z € X.

In the special case where m = 1 and k = 0, this definition
coincides with the usual notion of control barrier function [28,
Definition 2], where the class K function is linear, and the Lie
derivative has been replaced with the upper-right Dini derivative.
In general, the problem of finding a suitable VCBF ¢ is
problem-specific: in many cases, the function naturally emerges
from formalizing mathematically the safety specifications one
seeks to enforce. The use of vector-valued functions instead of
scalar-valued ones allows to consider a broader class of safe
sets. If ¢ is a VCBF and u is a feedback where u(z) € K, (x),
it follows that along solutions to (2), 4 ¢;(z) < —a¢;(z) for
1<7<m and %gbj(x) =—ag;(z) form+1<j<m+k,
which implies safety of C. This is stated formally in the next
generalization of [28, Theorem 2].

Lemma 2.1 (Safe feedback control): Consider the system
(2) with safety set C and let ¢ be a vector control barrier
function for C on X. Then, any feedback controller u : X — U
satisfying u(z) € Ky(x) for all z € X and such that



x> Fy(z) + 31" o ui(z)F;(z) is locally Lipschitz renders C
forward invariant and asymptotically stable.

While Lemma 2.1 provides sufficient conditions for feedback
controller to be safe, it does not specify how to synthesize it.
A common technique [27] is, for each x € X, to define u(x)
as the minimum-norm element of K, (x). Here, we pursue an
alternative design of the form:

2
@)}

argmin u; Fy(

( © ue%( (J)){ H Z

This design has the interpretation of finding a controller which
guarantees safety while modifying the drift term in (2) as little
as possible. In general, Lipschitz continuity of the closed-loop
dynamics under either design is not guaranteed, cf. [29], so
additional assumptions may be needed to establish safety via
Lemma 2.1.

3)

D. Optimality Conditions for Nonlinear Programming

We present the basic background on necessary conditions
for optimality [30]. Consider a nonlinear program of the form:

minimize flx)
subject to  g(z) <0 “4)
h(z) =0,

where f : R - R, g : R"
continuously differentiable. Let

C={zeR"|g(x) <0,h(x) =0},

— R™, h : R* - RF are

&)

denote its feasible set. Necessary conditions for optimality can
be derived provided that the feasible set satisfies appropriate
constraint qualification conditions. Let the active constraint,
constraint violation, and inactive constraint sets be

Io(@)= {1 <i<m|gl)= 0},
(@)= {1<i<m]gl2) >0},
I(2)={1<i<m]gix) <0},

respectively. We say that the optimization problem (4) satisfies

o the Mangasarian- Fromovitz Constraint Qualification
(MFCQ) if {Vh;(x)}_, are linearly independent and
there exists £ € R™ such that Vh;(z)T¢ = 0 for all
je{l,...,k} and Vg;(z) "¢ < 0 for all i € Iy(x);

« the Extended Mangasarian-Fromovitz Constraint Qualifi-
cation (EMFCQ) if {Vh;(x)}}_, are linearly independent
and there exists ¢ € R™ such that Vh;(z)"¢ = 0
for all 5 € {1,...,k} and Vg;(z)T¢ < 0 for all
i€ Ip(x) UIli(z);

o the Linear Independence Constraint Qualification (LICQ)
at x, if {Vgi(z)}icry@) U {Vh;(z)}h_, are linearly
independent.

If ¥ € C is a local minimizer, and any of the above
constraint qualification conditions hold at x*, then there exists
u* € R™ and v* € RF such that the Karash-Kuhn-Tucker
conditions hold,

dg(a*)

V(") + o

(6a)
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g(z") <0, (6b)
hz*) =0,  (60)

u* >0, (6d)
(u*)Tg(z*) = 0. (6e)

The pair (u*,v*) are called Lagrange multipliers, and the triple
(z*,u*,v*) satisfying (6) is referred to as a KKT triple. We
denote the set of KKT points of (4) by

Xixr = {z* € R" | 3(u*,v*) € R™ x R*
such that (™, u*,v™) solves (6)}.

I1l. PROBLEM FORMULATION

Our goal is to solve the optimization problem (4) by
designing a dynamical system & = F'(z) that converges to its
solutions. The dynamics should enjoy the following properties:

(i) trajectories should remain feasible if they start from a
feasible point. This can be formalized by asking the
feasible set C, defined in (5), to be forward invariant;
trajectories that start from an infeasible point should
converge to the set of feasible points. This can be
formalized by requiring that F" is well defined on an open
set containing C, and that C as a set is asymptotically
stable with respect to the dynamics.

(ii)

The requirement (i) ensures that, when viewed as an algorithm,
the dynamics is anytime, meaning that it is guaranteed to return
a feasible solution regardless of when it is terminated. The
requirement (ii) ensures in particular that trajectories beginning
from infeasible initial conditions approach the feasible set and,
if the solutions of the optimization (4) belong to the interior of
the feasible set, such trajectories enter it in finite time, never
to leave it again. The problem is summarized below:
Problem 1: Find an open set X containing C and design
a vector field F' : X — R™ such that the system & = F(z)
satisfies the following properties:
(i) F is locally Lipschitz on X;
(i) C is forward invariant and asymptotically stable;
(iii) z* is an equilibrium if and only if * € Xkxr;
(iv) x* is asymptotically stable if z* is a isolated local
minimizer.

IV. CONSTRAINED NONLINEAR PROGRAMMING VIA SAFE
GRADIENT FLOW

In this section we introduce our solution to Problem 1 in
the form of a dynamical system called the safe gradient flow.
We present two interpretations of this system: the first is from
the perspective of safety critical control, where we augment
the standard gradient flow with an input and design a feedback
controller using the procedure outlined in Section II-C. The
second is as an approximation of the projected gradient flow.
Interestingly, we show that both interpretations are equivalent.

A. Safe Gradient Flow via Feedback Control
Consider the control-affine system

dg(z) " on(x) "
ox or

t=-Vf(x)- )
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Fig. 1: Intuition behind the design of the safe gradient flow. Grey lines are
the level curves of the objective function and the shaded region is C. In (a),
the initial condition is zo and the minimizer is z*, with —V f(z) in black
and —Vg(z) in gray at both points. In (b), the dashed line is a trajectory of
z = —V f(z) — uVg(zx) starting from z¢. The black vectors are —V f(z),
the gray vectors are —uVg(x), and the red vectors are &. Deep in the interior
of the feasible set, one has u ~ 0, as following the gradient of f does not
jeopardize feasibility while minimizing it. As the trajectory approaches the
boundary, u increases to keep the trajectory in C.

One can interpret this system as the standard gradient flow of
f modified by a “control action”. The intuition is that the drift
term takes care of optimizing f toward the minimizer, and this
direction can be modified with the input if the trajectory gets
close to the boundary of the feasible set, cf. Figure 1.

Our idea for the controller design is to only modify the drift
when the feasibility of the state is endangered. We accomplish
this by looking at the feasible set C as a safe set and using
¢ = (g,h) : R — R™** as an (m, k)-vector control barrier
function to synthesize the feedback controller, as described
next.

Let o > 0 be a design parameter. For reasons of space, we
sometimes omit the arguments of functions when they are clear
from the context. Following Section II-C, define the admissible
control set as

KJ@:{WWGR%XRH

“owdr " owor VS0 el @
ohdg'  OhORLT  Oh
~eoe U owae U= ga v @ —ah@)}

The next result shows that ¢ is a valid VCBF for (7).

Lemma 4.1: (Vector control barrier function for (7)):
Consider the optimization problem (4). If MFCQ holds for all
x € C, then there exists an open set X containing C such that
the function ¢ = (g, h) : R* — R™*¥ is a valid (m, k)-VCBF
for (7) on X relative to U = RZ, x RE.

