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Improving the Robustness of Reinforcement
Learning Policies With £; Adaptive Control

Yikun Cheng

Abstract—A reinforcement learning (RL) control policy could
fail in a new/perturbed environment that is different from the
training environment, due to the presence of dynamic variations.
For controlling systems with continuous state and action spaces,
we propose an add-on approach to robustifying a pre-trained RL
policy by augmenting it with an £, adaptive controller (L;AC).
Leveraging the capability of an £ AC for fast estimation and active
compensation of dynamic variations, the proposed approach can
improve the robustness of an RL policy which is trained either in
a simulator or in the real world without consideration of a broad
class of dynamic variations. Numerical and real-world experiments
empirically demonstrate the efficacy of the proposed approach in
robustifying RL policies trained using both model-free and model-
based methods.

Index Terms—Reinforcement learning, machine learning for
robot control, robust/adaptive control, robot safety.

I. INTRODUCTION

EINFORCEMENT learning (RL) is a promising way to
Rsolve sequential decision-making problems [1]. In the
recent years, RL has shown impressive or superhuman per-
formance in control of complex robotic systems [2], [3]. An
RL policy is often trained in a simulator and deployed in the
real world. However, the discrepancy between the simulated
and the real environment, known as the sim-to-real (S2R) gap,
often causes the RL policy to fail in the real world. An RL
policy may also be directly trained in a real-world environment;
however, the environment perturbation resulting from parameter
variations, actuator failures and external disturbances can still
cause the well-trained policy to fail. Take a delivery drone for
example (Fig. 1). We could train an RL policy to control the
drone in a nominal environment (e.g., nominal load, mild wind
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adaptive augmentation.

disturbances, healthy propellers, etc.); however, this policy could
fail and lead to a crash when the drone operates in a new
environment (e.g., heavier loads, stronger wind disturbances,
loss of propeller efficiency, etc.). To a certain extent, the S2R
gap issue can be considered as a special case of environment
perturbation by treating the simulated and real environments as
the old/nominal and new/perturbed environments, respectively.

A. Related Work

Robust/adversarial training: Domain/dynamics randomiza-
tion was proposed to close the sim-to-real (S2R) gap [4]-[6]
when transferring a policy from a simulator to the real world.
Robust adversarial training addresses the S2R gap and envi-
ronment perturbations by formulating a two-player zero-sum
game between the agent and the disturbance [7]. A similar idea
was explored in [8], where Wasserstein distance was used to
characterize the set of dynamics for which a robust policy was
searched via solving a min-max problem. Though fairly general
and applicable to a broad class of systems, these methods often
involve tedious modifications to the training environment or
the dynamics, which can only happen in a simulator. More
importantly, the resulting fixed policies could overfit to the
worst-case scenarios, and thus lead to conservative or degraded
performance in other cases [9]. This issue is well studied in con-
trol community; more specifically, robust control [10] that aims
to provide performance guarantee for the worst-case scenario,
often leads to conservative nominal performance.

Post-training augmentation: Kim et al. [11] proposed to use
a disturbance observer (DOB) to improve the robustness of
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an RL policy, in which the mismatch between the simulated
training environment and the testing environment is estimated
as adisturbance and compensated for. A similaridea was pursued
in [12], which used a model reference adaptive control (MRAC)
scheme to estimate and compensate for parametric uncertainties.
Our objectives are similar to the ones in [11] and [12], but our
approach and end results are different, as we address a broader
class of dynamic uncertainties (e.g., unknown input gain that
cannot be handled by [11], and time-dependent disturbances that
cannot be handled by [12]), and we leverage the £, adaptive con-
trol architecture thatis capable of providing guaranteed transient
(instead of just asymptotic) performance [13]. Additionally, we
validate our approach on real hardware, as opposed to merely
in numerical simulations in [11], [12]. We note that £, adaptive
control has been combined with model predictive control (MPC)
with application to quadrotors [14], and it has been used for
safe learning and motion planning applicable to a broad class of
nonlinear systems [15]-[17]. To put things into perspective, this
paper is focused on applying the £, adaptive control architecture
to robustify an RL policy. In terms of technical details, this paper
considers more general scenarios, e.g., unmatched disturbances
and unknown input gain, which were not considered in [16],
[17].

