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H I G H L I G H T S  

• There are no fine-grained measures of the US urban gradient for the 20th century. 
• We created indices of remoteness for all census places in the US from 1930 to 2018. 
• These indices enable fine-scale, multi-temporal analysis of urban and rural change. 
• We compared our indices to a variety of existing rural–urban classifications. 
• These indices provide a significant contribution for rural–urban classifications.  
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A B S T R A C T   

Rural-urban classifications are essential for analyzing geographic, demographic, environmental, and social 
processes across the rural–urban continuum. Most existing classifications are, however, only available at rela
tively aggregated spatial scales, such as at the county scale in the United States. The absence of rurality or 
urbanness measures at fine spatial resolution poses significant problems when the process of interest is highly 
localized, as with the incorporation of rural towns and villages into encroaching metropolitan areas. Moreover, 
existing rural–urban classifications are often inconsistent over time, or require complex, multi-source input data 
(e.g., remote sensing observations or road network data), thus, impeding the longitudinal analysis of rural–urban 
dynamics. In order to address this gap, we compare existing rural–urban classifications in the US, and we develop 
a set of distance- and spatial-network-based methods for consistently estimating the remoteness and rurality of 
places at fine spatial resolution, over long periods of time, aiming to provide and evaluate temporally consistent 
rural–urban classifications at fine spatial granularity, but scalable to arbitrary, coarser spatial units. We 
demonstrate the utility of our approach by constructing indices of urbanness for over 28,000 places in the United 
States from 1930 to 2018 and further test the plausibility of our results against a variety of evaluation datasets. 
We call these indices the place-level urban–rural indices (PLURAL) and make the resulting code and datasets 
publicly available so that other researchers can conduct long-term, fine–grained analyses of urban and rural 
change. In addition, due to the simplistic nature of the input data, these methods can be generalized to other time 
periods or regions of the world, particularly to data-scarce environments.   

1. Introduction 

Over the twentieth century, the growth of towns and cities across the 
United States profoundly reshaped the geography of the nation’s 

population. The share of the US population living outside of urban areas 
fell from roughly 60 percent in 1900 to less than 20 percent today 
(Ratcliffe, 2015), and many communities that were once rural were 
absorbed into cities through urban expansion. Data constraints have, 
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however, limited our understanding of how this process has unfolded at 
fine spatial scales and also what is known about the current conditions of 
rural communities, particularly those with smaller populations (Hunter 
et al., 2020). 

For a wide variety of reasons, researchers often use the county as 
their analytical unit to study rural communities (e.g., Curtis, DeWaard, 
Fussell, & Rosenfeld, 2020; Machado, Jayawardana, Mossialos, & 
Vaduganathan, 2021). The county is often a policy-relevant choice 

Fig. 1. Flow diagram of the presented methods.  

Fig. 2. Source data and created raster datasets used as input for PLURAL-1: (a) US census places in 2018, (b) place-level population for Colorado and Utah in 1930 
and (c) in 2018. Panels (d) to (h) show the distance surfaces to the nearest place of population (d) 10,000 to 20,000 (e) 20,000 to 50,000, (f) 50,000 to 100,000, (g) 
100,000 to 250,000, and (h) > 250,000 derived from the place population estimates in 2018. Panel (i) shows the focal population density surface derived from the 
2018 place populations. All surfaces are generated at a spatial resolution of 1 km. 
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representing local stakeholders within multi-level governance (Homsey, 
Liu, & Warner, 2019). In addition, a vast amount of information is 
available at the county scale including sociodemographic characteristics 
(e.g., US Census Bureau, 2019), health outcomes and behaviors (e.g., 
CDC, 2021), mortality (e.g., Curtin & Spencer, 2021), and many indices 
reflecting for example, the rural–urban continuum (e.g., Golding & 
Winkler, 2020). Counties are, however, coarse descriptors of urban and 
rural conditions on the ground. In fact, most rural people in the US today 
– as officially defined – live inside metropolitan counties (Lichter, 
Brown, & Parisi, 2021). The occlusion of fine-grained variations along 
the rural–urban continuum by counties is a case of the Modifiable Areal 
Unit Problem (MAUP), a well-established challenge in the social and 
spatial sciences that refers to the inferential problems arising from using 
one unit of spatial aggregation over another (Openshaw, 1979; Flow
erdew, Geddes, & Green, 2001, Goodchild, 2022). 

The “rural–urban continuum” is a concept that is used to characterize 
the gradient of urbanization across rural and urban settlements. Ac
cording to Dewey (1960), the rural–urban continuum captures the 
intersection of the “population continuum” (as measured by population 
size and density) and the “cultural continuum” as related to urban and 
rural ways of life. The rural–urban continuum thus emerges from the 
interaction of sociocultural and spatial demographic processes (Pahl, 
1966) and helps us move beyond artificial binaries between “urban” and 
“rural” places (Taubenböck et al., 2022). In the literature, there are 
many neighboring concepts to the rural–urban continuum including the 
“folk-urban continuum” (Yusuf, 1974), the “rural–urban interface” 
(López-Goyburu & García-Montero, 2018), or the “rural–urban 
gradient” (Du Toit & Cilliers, 2011). Although the rural–urban contin
uum has long been accepted as a useful conceptual and analytic tool, 
even outside of the US (e.g., Yuan 1964), it has not gone without critique 
and controversy (see Dewey, 1960, Bell, 1992). 

Today, the rural–urban continuum serves as a useful analytic device 
for examining differences in a wide range of outcomes across contexts 
and for tracking urbanization patterns over time. This framework has 
been used to study a variety of sociological and health-related outcomes 
(e.g., Hillemeier, Weisman, Chase, & Dyer, 2007, Sibley & Weiner, 

2011, Lee & Sharp, 2017, Peters, 2020), migration patterns (Golding & 
Winkler, 2020), land consumption and biodiversity (Murali, Sur
yawanshi, Redpath, Nagendra, & Mishra, 2019), income inequality 
(Thiede, Butler, Brown, & Jensen, 2020), mortality (Brooks, Mueller, & 
Thiede, 2020), political polarization (Scala & Johnson, 2017), and 
manyother processes (e.g., Pender, Hertz, Cromartie, & Farrigan, 2019, 
Johnson & Lichter, 2020, Lichter & Johnson, 2020, Lichter et al., 2021). 
As is evident in recent social mobility research, outcomes often do not 
shift in a linear fashion across the rural–urban continuum, as transi
tional, peri-urban and “micropolitan” places can seemingly constitute 
their own unique contexts that require their own forms of policy 
attention (Weber, Fannin, Cordes, & Johnson, 2017). There are even 
now efforts to generate future predictions based on the urban–rural 
continuum (e.g., Abdelkarim, Alogayell, Alkadi, & Youssef, 2022). 
Confidence in these findings rest, of course, on the assumption that we 
have appropriately classified the continuum. 

One of the most notable features of these classifications in the US 
context is that they are generally based on county-level units (e.g., 
Cromartie, Dobis, Krumel, McGranahan, & Pender, 2020). We know, 
however, that many rural and urban processes and their associated ef
fects play out at the sub-county scale (e.g., places, towns, and villages), 
and therefore, are masked by county scale analyses. For example, in our 
recent work on rural social mobility, we document that much of the 
variation in US social mobility outcomes is between places within the 
same counties, rather than between places in different counties (Connor, 
Uhl, Xie, Talbot, Hester, Jaworski, & Hunter, 2022). Furthermore, many 
other globally-significant socio-environmental processes—such as 
amenity-driven migration, land-use change, biodiversity loss, displace
ment and segregation—manifest from predominately local processes 
(Rockström et al., 2009, Gosnell & Abrams, 2011, Banzhaf & Walsh, 
2013). Zoning, income levels and the distribution of public goods (e.g., 
public spaces, viewscapes, school quality) or nuisances (e.g., crime, 
pollution) influence local housing markets and drive the differentiation 
of places (Grineski, Bolin, & Boone, 2007, Glaeser, Resseger, & Tobio, 
2009, Banzhaf & Walsh, 2013, York et al., 2014, Banzhaf, Ma, & Tim
mins, 2019). These same processes have implications for the 

Fig. 3. Illustrating the spatial network generation: (a) US census places in 2010, color-coded by 2013 USDA county-level rural–urban continuum codes, (b) Thiessen 
polygonization, (c) exhaustive spatial network for neighbors of cardinality 1, (d) exemplary neighborhoods of cardinality 3 (top left) and cardinality 5 (center) shown 
for two places. 
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sustainability of landscapes by influencing land uses, resource demands, 
and development along the rural–urban continuum (Theobald & 
Romme, 2007, Grimm, Pickett, Hale, & Cadenasso, 2017). Full under
standing of these patterns requires that our scale of observation and 
analysis are well aligned with the true scale at which processes unfold. 
Failure to achieve this can lead to substantial mischaracterization and 
bias when using coarse spatial units (e.g., county) to describe finer units 
(e.., places) within them (Hunter et al., forthcoming). Again, these issues 
are closely related to the MAUP, which may be thought of as the 
geographical manifestation of the Ecological Fallacy Problem (Pianta
dosi, Byar, & Green, 1988). 

In order to study rural and urban processes, researchers have already 
generated many indices, classifications, and typologies of rurality, based 
on a wide range of data (Nelson et al., 2021). Examples of existing 
rural–urban classifications in the US include the commonly used rural
–urban continuum codes (RUCC) created by the US Department of Agri
culture’s (USDA) Economic Research Service (ERS). The RUCC identify 
nine categories, i.e., three metro and six nonmetropolitan county des
ignations, with metropolitan counties further disaggregated by the 
encompassing metro area’s population size (McGranahan, Hession, 
Mines, & Jordan, 1986, Butler, 1990). Nonmetropolitan counties are 
further classified by their degree of urbanization and adjacency to a 
metropolitan area. Golding and Winkler (2020) refined the RUCC to 
distinguish explicitly between urban cores and their exurbs and suburbs, 
resulting in the rural–urban gradient (RUG). The USDA ERS also produces 
the rural–urban commuting area (RUCA) codes (Economic Research Ser
vice, 2022; also available by the ZIP code area). The RUCA codes make 

use of the US Census urbanized areas and urban core designations 
(Census Bureau, 2020), in combination with census-tract level 
commuting flow estimates. Combined, the RUCA groups census tracts 
into 10 classes of commuting levels. Another related measure is the 
USDA urban influence codes (UIC) (Ghelfi & Parker, 1997), which yields 
nine different classes based on the population of the county’s largest city 
rather than an aggregated urban population as in RUCC. 

The National Center for Health Statistics (NCHS) have also released a 
classification called the urban–rural classification scheme (URCS) (Ingram 
& Franco, 2014), which is based on metropolitan and non-metropolitan 
county classification in combination with population thresholds, iden
tifying six county designations. Moreover, a continuous classification 
scheme is provided by the index of relative rurality (IRR) (Waldorf, 2006; 
Waldorf & Kim, 2018), a county-level index based on population size, 
density, road network distance, and built-up areas. As the IRR method is 
independent from administrative or census-defined boundaries, the 
underlying framework can be applied to finer-grained spatial units as 
well (Waldorf & Kim, 2015). Finally, there are the Frontier and Remote 
(FAR) Area Codes available at the ZIP code level (Cromartie & Nulph, 
2015), which provide four classes of remoteness, and are derived from 
travel times and population estimates. See Waldorf and Kim (2015) and 
National Academies of Sciences, Engineering, and Medicine (2016) for 
reviews of these various classification approaches, and Fig. 6 for a visual 
comparison of these classifications.1 

However, these existing measures of the rural–urban continuum 
typically face at least one of three challenges of relevance to rural 
populations. We describe each of these in turn below. 

