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Improving the Robustness of Reinforcement

Learning Policies With L1 Adaptive Control
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and Naira Hovakimyan , Fellow, IEEE

Abstract—A reinforcement learning (RL) control policy could
fail in a new/perturbed environment that is different from the
training environment, due to the presence of dynamic variations.
For controlling systems with continuous state and action spaces,
we propose an add-on approach to robustifying a pre-trained RL
policy by augmenting it with an L1 adaptive controller (L1AC).
Leveraging the capability of anL1AC for fast estimation and active
compensation of dynamic variations, the proposed approach can
improve the robustness of an RL policy which is trained either in
a simulator or in the real world without consideration of a broad
class of dynamic variations. Numerical and real-world experiments
empirically demonstrate the efficacy of the proposed approach in
robustifying RL policies trained using both model-free and model-
based methods.

Index Terms—Reinforcement learning, machine learning for
robot control, robust/adaptive control, robot safety.

I. INTRODUCTION

R
EINFORCEMENT learning (RL) is a promising way to

solve sequential decision-making problems [1]. In the

recent years, RL has shown impressive or superhuman per-

formance in control of complex robotic systems [2], [3]. An

RL policy is often trained in a simulator and deployed in the

real world. However, the discrepancy between the simulated

and the real environment, known as the sim-to-real (S2R) gap,

often causes the RL policy to fail in the real world. An RL

policy may also be directly trained in a real-world environment;

however, the environment perturbation resulting from parameter

variations, actuator failures and external disturbances can still

cause the well-trained policy to fail. Take a delivery drone for

example (Fig. 1). We could train an RL policy to control the

drone in a nominal environment (e.g., nominal load, mild wind
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Fig. 1. Proposed approach to policy robustness improvement based on L1

adaptive augmentation.

disturbances, healthy propellers, etc.); however, this policy could

fail and lead to a crash when the drone operates in a new

environment (e.g., heavier loads, stronger wind disturbances,

loss of propeller efficiency, etc.). To a certain extent, the S2R

gap issue can be considered as a special case of environment

perturbation by treating the simulated and real environments as

the old/nominal and new/perturbed environments, respectively.

A. Related Work

Robust/adversarial training: Domain/dynamics randomiza-

tion was proposed to close the sim-to-real (S2R) gap [4]–[6]

when transferring a policy from a simulator to the real world.

Robust adversarial training addresses the S2R gap and envi-

ronment perturbations by formulating a two-player zero-sum

game between the agent and the disturbance [7]. A similar idea

was explored in [8], where Wasserstein distance was used to

characterize the set of dynamics for which a robust policy was

searched via solving a min-max problem. Though fairly general

and applicable to a broad class of systems, these methods often

involve tedious modifications to the training environment or

the dynamics, which can only happen in a simulator. More

importantly, the resulting fixed policies could overfit to the

worst-case scenarios, and thus lead to conservative or degraded

performance in other cases [9]. This issue is well studied in con-

trol community; more specifically, robust control [10] that aims

to provide performance guarantee for the worst-case scenario,

often leads to conservative nominal performance.

Post-training augmentation: Kim et al. [11] proposed to use

a disturbance observer (DOB) to improve the robustness of
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an RL policy, in which the mismatch between the simulated

training environment and the testing environment is estimated

as a disturbance and compensated for. A similar idea was pursued

in [12], which used a model reference adaptive control (MRAC)

scheme to estimate and compensate for parametric uncertainties.

Our objectives are similar to the ones in [11] and [12], but our

approach and end results are different, as we address a broader

class of dynamic uncertainties (e.g., unknown input gain that

cannot be handled by [11], and time-dependent disturbances that

cannot be handled by [12]), and we leverage theL1 adaptive con-

trol architecture that is capable of providing guaranteed transient

(instead of just asymptotic) performance [13]. Additionally, we

validate our approach on real hardware, as opposed to merely

in numerical simulations in [11], [12]. We note that L1 adaptive

control has been combined with model predictive control (MPC)

with application to quadrotors [14], and it has been used for

safe learning and motion planning applicable to a broad class of

nonlinear systems [15]–[17]. To put things into perspective, this

paper is focused on applying theL1 adaptive control architecture

to robustify an RL policy. In terms of technical details, this paper

considers more general scenarios, e.g., unmatched disturbances

and unknown input gain, which were not considered in [16],

[17].