Learning to adapt: Meta-RL has recently been proposed to
achieve fast adaptation of a pre-trained policy in the presence of
dynamic variations [18]-[22]. Despite impressive performance
mainly in terms of fast adaptation demonstrated by these meth-
ods, the intermediate policies learned during the adaptation
phase will most likely still fail. This is because a certain amount
of information-rich data needs to be collected in order to learn
a good model and/or policy. On the other hand, rooted in the
theory of adaptive control and disturbance estimation, [13], [23],
[24], our proposed method can quickly estimate the discrepancy
between a nominal model and the actual dynamics, and actively
compensate for it in a timely manner. We envision that our pro-
posed method can be combined with these methods to achieve
robust and fast adaptation.

B. Statement of Contributions

For controlling systems with continuous state and action
spaces, we propose an add-on approach to robustifying an RL
policy, which can be trained in standard ways without consid-
eration of a broad class of potential dynamic variations. The
essence of the proposed approach lies in augmenting it with an
L4 adaptive control (£1 AC) scheme [13] that quickly estimates
and compensates for the uncertainties so that the dynamics of
the system in the perturbed environment are close to that in
the nominal environment, in which the RL policy is trained
and thus expected to function well. The idea is illustrated in
Fig. 1. Different from most of existing robust RL methods using
domain randomization or robust/adversarial training [4]-[8], the
proposed approach can be used to robustify an RL policy, which
is trained either in a simulator or in the real world, using both
model-free and model-based methods, without consideration of
a broad class of uncertainties in the training. We empirically
validate the approach on both numerical examples and real
hardware.
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II. PROBLEM SETTING

We assume that we have access to the system dynamics in the
nominal environment, either simulated or in the real world, and
they are described by a nonlinear control-affine model:

(t) = f(z(t) + g(z(t)u(t) £ Foom(z(t),u(®)), (1)

where z(t) € X C R™ and u(t) € Y C R™ are the state and
input vectors, respectively, X and { are compact sets, f : R™ —
R™ and g : R™ — R™ ™ are known and locally Lipschitz-
continuous functions. Moreover, g(z) has full column rank for
any z € X.

Remark 1: Control-affine models are commonly used for
control design and can represent a broad class of mechanical
and robotic systems. In addition, a control non-affine model
can be converted into a control-affine model by introducing
extra state variables (see e.g., [25]). Therefore, the control-affine
assumption is not very restrictive.

The nominal model (1) can be from physics-based model-
ing, data-driven modeling or a combination of both. Methods
exist for maintaining the control affine structure in data-driven
modeling (see e.g., [26]).

Assumption 1: We have access to a nominal control policy,
mo(x), which is trained using the nominal dynamics (1) and
thus functions well under such dynamics. Moreover, my(x) is
Lipschitz continuous in X’ with a Lipschitz constant /.

The policy 7, () can be trained either in a simulator or in
the real world in the standard (i.e., non-robust) way, using either
model-based and model-free methods. The Lipschitz continuity
assumption is needed to derive an error bound for estimating the
disturbances in Section III-D. The nominal policy 7y could fail
in the perturbed environment due to the dynamic variations. We,
therefore, propose a method to improve the robustness of this
nominal policy in the presence of such dynamic variations, by
leveraging £1AC [13]. To achieve this, we further assume that
the dynamics of the agent in the perturbed environment can be
represented by

z = f(:E) + g(x)Au + d(ta $), (2

where A is an unknown input gain matrix, which satisfies As-
sumption 2, d(¢,x) is an unknown function that can capture
parameter perturbations, unmodeled dynamics and external dis-
turbances. It is obvious that the perturbed dynamics (2) can be
equivalently written as