Proof: We begin by showing that inequalities parameter-

izing K, (x) are strictly feasible for all = € C, i.e., for each
x € C, there exists € > 0 and (u,v) € R7, x R* such that

dgog" 8gahT _0g

9z 0x Ox 0x  — axvf( z) — ag(z) — el (9a)
ohdg' — ohohT _ oh

“9m0s U 9oz U ag v/ (@) —ah(z). (9b)

Let § = g(x) + £1,,. By Farka’s Lemma [31], (9) is infeasible
if and only if there exists a solution (u,v) to

g dg

dg Oh "
2 >
Ox Ox v=0

~ oo 020 (10

Ohoh "

Ox Ox v=_0
u>0

Ohdg "

Ox Ox (100)

(10c)
0 oh
T(99f—ag) +v (22Vf —ah(z)) <0. (10d)
ox ox
Then (10a), (10b), and (10c) imply that
T [og 09 89 9h T
u Oz Ox Ox Oz U
[v} [MQQT oh OhT] L}] =0
Oz Oz Bz Oz
but, since the matrix is positive semidefinite,

dgdg 1 BgonT - .
u,v) € ker | 92z 9r . 9z x| — ker [@ oh } 11
( ) € Oh dg T @@T Jx ( )
Bz Ox Oz Ox

Next, by (11) and that = € C, (10d) reduces to

—u' (ag(z) — €l,,) <0, (12)

and by a second application of Farka’s Lemma, we see that
(10c), (11) and (12) are feasible if and only if the following
system is infeasible:

39() Oh(x)

< —agla) — e, TpE=0.
We clalm that a solution to (13) can be constructed if MFCQ
holds at z. Indeed, by MFCQ, there exists 5 € R™ such that

9105 < 0 and ahf = 0, and for e sufficiently small, there
exists ¥ > 0 such that & = ~¢ solves (13). Thus (10) is
infeasible, and therefore (9) is feasible.

By strict feasibility and the fact that the matrix g—’;g—ZT has
full rank, it can be shown by [32, Theorem 2] that, for all
x € C, the affine inequalities that parameterize K, (z) are
regular'. Finally, since the affine inequalities parameterizing
K, are continuous, K, (y) is nonempty for any y sufficiently
close to x. Hence there exists an open set X such that K,
takes nonempty values on X. [ ]

Since ¢ is a VCBF, we can design a feedback of the form (3)
to maintain safety of C while modifying the drift term as little

as possible. Formally,
T2
{H o }. (14)

(13a)

S argmm
u,vEKy

-0

We refer to the closed-loop system (7) under the controller (14)
as the safe gradient flow. In general, the solution to (14) might
not be unique. Nevertheless, as we show later, the safe gradient
flow is well-defined because, the closed-loop behavior of the
system is independent of the chosen solution.

Comparing (7) with the KKT equation (6a) suggests that
(u(x),v(x)) can be interpreted as approximations of the dual
variables of the problem. With this interpretation, the safe
gradient flow can be viewed as a primal-dual method. We
use this viewpoint later to establish connections between the
proposed method and the projected gradient flow.

IConsider a linear system of inequalities of the form Cz < ¢, Dz = d, and
a solution zg. The system is regular (c.f. [32]) if for C’, ¢/, D', d’ sufficiently
close to C, ¢, D,d, the perturbed system C’z < ¢/, D’z = d’ remains
feasible, and the distance of zg to the solution set of the perturbed system is
proportional to the magnitude of the perturbation.



Remark 4.2:  (Connection with the Literature): The
work [11] considers the problem of designing a dynamical
system to solve (4) when only equality constraints are present
using a differential geometric approach. Here, we show that

the safe gradient flow generalizes the solution proposed in [11].

Under the assumption that h € C” and LICQ holds, the feasible
set C = {z € R" | h(x) = 0} is an embedded C" submanifold
of R™ of codimension k. The approach in [11] proceeds by
identifying a vector field F' : R" — R" satisfying: (i) F' € C"
and F(z) € Te(x) for all z € C; and (i) h(z) = —ah(z)
along the trajectories of & = F(x), where « > 0 is a
design parameter. The proposed vector field satisfying both
properties is
oh'on oh'

F(z) = —(I ~ 5 %)Vf(x) —ass h(z).
To see that this corresponds to the safe gradient flow, note that
the admissible control set (8) in this case is

ohon '
~ 92 9n v = —ah(x)}.

By the LICQ assumption, K, (x) is a singleton whose unique
element is

15)

nggz{veRkpé%Vﬂm

Oh Oh T\ ~1 0Oh
@) =—(55 ) (FV/@ - ah@)).
Substituting this into (7), we obtain the expression (15). This
provides an alternative interpretation from a control-theoretic
perspective of the differential-geometric design in [11], and
justifies viewing the safe gradient flow as the natural extension
to the case with both inequality and equality constraints. e

Remark 4.3: (Inequality Constraints via Quadratic Slack
Variables): The work [13] pursues a different approach that the
one taken here to deal with inequality constraints by reducing
them to equality constraints. This is accomplished introducing
quadratic slack variables. Formally, for each ¢ € {1,...,m},
one replaces the constraint g;(x) < 0 with the equality
constraint g;(z) = —y?2, and solves the equality-constrained
optimization problem in the variables (z,y) € R"*™ with a
flow of the form (15). While this method can be expressed
in closed form, there are several drawbacks with it. First,
this increases the dimensionality of the problem, which can
be problematic when there are a large number of inequality
constraints. Second, adding quadratic slack variables introduces
equilibrium points to the resulting flow which do not correspond
to KKT points of the original problem. .

B. Safe Gradient Flow as an Approximation of the
Projected Gradient Flow

Here, we introduce an alternative design in terms of a
continuous approximation of the projected gradient flow.
The latter is a discontinuous dynamical system obtained by
projecting the gradient of the objective function onto the tangent
cone of the feasible set. Later, we show that this continuous
approximation is in fact equivalent to the safe gradient flow.

Let x € C and suppose that MFCQ holds at x. Then the
tangent cone of C at x is

_ n | O(z)
Te(w) = {¢ e R" | =

_ ag[0($)
£=0,—5=E<0 }
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For z € C, let Il7, () be the projection onto T¢(z). In general,
the projection is a set-valued map, but the fact that T¢(x) is
closed and convex makes the projection onto 7¢(z) unique in
this case. The projected gradient flow is

T = HTc(m)(_vf(‘r»

1 2

= argmin 5 1€+ V()] (16)
991, (x) Oh(z)

ox ¢<0, Ox £=0
In general, this system is discontinuous, so one must resort
to appropriate notions of solution trajectories and establish
their existence, see e.g., [16]. Here, we consider Carathéodory
solutions, which are absolutely continuous functions that
satisfy (16) almost everywhere. When Carathéodory solutions
exist in C, then the KKT points of (4) are equilibria of (16),
and isolated local minimizers are asymptotically stable.

Consider the following continuous approximation of (16) by
letting o > 0 and defining G, by

subject to

Go () = argmin

e+ V()P

£ER™
. 7]
subject to %5 < —ag(z) a7)
o),
Ep ¢ = —ah(x).

Note that (17) has a similar form to (16), and has a unique
solution if one exists. However, as we show later, unlike the
projected gradient flow, the vector field G, is well defined
outside C and is Lipschitz.

We now show that G, approximates the projected gradient
flow. Intuitively, this is because for inactive constraints j ¢
Iy(z), one has g;(x) < 0 and hence the jth inequality con-
straint in (17), Vg;(z) "¢ < —ag;(x), becomes Vg;(x) "¢ <
oo as @ — oo and the constraint is effectively removed,
reducing the problem to (16). This is formalized next.

Proposition 4.4 (G, approximates the projected gradient):
Let z € C and suppose MFCQ holds. Then

(i) Guo(z) € Te(x).

(ii) hma—wo ga(l‘) = HTC(w)(—Vf(I)).

Proof: To show (i), note that if « € C, then h(z) = 0 and
g1,(z) = 0, so the constraints in (17) imply that ag—f)ga (z) =
0 and Wga(x) < 0, and therefore G, () € Te(z).

Regarding (ii), for fixed « € C, let J = I_(x) and consider
the following quadratic program

P, (e) = argmin

e+ V()P

€ERn
subject to 8gI°($)§ <0, ah(x)f =0 U8
Ox Ox
19)
6%@5 < —gs(2).