Learning to adapt: Meta-RL has recently been proposed to

achieve fast adaptation of a pre-trained policy in the presence of

dynamic variations [18]–[22]. Despite impressive performance

mainly in terms of fast adaptation demonstrated by these meth-

ods, the intermediate policies learned during the adaptation

phase will most likely still fail. This is because a certain amount

of information-rich data needs to be collected in order to learn

a good model and/or policy. On the other hand, rooted in the

theory of adaptive control and disturbance estimation, [13], [23],

[24], our proposed method can quickly estimate the discrepancy

between a nominal model and the actual dynamics, and actively

compensate for it in a timely manner. We envision that our pro-

posed method can be combined with these methods to achieve

robust and fast adaptation.

B. Statement of Contributions

For controlling systems with continuous state and action

spaces, we propose an add-on approach to robustifying an RL

policy, which can be trained in standard ways without consid-

eration of a broad class of potential dynamic variations. The

essence of the proposed approach lies in augmenting it with an

L1 adaptive control (L1AC) scheme [13] that quickly estimates

and compensates for the uncertainties so that the dynamics of

the system in the perturbed environment are close to that in

the nominal environment, in which the RL policy is trained

and thus expected to function well. The idea is illustrated in

Fig. 1. Different from most of existing robust RL methods using

domain randomization or robust/adversarial training [4]–[8], the

proposed approach can be used to robustify an RL policy, which

is trained either in a simulator or in the real world, using both

model-free and model-based methods, without consideration of

a broad class of uncertainties in the training. We empirically

validate the approach on both numerical examples and real

hardware.

II. PROBLEM SETTING

We assume that we have access to the system dynamics in the

nominal environment, either simulated or in the real world, and

they are described by a nonlinear control-affine model:

ẋ(t) = f(x(t)) + g(x(t))u(t) � Fnom(x(t), u(t)), (1)

where x(t) ∈ X ⊂ R
n and u(t) ∈ U ⊂ R

m are the state and

input vectors, respectively,X andU are compact sets, f : R
n →

R
n and g : R

m → R
n×m are known and locally Lipschitz-

continuous functions. Moreover, g(x) has full column rank for

any x ∈ X .

Remark 1: Control-affine models are commonly used for

control design and can represent a broad class of mechanical

and robotic systems. In addition, a control non-affine model

can be converted into a control-affine model by introducing

extra state variables (see e.g., [25]). Therefore, the control-affine

assumption is not very restrictive.

The nominal model (1) can be from physics-based model-

ing, data-driven modeling or a combination of both. Methods

exist for maintaining the control affine structure in data-driven

modeling (see e.g., [26]).

Assumption 1: We have access to a nominal control policy,

πo(x), which is trained using the nominal dynamics (1) and

thus functions well under such dynamics. Moreover, π0(x) is

Lipschitz continuous in X with a Lipschitz constant lπ .

The policy πo(x) can be trained either in a simulator or in

the real world in the standard (i.e., non-robust) way, using either

model-based and model-free methods. The Lipschitz continuity

assumption is needed to derive an error bound for estimating the

disturbances in Section III-D. The nominal policy π0 could fail

in the perturbed environment due to the dynamic variations. We,

therefore, propose a method to improve the robustness of this

nominal policy in the presence of such dynamic variations, by

leveraging L1AC [13]. To achieve this, we further assume that

the dynamics of the agent in the perturbed environment can be

represented by

ẋ = f(x) + g(x)Λu+ d(t, x), (2)

where Λ is an unknown input gain matrix, which satisfies As-

sumption 2, d(t, x) is an unknown function that can capture

parameter perturbations, unmodeled dynamics and external dis-

turbances. It is obvious that the perturbed dynamics (2) can be

equivalently written as

ẋ = Fnom(x, u) + σ(t, x, u), (3)

where

σ(t, x, u) � g(x)(Λ− I)u(t) + d(t, x). (4)

Remark 2: Uncertain input gain is very common in real-world

systems. For instance, actuator failures, and variations in mass or

inertia for force- or torque-controlled robotic systems, normally

induce such input gain uncertainty. For a single-input system,

Λ = 0.6 indicates a 40% loss of the control effectiveness. Our

representation of such uncertainty in (2) is broad enough to cap-

ture a large class of scenarios, while still allowing for effective

compensation of such input gain uncertainty using L1AC (de-

tailed in Section III).
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To provide a rigorous treatment, we make the following

assumptions on the perturbed dynamics (2).