T :Fnom(xau) +J(t,1’7u), 3)

where

o(t,z,u) = g(x)(A — Du(t) + d(t, ). 4)

Remark 2: Uncertain input gain is very common in real-world
systems. For instance, actuator failures, and variations in mass or
inertia for force- or torque-controlled robotic systems, normally
induce such input gain uncertainty. For a single-input system,
A = 0.6 indicates a 40% loss of the control effectiveness. Our
representation of such uncertainty in (2) is broad enough to cap-
ture a large class of scenarios, while still allowing for effective
compensation of such input gain uncertainty using £;AC (de-
tailed in Section III).
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To provide a rigorous treatment, we make the following
assumptions on the perturbed dynamics (2).

Assumption2: The matrix A in (2)is an unknown strictly row-
diagonally dominant matrix with sgn(A;;) known. Furthermore,
there exists a compact convex set # such that A € 2.

Remark 3: The first statement in Assumption 2 indicates that
A is always non-singular with known sign for the diagonal ele-
ments, and is often needed in applying adaptive control methods
to mitigate the effect of uncertain input gain (see [23, Sections
6 and 7]). Without loss of generality, we further assume that »
in Assumption 2 contains the m by m identity matrix, /.

The problem we are tackling can be stated as follows. Prob-
lem Statement: Given an RL policy 7,(z) well trained in a
nominal environment with the nominal dynamics (1), assuming
the dynamics in the perturbed environment are represented by
(2) satisfying Assumption 2, develop an augmentation-based
solution to improve the robustness of the policy 7, (z) in the
perturbed environment.

III. £ ADAPTIVE AUGMENTATION FOR RL POLICY
ROBUSTIFICATION

A. Overview of the Proposed Approach

The idea of our proposed approach is depicted in Fig. 1. With
our approach, the training phase is standard: the nominal policy
can be trained using almost any RL methods (both model-free
and model-based) in a nominal environment. After getting a
nominal policy that functions well in the nominal environment,
for policy execution, an L, controller is designed to augment and
work together with the nominal policy. The £ controller uses the
dynamics of the nominal environment (1) as an internal nominal
model, estimates the discrepancy between the nominal model
and the actual dynamics and compensates for this discrepancy
so that the actual dynamics with the L1 controller (illustrated
by the shaded area of Fig. 1) are close to the nominal dynamics.
Since the RL policy is well trained using the nominal dynamics,
it is expected to function well in the presence of the dynamic
variations and the £, augmentation.

B. RL Training for the Nominal Policy

As mentioned before, the policy can be trained in the standard
way, using almost any RL method including both model-free and
model-based one. The only requirement is that one has access
to the nominal dynamics of the training environment in the form
of (1).

As an illustration of the idea, for the experiments in Sec-
tion IV, we choose PILCO [27], a model-based policy search
method using Gaussian processes, soft actor-critic [28], a state-
of-the-art model-free deep RL method, and a trajectory opti-
mization method based on differential dynamic programming
(DDP) [29] to obtain the nominal policy.

C. L, Adaptive Augmentation for Policy Robustification

In this section, we explain how an £;AC scheme can be
designed to augment and robustify a nominal RL policy. An £
controller mainly consists of three components: a state predictor,
an adaptive law, and a low-pass filtered control law. The state
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predictor is used to predict the system’s state evolution, and
the prediction error is subsequently used in the adaptive law
to update the disturbance estimates. The control law aims to
compensate for the estimated disturbance. For the perturbed
system (2) with the nominal dynamics (1), the state predictor
is given by

i'(t) = Fnom(zvu) + ﬁ'(t) - ai‘(t)v (5)

where 7 (t) £ &(t) — x(t) is the prediction error, @ is a positive
constant, &(t) is the estimation of the lumped disturbance,
o(t,z,u), at time ¢. Following the piecewise-constant (PWC)
adaptive law (which connects with the CPU sampling time)
[13, Section 3.3], the disturbance estimates are updated as