When ¢ = 0, the feasible sets of (18) and (16) are the
same. Since the objective functions are also the same,
P,(0) = Ilg,(2)(=Vf(x)). Furthermore, for all o > 0,
P.(1) = G,(z). Finally, since the QP defining P, has a
unique solution, and satisfies the regularity conditions in



A. ALLIBHQY et al.: CONTROL BARRIER FUNCTION-BASED DESIGN OF GRADIENT FLOWS FOR CONSTRAINED NONLINEAR PROGRAMMING 7

10.0

7.5
‘ 5.0
25

0.0

Fig. 2: Projected gradient flow versus continuous approximation. The solution
of the projected gradient flow is in black and solutions of # = Gq (z) for
varying values of « are in the colors corresponding to the colorbar. All solutions
start from the same initial condition, marked by the black dot.

[33, Definition 2.1], P, is continuous at ¢ = 0 by [33,
Theorem 2.2]. Hence lim, oo Go(z) = lim_,o+ Pr(e) =
Py (0) =, () (= V f(2)). u

A consequence of Proposition 4.4 is that solutions of = =
G () approximate the solutions of the projected gradient flow,
with decreasing error as « increases, cf. Figure 2.

C. Equivalence Between the Two Interpretations

Here we establish the equivalence between the two interpre-
tations of the safe gradient flow. Specifically, we show that
the control barrier function quadratic program (14) can be
interpreted as a dual program corresponding to the continuous
approximation of the projected gradient flow in (17).

Let L:R" x R?, x R* x R™ — R be

1
L(& u,v2) = Sll€+ V@)
dg(x) Oh(x)
T(99\) T (9MT)
+u ( E f—!—ag(z)) +v < o §—|—0¢h(aj)).
Then for each x € R™, the Lagrangian of (17) is (§,u,v) —
L(& u,v; ).
For each x € R™, the KKT conditions corresponding to the
optimization (17) are:

€+ Vi(z)+ ag(;) " + 82(;:) To=0 (19a)
a%(f)é +ag(z) <0 (19b)

8/;5;10)5 +ah(z) =0 (19¢)

w>0 (19d)

u' (8%(;)5 + ag(x)) =0 (19)

Because the (17) is strongly convex, the existence of a triple
(&, u,v) satisfying (19) is sufficient for optimality of £. Since
the optimizer is unique, for any triple (£, u,v) satisfying these
conditions, £ = G, ().

Let A, : R" = R7) x R* be defined by

Ao(z) = {(u,v) € RZy x R* |[3¢ € R such that

(&, u,v) solves (19)}. 0

By definition, A, (x) is the set of Lagrange multipliers of (17)
at x € R™ When A,(z) # 0, then the conditions (19)
are also necessary for optimality of (17). As we show next,

this necessity follows as a consequence of the constraint
qualification conditions.

Lemma 4.5 (Necessity of optimality conditions): For o« >
0, if (4) satisfies MFCQ at x € C (resp. EMFCQ at x € R™),
then there is an open set U containing z such that A, (z") # 0
for all ' € UNC (resp. z’ € U).

Proof: Let I = Iy(z). If MFCQ holds at z € C, there
exists £ € R™ such that Vg;(x)"¢ < 0 for all i € I and
Vhj(z)T€ =0 for all j € {1,...,k}. Next, for every j €
I_(x), let €; > 0 be defined as

—ag;(z)

e vewTeso
! Vg;(z)T¢<0.

Then taking 0 < € < minje;_(,){¢;} and € = €€, satisfies

0g(x) Oh(x)
Ox Ox

The above means that the constraints of (17) satisfy Slater’s
condition [34, Chapter 5.2.3] at z, so the affine constraints
are regular [32, Theorem 2]. This implies that there exists
an open set U containing  on which (17) is feasible and
Ao (z') # 0 for all 2’ € U. The proof for the case where
EMFCQ holds at x € R" is identical to the above reasoning
with I = Ip(z) U I (). [ |

We use the optimality conditions to show that (14) is actually
the dual problem corresponding to (17) in the appropriate sense.

Proposition 4.6: (Equivalence of two constructions of the
safe gradient flow): If A, (x)#0,

() If (u,v) € Ay(x), then (u,v) solves (14);

(i) G, is the closed-loop dynamics corresponding to the

implementation of (14) over (7).

Proof: To show (i), let (u,v) € Ay(x). Then there
is £ € R™ such that (S,u,'%) solves (19). By (19a), £ =
—Vf(x) — %Tu — 8}”—? v and substituting £ into the
constraints of (17), it follows immediately that (u,v) € K, (z),
defined in (8). We claim that (u,v) is also optimal for (14).
To prove this, let (u’,v") be a solution of (14) and, reasoning
by contradiction, suppose

{ < —ag(x) {=—ah(z). @)

T T . T T 5
Hag(x) LG ”H >H09<x) o 4 o)
Oz Ox Oz Ox
T T
Then, ¢ = —Vf(z) — &y — % v satisfies the

constraints in (17) and ||{’ + V f(z)|| < ||€ + V f(z)]|, which
contradicts the fact that £ is optimal for (17).

To show (ii), suppose that (u,v) solves (14), and £ =
—Vf(x)— a%—f)Tu - a}é—f) v. We claim that ¢ is optimal
for (17). Indeed, if f is the optimizer of (17), since A, (z) # 0,
there exists (i, 7) € Ay (z) such that (£, @, 7) solves (19). Note
that (@, ) is feasible for (14), and

I¢+ V7P THa‘Céf)TuT i)
<[ %2 a s Z2 o <+ i@

where the inequality follows by optimality of (u,v). It follows
that ¢ is optimal, but since the optimizer of (17) is unique,



& = Go(x). Hence, G, (z) = -V f(z) — a%—(;)Tu - 8%—§”)Tv,
which is the closed-loop implementation of (14) over (7). W

Remark 4.7: (Lagrange Multipliers of Continuous Approx-
imation to Projected Gradient): The notion of duality in
Proposition 4.6 is weaker than the usual notion of Lagrangian
duality. While the result ensures that the Lagrange multipliers
of (17) are solutions to (14), the converse is not true in general.
This is because if (u,v) solves (14), then (G, (x), u,v) might
not satisfy the transversality condition (19e), in which case
(u,v) € Ay(x). An example of this is given by the following
constrained problem with objective f and inequality constraints
g(x) <0, where

f@=lal? o=y 1]e- 1]

The constraints satisfy LICQ for all z € R™. The solution is
x* =0and A, (z*) = {(0,0)}. However, (1, 1) is an optimizer
of (14), even though (1,1) ¢ A, (x*). .
Remark 4.8: (Lagrangian Dual of Continuous Approxima-
tion to Projected Gradient): The safe gradient flow can also
be implemented using the Lagrangian dual of (17). This is
obtained by replacing the feedback controller (14) with

T [0 8qT T

6@ ¢ emin JE[Y][BERE 2R | [4],

v(x) moe | 2 V] |@RoaT ononT| v
(u,v)ERT xR oz Oz oz 0z

u' (giw — ag(x)) o’ (gZVf = ah(g;)> }

and considering its closed-loop implementation over (7).
Though this controller no longer has the same intuitive
interpretation as the CBF-QP (14), it has the advantage that
its values correspond exactly with A, (z). o
Proposition 4.6 shows that there are two equivalent inter-
pretations of the safe gradient flow. The first is as the closed-
loop system corresponding to (7) with the controller (14),
which maintains forward invariance of the feasible set C while
ensuring the dynamics is as close as possible to the gradient
flow of the objective function. The second interpretation is as
an approximation of the projection of the gradient flow of the
objective function onto the tangent cone of the feasible set.
Both interpretations are related by the fact that the Lagrange
multipliers corresponding to the approximate projection are
the optimal control inputs solving (7). Beyond the interesting
theoretical parallelism, this interpretation is instrumental in
our ensuing discussion when characterizing the equilibria,
regularity, and stability properties of the safe gradient flow.

V. STABILITY ANALYSIS OF THE SAFE GRADIENT FLOW

Here we conduct a thorough analysis of the stability
properties of the safe gradient flow and show that it solves
Problem 1. We start by characterizing its equilibria and
regularity properties, then focus on establishing the stability
properties of local minimizers, and finally characterize the
global convergence properties of the flow.
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A. Equilibria, Regularity, and Safety

We rely on the necessary optimality conditions introduced
in Section IV-C to characterize the equilibria of G,,.