County-scale data are relatively coarse. Indices at the county-scale face 
important challenges. The principal problem explicated by the MAUP is 
that results based on data that have been aggregated to a set of spatial 
units will change when those units change (Goodchild, 2022). This issue 
applies implicitly to our measurement of locations along the rural–urban 
continuum (e.g., Cosby et al., 2019; Johnson & Lichter, 2019; Monnat, 
2020) and also when drawing inferences on subcounty processes from 
coarser county-level data (Homsy, Liu, & Warner, 2019), i.e., the 
ecological fallacy problem. 

County-scale analyses can also face the Uncertain Geographic 
Context Problem which refers to the challenge whereby relevant con
clusions depend on analyses at spatial units corresponding to the true 
and relevant geographic contexts experienced by individuals (Kwan, 
2012). Here we can look to a prominent body of recent rural-related 
work that examines how the characteristics of places shape individual- 
level processes including social mobility (Chetty, Hendren, Kline, & 
Saez, 2014; Connor & Storper, 2020), racial inequality (Manduca & 
Sampson, 2019), health, and voting (e.g., Shah et al., 2020; Sachdeva, 
Fotheringham, Li, & Yu, 2021). Indeed, individual lives are typically 
lived in communities, places that influence life trajectories and places to 
which meaning can be ascribed. Such meaning furthers a sense of 
belonging and the development of place-based identities (e.g., Sack, 
1997, Manzo & Devine-Wright, 2013, Armstrong & Stedman, 2019). 
Place identity appears especially strong among rural dwellers (Lewicka, 
2005, Anton & Lawrence, 2014) and, while today’s rural America is 
ever-changing, recent work confirms that, in general, rural residents 
remain deeply tied to place and hold strong commitments to community 
(Ulrich-Schad & Duncan, 2018). As compared to ZIP codes, places have 

Table 1 
Overview of the network-based remoteness metrics.  

Metric Reference 
neighborhood 

Description 

Population 
POPPlace Place Population of the place (i.e., node) 
NPD1 Cardinality 1 Population density of places in 

neighborhood of cardinality 1, referred 
to the squared maximum distance 
between places in neighborhood 

NPD2 Cardinality 2 Population of places in neighborhood of 
cardinality ≤ 2, referred to the squared 
maximum distance between places in 
neighborhood 

NPD3 Cardinality 3 Population of places in neighborhood of 
cardinality ≤ 3, referred to the squared 
maximum distance between places in 
neighborhood  

Local significance 
MLS1 Cardinality 1 Median local significance (MLS) of 

edges connecting each place with its 
neighbors of cardinality 1 

MLS2 Cardinality 2 MLS of edges connecting each place 
with its neighbors of cardinality ≤ 2 

MLS3 Cardinality 3 MLS of edges connecting each place 
with its neighbors of cardinality ≤ 3  

Distance-based neighborhood population indices 
DNPIC3 Neighborhood of 

cardinality ≤ 3 
DNPI (i.e., AUC of cumulative 
population of neighbors, sorted by their 
distance), within neighbohood of c = 3. 

DNPI250km,500k 250 km DNPI within radius of 250 km, or until 
reaching a cumulative population of 
500,000 

DNPI500km,1,000k 500 km DNPI within radius of 500 km, or until 
reaching a cumulative population of 
1,000,000 

DNPIMAXPOP dMAX DNPI until reaching a cumulative 
population equal to the population of 
the largest place in the analyzed 
distribution, or the maximum occuring 
distance dMAX.  

1 Many countries provide individual delineations of urban and rural areas 
(Workman & McPherson, 2021), often relying on census-based information. At 
a global scale, researchers typically rely on classifications of the rural–urban 
continuum derived from remotely sensed earth observation data in combination 
with population estimates, such as GRUMP (Balk, Pozzi, Yetman, Deichmann, & 
Nelson, 2005), degree of urbanization (Dijkstra & Poelman, 2014), GHSL- 
SMOD (Florczyk et al., 2019). However, these methods are confined to recent 
decades, of relatively coarse spatial resolution, and represent a land perspective 
more than a population view. 
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the advantage of being representative of a meaningful social unit. ZIP 
codes were created to increase the efficiency of mail delivery and can be 
especially problematic as an analytical unit in rural areas (Grubesic, 
2008). “Places”, as defined by the US Census provide functions for a 
concentration of people. They are locally recognized, independent of 
other places, and can be either incorporated places – defined by criteria 
within their respective states – or census-designated places, which are 
not incorporated and lack a municipal government (US Census Bureau, 
1994). As such, places are of both practical and social importance in the 
lives of rural dwellers (Federal Register, 2008). An important constraint 
of place as a unit of analysis, however, is that it neglects consideration of 
residents outside of place boundaries. We contend that, as collectives, 
places serve nearby residents as well as those within specific boundaries. 

There is often a lack of temporal consistency. County boundaries change 
over time, as do the designations of metropolitan and non-metropolitan 
counties. As a result, classifications such as the RUCC suffer from 

temporal inconsistencies caused by changes in methodology, and by 
changing units that cannot be compared between different points in 
time. These issues may prevent scholars from conducting long-term 
studies across the rural–urban continuum or may constrain analyses to 
narrower temporal windows, where classifications are consistent, which 
may in itself inhibit efforts to produce generalizable findings (see the 
Modifiable Temporal Unit Problem (MTUP, Çöltekin et al., 2011). Of 
course, place boundaries also change across time and, as a result, we do 
not explicitly engage place-based boundaries in the approach articulated 
below. Instead, we use place population data and incorporate a broader, 
more general representation of spatial extent based on distance to other 
places (details below). 

Existing approaches are often based on limited and hard-to-acquire data. 
Some of the more complex indices (e.g., the IRR, FAR) are grounded in 
data reflecting road networks or built-up areas, information that does 
not typically offer substantial historical coverage. Such data are more 

Fig. 4. Equal-weighting schemes for raster-based (PLURAL-1) and network-based (PLURAL-2) remoteness indices in 1930 and 2018, (a) for CONUS and (b) for the 
US Midwest; indices are scaled jointly across all points in time and thus, comparable over time. In the enlargement, county boundaries are shown in black for a 
subregion, and state boundaries are shown in white. In these maps, each place is represented by the Thiessen polygon established from the discrete place locations. 
Panel (c) shows the temporal trends of the PLURAL indices over time, discretized into 10 classes of width = 0.1. 

J.H. Uhl et al.                                                                                                                                                                                                                                   



Landscape and Urban Planning 236 (2023) 104762

6

challenging to acquire compared to Census data and may not be avail
able for early points in time (e.g., gridded population data). 

Hence, existing measures of the rural–urban continuum face a 
combination of these three challenges: a) they are generally derived 
from county-level data which can be too coarse a scale to describe the 
population dynamics of rural places; b) they lack spatiotemporal con
sistency which impedes longitudinal analysis; and/or c) they are con
structed based on measures of infrastructure access, commuting 
patterns, or urbanized land rather than population size, and thus, are 
constrained to time periods where such data is available. In this article, 
we evaluate existing characterizations of the rural–urban continuum 
and propose new classification approaches that helps, in part, address 
the three issues above: 1) Our classifications are reported at fine spatial 
grain, 2) they are scalable to different spatial units, and 3) their mini
malist input data make them generalizable to data-poor regions. 

Such refined indicators enable new possibilities for understanding 
pressing urban and rural issues, such as disparities in regional devel
opment, infrastructure, and social and economic well-being. Until now, 
analyses of these issues have often been constrained to relatively coarse 
scales of analysis. Focusing on the spatial distributions of the proposed 
rural–urban classifications also allows for direct examination of the 
changing nature of urban and rural places. Analysis of these rural–urban 
indices over time provides unprecedented insight into the development 
history and urbanization of the United States and our reliance on pub
licly available data in the creation of these fine-scale indices provides an 
accessible and flexible option for scholars and policymakers, particu
larly those concerned with issues affecting small places and other data 
scarce environments. 

Particularly for rural settings, we contend that a better understand
ing of sub-county units – especially the spaces where rural dwellers focus 
their daily, collective activities – is essential for research, planning, and 
the development of place-relevant policies and programs. The place- 
level classification approaches presented here advances efforts to 
address this important gap, without aiming to replace existing, and 
widely used county-level classifications, but rather providing an addi
tional, scalable and generalizable approach. 

2. Data and methods 

Overall, efforts to analyze demographic processes across the rural
–urban continuum at the place level and over time have been impeded 
by the lack of spatially fine-grained and temporally consistent indicators 
of rural and urban places. Because “urbanness” or “rurality” are multi
variate processes that evade simple definition, we use the concept of 
“remoteness” to continuously measure the urban-to-rural spectrum. We 

consider places as “remote” (i.e., rural) if they have relatively small 
populations and are surrounded by other small places. Maximum 
remoteness is achieved if these surrounding, small places are also very 
distant. We refer to “non-remote” (i.e., urban) places if they are rela
tively large in population and/or surrounded by other large places, thus 
implementing the concept of remoteness on a continuous scale. 

Our definition of remoteness as a measure of rurality is based around 
how individuals may or are likely to experience a place, as well as 
quantitatively describing the average access to other populations, 
infrastructure, and services. This is motivated by the assumption that 
quantity, quality, and type of such infrastructure and services are often 
highly correlated with the population size of any individual place and 
the spatial arrangement with any neighboring places and these neigh
bors’ own characteristics. We assume remoteness and rurality to be 
correlated as well. However, by using the term remoteness, we 
emphasize the underlying, purely geometric modelling strategy, while 
the term “rurality” also implies identity-related characteristics that we 
are not able to take into account in our approach. 

We propose two methods to derive measures of remoteness of places 
in the US (and possibly elsewhere) at fine spatial granularity. These 
methods generate consistent classifications of rural and urban places 
over long periods of time by implementing simplified characteristics 
commonly used to define rural–urban classes (e.g., size, distance, local 
importance and spatial relationships between populated places). Spe
cifically, the first approach is based on population size of places and the 
weighted (Euclidean) distances to other places of different size cate
gories. While this approach is computationally efficient and can be 
implemented as a raster-based approach, it may overly generalize local 
spatial configurations of populated places, and thus, ignore valuable 
information regarding the local importance of a place. Thus, we propose 
a second approach, based on a spatial network, that adopts concepts 
from landscape ecology and network analysis to model remoteness in a 
more spatially explicit manner. We call the proposed indices the place- 
level urban–rural indices (PLURAL). We name the raster-based index 
PLURAL-1, and the spatial network-based index PLURAL-2. Both ap
proaches rely on the same data input, which are solely derived from 
public-domain data and allow for the derivation of various (combined) 
distance and population-based attributes to model remoteness based on 
different perspectives. These approaches differ in their spatial modelling 
methodology, the technical skills required for implementation, and their 
suitability to different research problems. We compare these two 
methods to ascertain which modeling strategy is more suitable for use, i. 
e., to generate new methodological knowledge, and in order to provide 
users with alternative modelling strategies accounting for different 
levels of modelling skills. 