Assumption 2: The matrixΛ in (2) is an unknown strictly row-

diagonally dominant matrix with sgn(Λii) known. Furthermore,

there exists a compact convex set �≥ such that Λ ∈ �≥.

Remark 3: The first statement in Assumption 2 indicates that

Λ is always non-singular with known sign for the diagonal ele-

ments, and is often needed in applying adaptive control methods

to mitigate the effect of uncertain input gain (see [23, Sections

6 and 7]). Without loss of generality, we further assume that �≥
in Assumption 2 contains the m by m identity matrix, I .

The problem we are tackling can be stated as follows. Prob-

lem Statement: Given an RL policy πo(x) well trained in a

nominal environment with the nominal dynamics (1), assuming

the dynamics in the perturbed environment are represented by

(2) satisfying Assumption 2, develop an augmentation-based

solution to improve the robustness of the policy πo(x) in the

perturbed environment.

III. L1 ADAPTIVE AUGMENTATION FOR RL POLICY

ROBUSTIFICATION

A. Overview of the Proposed Approach

The idea of our proposed approach is depicted in Fig. 1. With

our approach, the training phase is standard: the nominal policy

can be trained using almost any RL methods (both model-free

and model-based) in a nominal environment. After getting a

nominal policy that functions well in the nominal environment,

for policy execution, anL1 controller is designed to augment and

work together with the nominal policy. TheL1 controller uses the

dynamics of the nominal environment (1) as an internal nominal

model, estimates the discrepancy between the nominal model

and the actual dynamics and compensates for this discrepancy

so that the actual dynamics with the L1 controller (illustrated

by the shaded area of Fig. 1) are close to the nominal dynamics.

Since the RL policy is well trained using the nominal dynamics,

it is expected to function well in the presence of the dynamic

variations and the L1 augmentation.

B. RL Training for the Nominal Policy

As mentioned before, the policy can be trained in the standard

way, using almost any RL method including both model-free and

model-based one. The only requirement is that one has access

to the nominal dynamics of the training environment in the form

of (1).

As an illustration of the idea, for the experiments in Sec-

tion IV, we choose PILCO [27], a model-based policy search

method using Gaussian processes, soft actor-critic [28], a state-

of-the-art model-free deep RL method, and a trajectory opti-

mization method based on differential dynamic programming

(DDP) [29] to obtain the nominal policy.

C. L1 Adaptive Augmentation for Policy Robustification

In this section, we explain how an L1AC scheme can be

designed to augment and robustify a nominal RL policy. An L1

controller mainly consists of three components: a state predictor,

an adaptive law, and a low-pass filtered control law. The state

predictor is used to predict the system’s state evolution, and

the prediction error is subsequently used in the adaptive law

to update the disturbance estimates. The control law aims to

compensate for the estimated disturbance. For the perturbed

system (2) with the nominal dynamics (1), the state predictor

is given by

˙̂x(t) = Fnom(x, u) + σ̂(t)− ax̃(t), (5)

where x̃(t) � x̂(t)− x(t) is the prediction error, a is a positive

constant, σ̂(t) is the estimation of the lumped disturbance,

σ(t, x, u), at time t. Following the piecewise-constant (PWC)

adaptive law (which connects with the CPU sampling time)

[13, Section 3.3], the disturbance estimates are updated as

σ̂(t) = σ̂(iT ), t ∈ [iT, (i+ 1)T ),

σ̂(iT ) = −
a

eaT − 1
x̃(iT ), (6)

for i = 0, 1, · · · , where T is the estimation sampling time. With

σ̂(t), we further compute
[

σ̂m(t)

σ̂um(t)

]

=
[

g(x) g⊥(x)
]−1

σ̂(t), (7)

where σ̂m(t) and σ̂um(t) are the matched and unmatched

disturbance estimates, respectively, g⊥(x) ∈ R
n−m satisfies

g(x)�g⊥(x) = 0, and rank([g(x) g⊥(x)]) = n for any x ∈ X .