Proposition 5.1: (Equilibria of safe gradient flow corre-
spond to KKT points): If MFCQ holds at z* € C, then

(i) Ga(z*) =0 if and only if z* € Xxkr;

(i) If * € Xggr, then A,(2*) is the set of Lagrange

multipliers of (4) at x*.
Proof: Suppose that G, (z*) = 0. By Lemma 4.5, there

exists (u*,v*) € A,(x*) such that (0,u*,v*) satisfies the
necessary optimality conditions in (19), which reduce to

Vf(x") + agﬁ(é*)T : aha(f)Tv* =0 (22a)
ag(z®) <0 (22b)
ah(z*) =0 (22¢)

u* >0 (22d)
(w) " (ag(z*)) =0 (22e)

Because o > 0, it follows immediately that (22) implies that
(z*,u*,v*) satisfy (6) and z* € Xgkr.

Conversely, if 2* € Xkkr, then for any (u*,v*) such that
(z*,u*,v*) solves (6), we have that (0,u*,v*) solves (19),
which implies that G, (z*) = 0 and (u*,v*) € Ay(z*). W

Proposition 5.1(i) shows that the safe gradient flow meets
Problem 1(iii). The correspondence in Proposition 5.1(ii)
between the Lagrange multipliers of (17) and the Lagrange
multipliers of (4) means that the proposed method can be
interpreted as a primal-dual method when implemented via (17).
This is because the state of the system (7) corresponds to
the primal variable of (4), and the inputs to the system (7)
correspond to the dual variables.

We next establish that G, is locally Lipschitz on an open set
containing C when the MFCQ condition holds. This ensures
the existence and uniqueness of classical solutions to the safe
gradient flow.

Proposition 5.2 (Lipschitzness of safe gradient flow): Let
a > 0 and suppose that (4) satisfies MFCQ for all z € C, f,g
and h are continuously differentiable, and their derivatives
are locally Lipschitz. Then G, is well defined and locally
Lipschitz on an open set X containing C.

Proof: By the proof of Lemma 4.5, if MFCQ holds at
x € C, there is an open neighborhood U, containing x on
which the constraints of (17) satisfy Slater’s condition. Then,
G, is the unique solution to (17) on Uy, and by [35, Theorem
3.10], G, is Lipschitz on U,. The desired result follows by
letting X = (U, ¢ Us- |

Proposition 5.2 verifies that the safe gradient flow meets
Problem 1(i). Next, we show that under slightly stronger
constraint qualification conditions at KKT points, the triple
satisfying (19) is unique and Lipschitz near them.

Proposition 5.3 (Lipschitzness of the solution to (19)): Let
x* € Xgkr and suppose (4) satisfies LICQ at z*. Then, there
exists an open set U containing x* and Lipschitz functions
u:U —= RZ), v:U — R™ such that (G, (x), u(x),v(z)) is
the unique solution to (19) for all 2 € U.

Proof: We claim that the variational equation (19) is
strongly regular [36] for all z* € Xggr. Strong regularity
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implies, cf. [36, Corollary 2.1], that there exists an open set U
containing z* and Lipschitz functions £ : U - R", v : U —
RZ, v : U — R such that (£(z), u(z),v(x)) is the unique
triple solving (17). Since the solution (17) is unique, if such a
triple exists, then {(z) = G, (). To prove the claim, we begin
by noting that (17) satisfies the strong second-order sufficient
condition since V. L(&, u,v;z) = I >~ 0. Let (z*,u*,v*) be a
KKT triple of (4). By Proposition 5.1, (0, u*, v*) satisfies (19).
Since the ith inequality constraint of (17) is Vg;(x*)T¢ +
ag;(x*) <0, when & = 0 the constraint is active if and only
if g;(z*) = 0. It follows that when z* € Xkkr, the indices
of the active constraints of (17) are the same as those of (4).
Moreover, for all £ € R",

(%ng(x*)% + agi(z") = Vai(e"),

S (Tha) €+ ahi(a) = Vi),

so the gradients of the binding (i.e., the active inequality and
equality) constraints of (17) and (4) are also the same. By LICQ,
the gradients of the binding constraints are linearly independent,
which along with the strong second-order condition implies
that (19) is strongly regular by [36, Theorem 4.1]. ]

The significance of Proposition 5.3 is twofold. First, it
establishes that, under certain conditions, the Lagrange mul-
tipliers of (17) are Lipschitz as a function of x, which
ensures the existence of a locally Lipschitz continuous feedback
solving (14). Secondly, the result establishes conditions for
uniqueness of the Lagrange multipliers in a neighborhood of
an equilibrium z*. These facts will play an important role in
the stability analysis of local minimizers in the sequel.

We are now ready to show that the safe gradient flow also
meets Problem 1(ii).

Theorem 5.4: (Safety of feasible set under safe gradient
flow): Consider the optimization problem (4). If MFCQ is
satisfied on C, then C is forward invariant and asymptotically
stable under the safe gradient flow.

The proof of this result follows from applying Lemma 2.1
with ¢ = (g, h) as a VCBF, cf. Lemma 4.1, and the construction
of the feedback controller (14) yielding the closed-loop system
locally Lipschitz, cf. Proposition 5.2.

Remark 5.5: (Advantages of safe gradient flow over pro-
Jjected gradient flow): Unlike the projected gradient flow, the
vector field G, is locally Lipschitz, so classical solutions to & =
Go () exist, and the continuous-time flow can be numerically
solved using standard ODE discretization schemes. Secondly,
under mild conditions, G, is well defined for initial conditions
outside C, allowing us to guarantee convergence to a local
minimizer starting from infeasible initial conditions. Finally,
because both (16) and (17) are least-squares problems of the
same dimension subject to affine constraints, the computational
complexity of solving either one is equivalent. .

Remark 5.6: (Discretization of safe gradient flow and role
of parameter a): When considering discretizations of the safe
gradient flow, the parameter o plays an important role since its
value impacts the behavior of its trajectories. By construction,
trajectories of the safe gradient flow beginning at infeasible
initial conditions converge to C at an exponential rate o > 0,

meaning that larger values of a ensure faster convergence
toward the feasible set. On the other hand, smaller values of «
result in a design that enforces safety more conservatively
and hence, intuitively, this should allow for larger stepsizes.
Our preliminary numerical experiments with the forward-Euler
discretization x+ = x + hG,(x) confirm these intuitions,
showing that larger choices of o reduce the range of allowable
stepsizes h that preserve the invariance of the feasible set C
and stability of local minimizers. In particular, we have noticed
that the maximal allowable stepsize h}, such that 0 < h < h},
ensures stability and approximate safety, satisfies h}, — 0
as a — oo. For space reasons, we leave to future work the
formal characterization of suitable stepsizes. .

B. Stability of Isolated Local Minimizers

Here we characterize the stability properties of isolated local
minimizers under the safe gradient flow. The following result
shows that the safe gradient flow meets Problem 1(iv).

Theorem 5.7 (Stability of isolated local minimizers):
Consider the optimization problem (4). Let z* be a local
minimizer and an isolated KKT point, and let U be an open
set such that * is the only KKT point contained in U. Then,

(1) If MFCQ holds for all x € U NC, then =* is asymptoti-

cally stable relative to C;

(ii) If EMFCQ holds for all x € U, then x* is asymptotically
stable relative to R™;

(iii) If LICQ, strict complementarity, and the second-order
sufficient condition hold at z*, then z* is exponentially
stable relative to R™.

We divide the technical discussion leading up to the proof
of the result in three parts, corresponding to each statement.

1) Stability of Isolated Local Minimizers Relative to C: Here we
analyze the stability of local minimizers relative to the feasible
set. We start by characterizing the growth of the objective
function along solutions of the safe gradient flow.

Lemma 5.8: (Growth of objective function along safe
gradient flow): Let z € R™ such that A, (z) # 0. Then,

o For all (u,v) € Ay(x),

D§ f(x) = ~[Ga(@)|” + au'g(z) + av h().

o If x € C then,
Dg f(x) <0,

with equality if and only if z € Xgkr.
Proof: For x € X (with X given by Proposition 5.2)
such that (u,v) € Ay(x) # 0, (Go(x),u,v) solves (19). Next,

D§ f(z) = Gal(2) TV f(2)

(@) dg(z) " on(x) "
:—ga(gg)T(ga(x)+ 72wt v)
®

= —||Ga(@)|]? + au' g(z) + av ' h(x),

where (a) follows by rearranging (19a), and (b) follows
from (19¢) and (19e).