5(t) = 6(iT), te€ [T, (i + 1)T),
6(iT) = fea;%li(iT), 6)

fori =0,1,---, where T is the estimation sampling time. With
&(t), we further compute

[?’”“)1 = [9(x) g~(2)] 6 (0), @

Gum (t)

where 6,,(t) and Gy, (t) are the matched and unmatched
disturbance estimates, respectively, g*(z) € R"™™ satisfies
g(z)"g*(x) = 0, and rank([g(z) g*(x)]) = n for any z € X.
From (3) and (5), we see that the total or lumped disturbance
o(t,x,u), is estimated by 6(t) £ g(z)6,,(t) + g (2)Gum(t).
The control law is given by

u(t) = urL(t) + ug, (1),

ug, (8) = —=C(s)Elom(t)], ®)

) is the control command from the
s) is the Laplace transform of the £,
control command ug, (t), £[-] denotes the Laplace transform,
and C(s) = K (sI + K)~! is an m by m transfer matrix con-
sisting of low-pass filters with K € R™*"™,

Remark 4: As it can be seen from (5), (6), (8) in an
L1AC scheme with a PWC adaptive law [13, section 3.3], all the
dynamic uncertainties (such as parametric uncertainties, unmod-
eled dynamics and external disturbances) are lumped together
and estimated as a total disturbance. This is different from most
adaptive control schemes [23], which rely on a parameterization
of the uncertainty to design adaptive laws for updating parameter
estimates and usually consider only stationary uncertainties that
do not directly depend on time.

Details on deriving the estimation and control laws can be
found in [30], [31]. The working principle of the £, controller
can be summarized as follows: the state predictor (5) and the
adaptive law (6) can accurately estimate the lumped distur-
bances, 6,,(t) and 6, (). In fact, under certain conditions, a
bound on the estimation error, 5 (t) — d(t, ), can be derived and
isincluded in [32]. Additionally, the control law (8) mitigates the
effect of disturbances by cancelling those within the bandwidth
of the low-pass filter. Note that unmatched disturbances (also
known as mismatched disturbances in the disturbance-observer
based control literature [24]) cannot be directly canceled by
control signals and are more challenging to deal with.

) =
where ugp (t) = mo(x(t)
nominal RL policy, uz, (

)
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TABLE I
COMPARISON WITH EXISTING APPROACHES TO IMPROVING THE ROBUSTNESS OF RL POLICIES

Robust/Adversarial | Post-Training Augmentation \
Training [4]-[8] | MRAC [12] [ DOB[I1] | L1AC (ours) |
Complexity of training High Low
Training environment Simulated Simulated & Real-world
Restrictions on structure of dynamics Low High (control-affine & continuous)
Control inputs Multiple Single Single Multiple
Restricti tain L High (matched High (matched Medium (matched
estrictions on uncertamnties ow parametric uncertainties) disturbances) uncertainties and disturbances)
Control policy after training Fixed Adapted Online
Validation Sims & Experiments Sims | Sims | Sims & Experiments
Remark 5: In designing the £, controller consisting of (5), TABLEII
(6), and (8), we assume that the states are measured without AN OVERVIEW OF TESTING SYSTEMS AND SETTINGS
noise. In practice, as long as the estimation sampling time is ‘ Svetem | Statenput [ Policy Search Test W/ Unmatched
not too small and the filter bandwidth is not too large, moderate Y Dimension Methods Environments | Disturbances
measurement noise that always exists in real-world systems usu- | pepdubot a1 szL%%. SS:CC SSLig;:;gZ?e((IK;_AC)) Yes
ally dF)es not cause l?lg issues, as demonstrated by the hardware Quadrotor| T2/ DDP Simulation (IV-B) Yes
experiments in Section I'V-C.
Remark 6. Variants of the proposed £1 AC law (5), (6), and (8) 0
. —DR-SAC1 —DR-SAC2 —DR-SAC3 —SAC
have been used to augment other baseline controllers (e.g., PID,
linear quadratic regulator, MPC), as demonstrated in numerous -2000 - ]
applications and flight tests, [13]. S
2 -4000 - 1
14
D. Comparison With Existing Approaches -°8’ 6000 - i
2
The comparison of our proposed approach with existing ap- & 2000 |
proaches is summarized in Table I. Our approach falls into the o
category of post-training augmentation (PTA), which does not 5_10000 L I
require a special training process such as randomizing parame- < m
ters and adding disturbances, and allows the training to be done -12000 febmiLA0L AN V! d
in both simulated and real-world environments, as opposed to
. o . o, -14000 L I
robust/adv'ersarlal training (RAT) methods. Ad'd1t10nall'y, RAT 0 500 1000 1500
methods aim to find a fixed policy for all possible realizations Episode
of uncertainties, which could be infeasible when the range of
uncertainties is large. Compared to existing PTA methods based Fig. 2. Training curves for Pendubot. Shaded areas denote the variance over
five trials.