RUCC 1 (urban) RUCC 5 RUCC 9 (rural)

C
um

ul
at

iv
e 

po
pu

la
tio

n

Distance DistanceDistance0.0 1.0 0.0 1.0 0.0 1.0
0.0

1.0 a b c

IQR
Median
Individual place

Fig. 5. Illustrating the concept of the distance-based neighborhood population index (DNPI). Cumulative population curves over the neighboring places, sorted by 
their distance, provide an area under the curve which characterizes the spatial configuration of place populations with respect to a “focal” place. Shown are the 
curves based on US census places 2010 within counties of (a) RUCC 1 (urban), (b) RUCC 5 (peri-urban), and (c) RUCC 9 (most rural) in 2013. The stopping criteria 
used are a maximum distance of 500 km, and a maximum cumulative population value of 1,000,000. 
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Herein, we describe the derivation of the PLURAL indices and their 
underlying data for the conterminous US (CONUS), as well as a range of 
cross-comparisons and plausibility analyses (Section 2). We then 
demonstrate the applicability of the PLURAL for modelling the long- 
term dynamics of the rural–urban continuum by measuring place-level 
remoteness in the CONUS for each decade, from 1930 to 2018 (Sec
tion 3), and assess the plausibility of the calculated place-level rural
–urban classifications by comparing against a range of external data 
sources (Section 3.4). We conclude with a critical discussion (Section 4) 
and conclusions (Section 5). The indices for the time period from 1930 to 
2018 are publicly available for download as tabular and spatial datasets 
at https://doi.org/10.6084/m9.figshare.22596946, and the underlying 
Python code is available at https://github.com/johannesuhl/plural. 

Specifically, we describe the input data and the derivation of the 
PLURAL-1 index based on gridded surfaces (i.e., raster-based approach). 
We then describe PLURAL-2, a spatial network-based remoteness 
modelling approach that explicitly accounts for local spatial 

relationships between populated places by adopting concepts from 
network analysis and landscape ecology. We also introduce the data 
sources and strategies used for cross-comparison and plausibility anal
ysis of the results. An overview of the presented approaches is shown in 
Fig. 1. 

2.1. Source data and preprocessing 

In this work, we use US census place population counts and locations 
for each decade from 1930 to 2010, (NHGIS2; Manson, Schroeder, Van 
Riper, Kugler, & Ruggles, 2020, US Census Bureau 1942; 1964). as well 
as for 2018 (Manson et al., 2020). These place locations are shown in 
Fig. 2a,b,c. See Appendix 1 for details on the source data. We integrated 
and harmonized these data and used these integrated datasets as base 

Fig. 6. Cross-comparison of existing county and tract-level rural–urban classifications for the U.S: a) USDA rural–urban continuum codes (RUCC) in 2013 (b) the 
Rural-Urban Gradient (RUG) 2013, (c) USDA rural–urban commuting areas (RUCA) in 2010 at the tract-level, (d) USDA urban influence codes (UIC) 2013, (e) 2013 
NCHS Urban–Rural Classification Scheme (URCS), and (f) the Index of Relative Rurality (IRR) in 2010; (g) and (h) show county-level averages of the place-level 
PLURAL-1, and PLURAL-2, respectively, and panel (i) shows the place-level PLURAL-1 index to illustrate the difference in spatial granularity. Panel (j) shows 
cross-correlations between the different rural–urban classifications, computed at the tract-level for RUCA, and at the county-level otherwise. Panel (k) illustrates the 
variations of the continuous IRR against the other classification schemes. All correlation coefficients in (j) have a p-value < 0.05 and thus, reported correlations are 
statistically significant (see Supplementary File 1). 

2 https://www.nhgis.org/. 
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data for all subsequent data processing and analyses. In total, we ob
tained 213,827 place locations, across all years (from 15,641 places in 
1930, to 28,814 places in 2018), attributed with their population counts. 

2.2. Derivation of the raster-based remoteness index (PLURAL-1) 

Using place-level population estimates (1930–2018), provided for 
discrete geospatial locations, we design a method to model the 
remoteness of places across the region of interest (e.g., the US). The 
remoteness index of a place is computed based on the size s (i.e., pop
ulation) of the place of interest and the distance between that place and 
the nearest places of varying size categories (10,000–20,000, 
20,000–50,000, 50,000–100,000, 100,000–250,000 and > 250,000 
people, herein referred to as population categories pc, Fig. 2d-h). These 
or similar categories are used in numerous studies (e.g., Angel, Parent, 
Civco, Blei, & Potere, 2011, Cromartie & Nulph, 2015, Nelson et al., 
2019). Moreover, we used a population density surface derived from the 
place-level population counts (Fig. 2i). We implemented this method as 
a raster-based approach using a GIS-based workflow, which is discussed 
in detail in Appendix 2. 

The place-level urban–rural index PLURAL-1 for a given place p, in a 
given year t can be derived as the weighted average of the inverse of the 
population size sp,t, of place p in year t, and the distance measures Dpc,p,t, 
(in meters) to the nearest place of population category pc (Equation 1). 
All measures are log-transformed to achieve a uniformly distributed 
index despite skewed distributions of population and population density 
(and potentially skewed distributions of distance measures due to the 
presence of extremely remote places): 

¯PLURALp,t =

[

ws⋅log
(

sp,max

sp,t

)

+ wpd⋅log
(

pdmax

pdp,t

)
∑5

pc=1
wpc⋅ log

(
Dpc,p,t

)
]

(1) 

With 

wp,t + wpd,t +
∑5

pc=1
wpc = 1.0 (2)  

where ws is the weight for place population, wpd is the focal population 
density weight, and wpc are weights for the distance measures to 
different population categories pc to allow for adjusting the influence of 
local versus regional population centers. The constants sp,max and pdmax 
are global maximum values of place population and focal population 
density, respectively, and can either be derived from the data distribu
tion or chosen based on domain knowledge. Herein, we use a maximum 
place population of sp,max = 10, 000, 000 and a maximum focal popula
tion density of pdmax = 15, 000 people / km2. By log-dividing the upper 
bounds of population and population density by the place-level values, 

log
(

sp,max
sp, t

)
and log

(
pdmax
pdp,t

)
, respectively, we obtain measures that yield low 

values for large, densely populated places. 
This results in a total of seven remoteness indicators (population, 

population density, and five distance measures). While we tested four 
exemplary weighting schemes, emphasizing different components of 
“remoteness” (see Appendix 2), herein we focus on an equal weights 
scenario for simplicity. The final raster-based index is then calculated by 
scaling the raw index measures ¯PLURALp,t into the range [0,1]. This 
computation yields values close to 0 for large places near other (large 
and/or small) places, and values close to 1 for small places, remote from 
other places. By approximating each place by a discrete point location (i. 

Table 2 
A brief summary of the different evaluation analyses of the PLURAL indices 
between each other and against external datasets.  

Assessment Section Major finding 

Comparing county aggregates of 
PLURAL to existing county- 
level classifications 

3.3. PLURAL aggregated to the county is 
most correlated to the IRR, and least 
correlated to the RUCA, due to the 
different input data and modelling 
techniques. 

Comparing PLURAL-1 to 
PLURAL-2 

A6-1 The network-based approach 
(PLURAL-2) tends to classify places 
as more urban than the raster-based 
approach (PLURAL-1). 

Comparing place-level indices to 
county-level classifications 

A6-2 PLURAL-2 exhibits far fewer outliers 
when analyzing distributions within 
county-level groups; PLURAL-2 
appears to agree more with county- 
level classifications. 

Comparison to global gridded 
population data 

A6-3 The remoteness-based concept 
underlying the PLURAL indices 
allow for incorporating the 
relationships between nearby 
places, by modelling their influence, 
which raw population counts or 
densities cannot do directly. 

Comparing to FAR codes A6-4 All indices show high agreement 
with travel-time based FAR classes, 
indicating that the Euclidean 
distance-based approximation does 
not meaningfully bias the resulting 
indices. 

Comparing to travel-time based 
accessibility indicators 

A6-5 The implemented distance concept 
using Euclidean distance rather than 
road network distance introduces 
low levels of bias overall but may 
distort the results for a small number 
of individual places. 

Comparing to long-term built- 
environment trajectories 

A6-6 We observe a negative correlation 
between remoteness and total 
buildings per place. This negative 
correlation increases over time, 
indicating greater plausibility in our 
indices for more recent points in 
time. 

Comparing to contemporary 
landscape metrics 

A6-7 We observe strong associations 
between remoteness and 
morphological characteristics 
(landscape metrics) for all indices 
and weighting schemes. 

Sensitivity analysis A7 We observe high levels of 
robustness, consistent over time, and 
higher levels of sensitivity to the 
chosen population thresholds than 
to focal window size. The metro- 
centric PLURAL-1 weighting scheme 
exhibits highest levels of robustness 
overall.  

Table A21 
Weighting schemes for raster-based remoteness index.  

Weighting scheme Place 
population 

Focal population 
density 

Distance (10 k-20 
k) 

Distance (20 k-50 
k) 

Distance (50 k- 
100 k) 

Distance (100 k- 
250 k) 

Distance (>250 
k) 

Equal weights  0.143  0.143  0.143  0.143  0.143  0.143  0.143 
Place-centric  0.250  0.250  0.100  0.100  0.100  0.100  0.100 
Place-centric & metro 

focus  
0.250  0.250  0.033  0.067  0.100  0.133  0.167 

Metro focus  0.100  0.100  0.053  0.107  0.160  0.213  0.267  
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e., the place polygon centroid), rather than using its areal extent, and by 
modelling the distances between places using Euclidean rather than 
road network distances, our approach is highly versatile and general
izable to data-scarce environments and (early) time periods, as retro
spective areal place extents and multi-temporal road network data are 
rarely available for these periods. The chosen parameters such as the 
thresholds to define the population categories pc, the window size to 
model focal population density, and the spatial resolution of raster 
surfaces used (Fig. 2d-i) may potentially affect our PLURAL-1 indices. To 
assess this, we conducted a sensitivity analysis to these parameters. 

2.3. Modelling remoteness based on spatial networks (PLURAL-2) 

The previously described raster-based approach is computationally 
inexpensive. That is, population density and distance-based components 
can be derived from distance grids easily in commonly used GIS envi
ronments. However, this approach may ignore the local, spatial 
configuration of populated places, which may contain critical informa
tion regarding the local importance of a place. Thus, we use concepts 
from network analysis and landscape ecology to provide a second 
modelling approach. Such methods and metrics have been applied to 
human settlement modelling based on remote-sensing derived patches 
of built-up land (Esch et al., 2014) or for analyzing global land cover 

Fig. A3-1. Maps of the 11 network-based metrics in for each census place in 2018, input to the spatial-network-based PLURAL-2 remoteness indices. Abbreviations: 
NPD = Neighborhood population density, DNPI = Distnnce-based neighborhood population index, MLS = Median local significance. In these maps, each place is 
represented by the Thiessen polygons established from the discrete place locations. 

Table A31 
Weighting schemes for network-based remoteness index.  

Weighting scheme POPPlace NPD1 NPD2 NPD3 MLS1 MLS2 MLS3 DNPIC3 DNPI250km,500k DNPI500km,1,000k DNPIMAXPOP 

Equal weights  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091 
Population focus  0.125  0.125  0.125  0.125  0.071  0.071  0.071  0.071  0.071  0.071  0.071 
DNPI focus  0.071  0.071  0.071  0.071  0.125  0.125  0.125  0.125  0.071  0.071  0.071 
Significance focus  0.071  0.071  0.071  0.071  0.071  0.071  0.071  0.071  0.167  0.167  0.167  
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patterns (Nowosad & Stepinski, 2018). Using a network to describe the 
spatial configuration of the point-based places allows for the derivation 
of topology-based, and thus, density-independent metrics. This is 
particularly important as the population and settlement density across 
the United States varies considerably across space and time. Similarly, 
utilizing local landscape metrics enables the quantification of the 
localized, place-centric configuration of neighborhood place pop
ulations. Moreover, this network-based approach allows for a joint, 
place-centric assessment of neighboring places, where the raster-based 
approach only considers the nearest places of each population cate
gory only without taking into account the whole spectrum of the spatial 
context (e.g., the n-th nearest place) which may contribute to the 
rurality of a given place as well. 