To show the second statement, note that if z € C, then
g(z) <0 and h(z) =0 . Since u > 0, it follows au ' g(x) +
av ' h(x) <0 and therefore

D§ f(z) < ~[Ga(@)|? < 0.
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Finally, Da'af(x) = 0 if and only if G,(x) = 0, which by
Proposition 5.1, is equivalent to x € Xkgr. [ |
As a consequence of Lemma 5.8, the objective function
decreases monotonically along the solutions starting in C. We
use this fact to show that isolated local minimizers that are
isolated equilibria are asymptotically stable relative to C.
Proof: [Proof of Theorem 5.7(i)] By hypothesis and using
Lemma 4.5, A, (x) # 0 for all z € U NC. Because z* is the
unique strict minimizer of f on U NC, and by Lemma 5.8,
D§ f(z) < 0forallz € UNC\{x*}, it follows by Lemma A.1
that =* is asymptotically stable relative to C. [ |

2) Stability of Isolated Local Minimizers Relative to R":
Here we establish the asymptotic stability of isolated local
minima relative to R™. To do so, we cannot rely any more
on the objective function f as a Lyapunov function. This is
because outside of C, there may exist points x € R™ \ C
where f(x) < f(z*). Therefore, to show stability relative
to R™, we need to identify an alternative function whose
unconstrained minimizer is x*. In fact, the problem of finding
a function whose unconstrained minimizers correspond to the
local minimizers of a nonlinear program is well studied in the
optimization literature [37]: such functions are called exact
penalty functions. Our discussion proceeds by constructing an
exact penalty function that is also a Lyapunov function for the
safe gradient flow.

Let Q2 C R”™ be a compact set. A function V' : Qx (0, 00) —
R is a strong exact penalty function relative to €2 if there exists
€* > 0 such that for all 0 < € < €*, z* € int(Q2) is a local
minimizer of V.(z) := V(z,€) if and only if 2* is a local
minimizer of (4). The following result gives a strong exact
penalty function for (4) whose upper-right Dini derivative along
G,, is well defined on 2.

Lemma 5.9:
Let 2 C R™ be compact such that int(2) NC # ). Suppose (4)

satisfies EMFCQ at every x € Q and let V : Q x (0,00) — R,

V(z,e) = f(x) + (23)

1 m
€

m\»—t

SO

Then, V is a strong exact penalty function relative to €2, V' is
directionally differentiable on €2, and

i= 1

D¢ Vi(x) = D, f(x)
+f > DY gi(x ngn z))D§ hj(x), (24)
’L€I+(ZE
for all z € Q.

Proof: The fact that V' is a strong exact penalty function

relative to  readily follows from [37, Theorem 4]. From [37,

Proposition 3], V is directionally differentiable on 2 and its
directional derivative in the direction £ € R" is

V() = V()€

F1Y Va@ et Y Ve e
i€l () i€lo ()

P2 sl @) VR e s Y (V) el
B oo

(Existence of strong exact penalty function):
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We examine this expression in the case V!/(x;G,(z)) =
DS;'QVE(:L’). For any 1 <4 < m, the definition of G, implies

Vgi(2) " Ga() = D§, gi(x) < —ag;(x).

Therefore, if i € In(z), then [Vg;(z) " G ()]s = 0. Similarly,
for any 1 < j < k, the definition of G, implies that

hy (@) Gal2)

so if hj(z) = 0, then |Vh;(x)"G,(x)| = 0, and the result
follows. [ ]

We now show that V. is a Lyapunov function for € sufficiently
small and use this fact to certify the asymptotic stability of
isolated local minimizers.

Proof: [Proof of Theorem 5.7(ii)] Assume, without loss
of generality, that U is bounded. By Lemma 5.9, the function
V. defined in (23) is a strong exact penalty relative to U. By
definition, this means that there exists €; > 0 such that when
€ < €1, x* is the only minimizer of V, in U. Let x € U
and (u,v) € Ay (x). Then, using Lemmas 5.8 and 5.9 and the
definition of G, we have

— D§ hy(x) = —ah;(x),

D§ Ve(x) < = [|Ga(@)|* + au” g(z) + av’ h(z)
1 1o

- Z agi(x)—22a|hj(x)|.
i€ly (x) j=1

Let I = Ip(x) U I_(x). It follows that,

1P+ e ugi(z) +

i€l
k

ra Y (logl = 2) (@)l
j=1

Next, choose 0 < €5 < = Where B > 0 satisfies the bound
given by Lemma B.1. Then for € < ea,

> (- 2ot +Z(|v]|—f) J(@) <0,

i€ly(x)
Finally, since u > 0, we have a

D§ Vi(z) < —|Galx)

o3 o w

i€l (x)

ser wigi(z) < 0. Thus,

—[IGa(@)]* < 0

for all x € U\ {z*}, whenever € < min{e;, e2}. Therefore V,
is a Lyapunov function on U and asymptotic stability of z*
follows by Lemma A.1. [ ]

Remark 5.10: (Relationship to merit functions in numerical
optimization): ITn numerical optimization, the ¢! penalty func-
tion in (23) is often used as a merit function, i.e., a function
that quantifies how well a single iteration of an optimization
algorithm balances the two goals of reducing the value of the
objective function and reducing the constraint violation (cf.
[38, Section 15.4]). Typically, the stepsize on each iteration is
chosen so that the merit function is nonincreasing. Thus, if the
algorithm is viewed as a discrete-time dynamical system, the
merit function is a Lyapunov function. The ¢! penalty plays a
similar role for the continuous-time system described here. o

DE Vi(x) <
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3) Exponential Stability of Isolated Local Minimizers: We now

discuss the exponentially stability of isolated local minimizers.

Our first step is to identify conditions under which the safe
gradient flow is differentiable. To do so, we introduce the
notions of strict complementarity and second-order condition
on the optimization problem.

Definition 5.11: (Strict complementarity and second-order

sufficient conditions): Let (z*,u*,v*) be a KKT triple of (4).

o The strict complementarity condition holds if ] > 0 for
all i € Ip(z*);

o The second-order sufficient condition holds if 2" Qz > 0
for all z € ker ag")(m ) A ker dh(x ), where

+Zu V2gi(x +Z viV2h;
When LICQ holds, strict complementarity together with the
second-order sufficient condition can be used to establish the
differentiability of a KKT triple of a nonlinear parametric
program with respect to the parameters [39]. When these
conditions are satisfied by (4), we show next that (17) is
differentiable and provide an expression for its Jacobian.
Lemma 5.12 (Jacobian of safe gradient flow): Let z* €

Q=V>f( . (25)

Xkxr and u*,v* be the associated Lagrange multipliers.

Suppose:
o LICQ holds at z*;
o (a*,u*,v*) satisfies the strict complementarity condition;

o (z*,u*,v*) satisfies the second-order sufficient condition.

Then G, is differentiable at z* and

0G o (x*)
or —Pe-
where 7 is the n X n identity matrix, P is the orthogonal
projection matrix onto keragloi() N ker %, and @ is
defined in (25).

Proof: By Proposition 5.3, there is a neighborhood U
of z* where the unique KKT triple of (17) corresponding
tox € U is (Gal(x),
LICQ and the strong second-order sufficient condition hold for
(17) at x*. Further, the indices of the active constraints of (4)
are the same as those of (17). Because (z*, u*,v*) satisfies the
strict complementarity condition for (4), (0, u*,v*) satisfies
the strict complementarity condition for (17). Thus, by [40,
Corollary 1], the KKT triple is continuously differentiable with
respect to x, and the Jacobian of G, can be computed using
the given expression for the derivative. ]

Using the result in Lemma 5.12, stability of an isolated local
minimizer can be inferred by showing that the eigenvalues of

a(Z — P),

the Jacobian of the safe gradient flow are all strictly negative.