From (3) and (5), we see that the total or lumped disturbance

σ(t, x, u), is estimated by σ̂(t) � g(x)σ̂m(t) + g⊥(x)σ̂um(t).
The control law is given by

u(t) = uRL(t) + uL1
(t),

uL1
(s) = −C(s)L[σ̂m(t)], (8)

where uRL(t) = π0(x(t)) is the control command from the

nominal RL policy, uL1
(s) is the Laplace transform of the L1

control command uL1
(t), L[·] denotes the Laplace transform,

and C(s) � K(sI +K)−1 is an m by m transfer matrix con-

sisting of low-pass filters with K ∈ R
m×m.

Remark 4: As it can be seen from (5), (6), (8) in an

L1AC scheme with a PWC adaptive law [13, section 3.3], all the

dynamic uncertainties (such as parametric uncertainties, unmod-

eled dynamics and external disturbances) are lumped together

and estimated as a total disturbance. This is different from most

adaptive control schemes [23], which rely on a parameterization

of the uncertainty to design adaptive laws for updating parameter

estimates and usually consider only stationary uncertainties that

do not directly depend on time.

Details on deriving the estimation and control laws can be

found in [30], [31]. The working principle of the L1 controller

can be summarized as follows: the state predictor (5) and the

adaptive law (6) can accurately estimate the lumped distur-

bances, σ̂m(t) and σ̂um(t). In fact, under certain conditions, a

bound on the estimation error, σ̂(t)− d(t, x), can be derived and

is included in [32]. Additionally, the control law (8) mitigates the

effect of disturbances by cancelling those within the bandwidth

of the low-pass filter. Note that unmatched disturbances (also

known as mismatched disturbances in the disturbance-observer

based control literature [24]) cannot be directly canceled by

control signals and are more challenging to deal with.



CHENG et al.: IMPROVING THE ROBUSTNESS OF REINFORCEMENT LEARNING POLICIES WITH L1 ADAPTIVE CONTROL 6577

TABLE I
COMPARISON WITH EXISTING APPROACHES TO IMPROVING THE ROBUSTNESS OF RL POLICIES

Remark 5: In designing the L1 controller consisting of (5),

(6), and (8), we assume that the states are measured without

noise. In practice, as long as the estimation sampling time is

not too small and the filter bandwidth is not too large, moderate

measurement noise that always exists in real-world systems usu-

ally does not cause big issues, as demonstrated by the hardware

experiments in Section IV-C.

Remark 6: Variants of the proposedL1AC law (5), (6), and (8)

have been used to augment other baseline controllers (e.g., PID,

linear quadratic regulator, MPC), as demonstrated in numerous

applications and flight tests, [13].

D. Comparison With Existing Approaches

The comparison of our proposed approach with existing ap-

proaches is summarized in Table I. Our approach falls into the

category of post-training augmentation (PTA), which does not

require a special training process such as randomizing parame-

ters and adding disturbances, and allows the training to be done

in both simulated and real-world environments, as opposed to

robust/adversarial training (RAT) methods. Additionally, RAT

methods aim to find a fixed policy for all possible realizations

of uncertainties, which could be infeasible when the range of

uncertainties is large. Compared to existing PTA methods based

on MRAC and DOB, our approach is able to deal with a broader

class of uncertainties, and is validated on real hardware.

On the other hand, similar to other PTA methods, our approach

needs the dynamics to be continuous and have a control-affine

form, and can only effectively compensate for the matched

disturbance. Dealing with the unmatched disturbances in the

nonlinear setting has been a long-standing challenging problem

for adaptive or DOB-based control methods, other methods,

e.g., those based on robust control [33], must be considered. As

a result, when the unmatched disturbance dominates the total

disturbance, the performance of the proposed approach will be

limited. This is demonstrated in Section IV, e.g., in the quadrotor

example in the presence of wind disturbances.

IV. EXPERIMENTS

We now apply the proposed approach to two systems, namely

a Pendubot and a 3-D quadrotor. In particular, for the Pendubot,

experiments on real hardware are also conducted. Additional

computation and simulation results for a cart-pole system are

included in [32]. An overview of the systems and test settings

is given in Table II. The dynamic models for these systems are

included in Appendix B of [32].