on MRAC and DOB, our approach is able to deal with a broader
class of uncertainties, and is validated on real hardware.

On the other hand, similar to other PTA methods, our approach
needs the dynamics to be continuous and have a control-affine
form, and can only effectively compensate for the matched
disturbance. Dealing with the unmatched disturbances in the
nonlinear setting has been a long-standing challenging problem
for adaptive or DOB-based control methods, other methods,
e.g., those based on robust control [33], must be considered. As
a result, when the unmatched disturbance dominates the total
disturbance, the performance of the proposed approach will be
limited. This is demonstrated in Section IV, e.g., in the quadrotor
example in the presence of wind disturbances.

IV. EXPERIMENTS

We now apply the proposed approach to two systems, namely
a Pendubot and a 3-D quadrotor. In particular, for the Pendubot,
experiments on real hardware are also conducted. Additional
computation and simulation results for a cart-pole system are
included in [32]. An overview of the systems and test settings
is given in Table II. The dynamic models for these systems are
included in Appendix B of [32].

A. Pendubot Swing-Up and Balance in Simulations

As depicted in Fig. 6, the Pendubot is a mechatronic system
consisting of two rigid links interconnected by revolute joints
with the second joint unactuated. The states of the system include
the angles and angular rates of the two links, and the control
input is the torque applied to Link 1. The task is to swing up the
links from initial states [q1, 2] = [, 7] to the right-up position
[q1,g2] = [0, 0] and balance them there, as illustrated in Fig. 6.
The same reward function is used for training SAC and DR-SAC
policies and defined by

r==3(|sin(q)[+|cos(q1) — 1[+][sin(gz)|+|cos(g2) —1])-
©)

The nominal RL policies were trained in simulation using
soft actor-critic (SAC) [28] implemented in the MATLAB Re-
inforcement Learning Toolbox. For comparison, we also trained
afew robust policies (termed as DR-SAC) with SAC and domain
randomization [5], [6], in which three parameters, namely, the
input gain (A), the mass of Link 1 (mq), and the mass of
Link 2 (mg2), were randomly sampled in a variety of ranges.
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Fig. 4.
obtained by applying the policy to the nominal dynamics.

Additionally, we tried imposing different control limits (through
squashing). When training the SAC and DR-SAC polices, each
agent includes an actor and two critics, all three of which share
the same neural network structure that has two hidden fully-
connected layers with 300 and 400 neurons, respectively. The
same hyper-parameters were used for training all the DR-SAC

200 400 0
Amy /my (%)

200 400
Aml/ml (%)

Performance of SAC, DR-SAC3, SAC+L; and DR-SAC3+£; for Pendubot under perturbations in m1, mo and A. Percentage change with respect to