Proof: [Proof of Theorem 5.7(iii)] By the second-order
sufficient condition, 2" PQPz > 0 for all z € im P\ {0}. It
follows that PQQPz = 0 if and only if z € ker P. Therefore
0 is an eigenvalue of PQP with multiplicity r» and PQP

has n — r strictly positive eigenvalues, where r = dim ker P.

Let z1,..., 2. be the eigenvectors corresponding to the zero
eigenvalues, and 2,41, ..., 2, be eigenvectors corresponding

to the positive eigenvalues, denoted \,11,..., A,. Then
Py = 0 zjzl,...,r,
Zi i=r+1,...,n

u(x), v(z)). From the proof of that result,

Let
1=1,...,m7,

t=r+1,...,n

AL
Hi= )\i—Oé

Then, it follows that (PQP — aP)z; = p;z; forall 1 <i <mn.
Observe that PQP — aP = (PQ — oZ)P has precisely the
same eigenvalues as P(PQ — aZ) = PQ — «P. Therefore,
since p; is an eigenvalue of PQ — «P, it follows that p; + «
is an eigenvalue of

0Gq (z*
PQ—aP+aZ=PQ+a(—P)= —%.
T
Hence the eigenvalues of 8g°(m ) are
{—a,—a,...,—a,—Arg1,. -, —Ant,
where —« appears with multiplicity 7. Since all the eigenvalues
are strictly negative, «* is exponentially stable. [ ]

C. Stability of Nonisolated Local Minimizers

We have characterized in Section V-B the stability under the
safe gradient flow of local minimizers that are isolated KKT
points. In general, if z* is strict local minimizer that is not
an isolated KKT point (for example, if there are an infinite
number of local maximizers arbitrarily close to z*, cf. [41,
page 5]), or if z* is only a local minimizer, then there are no
guarantees on Lyapunov stability. However, as we show here,
nonisolated minimizers are stable under the safe gradient flow
under additional assumptions on the problem data.

When there are no constraints, the safe gradient flow reduces
to the classical gradient flow, where conditions for semistability
of local minimizers are well known: if the objective function
is real-analytic, then all trajectories of the gradient flow
have finite arclength, cf. [42], in which case the objective
function can be used to construct an arclength-based Lyapunov
function satisfying the hypotheses of Lemma A.2 to establish
semistability. In this section, we conduct a similar analysis for
the constrained case. Our main result is as follows.

Theorem 5.13: (Stability of nonisolated local minima):
Consider the optimization problem (4), and assume f, g and h
are real-analytic. Let S be a bounded set of local minimizers
on which f is constant and equal to f* such that

(i) There is an open set U and 8 > 0 such that U N Xkt =
S and f(z) — f* > Bdists(z)? for all z € UNC;

(i) LICQ is satisfied at all z* € S;

(iil) Ts(z*) NNL*(2*) = {0} for all z* € S.
Then there is a* > 0 such that every z* € S is semistable
relative to R™ under the safe gradient flow G, for a > a*.

To prove this result, we first discuss various intermediate
results. In particular, the growth condition in Theorem 5.13(i)
plays a crucial role in the construction of a Lyapunov function
to prove the result. Any z* € § satisfying this property
is called a weak sharp minimizer of f relative to S. Weak
sharp minimizers play an important role in sensitivity analysis
for nonlinear programs as well as convergence analysis for
numerical methods in optimization [43], [44].

We review second-order optimality conditions for weak
sharp minimizers. Let * € Xgkr, suppose that LICQ holds



12

at z*, and let (u*,v*) be the unique Lagrange multipliers
of (4) associated to z*. Define the index set of strongly active
constraints as

If (") = {1 <i<m|uf >0}
The critical cone is
[(z*) ={d € R" | Vh;(z*)'d=0,j=1,...k,
Vgi(z*)Td=0,i € If (z*),
V(@) Td < 0,5 € Io(«") \ I ()}
Lemma 5.14: (Second-order necessary condition for con-
strained weak sharp minima [44, Proposition 3.5]): Con-
sider (4) and let S C C be a set on which f is constant. Suppose
that z* € OS is a weak sharp local minimizer of f relative
to S and LICQ is satisfied at 2*. Let u*,v* be the Lagrange
multipliers and define ¢(z) = f(x) + (u*) T g(x) + (v*) Th(z).
Then, there exists v > 0 such that, for all d € T'(z*),

(26)

0" (z%;d) > ydistyg (o) (d)?.

Lemma 5.15: (Second-order sufficient condition for uncon-
strained weak sharp minima [44, Theorem 2.5]): Consider
W :R™ — R and suppose that W is constant on S. Suppose
z* € S and W (z*;d) > 0 for all d € NI (z*) \ {0},
then x* is a weak sharp local minimizer of W relative to S.

We now proceed with the construction of the Lyapunov
function. Let Tc(a) : R™ = R"™ be the set-valued map where,
for each z € R", Tc(a)(x) is the constraint set of (17). Let
Jo : R" X R™ — R be

1
Jo(@,§) = af (@) + VI(z) "€+ Sl
Consider the optimization problem

minimize

e o @n

As we show next, the solution to (27) is (17).

Lemma 5.16: (Correspondence between (27) and (17)):
Let x € R". Then the program (17) has a solution at x
if and only if (27) has a solution, in which case G,(x) =
arg min{ETéa)(x){Jo‘ (1’, 'S)}

Proof: Note that the feasible sets of (27) and (17) coincide.
Next, for all (z,£) € R™ x R™:

Tal,6) = 6+ V@I = af() - SV @)

Since the difference of the objectives in (27) and (17) does
not depend on &, both problems have the same optimizer. M

Lemma 5.16 shows that (27) is another characterization
of the safe gradient flow in terms of a parametric quadratic
program. Let W, : X — R be the value function:

Wa(l') = ){Ja(x,é)}

inf
)

¢eT{™ (x

. (28)
= af(@) + Vf(2) Gal®) + 5 [Ga()|I*.

Our strategy to prove Theorem 5.13 consists of showing
that W, is a Lyapunov function satisfying the hypotheses
in Lemma A.3 whenever « is sufficiently large. Towards this
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end, we begin by computing the directional derivative of W,,.
Let @ : X xR, x R* — R™*™ be the matrix-valued function,

m k
Qa,u,v) = V2 f(2) + ) uVigil) + Y v;V2hy(a).
=1 j=1

Since the Lagrange multipliers, (u(z),v(x)) are unique in a
neighborhood of S, we slightly abuse notation by defining
Q(z) := Q(x,u(x),v(z)). By Lipschitzness of w and v, @ is
continuous on X. The proof of the next result follows from [40,
Theorem 2] and [45, Corollary 4.1] and is omitted for brevity.

Lemma 5.17 (Differentiability of W, ): Suppose that S sat-
isfies the hypotheses in Theorem 5.13, and X is an open
set containing S on which (G, (x),u(z),v(x)) is the unique
solution to (19). Then

(i) For all z € X, W, is differentiable with

VWa(z) = —(al = Q(2))Ga(2);

(ii) For all z* € S, W, is twice directionally differentiable
in any direction d € R", where

8 <
¢ [Q7) I ¢
st.  aVhj(z*)Td+ Vhi(z*)T¢ =0,
Vi=1,...,k,
aVgi(z*) d+ Vgi(z*)T¢ =0,
Vi€ I (z%),
aVg,(z*)Td + Vgs(z*) ¢ <0,
Vs € Io(a*) \ I (z%).

Remark 5.18: (Dependence of Q(x) on «): In general, for
x € X, the value of Q(z) depends on the choice of «, since
u(z) and v(z) depend on «. However, if z* € Xxgr, then
u(x*),v(x*) correspond to the Lagrange multipliers of (4) and
Q(z*) is the Hessian of the Lagrangian of (4). In particular,
this means that for all z* € Xgkr, the value of Q(x*) depends
only on the problem data and is independent of a. .

We now proceed with the proof of Theorem 5.13.

Proof: [Proof of Theorem 5.13] Let o =
sup,-cs{p(Q(z*))}. For a > a*, we have ol — Q(z*) > 0
for all z* € S. Assume without loss of generality that
al — Q(z) > 0 for all z € U (if not, since @ is continuous,
we can always find an open subset of U containing S for
which these property holds). We claim that W, satisfies each
of the conditions (i)-(iii) in Lemma A.3 with L = R".