TABLE II
AN OVERVIEW OF TESTING SYSTEMS AND SETTINGS

Fig. 2. Training curves for Pendubot. Shaded areas denote the variance over
five trials.

A. Pendubot Swing-Up and Balance in Simulations

As depicted in Fig. 6, the Pendubot is a mechatronic system

consisting of two rigid links interconnected by revolute joints

with the second joint unactuated. The states of the system include

the angles and angular rates of the two links, and the control

input is the torque applied to Link 1. The task is to swing up the

links from initial states [q1, q2] = [π, π] to the right-up position

[q1, q2] = [0, 0] and balance them there, as illustrated in Fig. 6.

The same reward function is used for training SAC and DR-SAC

policies and defined by

r =−3(|sin(q1)|+|cos(q1)− 1|+|sin(q2)|+|cos(q2)−1|).
(9)

The nominal RL policies were trained in simulation using

soft actor-critic (SAC) [28] implemented in the MATLAB Re-

inforcement Learning Toolbox. For comparison, we also trained

a few robust policies (termed as DR-SAC) with SAC and domain

randomization [5], [6], in which three parameters, namely, the

input gain (Λ), the mass of Link 1 (m1), and the mass of

Link 2 (m2), were randomly sampled in a variety of ranges.
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Fig. 3. Performance of SAC, DR-SAC3, SAC+L1 and DR-SAC3+L1 for Pendubot under perturbations in m1, m2 and Λ. Percentage change with respect to
the nominal value is used to measure the perturbations in m1 and m2.

Fig. 4. Results under loss of propeller efficiency (a), perturbations in quadrotor mass and inertia (b), and wind disturbances (c). DDP (ideal) denotes the trajectory
obtained by applying the policy to the nominal dynamics.

Additionally, we tried imposing different control limits (through

squashing). When training the SAC and DR-SAC polices, each

agent includes an actor and two critics, all three of which share

the same neural network structure that has two hidden fully-

connected layers with 300 and 400 neurons, respectively. The

same hyper-parameters were used for training all the DR-SAC

and SAC policies. We did five trials for each setting. Table III lists

three of many settings that we tested for training the DR-SAC

policies and the setting for training the vanilla SAC policy. Fig. 2

shows the average episode return (computed using a window of

10 episodes) during training. The solid curves correspond to the

mean and the shaded region to the minimum and maximum
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Fig. 5. Results under joint perturbations in quadrotor mass, inertia and pro-
peller efficiencies, and wind disturbances. In each of the ten scenarios, each
type of perturbation was generated in the same way as was for the results in
Fig. 4(a)-4(c).

Fig. 6. Left: a Pendubot configuration. Middle: stabilization at the upright
position. Right: added masses and a rubber band used to induce dynamic
variations.

TABLE III
SELECTED TRAINING SETTINGS FOR PENDUBOT

average return over the five trials. As seen in Fig. 2, it was

much easier and took much less episodes to find a good SAC

policy, compared to training DR-SAC policies. We were able

to find a good DR-SAC policy (i.e., DR-SAC3) under Setting

IV, while further increasing the range of parameter perturbations

associated with Setting IV led to degraded performance of the

resulting DR-SAC policies even with a larger control limit, as

illustrated by the training curves for DR-SAC1 and DR-SAC2.

For subsequent tests, we chose the best DR-SAC3 from all five

trials and compared it with other control policies.

We tested the performance of vanilla SAC, DR-SAC, SAC

with L1 augmentation (SAC+L1) and DR-SAC with L1 aug-

mentation (DR-SAC+L1) under a wide range of perturbations

in m1, m2, and under three input gain settings: Λ= 1.0, 0.5 and

0.3, while the latter two indicate a loss of control effectiveness by

50% and 70%, respectively. ForL1 augmentation design, the pa-

rameters in (5), (6), and (8) were chosen to bea = 10,T = 0.005
second and K = 200, and fixed across all the tests. The results