2.3.1. Establishing place-level spatial networks 
Populated places may be given as discrete point locations (see 

Fig. 2b,c), or, typically for recent points in time, as areal objects 
(Fig. 3a). In this case, place locations from 1980 onwards are given as 
polygons, and, prior to that, as discrete point locations attributed with 
their place population. For consistency, we converted place polygons 
into discrete locations by using their centroid coordinates, and gener
ated Thiessen polygons (Voronoi, 1908, Thiessen & Alter, 1911) based 
on these discrete locations (Fig. 3b). Topological relationships between 
the Thiessen polygons allowed us to construct spatial networks for 
different levels of neighborhood cardinality which can be understood as 
varying scales of spatial context (Fig. 3c,d). The concept of neighbor
hood cardinalities is used to complement the Euclidean distance-based 
measures and allows us to identify neighborhood relationships 

between places independent from spatial density variations. See Ap
pendix 3 for more details on the spatial network creation. 

2.3.2. Spatial-network based remoteness indicators 
Similar to the focal population density metric, based on a fixed focal 

radius used in the raster-based approach, we modeled population den
sity in local, topology-based neighborhoods: For each place p, we 
identify the neighboring places of a given cardinality (pc) and calculated 
the total population sc in the neighborhood. To calculate the approxi
mate population density, we use a square of size nxn with n being the 
largest occurring distance distmax between p or any of the neighboring 
places pc1. Thus, the neighborhood population density (NPD) for any 
cardinality c of place p and year t can be calculated as: 

NPDp,t,c =

[
sp,t + sc,t

]

dist2
max

(4) 

To capture local population density at different levels of spatial 
context around each place, we calculated the NPD for the cardinalities 1, 
2 and 3. Moreover, we adopted a measure of local significance, which 
was proposed by Esch et al. (2014). The local significance LS can be 
calculated for each edge of a spatial network, based on the length of the 
edge d (i.e., the Euclidean distance between neighboring places) and the 
size s (i.e., population) of the nodes (places i and j) connected by the 
edge, as: 

LSi,j =

[
si × sj

]

⃒
⃒di,j

⃒
⃒2 (5) 

1930 1960 1990 2015

10,000-20,000 20,000-50,000 50,000-100,000 > 50,000

d

e

a b c

Travel
time

Low

High

Building
density

Low

High

SMOD-based urbanness

Low
High

Indianapolis

Cincinnati

Indianapolis

Cincinnati

Fig. A4. Data used for the evaluation of the proposed remoteness indices: (a) GHS-SMOD based county-level urbanness score, (b) HISDAC-US place-level built-up 
areas 1930 – 2015, (c) MSBF built-up areas, both shown for illustrative examples of places within counties of different RUCC, (d) HISDAC-US building density 
1930–2015 shown for the Indianapolis-Cincinnati region, and (e) travel-time based accessibility indicators to cities of different population ranges from Nelson et al. 
(2019) shown for the same region. 
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Similar to Esch et al. (2014), we calculated the median local signif
icance MLSC for each place p based on the values obtained for each edge 
connected to the node that represents the place p. Accordingly, we 
calculated this metric for each place within neighborhoods of cardinality 
1, 2 and 3. The MLS yields high values if a place is large and located near 
other large places, and yields small values if the neighboring places of a 
given small place are small and distant. 

In the raster-based remoteness modelling approach we used the 
distance to the nearest place of a given population category DPC as a 
measure of remoteness. However, such a metric ignores the spatial 
configuration of places below the chosen population threshold that 
could potentially be located between the place under study and the 
nearest place of a given population range. For example, a place (A) 
located 50 km from the nearest city > 50,000 inhabitants (B) would 
receive the same value for DPC, regardless if the area between A and B is 
completely uninhabited (scenario 1) or if that area contains many small 
places below the lowest population threshold, and outside the focal 
window size used for the focal population density calculation (scenario 
2). The degree of remoteness of place A should be higher in case of 
scenario 1 than in scenario 2. 

Motivated by this shortcoming of the DPC metrics, we adopted the 
concept of proximity and isolation metrics, a subgroup of landscape 
metrics commonly used in landscape ecology and habitat fragmentation 
analysis (e.g., Bender, Tischendorf, & Fahrig, 2003) to quantify the 
degree of subdivision of a landscape or of the isolation of specific 
components (e.g., land cover classes) within a landscape. More specif
ically, we adopt the concepts of the “degree of landscape division” 

metric (DIV), proposed by Jaeger (2000) and distance-weighted land
scape variables (see Miguet, Fahrig, & Lavigne, 2017). Jaeger (2000) 
defines the DIV as the area under the curve when sorting patches in a 
given landscape by their patch area, as a measure of the graininess of a 
landscape (McGarigal, 1995). Based on this, we designed a place-centric, 
distance-based metric quantifying the relationships of neighboring place 
populations and their distances to the “focal” place (i.e., the place under 
study) in a single metric. Our method identifies the neighbors of a given 
focal place, either using a Euclidean distance or a topology-based 
neighborhood criterion, and sorts the neighboring places, including 
the focal place itself, ascendingly by their distances to the focal place. 
Then, the cumulative population curve is calculated over the 
distance-sorted places, and finally, the area under the cumulative popu
lation curve is obtained. This area under the curve (AUC) represents a 
metric characterizing the spatial distribution of populated places in 
dependence of the distance to the focal place. We call this metric the 
distance-based neighborhood population index (DNPI). 

In order to make this metric comparable between different focal 
places, the maximum distance dMAX needs to be specified, as well as a 
maximum value for the cumulative population CPMAX, and the curves 
need to be scaled by dMAX in x-direction and by CPMAX in y-direction, 
respectively, so that it is normalized into the range [0,1]. If the curve 
exceeds CPMAX before dMAX is reached, the cumulative population curve 
is “trimmed” to 1.0. Thus, the maximum possible AUC is 1.0 for a place 
of population >= CPMAX. We calculated the DNPI within the neigh
borhood of cardinality 3, and for a range of distance-population com
binations. Table 1 summarizes the network-based metrics of remoteness 

Fig. A5-1. Maps of the remoteness indices in 1930 (top) and 2018 (bottom), each shown for the raster-based approach and network-bases approach, and for each of 
the four weighting schemes. In these maps, each place is represented by the Thiessen polygons established from the discrete place locations. 
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Fig. A5-2. Maps of the remoteness indices in 1930 and 2018, shown for a subset of the data covering parts of the Midwest, shown for the raster-based approach 
(PLURAL-1) and network-bases approach (PLURAL-2), scaled both across time, and per year, and shown for each of the four weighting schemes. In these maps, each 
place is represented by the Thiessen polygons established from the discrete place locations. 
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used herein. 
The maps of these 11 metrics for the 2018 places are shown in 

Fig. A3-1. For each of these metrics, we calculated the ranks in a 
descending order (i.e., the lowest magnitude receives the highest rank), 
and use these remoteness indicators as input for different weighted av
erages. We implemented four exemplary weighting schemes (see Ap
pendix 3). Herein we focus on an equal weights scenario to generate the 
PLURAL-2 for each US census place in the years 1930–2018. Impor
tantly, we calculated both indices using a) annual scaling to the range 
[0,1], and b) scaling across all years 1930–2018, in order to generate 
temporally comparable remoteness indices for longitudinal studies. 
Note that the network-based indices PLURAL-2 are based on a ranking 
strategy, which makes the indices not directly comparable over time, 
and thus should not be used for longitudinal analysis. 

2.4. Evaluation strategies 

We compared our raster-based (PLURAL-1) and spatial network 
based (PLURAL-2) remoteness indices to a variety of external, inde
pendent datasets that are coherent or correlated to the concept of 
remoteness, or that are assumed to follow systematic patterns across the 
rural–urban continuum. Note that a rigorous validation is not possible, 
as the concept of remoteness is not a perfect substitute for rurality or 
urbanness, and existing data are not generally measured at the scale of 
places. Further, definitions of remoteness likely have many truths, much 
as there are many definitions of urban and rural. More specifically, we 
implemented the following evaluation strategies: We compare the 
PLURAL-1 and PLURAL-2 indices to existing county-level rural–urban 
classifications, at both the native place-scale and aggregated to the 
county, and we compare both indices against each other, to quantify the 

effects of the different modelling approaches. Additionally, we use the 
GHS-SMOD data (Florczyk et al., 2019) to test our approaches against a 
global, remote-sensing derived urban–rural classification, and conduct a 
visual comparison to global population data (i.e., Worldpop, WorldPop, 
2018), in order to assess the differences between the concept of 
remoteness and population density. Moreover, we compare our created 
place-level remoteness indices against travel-time based accessibility 
indicators (Nelson et al., 2019), and conducted a sensitivity analysis of 
the PLURAL-1 to the chosen population thresholds and focal window 
size. Finally, we compare our multi-temporal results to historical set
tlement trends derived from the Historical Settlement Data Compilation 
for the US (HISDAC-US, Leyk & Uhl, 2018, Uhl et al., 2021) and against 
landscape metrics derived from Microsoft’s building footprint data 
(Microsoft 2018). The variety of datasets used for comparison is illus
trated in Fig. A4. 

3. Results 

3.1. The rural–urban continuum in the US from 1930 to 2018 

Fig. 4a,b shows the spatial distribution of the PLURAL indices for the 
two modelling approaches, and for the equally weighted scenarios, for 
1930 and for 2018 (see Fig. A5-1, A5-2, and A5-3 for maps of all 
weighting schemes and for data distributions over time). Indices are 
scaled into the range [0,1] jointly across all years, and thus, the obtained 
indices are comparable over time. The detailed dynamics of the rural
–urban continuum from 1930 to 2018, as modelled by these approaches 
can be seen in Supplementary Movie 1 and in Supplementary Movie 2. 
The temporal trends of places per remoteness stratum (Fig. 4c) illustrate 
the multi-temporal dimension of the PLURAL indices. 

Fig. A5-3. Distributions of remoteness indices for the US 1930–2018 for different weighting schemes and scaling strategies: (a) Raster-based approach (PLURAL-1) 
scaled per year and (b) scaled across all years, (c) spatial network based approach (PLURAL-2) scaled per year and (d) scaled across all years. 
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3.2. Distance-based neighborhood population index 

One of the components of the network-based remoteness index is the 
distance-based neighborhood population index (DNPI) proposed herein, 
which is calculated as the AUC of the cumulative population curve 
established for the distance-sorted nearest neighboring places. As a 
proof of concept, we show the cumulative, distance-sorted population 
curves for 2010 census places in the US, located in urban counties (RUCC 
1, Fig. 5a), in peri-urban counties (RUCC 5, Fig. 5b) and rural counties 
(RUCC 9, Fig. 5c). If the focal place is near a large place, the cumulative 
population curve will increase sharply and yield a large area under the 
curve (Fig. 5a). Conversely, if a place is small and its neighbors are small 
too, the cumulative population curve increases only slowly, yielding a 
small AUC. This visual assessment clearly confirms that the DNPI re
sponds to the degree of urbanness. 