We begin by showing condition (iii). If z* € U is a local
minimizer of W, then VW, (z*) = (ol —Q(x*))Gn(z*) = 0.
Since ol — Q(z*) > 0, from (29) we deduce G, (z*) = 0, so
x* € Xkt and therefore z* € U N Xgkr = S.

Conversely, suppose that * € S. Note that, by Propo-
sition 5.1, W, (z) = af(x) for all z € S. Therefore, if
xz* € int(S), it follows that x* is a local minimizer of W,,.
Suppose instead that z* € 9S. For d € R"”, let (4 be the
unique optimizer of (30). Then

Wel(@*:d) = ad Q(z*)d +2¢] Q(z*)d + ||¢al>.

From the constraints in (30), (4 + ad € I'(z*). Because
x* € 0§ is a weak sharp minimizer of f relative to S, by

(29)

WI/ *d — :
o (@7 d) = min

€1y
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Lemma 5.14, there exists v > 0 such that

/(2% Ca+ ad) = (Ga + ad) V(2" (Ca + ad),

. 9 . (32)
> distyg (5+)(Ca + ad)”, Vd € R™.

Since V2/(z*) = Q(x*), we combine (31) and (32) to get
aWll(z*;d) >¢4 (o — Q(x*))(a + ydistrg (o) (Ca + ad)?.

Because af — Q(a*) > 0, if W/ (2*;d) = 0, then {4 = 0 and
d € Ts(z*). But Ts(z*) N N (z*) = {0}, which means
W/ (z*;d) > 0 forall d € N (2*)\ {0}, so by Lemma 5.15,
x* is a weak sharp local minimizer of W,,.

Next we verify condition (ii) in Lemma A.3. For all x € U,

D§ Wa(x) = VWa(2) " Gal)
= —Gu(2)" (eI — Q(2))Ga(z).

Without loss of generality, we can assume that U is bounded.
Then, we can choose ¢1,cy > 0 so that

< irelfllj{)\min(al - Q(.’L’))}

co > sup{Amax(al — Q(z))}.
zeU
It follows that Déra Wa(x) < —c1]|Ga(z)||? for all z € U, but
since |[VW,(z)|| < c2||Ga(z)||, we have for all z € U,

D§ Walx) < = [TWa(@) | Ga(@)].

Finally, we claim that W,,|¢ is a globally subanalytic function,
and therefore condition (i) holds by [46, Theorem 1], and the
fact that the class of globally subanalytic sets is an o-minimal
structure (cf. [46, Definition 1]). To prove the claim, first note
that, since f is real-analytic, J, is real-analytic, and therefore
subanalytic [47, Definition 3.1]. Since U is bounded, and the
restriction of any subanalytic function to a bounded open set
is globally subanalytic [48], it follows that J, |y is globally
subanalytic. Finally, since Tc(a)|U : U = R” is a globally
subanalytic set valued map, and

Walu(z) = ){JQ‘U(maf)}7

eeTi |y (@

it follows that W, |y is globally subanalytic. The statement
follows by applying Lemma A.3 with K = R". ]

D. Global Convergence

Finally, we turn to the characterization of the global
convergence properties of the safe gradient flow. We show
that when the problem data are real-analytic and the feasible
set is bounded, every trajectory converges to a KKT point.

Theorem 5.19: (Global convergence properties): Consider
the optimization problem (4), and assume C is bounded, f, g,
and h are real-analytic functions, and LICQ holds everywhere
on C. Let X be an open set containing C on which the safe
gradient flow is well defined. Then there is a* > 0 such that
for o > a*, every trajectory of the safe gradient flow starting
in X converges to some KKT point.

To prove Theorem 5.19, we use the next result characterizing
the positive limit set of solutions of the safe gradient flow.

Lemma 5.20: (Convergence to connected component): Con-
sider the optimization problem (4), and assume C is bounded,
f>» g, and h are real-analytic functions, and MFCQ holds
everywhere on C. Let X be an open set containing C on which
the safe gradient flow is well defined. Then for all z € X,
w(x) is contained in a unique connected component of Xggr.

Proof: By Theorem 5.4, C is asymptotically stable and
forward invariant on X, and by Lemma 5.8, Dga flx) <0
for all z € C. Using the terminology from [49], f is a height
Sfunction of the pair (C,G,).

Because f, g, and h are real-analytic and C is bounded, C is a
globally subanalytic set. Let f=f+40dc. Then fis a globally
subanalytic function, f is continuous on dom( f) = C, and
Xxkxr 1s precisely the set of critical points of f . By the Morse-
Sard Theorem for subanalytic functions [50, Theorem 14],
Xxxr has at most a countable number of connected components,
and f is constant on each connected component. Since f(z) =
f(x) for all z € C, f is also constant on each connected
component of Xggr, meaning that the connected components
of Xxkr are contained in f (cf. [49, Definition 5]).

Hence, we can apply [49, Theorem 6], and conclude that
for all x € X, the positive limit set w(z) is nonempty and
contained in a unique connected component of £ = {z €
C | D§_f(z) = 0}. However, by Lemma 5.8, E = Xk,
concluding the result. [ ]

We are ready to prove Theorem 5.19.

Proof: [Proof of Theorem 5.19] By Lemma 5.20, for
x € X, there is a connected component S C Xggr such
that w(z) C S. Since LICQ holds on S, by Proposition 5.3
there is an open set U containing S and Lipschitz functions
(u,v) : U — RZ) x RF such that U N Xkt = S and
(Ga(z),u(x),v(z)) is the unique solution to (19) on U.

Let W, be given by (28). By Lemma 5.17, W,, is differ-
entiable on U, and using the same reasoning as in the proof
of Theorem 5.13, W, is a globally subanalytic function, and
satisfies the Kurdyka-Lojasiewicz inequality. Furthermore, if
a > o* =sup,.cs{p(Q(z*))}, then there is some ¢ > 0 such
that Dga Wao(y) < —c|[VWa(y)||[|Ga(y)|| for all y € U.

Thus, we can apply Lemma A.3 with K = R" to conclude
that there exists a neighborhood U containing S such that every
trajectory starting in U that remains in U for all time converges
to a point in S. Finally, since w(x) C S, there exists T > 0
such that ®(z) € U and @4 (7 (z)) = Pryi(x) € U for all
t > 0. Thus, there exists z* € S such that &7 (z) — z* as
t — oo, and the trajectory starting at x converges to *. H

Remark 5.21: (Lower bounds on the parameter « to ensure
global convergence): Note that the proof of Theorem 5.19
yields the expression a* = sup,..s{p(Q(z*))} for the lower
bound on « that guarantees global convergence. In general,
computing this expression requires knowledge of the primal and
dual optimizers of the original problem. However, reasonable
assumptions on f, g, and h allow us to obtain upper bounds
of a*. For instance, if C is polyhedral and V f is £;-Lipschitz
on C, it follows that |[V2f(z)|| < ¢¢, and V?g;(z) = 0 and
V2hj(z) =0 forall i=1,...m and j = 1,...k. Therefore,
a* < {y, and {; can be used instead as a lower bound on «
to ensure global convergence. °
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VI. COMPARISON WITH OTHER OPTIMIZATION METHODS

Here we compare the safe gradient flow with other
continuous-time flows to solve optimization problems. For
simplicity, we restrict our attention to an inequality constrained
convex program. Figure 3 shows the outcome of the comparison
on the same example problem taken from [5]. The methods
compared are the projected gradient flow, the logarithmic barrier
method (see e.g. [51, Section 3]), the /2-penalty gradient flow
(see e.g. [52, Chapter 4]), the projected saddle-point dynamics
(see e.g., [24]), the globally projected dynamics (see e.g., [18]),
and the safe gradient flow.