--DDP (ideal)
DDP

z (m)

o N o

Results under loss of propeller efficiency (a), perturbations in quadrotor mass and inertia (b), and wind disturbances (c). DDP (ideal) denotes the trajectory

and SAC policies. We did five trials for each setting. Table I lists
three of many settings that we tested for training the DR-SAC
policies and the setting for training the vanilla SAC policy. Fig. 2
shows the average episode return (computed using a window of
10 episodes) during training. The solid curves correspond to the
mean and the shaded region to the minimum and maximum
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— DDP (ideal)

DDP

Fig. 5. Results under joint perturbations in quadrotor mass, inertia and pro-
peller efficiencies, and wind disturbances. In each of the ten scenarios, each
type of perturbation was generated in the same way as was for the results in
Fig. 4(a)-4(c).

Fig. 6. Left: a Pendubot configuration. Middle: stabilization at the upright
position. Right: added masses and a rubber band used to induce dynamic
variations.

TABLE III
SELECTED TRAINING SETTINGS FOR PENDUBOT

. Input .
Setting Parameters Limit Policy ‘
I A =1.0,m; =0.12kg, mo = 0.11kg 4Nm| SAC

I |A€[0.3,1], m1 €0.12[L, 6] kg, m2 € 0.11[1, 6] kg|6 Nm|DR-SACI
I |A€(0.3,1], mi€0.12[1, 6] kg, mz2 €0.11[1, 6] kg|9 Nm|DR-SAC2
IV |A€[0.5,1]. m1 €0.12[1, 4] kg, m2 €0.11[1, 4] kg|6 Nm|DR-SAC3

average return over the five trials. As seen in Fig. 2, it was
much easier and took much less episodes to find a good SAC
policy, compared to training DR-SAC policies. We were able
to find a good DR-SAC policy (i.e., DR-SAC3) under Setting
IV, while further increasing the range of parameter perturbations
associated with Setting IV led to degraded performance of the
resulting DR-SAC policies even with a larger control limit, as
illustrated by the training curves for DR-SAC1 and DR-SAC2.
For subsequent tests, we chose the best DR-SAC3 from all five
trials and compared it with other control policies.

We tested the performance of vanilla SAC, DR-SAC, SAC
with £; augmentation (SAC+L;) and DR-SAC with £; aug-
mentation (DR-SAC+L1) under a wide range of perturbations
in myq, mo, and under three input gain settings: A = 1.0, 0.5 and
0.3, while the latter two indicate a loss of control effectiveness by
50% and 70%, respectively. For £; augmentation design, the pa-
rameters in (5), (6), and (8) were chosentobe a = 10,7 = 0.005
second and K = 200, and fixed across all the tests. The results
in terms of the normalized accumulative reward under each
test scenario are shown in Fig. 3. Note that perturbation in ms
induces unmatched uncertainties that cannot be compensated by
the £1 control law. As one can see, the performance of vanilla
SAC drops dramatically when the perturbations in mj, mo and
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A increase. DR-SAC3 achieved acceptable performance under
A = 0.5 in general, except when the perturbations in m; and
my are near the maximum, which are beyond the perturbations
encountered during training of DR-SAC3. However, when the
control effectiveness further decreases to 30% of its nominal
value, DR-SAC3’s performance degrades significantly, while
only slight performance degradation is observed under SAC+L£4
and DR-SAC3+/L; when the perturbations increase to the max-
imum. It is worth noting that SAC+£; and DR-SAC3+.L,
show comparable performance under the tested scenarios. We
conjecture that in the case of larger unmatched uncertainties,
DR-SAC3+£L; will outperform SAC+L;.

B. 3-D Quadrotor Navigation in Simulations

The states include quadrotor position (x,y,z) and linear
velocities (2,9, 2) in an inertia frame and the roll, pitch, and
yaw angles (¢, 8, 1) of the quadrotor body frame with respect
to the inertial frame, as well as their derivatives. Motor mixing
is also included in the dynamics. The inputs are the total thrusts
f- and three moments along three axes (7, 79, T ) generated by
the four propellers.