3.3. Comparison of existing rural–urban classifications in the 
conterminous US 

We compare the previously discussed, existing county-level classifi
cations to each other and to the PLURAL indices (Fig. 6a-f), and compare 
them to the PLURAL indices, aggregated to the county level (i.e., 
average place value per county, Fig. 6g,h). Despite different data sources 
and methodological approaches, these six classification schemes show 
generally high levels of correlation (Fig. 6i). The lowest correlation is 
between IRR and RUCA (Pearson = 0.59) likely driven by the different 
data sources (i.e., built-up density vs. commuting patterns). Moreover, 
the continuous IRR exhibits a positive association with the rank-based 
metrics, which is, on average, strongest and almost linear between 
IRR and URCS; it shows the least nuanced trend between IRR and the 
tract-level RUCA (Fig. 6j). The PLURAL indices aggregated to the county 
show highest correlations to IRR (due to the continuous nature) and, 
similarly to the IRR, the lowest correlation to RUCA. 

3.4. Further evaluation of the PLURAL indices 

Our comparisons reveal high levels of agreement and plausibility 
between the place-level PLURAL indices and other alternate classifica
tions and related data. While we refer to Appendix 6 for the detailed 
assessments, Table 2 briefly summarizes the major findings from each of 
our evaluation analyses. 

4. Discussion 

Our results indicate that the search for a single “correct” approach to 
measuring the rural–urban continuum will likely remain out of reach. 
This is evident from the varying levels of agreement (Pearson’s corre
lation coefficients between 0.59 and 0.9) between county-level rural
–urban classifications in the United States (Fig. 6). We have presented 
two modelling approaches to create place-level rural–urban classifica
tions that allow greater flexibility and investigation into rural and urban 
processes – and the spaces in between – across the United States over 
time. Our approaches yield similar broad-scale patterns, and reflect the 
commonly known settlement trends in the US during the 20th century (i. 
e., early settlements in the Northeast, and late, fast-growing urban areas 
in the South). 

The main differences between our indices appear at finer scales, 
particularly earlier in the urbanization history of the United States 
(Fig. 4). While the raster-based approach identifies early settlements 
such as Tucson (Arizona), Santa Fé (New Mexico), Albuquerque (New 
Mexico) as highly urban (i.e., low remoteness), such extreme local dif
ferences are not present in the 1930 network-based result, which ap
pears to be more sensitive to smaller places of local or regional 
importance (e.g., lower remoteness levels along historical trade and 
settlement routes such as the Oregon trail, Fig. 4). When comparing 
place-level remoteness over time, however, PLURAL-1 and PLURAL-2 
reveal consistent trends, both documenting the impressive transition 

Fig. A-61. Comparison of raster-based and network-based remoteness indices: (a) Pearson’s correlation coefficients between the four raster- and network-based 
weighting schemes, (b) Scatterplot of the equally weighted raster- and network-based remoteness indices in 1930, color-coded by place population, and (c) cor
responding map of the differences in remoteness. Panels (d) to (f) show the corresponding results for 2018. In maps (c) and (f), places are represented by the Thiessen 
polygons established from the discrete place locations. All reported correlation coefficients have a p-value < 0.05 and thus, reported correlations are statistically 
significant (see Supplementary File 1). 
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from a large number of rural places in 1930, which recede over time, to a 
greatly expanded number of urban places by 2018 (Fig. 4c). 

Despite qualitatively in a macro sense, the gradients of “urbanness” 
from small to large places differ between the two approaches (Fig. A6-1), 
similar to the differences between county-level rural–urban classifica
tions available in the literature (Fig. 6). Neither is necessarily more 
correct: these differences reflect the definitional and multivariate chal
lenges inherent in measuring and modelling the rural to urban 
continuum. 

The cross-comparison of the created indices against each other, and 
against several external datasets of different nature, revealed that our 
indices, despite being based on simple data structures, effectively model 
the rural–urban gradient patterns. Moreover, our analyses have shown 
that the network-based remoteness index (PLURAL-2) seems to exhibit 

higher levels of coherence to the data used for comparison than the 
raster-based approach (PLURAL-1). However, these differences largely 
play out at the urban side of the rural–urban continuum, i.e., mostly 
affecting large places. The indices and weighting schemes have strengths 
in different areas and we recommend the following: For applications of 
the PLURAL indices identifying rural places, both methods seem to 
work well. For studies across the whole urban–rural continuum, we 
recommend practitioners to use PLURAL-2, as it is more normally 
distributed across the RUC (see Fig. A6-2, A6-3). For longitudinal 
studies, the PLURAL-1 (scaled across all years) is more suitable, since the 
network-based PLURAL-2 contains a rank-based component and thus, is 
not fully comparable over time. The choice of the weighting scheme 
depends on the individual application. Importantly, our analysis of 
place-level estimates of “urbanness” within strata of county-level 

Fig. A6-21. Comparison of the place-level remoteness indices and their county-level rural–urban designations. (a) Raster-based remoteness distributions and (b) 
network-based remoteness distributions in county-level rural–urban classes, both shown for the equal-weights scenario. Panels (c) and (d) show the spatial distri
butions of the upper and lower outliers indicated in the box-and-whisker plots, for the raster- and network-based remoteness, respectively. Coloring of the boxes in (a) 
and (b) corresponds to the classes / values of the county-level classifications (blue = urban, red = rural). 
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rural–urban classes revealed considerable dispersion (as measured by 
the presence of outliers), following strong geographic patterns (Fig. A6- 
2c,d). In other words, the spatial refinement in using place-level 
remoteness instead of county-level estimates appears to be particularly 
effective in understanding the rural–urban patterns at the local scale. 

In this work, remoteness is modelled based on Euclidean distance, 
rather than travel time or road network distances. While this simplistic 
approach may locally bias our results, we found high levels of agreement 
of our PLURAL indices with road network distance based FAR remote
ness measures (Fig. A6-4). We also found plausible results when testing 
our indices against travel time-based accessibility indicators (Fig. A6-5), 
indicating that for most parts of the CONUS, the bias introduced by using 

Euclidean distance instead of road network distance is within acceptable 
margins. As mentioned before, the observed disagreement of our indices 
as compared to road network-based distance measures is, in part, likely 
due to the differences in the underlying analytical units and their spatial 
granularities (i.e., census places vs. cities, vs. ZIP code areas). 
Comparing our multi-temporal place-level urban–rural classifications to 
historical land development trends derived from HISDAC-US, we find 
high correlations in recent decades which decrease for earlier points in 
time (Fig. A6-6). While the discussion of the drivers for these changes 
over time is out of the scope of this paper, a possible reason could be 
lower levels of completeness in the HISDAC-US and underlying ZTRAX 
data in early points in time (Uhl et al., 2021). 

Fig. A6-22. Comparison of county-level rural–urban classifications and the place-level remoteness indices for each weighting scheme of the (a) raster-based 
approach, and (b) the network-based approach. Color of boxes represent the individual classes / values of the county-level classifications (blue = urban, red = rural). 
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Fig. A6-23. Spearman and Pearson correlation coefficients between the place-level remoteness indices (R = raster-based, N = network-based) and the corresponding 
county-level rural–urban designations. All correlation coefficients have p-values < 0.05 and thus, the reported correlation coefficients are statistically significant (see 
Supplementary File 1). 

Fig. A6-3. Visual comparison of place-level remoteness indices PLURAL-1 and PLURAL-2 (equal weighting schemes) to population density from Worldpop, shown 
for the year 2018. Gridded population estimates from Worldpop were aggregated to the Thiessen polygons representing each place. 
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Moreover, the PLURAL indices, despite their simplistic input data, 
are strongly correlated with size and structure-related place character
istics, as measured by means of landscape metrics of fine-grained 
developed / built-up areas (Fig. A6-7). These findings confirm once 
more that our remoteness models are consistent with the literature and 
exhibit an expected behavior when compared to landscape metrics. 
Finally, our sensitivity analysis (Fig. A7-1) revealed high levels of 
robustness of the PLURAL indices to the choice of user-defined param
eters such as population thresholds or focal window size. These low 
sensitivity levels are largely consistent over time, and the Q-Q plots in 
Fig. A7-1 indicate that the choice of these parameters does not affect our 
results in a qualitative way (i.e., the order of places according to their 
level of “urbanness” is stable) but may slightly affect the numerical re
sults. This appears acceptable, however, given the variability of quan
titative representations of the existing rural–urban continuum models at 
the county level (Fig. 6). Furthermore, our indices are largely invariant 
to the spatial resolution of the underlying raster data (Appendix 8), and 
the weighting schemes implemented in both PLURAL indices appear to 
be effective (Appendix 9). 

Based on these findings, we argue that scholars, planners, or policy 
makers dealing with social or natural processes that unfold locally could 
benefit from the examination of the fine-grained spatio-temporal vari
ations of urbanness, as modelled by our PLURAL indices. The many 
possible use cases are revealed in work on social mobility, rural and 
child poverty, economic development, and climate resilience (Partridge, 
Rickman, Olfert, & Tan, 2015, Meerow & Newell, 2019, Chetty, 2021, 
Bardin & Kedron, 2022), where place-based policies are a rising priority 
for policy-minded scholars and planners. Federal funding, action and 
coordination around these problems often occur at coarse political scales 
like states, counties and cities. It is prescient, however, to consider the 
unique challenges faced by urban and rural communities, even among 
those within the same locales. The PLURAL indices provide a flexible 
approach from which to identify where smaller communities sit on the 
rural to urban continuum, to assess how that situation is likely to change 
in the future, and to calibrate place-based polices appropriately to these 

conditions. The PLURAL indices can thus be a tool for identifying 
granular community distinctions that are of immediate relevance to 
place-based policy and planning, within larger political jurisdictions. 

Related benefits to the PLURAL approach extend to the temporal and 
spatial identification of rural–urban transformations (Dudwick, 2011). 
These transformations tend to occur at the interface of agricultural and 
industrial land uses, with major impacts for energy consumption, CO2 
emissions, as well social issues around economic inequality (Zhou et al. 
2015, Henderson & Wang, 2005). In particular, the conversion of an 
agricultural economy to a rural non-farm economy is key for sustainable 
peri-urban development (Zhou et al. 2015), but these transition zones 
also require effective policies for harm- and poverty-mitigation, partic
ularly in developing countries (Christiaensen & Todo, 2014). Such 
changes are also often accompanied by spatial demographic changes 
with respect to aging, migration, and population growth (OECD/PSI, 
2020), as well as local land-use and land cover transitions (McGee, 
2008). Each of these issues could be better addressed and planned for 
through an expanded knowledge of transformations taking place at the 
intersections of rural and urban contexts. 