in terms of the normalized accumulative reward under each

test scenario are shown in Fig. 3. Note that perturbation in m2

induces unmatched uncertainties that cannot be compensated by

the L1 control law. As one can see, the performance of vanilla

SAC drops dramatically when the perturbations in m1, m2 and

Λ increase. DR-SAC3 achieved acceptable performance under

Λ = 0.5 in general, except when the perturbations in m1 and

m2 are near the maximum, which are beyond the perturbations

encountered during training of DR-SAC3. However, when the

control effectiveness further decreases to 30% of its nominal

value, DR-SAC3’s performance degrades significantly, while

only slight performance degradation is observed under SAC+L1

and DR-SAC3+L1 when the perturbations increase to the max-

imum. It is worth noting that SAC+L1 and DR-SAC3+L1

show comparable performance under the tested scenarios. We

conjecture that in the case of larger unmatched uncertainties,

DR-SAC3+L1 will outperform SAC+L1.

B. 3-D Quadrotor Navigation in Simulations

The states include quadrotor position (x, y, z) and linear

velocities (ẋ, ẏ, ż) in an inertia frame and the roll, pitch, and

yaw angles (φ, θ, ψ) of the quadrotor body frame with respect

to the inertial frame, as well as their derivatives. Motor mixing

is also included in the dynamics. The inputs are the total thrusts

fz and three moments along three axes (τφ, τθ, τψ) generated by

the four propellers.

The nominal value of the key parameters are set to

be [Ix, Iy, Iz] = [0.082, 0.0845, 0.1377] kgm2 (moment

of inertia), m = 4.34 kg (quadrotor mass), and cpi = 1
(i = 1, 2, 3, 4) (propeller control coefficients). The mission is

to control the quadrotor to fly from the origin to the target point

(4,4,2). To obtain a policy for achieving the mission, we chose

to use trajectory optimization, which, together with model

learning, is commonly used for model-based RL [34], [35].

We further chose to use differential dynamic programming

(DDP) [29], a specific trajectory optimization method. Since

our focus is not on the training but on robustifying a pre-trained

policy, we use the physics-based dynamic model with the

nominal parameter values as the model “learned” in the

nominal environment. This model is used for computing the

DDP policy, and for designing the adaptive augmentation.

For computing the DDP policy, we discretized the nominal

dynamics and applied the method in [29] with the cost

function J = x̃�
NPN x̃N +

∑N−1

i=0
(x̃�

i P x̃i + u�
i Qui), where

x̃i = xi − xtarget for i = 1, . . ., N , N is the control horizon,

and P = diag(2, 2, 2, 0.1, 0.1, 0.3, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1),
PN = diag(10, 10, 10, 5, 5, 5, 5, 5, 5, 5, 5, 5) and Q =
diag(20, 4, 4, 4). For L1 augmentation design, the parameters

in (5), (6), and (8) were chosen to be a = 10, T = 0.001 second

and K = 200, and fixed across all the tests.

We tested the performance of the DDP policy with and without

L1 augmentation under three types of dynamic perturbations.

The first one is loss of propeller efficiency, which mimics

the effect of propeller failures, and is simulated by adjusting

the control coefficients cpi (i = 1, 2, 3, 4). Fig. 4(a) shows the

resulting trajectories under ten scenarios, in each of which the

control coefficients of two propellers were randomly selected

to be in [0.5,1]. One can see that L1 augmentation significantly

improved the robustness of the DDP policy, leading to consistent

trajectories that are close to the ideal trajectory obtained by

applying the policy to the nominal dynamics. The second type
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TABLE IV
TEST RESULTS UNDER DIFFERENT SCENARIOS

of dynamic perturbations are the mass and inertia change,

e.g., to mimic the effect of carrying different packages for a

delivery drone. Fig. 4(b) shows the results under ten scenarios

with randomly increased mass and inertia through a scale of

[2,5]. Once again, L1 augmentation significantly improved the

policy robustness, leading to close-to-ideal trajectories. The

third type of dynamic variations is related to wind disturbances

in the horizontal plane, which causes disturbance forces in the

x and y directions. In each of the ten scenarios, the forces

were simulated by stochastic variables with the mean values

randomly sampled from [10,25]. The results are depicted in

Fig. 4(c).L1 augmentation improved the robustness, but was not

able to yield close-to-ideal performance. This is mainly because

the wind disturbances induce unmatched disturbances (σ̂um(t)
in (5) and (6)), which are not compensated for in the control

law (8). Finally, Fig. 5 illustrates the simulation results under

joint perturbations in quadrotor mass, inertia and propeller

efficiency and wind disturbances.