The nominal value of the key parameters are set to
be  [I;,I,,I.] = [0.082,0.0845,0.1377] kgm?  (moment
of inertia), m = 4.34 kg (quadrotor mass), and c,; =1
(1 =1,2,3,4) (propeller control coefficients). The mission is
to control the quadrotor to fly from the origin to the target point
(4,4,2). To obtain a policy for achieving the mission, we chose
to use trajectory optimization, which, together with model
learning, is commonly used for model-based RL [34], [35].
We further chose to use differential dynamic programming
(DDP) [29], a specific trajectory optimization method. Since
our focus is not on the training but on robustifying a pre-trained
policy, we use the physics-based dynamic model with the
nominal parameter values as the model “learned” in the
nominal environment. This model is used for computing the
DDP policy, and for designing the adaptive augmentation.
For computing the DDP policy, we discretized the nominal
dynamics and applied the method in [29] with the cost
function J = &L Pnin + Yoy (& PZ; +u] Qu;), where
T = X — Tiarget for i =1,..., N, N is the control horizon,
and P = diag(2,2,2,0.1,0.1,0.3,0.1,0.1,0.1,0.1,0.1,0.1),
Py = diag(10,10,10,5,5,5,5,5,5,5,5,5) and Q=
diag(20,4,4,4). For £ augmentation design, the parameters
in (5), (6), and (8) were chosen to be a = 10, 7" = 0.001 second
and K = 200, and fixed across all the tests.

We tested the performance of the DDP policy with and without
L1 augmentation under three types of dynamic perturbations.
The first one is loss of propeller efficiency, which mimics
the effect of propeller failures, and is simulated by adjusting
the control coefficients ¢,; (i = 1,2,3,4). Fig. 4(a) shows the
resulting trajectories under ten scenarios, in each of which the
control coefficients of two propellers were randomly selected
to be in [0.5,1]. One can see that £, augmentation significantly
improved the robustness of the DDP policy, leading to consistent
trajectories that are close to the ideal trajectory obtained by
applying the policy to the nominal dynamics. The second type
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TABLE IV
TEST RESULTS UNDER DIFFERENT SCENARIOS

Policy
Scenario

PILCO[PILCO+L1 |SAC|SAC+L1|DR-SAC|DR-SAC+L1

I: Nominal

I: A=0.5

II: Added Masses of 270g (100% of ma2)

IV: A = 0.6 plus Added Mass of 90g (33% of m2)

V: A = 0.5 plus Added Masses of 450g (167% of my2)

VI: Added disturbances with a rubber band

R R RN (N
ANANENENANAN
R R R AN (N
AR IANENEANAN
AR IANENEANAN
ANANENENANAN

of dynamic perturbations are the mass and inertia change,
e.g., to mimic the effect of carrying different packages for a
delivery drone. Fig. 4(b) shows the results under ten scenarios
with randomly increased mass and inertia through a scale of
[2,5]. Once again, £; augmentation significantly improved the
policy robustness, leading to close-to-ideal trajectories. The
third type of dynamic variations is related to wind disturbances
in the horizontal plane, which causes disturbance forces in the
x and y directions. In each of the ten scenarios, the forces
were simulated by stochastic variables with the mean values
randomly sampled from [10,25]. The results are depicted in
Fig. 4(c). £, augmentation improved the robustness, but was not
able to yield close-to-ideal performance. This is mainly because
the wind disturbances induce unmatched disturbances (6, (t)
in (5) and (6)), which are not compensated for in the control
law (8). Finally, Fig. 5 illustrates the simulation results under
joint perturbations in quadrotor mass, inertia and propeller
efficiency and wind disturbances.