The PLURAL indices will enable researchers to work at spatial units 
that are potentially more meaningful to certain rural processes such as 
the role of place characteristics in social mobility (Chetty et al., 2014; 
Connor & Storper, 2020), health (Manduca & Sampson, 2019; Shah 
et al., 2020), and voting (Sachdeva et al., 2021). Such refined scales can 
be also used to gain novel insight into the spatial distributions of social 
vulnerability (Spielman et al., 2020), public health issues (Andersen, 
Harden, Sugg, Runkle, & Lundquist, 2021) , or the exposure to natural 
hazards risks (Braswell, Leyk, Connor, & Uhl, 2021). Moreover, the 
presented indices cover a long time period, 1930 to 2018, and are fully 
consistent over time (PLURAL-1), enabling longitudinal analyses of 
long-term, dynamic processes along the rural–urban continuum. Some 
exemplary research questions where the PLURAL indices could directly 
be employed, include: How has the rural–urban continuum in the US 
evolved over time? How does it co-vary with other long-term spatial 
processes (e.g., historical land use / land cover change? Can local, long- 

Fig. A6-4. Receiver-operator-characteristic (ROC) analysis to test how well the place-level remoteness indices can mimic fine-grained, travel time based remoteness 
classes from the Frontier and Remote area (FAR) codes dataset, shown for FAR classes 1–4, and for each weighting scheme of the raster-based (top row) and network- 
based approach (bottom row). The dashed line represents the ROC curve of a random relationship between the remoteness indices and FAR class memberships 
for comparison. 
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Fig. A6-5. Comparing the remoteness indices and their components to travel-time based accessibility indicators (Nelson et al. 2019). (a) Relationships between the 
different weighting schemes of the proposed raster- and network-based remoteness indices and travel times to the nearest city of population > 5 k, > 20 k, and > 50 
k, respectively, (b) relationships between Euclidean distance based components of the raster-based remoteness approach and travel times, and (c) place-level 
plausibility analysis of Euclidean distance and travel time by visualizing theoretical travel speed. In (c), places are represented by the Thiessen polygons estab
lished from the discrete place locations. 

Fig. A6-6. Relationships of ZTRAX-based built environment characteristics and the proposed remoteness indices based on the raster approach (R) and the network 
approach (N) over time. (a) Scatterplots of place-level remoteness and building counts, and (b) built-up area in 1930, 1970, and 2015, respectively; Panel (c) and (d) 
show corresponding time series of Spearman’s correlation coefficient. Note that 2015 built environment characteristics are compared to the 2018 remoteness indices. 
All correlation coefficients have a p-value < 0.05 and thus, reported correlations are statistically significant (see Supplementary File 1). 
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Fig. A6-7. Assessing the relationships between the remoteness indices and contemporary building and landscape metrics derived from Microsoft building footprint 
data. (a) Spearman’s rank correlation, and (b) corresponding scatterplots. All correlation coefficients have a p-value < 0.05 and thus, reported correlations are 
statistically significant (see Supplementary File 1). 

Fig. A7-1. Sensitivity analysis of PLURAL-1 to user-set parameters. Shown are QQ-plots of the PLURAL-1, comparing baseline parameters against a low and high 
value scenario, for (a) populations thresholds and (b) focal window size for population density estimation, each in 1930 and 2018. Baseline parameters for population 
thresholds and focal window radii are shown on the x-axis, and scenarios with parameter values lower and higher than the baseline, for both 1930 and 2018, on the y- 
axis. The degree of disorder (i.e., deviation from the main diagonal) indicates the level of sensitivity of the PLURAL-1 classification to these parameters. 
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term trajectories of “rurality” tell us something about contemporary, 
physical or social characteristics of places? 

Users should be aware, however, that any description of the rural
–urban continuum, irrespective of the unit of analysis (e.g., county, 
place, grid cell), rest on analytical and theoretical assumptions that get 
operationalized in subjective fashion. While there is therefore no 
entirely correct way to model the rural to urban continuum, we 
recommend that: 1) analysts consider the scale of the process that they 
are studying and choose rural and urban definitions that are well aligned 
with that scale, and 2) all analyses include sensitivity checks based on 
different definitions of the rural to urban continuum, many of which we 
have reviewed here. 

Despite our creation of a continuous fine-scale measure of the 
rural–urban continuum, there is often conceptual and analytic value in 
categorical, and even binary, distinctions between rural and urban 
contexts. From a practical perspective, it is often necessary to conduct 
statistical tests with a limited sample size or given certain model spec
ifications (e.g., fixed effects), which may necessitate a binary or cate
gorical approach to rural and urban classification. From the perspective 
of theory, it has been well noted that even though it is impossible to 
draw a definite line between cities and their rural hinterlands, rural and 
urban contexts tend to exhibit strongly contrasting qualities (Scott & 
Storper, 2015). While changes in the lived experience of people along 
the continuum can be gradual in some contexts, they can be quite sharp 

in others. Our transparent methodology and publication of the PLURAL 
indices provide strong future opportunities for assessing the nature of 
these gradients and possible “break points” between rural and urban 
places. 

Despite being a useful addition for many applications, the PLURAL 
indices face some noteworthy limitations. For example, the raster-based 
approaches are based on population density calculated within focal 
windows of a fixed radius and based on commonly used population 
categories. If these indices were to applied to other geographic regions, 
sensitivity is needed with respect to the size of the focal windows and 
population thresholds. Moreover, the PLURAL indices do not account for 
territory and populations outside of bounded census places, and thus, 
cannot be used for assessments of spatial processes occurring on unin
corporated land outside of official place boundaries. As noted above, 
however, we contend that proximate places are of relevance to non- 
place-based populations as a hub of local social and economic activity. 
From this, we infer that the level of rurality assigned to a place is usually 
a strong reflection of the rurality of surrounding areas. Furthermore, in 
order to apply these methods to other countries, border effects need to 
be taken into account, given the potentially high levels of cross-country 
mobility (e.g., in Europe). The role of peri-urban open spaces (e.g., parks, 
natural reserves; Žlender & Thompson 2017, Wandl & Magoni, 2017) 
used as recreational areas needs to be investigated, as such uninhabited 
areas may affect our indices, while their impact on the level of 

Fig. A8-1. Distributions of nearest-neighbor distances between US places in 1930, 1970, and 2018. Shown are the histograms (grey) and the cumulative distribution 
function (CDF). 

Fig. A9-1. Sensitivity of different weighting schemes to changes in individual remoteness indicators for the raster-based approach. A synthetic baseline place with 
randomly initialized remoteness indicator was used, and each of the seven indicators was systematically increased. For each increment, the resulting remoteness 
index was calculated, for each of the four weighting schemes. The curves show the different levels of sensitivity of the weighting schemes. 
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“urbanness” of nearby places may be low. Lastly, it should be noted that 
some measurements of demographic and social processes are currently 
reported with high levels of error at the place level, and thus, may limit 
the usability of the PLURAL indices at place-level granularity. In such 
cases, users are encouraged to aggregate the place-level PLURAL indices 
to meaningful spatial units, or to apply the proposed methodology at the 
granularity of interest. 

Future work will include the generation of continuous, local 
remoteness measures, e.g., at the grid cell level, to create a fine-grained, 
gapless model of the rural–urban continuum. The Thiessen polygons 
that we used to visualize places (Fig. 4) and to generate spatial networks 
(Fig. 3b) could be further combined to model the areal influence of 
places, potentially enabling us to allocate non-place populations to 
proximate places. Future work will also include the application of the 
presented approaches to other countries where comparable data is 
available, or even to expand such efforts to continental scales. 

5. Conclusions 

Herein, we described and evaluated two approaches to model the 

rural–urban continuum at fine spatial granularity (i.e., the place level) 
and over long time periods (i.e., 1930–2018) for the conterminous US. 
This work makes several contributions: (a) We fill a gap in the US data 
landscape by providing temporally consistent, place-level rural–urban 
classifications, refining existing county-level classifications, and com
plementing finer-grained classifications at the ZIP code level by 
providing a demographically meaningful analytical unit (i.e., the census 
place), applicable over very long time periods, (b) We generate meth
odological knowledge by developing and comparing a raster-based 
approach and a spatial network approach. (c) Specifically, we adopt 
elements of a spatial network approach developed from a physical 
perspective on human settlements to a population perspective of human 
settlements; Moreover, we introduce a novel and effective metric for 
measuring remoteness based on population distributions discretized to 
point data, which we call the distance-based neighborhood population 
index (DNPI). (d) We make all of our place-level remoteness indices 
publicly available, calling them the place-level urban–rural index 
(PLURAL), enabling researchers of various disciplines to conduct fine- 
grained, cross-sectional and (in case of PLURAL-1) longitudinal ana
lyses across the rural–urban continuum, and over a time period of almost 

Fig. A9-2. Sensitivity of different weighting schemes to changes in individual remoteness indicators for the network-based approach. A synthetic baseline place with 
randomly initialized remoteness indicator was used, and each of the seven indicators was systematically increased. For each increment, the resulting remoteness 
index was calculated, for each of the four weighting schemes. The curves show the different levels of sensitivity of the weighting schemes. 
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90 years. 
While there is no single way to measure or model rurality and 

urbanness, different existing rural–urban classifications may have been 
developed for specific purposes (e.g., population-centric vs. landscape or 
infrastructure focused approaches to study demographic processes, or 
land change processes, respectively). Herein, we propose and advance a 
set of population-centric indices, that will enable users to study pro
cesses at the place scale, using minimalist data sources as inputs. Despite 
these minimalist (population-based) inputs, our cross-comparisons 
reveal that the PLURAL indices are also correlated with landscape- 
and infrastructure-based indices. As these indices are continuous (rather 
than discrete) measures of urbanness, reported at fine granularity, at a 
meaningful, policy-level scale, they are both generalizable to other re
gions / time periods, and they are scalable to arbitrary, coarser spatial 
units, both temporally consistent or of dynamic nature. Moreover, these 
indices are available at fine spatial grain and can be used in situations 
where the Uncertain Geographic Context Problem would critically bias 
analytical results, e.g., in the case of highly segregated settings. More
over, many demographic (e.g., population sorting) and land use (e.g., 
zoning) processes are heavily influenced by local conditions and there
fore better understood at the place-level compared to a coarser scale. 
Thus, for studying nationally extensive but locally driven processes, 
place-level metrics are expected to have particular merit. 

Finally, because the PLURAL indices are minimalist with respect to 
their input data, they can be used to study social as well as physical 
spatio-temporal processes, as circular inference (i.e., using the studied 
geographic process itself for rural–urban stratification purposes) will be 
kept to a minimum. Finally, we would like to emphasize that the 
PLURAL indices do not aim to represent a replacement of existing 
rural–urban classifications at coarser analytical unit, but rather a ver
satile, fine-grained dataset that can be used to produce rural–urban 
classifications at arbitrary spatial units and consistent over time. Lastly, 
we aim to advance methodological knowledge, as our approach to 
generating the PLURAL indices can be applied to non-US and historical 
contexts, which may be particularly advantageous for data-poor con
texts. In conclusion, it is our hope that the PLURAL remoteness indices 
will enable researchers to add a long-term temporal dimension to rural 
and rural–urban studies, at a refined spatial granularity, and ultimately, 
contribute to more informed planning and decision-making. 

6. Data and code availability 

The PLURAL indices and the underlying historical place-level pop
ulation counts, as well as the derived remoteness indicators used to 
establish the PLURAL-1 and PLURAL-2 indices are available as tabular 
data (CSV format). Moreover, separate spatial vector data files con
taining the place locations for each point in time (1930–2018) attributed 
with the PLURAL indices are available at https://doi.org/10.6084/m9. 
figshare.22596946. Python code purely based on free and open source 
technologies to apply the PLURAL framework to other place-level 
datasets is available at https://github.com/johannesuhl/plural. 
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Appendix 1. Source data acquisition 

We used US census place population counts from 1970, 1980, 1990, 
2000, and 2010, obtained from NHGIS (Manson et al., 2020), containing 
both, incorporated places and census-designated places (US Census 
Bureau, 1994). From the same data source, we obtained census place 
geometries for each decade between 1930 and 2010, as well as for 2018. 
Census places are represented as polygonal features (1980–2018) and as 
discrete locations (i.e., point features) for the years 1930–1970. For 
consistency, we converted the place polygons (1980–2018) into discrete 
point data, by using the polygon centroid, in order to keep the input data 
as simplistic as possible). Moreover, we use census place populations (i. 
e., 5-year population estimates 2014–2018) from the American Com
munity Survey (ACS). Importantly, we digitized decadal place pop
ulations for 1930 to 1970, obtained from counts published in the 1940 
and 1960 decennial reports (Tables 5 and 8, respectively; US Census 
Bureau 1942, 1964). We integrated and harmonized the place popula
tion estimates from these different sources and joined them to the spatial 
data (i.e., point features representing the census places), based on the 
place identifier, resulting in a set of place locations and their population, 
for each year. 
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Appendix 2. Raster-based remoteness index 

Appendix 2.1: GIS workflow for creating the raster-based PLURAL indices  

1) In a given year, for each population category pc, we identify the 
places in pc based on their population. 