Under the logarithmic barrier method, the feasible set
is forward invariant and the minimizer of the logarithmic
barrier penalty foarier(2: ) = f() — p 30" log(—gi(x)).
with 1 > 0, does not correspond to the minimizer of (4). Under
the unconstrained minimizer of the /2-penalty, foenaiy (25 €) =
f(@)+5 > [gi(2)]3, with € > 0, does not correspond to the
minimizer of (4), and the feasible set is not forward invariant
under the gradient flow of fyenay. Under the projected saddle-
point dynamics, the feasible set is not forward invariant, but
each trajectory converges to z*. Under the globally projected
dynamics, the feasible set is forward invariant, trajectories
converge to x*, and trajectories are smooth. However, unlike the
safe gradient flow, the globally projected dynamics is undefined
when the constraints are not convex.

VIl. CONCLUSIONS

We have introduced the safe gradient flow, a continuous-time
dynamical system to solve constrained optimization problems
that makes the feasible set forward invariant. The system
can be derived either as a continuous approximation of the
projected gradient flow or by augmenting the gradient flow of
the objective function with inputs, then using a control barrier
function-based QP to ensure safety of the feasible set. The
equilibria are exactly the critical points of the optimization
problem, and the steady-state inputs at the equilibria correspond
to the dual optimizers of the program. We have conducted a thor-
ough stability analysis of the dynamics, identified conditions
under which isolated local minimizers are asymptotically stable
and nonisolated local minimizers are semistable. Future work
will generalize the safe gradient flow to nonsmooth problems
and distributed problems, explore its robustness properties,
and leverage convexity to obtain stronger global convergence
guarantees. Further, we hope to explore issues related to the
practical implementation of the safe gradient flow, including
interconnections of the optimizing dynamics with a physical
system, where the optimization problem is in a feedback loop
with a dynamically evolving plant, develop discretizations of
the dynamics and study their relationship with discrete-time
iterative methods for nonlinear programming, and extend the
framework to Newton-like flows for nonlinear programs which
incorporate higher-order information.

APPENDIX A
LYAPUNOV TESTS FOR STABILITY
Here we present Lyapunov based tests for stability of an

equilibrium. The first result is a special case of [53, Corollary
7.1], and establishes the stability of an isolated equilibrium.
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(e) Globally projected dynamics (f) Safe gradient flow

Fig. 3: Comparison of methods minimizing f(z) = 0.25||z||2 — 0.5z1 +
0.25x9 subject to z2 > 0 and 1 < x2 (see also [5, Figure 8] for a comparison
of additional methods). The blue-shaded region is the feasible set and the grey
curves are level sets of the objective function. The initial condition is denoted
by the purple dot, and the global minimizer is denoted by a blue dot. (a)
The trajectory converges to the global minimizer, and the trajectory remains
inside the feasible set for all time but it is nonsmooth. (b) The trajectory is
smooth and remains inside the feasible set but does not converge to the global
minimizer. However, by choosing p small enough, the trajectory can be made
to converge arbitrarily close to the minimizer. (c) The trajectory is smooth, but
does not remain inside the feasible set or converge to the global minimizer.
However, by choosing € small enough, the trajectory can be made to converge
arbitrarily close to the minimizer. (d) Initialized with u(0) = 0, the trajectory
does not remain inside the feasible set, but it converges to the global minimum.
(e) The trajectory is smooth, converges to the global minimizer, and remains
inside the feasible set. However, this method may not be well-defined for
nonconvex problems (f) The trajectory is smooth, converges to the global
minimizer, and remains inside the feasible set. Of the methods implemented
here and in [5, Figure 8], the safe gradient flow is the only nonconvex method
that satisfies all of these properties.

Lemma A.l (Lyapunov test for relative stability): Let IC be
a forward invariant set of & = F(x) and z* an isolated
equilibrium. Let U C R”™ be an open set containing z* and
suppose that V' : U N KC — R is a directionally differentiable
function such that

e z* is the unique minimizer of V on U N K.
e« DiV(z)<Oforallz e UNK\ {z*}.

Then z* is asymptotically stable relative to K.

The next results provides a test for attractivity and stability
of a set of nonisolated equilibria, using an “arclength”-based
Lyapunov test [54, Theorem 4.3 and Theorem 5.2].

Lemma A.2 (Arclength-based Lyapunov test): Let I be a
forward invariant set of & = F(z). Let S C K be a set
of equilibria and U C R™ an open set containing S where
UNF1({0}) =8. Let V: UNK — R be a continuously
differentiable function such that
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(1) There exists a ¢ > 0 such that for all x € U N,

DypV(x) < —c|[F(2)]. (33)

Then every bounded trajectory that starts in U N K and remains
in U N K for all time has finite arclength and converges to a
point in S. If in addition,

(i) x* is a minimizer of V if and only if z* € S.
then every x* € S is semistable relative to K.

Kurdyka-tojasiewicz inequality2 (condition (i) in
Lemma A.3 below), we show that the condition in (33) for
the arclength-based Lyapunov test can be replaced with
DEV(z) < —c||F(2)||||VV(z)||. This is referred to as
the “angle-condition” and has been exploited [56], [57] to
show convergence of descent methods to solve nonlinear
programming problems. The name arises from the fact that the
inequality implies that the angle between F'(z) and VV (z)
remains bounded in a neighborhood of the equilibrium. In
the next result, we show that the angle condition, together
with the Kurdyaka-Lojasiewicz inequality, implies that every
trajectories of the system have finite arclength.

Lemma A.3: (Angle-condition-based Lyapunov test):. Let
K be a forward invariant set of @ = F(z). Let S C K be a
bounded set of equilibria and U C R™ a bounded open set
containing S where UN F~1({0}) =S. Let V:UNK — R
be a differentiable function such that

(i) There exists V* € R such that V' (x) = V* if and only if

x € S, and there exists ¢; > 0 and a strictly increasing,
differentiable function 4 : [0,00) — R such that for all
xe(UNK)\S:

Y|V () = VDIVV ()] = e
(ii) There is co > 0 such that for all z € U N K,
DpV(x) < —c2||VV (@) ||| F ().

Then every trajectory that starts in U N K and remains in UNK

for all time has finite arclength and converges to a point in S.

If, in addition,
(iii) z* is a minimizer of V if and only if z* € S.
then every x* € S is semistable relative to K.
Proof: Suppose (i) and (ii) hold and assume without
loss of generality that ¢/(0) = 0. Define V : UNK — R by
Y(V(z) = V™) V(z) >V*
V(z) =40 V(z)=V*
—(V* = V(x)) Viz) < V™.
Then for all z € U with V(z) > V*, we have
DFEV (@) = ¥/(V(x) = V)DFV (x)
< =t (V(x) = VI)IVV (@)l F ()|
—c1co||[F()]].
A similar argument can be used to show that the above
inequality also holds when V (z) < V*. Since % is increasing,
x* € UNK is a local minimizer of V if and only if 2* is a

local minimizer of V. Hence, the result follows by applying
Lemma A.2 with the Lyapunov function V. [ ]

IN

2The online version [55] discusses classes of functions for which the
Kurdyka-Lojasiewicz inequality holds.

APPENDIX B
LOCALLY BOUNDED SET OF LAGRANGE MULTIPLIERS

The proof of Theorem 5.7(ii) requires the following result,
which establishes conditions under which A, (z) is locally
bounded.

Lemma B.1: (Local boundedness of A.(x)): Let * €
Xkxr and suppose MFCQ is satisfied at z*. Let U be a
bounded, open set containing x* on which (17) is well defined
and A, (z) # 0 for all © € U. Then, there exists B < co with

sup < B.

xzeU

(34)

sup  {|(u,v)|oo

(u,v)EAG ()

Proof: By [58, Corollary 4.3], the solution map of (17),
x = {Ga(z)} X Ay (), satisfies the Lipschitz stability property
that there exists £ > 0 where

1Gec ()| + dista, z=) (u, v) < Lz — 2", (35)

for all (u,v) € Au(z) and all x € U. By Proposi-
tion 5.1, A, (z*) is precisely the set of Lagrange multipliers
of (4) at z*, so MFCQ implies that A, (z*) is bounded [30].
Suppose by contradiction that (34) does not hold. Then there
exists a sequence {z”}°2; C U and (u”,v") € Ay(z") where
[l(w”,v")||loo — o0 as v — oo. Since A, (z*) is bounded,
|Ga(x¥)|| +disty, (=) ((u”,v")) — oo, which contradicts (35)
and the fact that U is bounded. [ ]
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