C. Pendubot Swing-Up and Balance on Real Hardware

We further tested the performance of those policies used
in Section IV-A on the hardware setup depicted in Fig. 6. In
addition to SAC and DR-SAC, we trained another policy using
PILCO with the same reward function defined by (9). The ways
to introduce dynamic variations include changing the input gain
A, adding masses to Link 2, adding disturbance forces using a
rubber band and different combinations of these three ways. For
L1 augmentation design, the parameters in (5), (6), and (8) were
chosen to be a = 150, 7" = 0.005 s and K = 150 for most of
the policies in most of the test scenarios. For DR-SAC in Test I,
K =100 (corresponding to a lower bandwidth for the low-pass
filter) was used to avoid large vibrations at the upright position,
due to the fact that DR-SAC has arelatively high gain to attenuate
the effect of dynamic variations. The test scenarios and results
are summarized in Table IV, where ¢ (X) indicates a success
(failure) in achieving the mission. A video of the experiments is
available at https://youtu.be/xZBcsNMYK3Y.

As one can see, in the nominal case (i.e., without intention-
ally introduced dynamic variations), all the policies with and
without £, augmentation succeeded in achieving the mission.
This, to a certain extent, indicates that the £; augmentation
does not adversely affect the performance of RL policies in
the presence of no or minimal dynamic variations. Addition-
ally, £; augmentation significantly improves the robustness of
PILCO and vanilla SAC, enabling them to succeed under all the

tested scenarios except Scenario V for SAC, due to the extreme
dynamic variations induced by the the largest perturbations in
input gain and added masses. DR-SAC displayed much more
robustness compared to vanilla SAC as expected, and only failed
under Scenario V. It’s worth noting that £, augmentation also
further enhanced the robustness to DR-SAC and made it succeed
under Scenario V. In Scenario VI, a rubber band was attached to
the joint connecting the two links to exert a disturbance force.
The disturbance force applied by the rubber band changed quite
rapidly and peaked when Link 1 reached the upright position.
This caused great challenges for the RL policies, as evidenced
by the struggling of PILCO and SAC in the video, since, by
training, these policies are not expected to produce large control
inputs near the upright position. Nevertheless, with the help of
L1 compensation, PILCO and SAC were able to deal with this
challenging scenario.

V. CONCLUSION

This paper presents an add-on scheme to improve the robust-
ness of a reinforcement learning (RL) policy for controlling sys-
tems with continuous state and action spaces, by augmenting it
with an £; adaptive controller (£, AC) that can quickly estimate
and actively compensate for potential dynamic variations during
execution of this policy. Our approach is easy to implement
and allows for the policy to be trained or computed using
almost any RL method (model-free or model-based), either in
a simulator or in the real world, as long as a control-affine
model to describe the dynamics of the nominal environment is
available for the £1 AC design. Experiments on different systems
in both simulations and on real hardware demonstrate the general
applicability of the proposed approach and its capability in
improving the robustness of RL policies including those trained
robustly, e.g., using domain/dynamics randomization (DR). Fu-
ture work includes incorporating mechanisms, e.g., based on
robust control [31], [33], to mitigate the effect of unmatched
disturbance, and model learning to safely and robustly learn the
unknown dynamics.

The proposed approach and existing robust RL methods e.g.,
based on DR, do not necessarily replace each other. Instead, they
can complement each other, as demonstrated by the experimental
results in Section IV-C. As mentioned before, existing robust RL
methods aim to find a fixed policy for all possible realizations
of uncertainties, which could be infeasible when the range of
uncertainties is large. On the other hand, the proposed adap-
tive augmentation approach can deal with significant amount



CHENG et al.: IMPROVING THE ROBUSTNESS OF REINFORCEMENT LEARNING POLICIES WITH £; ADAPTIVE CONTROL

of matched uncertainties by using additional control effort to
actively compensate for those, but cannot handle unmatched
uncertainties in its current form. For systems subject to both
matched and unmatched disturbances, a compelling solution will
be to combine the strength of both by (1) (partially) ignoring
matched disturbances in training a policy using existing robust
RL methods to reduce conservativeness, and (2) augmenting the
trained policy with the proposed £; scheme during execution of
this policy to compensate for matched disturbances.
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