C. Pendubot Swing-Up and Balance on Real Hardware

We further tested the performance of those policies used

in Section IV-A on the hardware setup depicted in Fig. 6. In

addition to SAC and DR-SAC, we trained another policy using

PILCO with the same reward function defined by (9). The ways

to introduce dynamic variations include changing the input gain

Λ, adding masses to Link 2, adding disturbance forces using a

rubber band and different combinations of these three ways. For

L1 augmentation design, the parameters in (5), (6), and (8) were

chosen to be a = 150, T = 0.005 s and K = 150 for most of

the policies in most of the test scenarios. For DR-SAC in Test I,

K = 100 (corresponding to a lower bandwidth for the low-pass

filter) was used to avoid large vibrations at the upright position,

due to the fact that DR-SAC has a relatively high gain to attenuate

the effect of dynamic variations. The test scenarios and results

are summarized in Table IV, where ✔ (✗) indicates a success

(failure) in achieving the mission. A video of the experiments is

available at https://youtu.be/xZBcsNMYK3Y.

As one can see, in the nominal case (i.e., without intention-

ally introduced dynamic variations), all the policies with and

without L1 augmentation succeeded in achieving the mission.

This, to a certain extent, indicates that the L1 augmentation

does not adversely affect the performance of RL policies in

the presence of no or minimal dynamic variations. Addition-

ally, L1 augmentation significantly improves the robustness of

PILCO and vanilla SAC, enabling them to succeed under all the

tested scenarios except Scenario V for SAC, due to the extreme

dynamic variations induced by the the largest perturbations in

input gain and added masses. DR-SAC displayed much more

robustness compared to vanilla SAC as expected, and only failed

under Scenario V. It’s worth noting that L1 augmentation also

further enhanced the robustness to DR-SAC and made it succeed

under Scenario V. In Scenario VI, a rubber band was attached to

the joint connecting the two links to exert a disturbance force.

The disturbance force applied by the rubber band changed quite

rapidly and peaked when Link 1 reached the upright position.

This caused great challenges for the RL policies, as evidenced

by the struggling of PILCO and SAC in the video, since, by

training, these policies are not expected to produce large control

inputs near the upright position. Nevertheless, with the help of

L1 compensation, PILCO and SAC were able to deal with this

challenging scenario.

V. CONCLUSION

This paper presents an add-on scheme to improve the robust-

ness of a reinforcement learning (RL) policy for controlling sys-

tems with continuous state and action spaces, by augmenting it

with an L1 adaptive controller (L1AC) that can quickly estimate

and actively compensate for potential dynamic variations during

execution of this policy. Our approach is easy to implement

and allows for the policy to be trained or computed using

almost any RL method (model-free or model-based), either in

a simulator or in the real world, as long as a control-affine

model to describe the dynamics of the nominal environment is

available for theL1AC design. Experiments on different systems

in both simulations and on real hardware demonstrate the general

applicability of the proposed approach and its capability in

improving the robustness of RL policies including those trained

robustly, e.g., using domain/dynamics randomization (DR). Fu-

ture work includes incorporating mechanisms, e.g., based on

robust control [31], [33], to mitigate the effect of unmatched

disturbance, and model learning to safely and robustly learn the

unknown dynamics.

The proposed approach and existing robust RL methods e.g.,

based on DR, do not necessarily replace each other. Instead, they

can complement each other, as demonstrated by the experimental

results in Section IV-C. As mentioned before, existing robust RL

methods aim to find a fixed policy for all possible realizations

of uncertainties, which could be infeasible when the range of

uncertainties is large. On the other hand, the proposed adap-

tive augmentation approach can deal with significant amount
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of matched uncertainties by using additional control effort to

actively compensate for those, but cannot handle unmatched

uncertainties in its current form. For systems subject to both

matched and unmatched disturbances, a compelling solution will

be to combine the strength of both by (1) (partially) ignoring

matched disturbances in training a policy using existing robust

RL methods to reduce conservativeness, and (2) augmenting the

trained policy with the proposed L1 scheme during execution of

this policy to compensate for matched disturbances.
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