2) For these places, we generate a Euclidean Distance surface, indi
cating for each grid cell (in a grid of 1 km × 1 km) the distance to the 
nearest place of the category pc, resulting in a total of 5 Euclidean 
Distance surfaces per year, one for each pc.  

3) For all places existing in a given year, we extracted the raster values 
from each of these five distance surfaces at each place location.  

4) Moreover, a focal population density estimate pd within a radius of 
10 km is used in order to characterize the population distributions in 
the place neighborhood, and to reduce the sensitivity of the index to 
arbitrary partitioning of places (e.g., neighborhoods in large cities 
are typically recorded as individual places). We chose a radius of 10 
km since based on some initial experiments, a circle with a 20 km 
diameter is likely to meaningfully aggregate the individual neigh
borhoods of a large city, without overly aggregating dispersed rural 
places. The focal population density is obtained by applying a Point 
Density tool to the geospatial place point data, for each year, 
calculating the total population within a circular focal window, 
resulting in a continuous surface of focal population density in the 
same spatial grid used for the Euclidean Distance surfaces.  

5) Likewise, we extract the raster value of this focal population density 
surface at each place location.  

6) This process is repeated for all years in the observation period, 
attributing each place, in each year, with its location, population, 
focal population density, and the distances to the nearest places of 
each population category. 

Table A21. 

Appendix 2.2: Weighting schemes for raster-based remoteness index (see 
also Appendix 9) 

These weighting schemes are exemplary, and do not represent any 
attempt to cover different systematic choices or a broad spectrum of 
weight combinations. Our main goal is to illustrate the flexibility of 
resulting rural–urban classifications due to different weight combina
tions, aiming to emphasize different components of the indices.  

• Equal weights: All remoteness indicators are weighted equally.  
• Place-centric: Place population and focal population density share 

50% of the weight, and each distance-based component receives a 
weight of 0.1. This weighting scheme emphasizes the local context of 
a place, and gives less importance to the distance to large places.  

• Metro focus: Place population and population density receive low 
weights, and the distance-based components receive higher weights, 
with the distance to places > 250,000 receiving the highest weight. 
This weighting scheme emphasizes the influence of large cities in 
proximity to a place, and gives less importance to the local context of 
a place.  

• Place-centric þ metro focus: Place population and focal population 
density share 50% of the weight, and the weights for the distance 
components are constructed such that distance to large (metro) areas 
has the highest weight. This weighting scheme combines both 
concepts. 

Appendix 3. Spatial network based remoteness index 

We built spatial networks based on the neighborhood relationships of 
Voronoi diagrams constructed around census place locations. These re
lationships are measured by means of cardinalities: Neighbors of car
dinality 1 are direct neighbors of a node (i.e., connected by an edge), and 

a cardinality of 2 includes the neighbors of cardinality 1 of the cardi
nality 1 neighbors of a given place, etc. This is relevant when having a 
consistent but locally flexible method that can be applied to the densely 
populated Northeast as well as the sparsely populated regions in the 
Southwest of the US These networks consist of nodes (i.e., place loca
tions) and edges (i.e., connections between neighboring places), shown 
in Fig. 3c for the neighborhood of cardinality 1 (i.e., connecting places 
whose Thiessen polygons share a common boundary). These topological 
relationships enable the efficient identification of different neighbor
hood levels for each place. Note that for implementing the spatial net
works efficiently, we use the centroids of the Thiessen polygons rather 
than the actual place locations as network nodes. While the original 
distances between place locations are assigned to each edge, the use of 
Thiessen polygon centroids as network nodes decreases processing time, 
as the spatial networks can be built from the Thiessen polygons without 
being re-joined to the original place data. This causes the slight offsets 
between network nodes and place locations in Fig. 3c (Table A31). 

Weighting schemes for the network-based remoteness index (see also 
Appendix 9). 

These weighting schemes are exemplary, and do not represent any 
attempt to cover different systematic choices or a broad spectrum of 
weight combinations. Our main goal is to illustrate the flexibility of 
resulting rural–urban classifications due to different weight combina
tions, aiming to emphasize different components of the indices.  

• Equal weights: All remoteness indicators are weighted equally.  
• Population focus: Place population and NPD metrics share 50% of 

the weight, all other metrics receive equal weights. This weighting 
scheme emphasizes the local context of a place, and gives less 
importance to the distance to large places.  

• DNPI focus: DNPI based metrics receive 50% of the weight, all other 
metrics receive equal weights. This scheme has a heavy focus on the 
spatial embedding of a place, and gives less importance to the size of 
the place itself.  

• Significance focus: MLS-based metrics receive 50% of the weight, 
all other metrics receive equal weights. This weighting scheme fo
cuses on whether a place is significant to its neighboring places or 
not, and thus, models the concept of central places. 

Appendix 4. Evaluation data  

Appendix 5. Results  

Appendix 6. Evaluation results 

Appendix 6.1: Comparing the two methods 

The quantitative comparison of the two modelling approaches yields 
high levels of correlation (Pearson > 0.8) between any modelling 
approach and weighting scheme, and these correlations slightly 
decrease over time (Fig. A6-1a,d). The scatterplots of the equal-weights 
schemes (Fig. A6-1-b,e) indicate that for the large majority of places, the 
network-based approach yields a more conservative remoteness esti
mate, i.e., most places are below the main diagonal, thus, PLURAL-2 
indicates higher levels of urbanness. Notably, the relationship between 
the two approaches differs between smaller and larger places (as defined 
by the place population), exhibiting two clusters, shifted along the x- 
axis: While for large places, PLURAL-1 and PLURAL-2 yield similar 
values, for small places, PLURAL-1 yields higher levels of remoteness 
(approximately +0.2) than PLURAL-2. Moreover, the spatial patterns of 
the differences between PLURAL-1 and PLURAL-2 estimates per place 
(Fig. A6-1c,f) exhibit a strong spatial pattern in East-West direction, 
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indicating that the previously observed systematic offset of +0.2 is 
particularly prevalent in the East, whereas places where network-based 
remoteness exceeds raster-based remoteness, are mostly smaller places 
in the West. This is likely due to the higher sensitivity of the network- 
based approach to the regional or local importance of places, and a 
result of the east–west population density gradient in the CONUS. 

Appendix 6.2: Comparing to county-level, and global rural–urban 
classifications (GHS-SMOD) 

Since the county-level urban–rural classifications discussed in Sec
tion 1 were designed exclusively for the US and exhibit a relatively large 
temporal gap to the most recent set of US census places (i.e., ACS pop
ulation estimates from 2018), we decided to compute a county-level 
urbanness index for the US based on the recently released, globally 
available Settlement Model (SMOD), compiled by the Global Human 
Settlement (GHS) project (Pesaresi et al., 2013). The GHS-SMOD is 
based on population data and built-up areas derived from Landsat ob
servations (Pesaresi et al., 2016) and implements the REGIO/EURO
STAT taxonomy (Dijkstra & Poelman 2014) for defining classes of 
urbanness (Florczyk et al. 2019). GHS-SMOD is available globally at a 
spatial resolution of 1 km. The GHS-SMOD classifies the Earth into 1 km 
grid cells of seven density-based levels of urbanness, ranging from “very 
low density” (class 11) to “urban center” (class 30) (Pesaresi & Freire, 
2016). We calculated the area proportions of each class per county, and 
computed a weighted average per county, based on these area pro
portions, giving weight 1 to the “very low density” class, and weight 7 to 
the “urban center”. We then scaled the resulting county-level scores into 
the range of [0,1] (Fig. A4a) and assessed the distributions of our place- 
level indices within strata of county-level, SMOD-based urbanness esti
mates for consistency and plausibility. 

The county-level rural–urban classifications shown in Fig. 6 provide 
valuable baseline models on the rural–urban continuum in the US. We 
employed these to evaluate whether the created remoteness indices 
exhibit similar trends, measured by the correlation between our place- 
level indices and the rural–urban designation assigned to the county 
containing each place; and assessed the outliers in the place-level dis
tributions of the PLURAL indices within strata of county-level rural
–urban designations. Moreover, we compared our place-level results to 
the FAR area codes at the ZIP code area level. 

Comparing the place-level remoteness index distribution within 
strata defined by the county-level urban–rural designations, we gener
ally observe a coherence between the PLURAL indices and county-level 
classes, manifesting in increasing place-level remoteness with increasing 
county-level rurality, for all county-level classification schemes and for 
both modelling approaches (Fig. 10a,b). Notably, we observe frequent 
“lower” outliers (i.e., below the lower whisker defined as 1.5xIQR) for 
the raster-based approach (PLURAL-1) (Fig. A6-21a), located evenly 
across the CONUS (Fig. A6-21c). This effect is not present when 
comparing the network-based remoteness index (PLURAL-2) against the 
county-level designations (Fig. A6-21b,d), thus indicating that the 
spatial-network approach better approximates the rural–urban gradient 
models underlying the county-level classifications. Such an effect is also 
observed for the other weighting schemes (Fig. A6-22). This effect is 
particularly strong when comparing against the GHS-SMOD based strata 
(Fig. A6-21a,b), indicating that the spatial network approach, which is 
based on population data only, is capable of capturing the spatial 
configuration of places, and thus able to approximate a population- 
density and built-up land-based RUC modeling approach based on 
population data only. The strong spatial patterns of “upper” outliers, 
which are similar for the various county-level classifications (Fig. A6- 
21c,d) indicate counties of presumably high levels of within-county 
variability of remoteness, for example in Arizona and North Dakota 
(Fig. A6-21c). 

Visually, the trends observed in Fig 10a,b indicate varying re
lationships between the place-level remoteness estimates and county- 

level classes. We formally tested linearity- and rank-based correlation 
between the county-level RUC classifications and our place-level 
indices. While the rank-based Spearman’s correlation coefficient is 
high (>0.7) for all indices and county-level classes (Fig. A6-23), we 
observe highest levels of linearity for the network-based approaches and 
GHS-SMOD, confirming the previous observations. 

Appendix 6.3: Comparison to gridded population data 

We visually assessed how the concepts of remoteness and population 
density differ. To do so, we used gridded population counts in 2018 from 
Worldpop (https://hub.worldpop.org/doi/10.5258/SOTON/WP00660) 
and re-aggregated them to the Thiessen polygons used to depict each 
place. When comparing the PLURAL indices and population density, we 
observe a general positive association, which is expected, as population 
density is a component in both the distance-based PLURAL-1 and the 
network-based PLURAL-2. However, we also observe larger bands 
around metropolitan areas and medium-size cities (Fig. A6-3), resulting 
from the incorporation of the relationships between neighboring or 
nearby places in our PLURAL indices. These relationships model the 
influence of larger places on smaller places in their proximity, which is 
the core of our remoteness concept. Hence, the use of population density 
alone to measure the rural–urban continuum is not advised, as the 
spatial context will not be taken into account. 

Appendix 6.4: Comparison to 2010 ZIP-code level FAR remoteness 
measures 

Moreover, we compared our place-level results to the Frontier And 
Remote area codes (FAR), at the ZIP code area level. There are four FAR 
area codes, temporally referenced to 2010, identifying ZIP code areas 
with populations living more than specific travel time thresholds from 
urban areas of specific population thresholds (see Cromartie & Nulph, 
2015 for details). As opposed to the county-level classifications, the FAR 
classes are not mutually exclusive. Thus, we use receiver-operator- 
characteristic (ROC) analysis (Green & Swets, 1966) to test whether 
there are thresholds that can be applied to our remoteness indices that 
yield high levels of agreement when comparing to each of four FAR 
classes. To join ZIP code area FAR designations to the places, we applied 
a spatial join based on 2010 place polygon centroids to the 2010 ZIP 
code areas (US Census Bureau, 2019). 

While most of the discussed rural–urban classifications for the US are 
based on proximity to metropolitan areas, or commuting patterns, the 
FAR codes available at the ZIP code level, is the only index explicitly 
implementing the concept of remoteness by means of road-network 
derived travel times, and population sizes. The ROC plots shown in 
Fig. A6-4 show generally high Area-under-the-Curve values, indicating 
that for each of our remoteness indices, there is a threshold that allows 
for mimicking the FAR classes at low levels of type I and type II errors (i. 
e., False positive rate < 0.2, True positive rate > 0.9). The remaining 
disagreement may be due to the ambiguous spatial relationship between 
ZIP code areas and census places, their difference in spatial granularity 
and different modelling strategies (i.e., use of Euclidean distance versus 
road network distance). Here, it is worth noting that ZIP code areas 
outside of place boundaries are not taken into account in this 
assessment. 

Appendix 6.5: Comparison to travel-time accessibility indicators 

The accessibility indicators used herein are derived from globally 
available travel time estimates (Nelson, 2019). These travel time esti
mates are based on road network data from OpenStreetMap and ancil
lary data on travel times, on land cover and terrain characteristics, as 
well as urban areas derived from the Global Human Settlement Layer 
(see Nelson et al., 2019; Weiss et al., 2018 for detailed method de
scriptions). These indicators are available as global, gridded surfaces at a 
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spatial resolution of 30 arc-seconds, indicating the travel time from each 
grid cell to the nearest city of a specific population range, approximately 
in 2015 (see Fig. A4e for some examples). We used the surfaces associ
ated with population ranges comparable to the population ranges used 
for the distance-based PLURAL index, i.e., travel times to the nearest 
place of 10,000–20,000, 20,000–50,000, and 50,000–100,000 in
habitants, and extracted the travel time for each place centroid of our 
2018 places dataset. We then qualitatively assessed the relationship 
between these travel times and our remoteness indices, and computed 
the theoretical travel speed based on the (road-network based) travel 
time given from the accessibility indicators, and the Euclidean distances 
used to construct the distance-based PLURAL index in 2018. We assessed 
the plausibility of these theoretical travel speed estimates in order to 
quantify the bias of using Euclidean distances instead of road network 
distances in our remoteness models. 

We assess the impact of using Euclidean distance instead of road 
network distance to model remoteness, using the travel times from 
Nelson et al. (2019) observed at each 2018 place centroid. We generally 
observe increasing travel times with increasing remoteness, while this 
trend seems to be slightly more linear for the network-based indices than 
for the raster-based indices, as the scatterplots in Fig. A6-5a suggest. For 
the raster-based equal-weights and place-centric weighting schemes, we 
observe an additional peak in travel times for remoteness values around 
0.4, in particular for the travel times to places > 50,000 inhabitants, as 
an effect of the local focus of these weighting schemes. Comparing travel 
times to the corresponding Euclidean distances DPC (see Eq. 1) used for 
the raster-based remoteness models, we observe a noisy, but roughly 
linear relationship (Fig. A6-5b). Places that deviate heavily from the 
main diagonal are expected to be located nearby geographic obstacles 
such as mountain ranges, rivers, borders, or lakes, causing deviations of 
road network routes from the shortest (Euclidean) route (Fig. A6-5b). 
The visualization of the theoretical travel speed estimates obtained from 
the Euclidean distances and travel time estimates (Fig. A6-5c) shows 
that for most parts of the CONUS, these travel speed measures range 
within plausible values, i.e., between 30 km/h and 140 km/h. We 
derived these thresholds from the typical speed limits (25 miles/hour in 
cities, 80 miles/hour on interstates) plus approximately 10 km/h of 
tolerance to account for differences in the definition of places in our 
modelling approaches and the Nelson et al. (2019) accessibility in
dicators. For example, Nelson et al. seem to model Chicago as a single 
place, whereas US census places distinguish between different neigh
borhoods of the city. Only in a few regions (in black, and yellow, 
respectively) this range of plausible travel speed is exceeded. 

Appendix 6.6: Long-term place-level trends of the built environment across 
the rural–urban continuum 

Although the temporal patterns in our remoteness indices directly 
reflect spatial population change over time, we would also expect these 
changes to be correlated with other processes related to urbanization, 
such as urban and rural building patterns. Using spatially explicit data 
on built-up areas for most of the US, at fine spatial granularity (i.e., a 
grid of 250 m × 250 m resolution) from the HISDAC-US, we constructed 
place-level trajectories of total built-up area and the number of buildings 
over time for each place where HISDAC-US data is available, for each 
decade from 1930 to 2010, as well as for 2015. We then calculated the 
correlations of these metrics with the PLURAL indices over time, with 
the expectation that the PLURAL indices (indicating remoteness) would 
be negatively correlated with new building (indicating urban expan
sion). Examples of the place-level built-up areas, over time and for three 
approximate levels of rurality, as indicated by the county-level RUCC, 
are shown in Fig. A4, illustrating the different growth trajectories across 
the rural–urban gradient. Similarly, Fig. A4d illustrates how building 
density increases in peri-urban areas, over the long term, while staying 
relatively stable in scattered, rural settlements, strengthening our hy
pothesis of different built-up land trajectories along the rural–urban 

gradient. 
When comparing the number of built-up records (i.e., approximate 

number of buildings) and the built-up area against our remoteness 
indices, per census place and over time, we observe a highly nuanced 
relationship between built-environment characteristics and the rural
–urban continuum as modelled by our remoteness indices. As expected, 
high levels of remoteness are associated with low building counts and 
small built-up areas. These patterns are highly stable over time, and 
across weighting schemes when visually assessing the scatterplots in 
Fig. A6-6a,b. These point patters differ slightly between the raster-based 
approach and the network-based approach, indicating that the ability to 
model a built environment perspective of rurality based on population 
data varies between approaches. Moreover, the negative correlations 
between building counts / built-up area and remoteness increase over 
time (Fig. A6-6c,d), in particular for the built-up records variable 
(Fig. A6-6c). 

Appendix 6.7: Relationship of remoteness to contemporary landscape and 
settlement characteristics 

While the built-up areas as provided by the HISDAC-US are derived 
from cadastral property data and may suffer from low levels of spatial 
accuracy in rural areas, we also used Microsoft’s building footprint data 
(Microsoft 2018), reflecting the state of built-up areas in approximately 
2016, derived from high-resolution remote sensing imagery, at high 
levels of accuracy (Uhl et al., 2021). We rasterized these building foot
print data to fine, CONUS-wide spatial grids of 250 × 250 m. From these 
gridded surfaces (i.e., indicating the number of buildings, and the total 
building footprint area per grid cell), we computed commonly used 
settlement metrics, for each place, such as the number of buildings, total 
built-up area, average building area (measuring built-up intensity), and 
landscape metrics, such as the average area of contiguous patches of 
built-up land, number of patches, largest patch index (measuring spatial 
segregation), landscape division index, and patch cohesion index 
(measuring the segregation and connectedness of built-up land) 
(McGarigal, 2015). We then assessed the correlations of these settlement 
and landscape metrics with our remoteness indices in 2018, motivated 
by previous work reporting strong relationships between the size and 
structure of built-up land and the rural–urban gradient (Luck and Wu, 
2002, Vizzari, 2011, Vizzari & Sigura, 2013). More specifically, we used 
the bounding box of each 2018 place polygon, buffered by 1 km in all 
directions, as a focal window in which the landscape metrics were 
computed, and assessed the correlation between these landscape metrics 
and the PLURAL indices. By doing so, we were able to not only char
acterize the size, shape, and structure of the built-up areas representing 
each place, but also the unincorporated land in proximity to the places. 
Some examples of the extracted built-up areas per place are shown in 
Fig. 5c, illustrating the difference in size and structure of built-up areas 
across the rural–urban continuum. 

The assessment of the relationship between size and structure related 
characteristics of the contemporary built-up land (derived from Micro
soft’s US building footprint data) at the place level reveals strong asso
ciation of these characteristics with the place-level remoteness, which is 
in line with related work using landscape metrics as a proxy for the 
rural–urban gradient (Luck and Wu, 2002, Vizzari, 2011, Vizzari & 
Sigura, 2013). We generally observe strong negative correlations be
tween remoteness and the settlement and landscape characteristics, 
indicating that remote places are characterized by few, small buildings, 
organized in small, highly disconnected patches of built-up area of 
similar sizes (Fig. A6-7a). These negative correlations are slightly higher 
for the network-based modelling approach than for the raster-based 
remoteness indices (Fig. A6-7a), and the patterns of these measures 
across the RUC are highly similar for the different weighting schemes 
(Fig. A6-7b). 
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Appendix 7. Sensitivity analysis of PLURAL-1 to user-set 
parameters 

We assessed the sensitivity of the PLURAL-1 indices to two user- 
defined parameters: (a) the population thresholds for place distance 
calculations, and (b) the focal window size used for focal population 
density estimation. As can be seen in the QQ-plots in Fig. A7-1, in all 
tested cases, sensitivity is relatively low (i.e., data points are near the 
main diagonal). Moreover, sensitivity is independent of the year, and 
sensitivity of the PLURAL-1 is higher to the chosen population thresh
olds used for place-to-place distance calculation, and low to the choice of 
the focal window radius used for focal population density estimation. 
Importantly, the metro-centric weighting scheme exhibits highest levels 
of robustness to both parameters, consistent in 1930 and 2018. 

Appendix 8. Distributions of distance to nearest neighboring 
places over time 

For PLURAL-1, the distances to places of different population cate
gories are derived from Euclidean Distance raster surfaces generated at a 
spatial resolution of 1 km, which represents a trade-off between gran
ularity and computational cost. While we did not formally test the 
sensitivity of the results to the spatial resolution of these gridded sur
faces, we analyzed the distributions of the nearest neighbor distances for 
the places in each year, shown for 1930, 1980, and 2018 in Fig. A8-1, 
illustrating that the large majority (i.e., around 95%) of places is farther 
than 1.4 km (grid cell diagonal) away from the nearest neighboring 
place, and thus, only 5% of the places may share a 1 km × 1 km grid cell 
with another place, which may result in distance values of 0. Such rare 
cases are expected to occur in urban areas, and hence, limits PLURAL-1 
in a way that distances < 1.4 km between places cannot be differenti
ated. As a side note, the shift in the frequency peaks from 1930 (10 km) 
to 2018 (3 km), illustrating the densification process that occurred over 
the intervening period. 

Appendix 9 

Sensitivity Analysis of weighting schemes to changes in remoteness 
index components. 

Fig. A91. Fig. A92. 

Appendix 10. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.landurbplan.2023.104762. 
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