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Abstract— Safe control designs for robotic systems remain
challenging because of the difficulties of explicitly solving op-
timal control with nonlinear dynamics perturbed by stochastic
noise. However, recent technological advances in computing
devices enable online optimization or sampling-based methods
to solve control problems. For example, Control Barrier Func-
tions (CBFs) have been proposed to numerically solve convex
optimization problems that ensure the control input to stay in
the safe set. Model Predictive Path Integral (MPPI) control
uses forward sampling of stochastic differential equations to
solve optimal control problems online. Both control algorithms
are widely used for nonlinear systems because they avoid
calculating the derivatives of the nonlinear dynamic functions.
In this paper, we use Stochastic Control Barrier Functions
(SCBFs) constraints to limit sample regions in the sampling-
based algorithm, ensuring safety in a probabilistic sense and
improving sample efficiency with a stochastic differential equa-
tion. We also show that our algorithm needs fewer samples
than the original MPPI algorithm does by providing a sampling
complexity analysis.

I. INTRODUCTION

Safety verification is crucial when applying control algo-
rithms to robotic systems in the presence of uncertainties.
Failure to ensure safety may cause severe damage to robots,
properties, and people nearby. There are numerous existing
papers that aim to guarantee safety. To list a few, the
reachable sets method in [1] designs control trajectories
while monitoring whether the reachable sets violate safety
constraints. The barrier certificate method in [2] uses the
dynamics and the certificate functions associated with the
safety constraint inequality to ensure safety. The robust
model predictive control (MPC) in [3], [4] employs min-max
optimization to improve the robustness against disturbances.
Another seminal safety verification method is the Control
barrier function (CBF), which utilizes a Lyapunov-like func-
tion (i.e., the reciprocal CBF) to guarantee that the control
output is forward invariant in a defined safe set [5]. Since
the CBF can be augmented to a nominal control by solving
a quadratic optimization program which can be implemented
online, the CBF method is widely used in real-time robotic
systems with extensions. For example, the authors in [6]
combine the CBF with the Rapidly exploring Random Tree
(RRT) algorithm to robustly satisfy the collision constraints
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in real-time. Also, the authors in [7] use Backup Sets to find
admissible inputs and construct Measurement-Robust CBF
that provides a margin to the robustness against noise.

There are two popular ways to augment the CBF into
path planning problems: using gradient-based optimization
and using sampling-based optimization. A gradient-based
optimization programming problem for the nonlinear path
planning problems becomes nonlinear optimization, inducing
an optimal local solution with excessive computation time.
This further results in low performance of the controlled sys-
tems and hinders real-time applications. The sampling-based
methods can address the aforementioned drawbacks [8].
They usually do not require calculating the gradients that
might be computationally expensive and impractical for
complex systems and finish calculation in a designated time
that only depends on sample size.

Model Predictive Path Integral Control (MPPI) algorithm
in [9] is one of the sampling-based algorithms that generates
a lot of forward-sampled trajectories to solve the stochastic
optimal control problem. By sampling the forward trajecto-
ries of the dynamical system, the MPPI algorithm avoids
calculating the derivative of the dynamic functions and
cost functions [10]. Since the forward sampling of random
trajectories can be calculated by parallel computing devices,
the computation time of the MPPI algorithm is significantly
lesser than other traditional methods [11]. Also, the sample
size has a significant influence on the computation time and
the performance of the sampling algorithm. It remains an
open question how the CBF constraints will influence the
sample size of the MPPI algorithms.

In this paper, we formulate a stochastic CBF-MPPI
(SCBF-MPPI) algorithm that enhances safety with a prob-
abilistic guarantee for a stochastic system in an obstacle-
rich environment. Taking advantage of the MPPI and CBF,
the proposed SCBF-MPPI algorithm has benefits in terms
of safety and sampling efficiency compared to the standard
MPPI. In particular, the proposed algorithm improves the
sample efficiency by confining sampled trajectories in safe
regions with changing the variance of the random pertur-
bation. We formally analyze the sampling complexity to
show how many sampled trajectories are required for the
given stochastic optimization problem, and to show improved
sampling efficiency compared to the standard MPPI. Further-
more, in the simulation with an obstacle-rich environment,
we show that the proposed SCBF-MPPI algorithm has better
performance in terms of collision avoidance than the MPPI
when the same sample size is used for both algorithms.
However, we note that the proposed algorithm induces a sub-
optimal solution because the augmentation of the CBF trades
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off the (infeasible) optimality with enhanced safety.

Related Work. The augmentation of the CBF in this
work is inspired by the previous works on the CBF for
fully known and deterministic systems [5]. Recent works
demonstrate that it is augmentable for uncertain systems [12],
[13], [14]. In [12], the authors unify the adaptive control
Lyapunov function and adaptive control barrier function to
guarantee safety in systems with parametric uncertainties.
The paper [13] uses the piece-wise control update law to
eliminate the effect of the disturbance. In [14], the authors
introduce adaptive CBF, in the form of a penalty function,
to ensure safety for uncertain systems.

Another line of work in safety ensures that control deals
with stochastic differential equations instead of parametric
uncertainties. In [15], the authors add chance constraints
with the sampling-based MPC method for improving safety.
In [16], the authors use £; adaptive control augmentation
with the MPPI to compensate for the gap between nominal
and unknown dynamics. Also, in our previous work [17],
we proposed a CBF-based MPPI algorithm that increases the
sample efficiency and ensures safety in a nonlinear stochastic
path planning problem.

II. PROBLEM STATEMENT

We consider a nonlinear control affine system:
dre = (f(zt) + g(we)ur)dt + o (z¢)dWr, (1)

where z; € R™ is the state, f : R” x R", g : R*" —
R™ ™ and ¢ : R™ — R™ are locally Lipschitz continuous
functions, and dW; is a Wiener process with (dWydW,;) =
vii (@, ug, t)dt. We also assume that the stochastic differen-
tial equation (1) has a strong solution for any control signal
u. We consider an optimal control problem with a quadratic
control cost and a state-dependent cost. The value function
V(z,t) is then defined as:

T
o t

where ¢(xr) denotes a terminal cost, and g(zy,t) is a state-
dependent cost. R(x¢,t) is a positive definite matrix and
needs to satisfy vy (x4, u,t) = Ag(z) R (wg, t)gT (24),
where A is a constant. Let Eg and Ep represent the expecta-
tions of the trajectories taken with the controlled dynamical
system (1) and the uncontrolled dynamics of the system
(v = 0 for the dynamical system (1)). Let C represent a
specified safe set, which is described by a locally Lipschitz
function h : R” — R as
C=A{z:h(z) >0}, 0C = {x: h(z) = 0}.

Problem 1: Given the initial state g € C, the problem
is to design a control policy that solves the optimization
problem defined in (2) subject to (1) while guaranteeing x; €
C for Vt > 0.

III. SCBF-CONSTRAINED MPPI ALGORITHM
A. Stochastic Control Barrier Function (SCBF)

The CBF algorithms use a Lyapunov-like constraint to
guarantee safety, when the state approaches the boundary
of the safe region C. However, most CBF algorithms are
based on a formulation that uses a deterministic system.
Yet, the stochastic formulation has a different treatment
of uncertainty. To resolve the gap between the stochastic
and deterministic systems, we use the SCBF, first proposed
in [18], using the Itd derivative instead of the Lie derivative to
guarantee safety. The use of the Itd derivative adds additional
terms in the following definition of SCBF compared to the
deterministic one.

Definition 1: [18] The function h : R” — R is a SCBF
for system (1), if for all x satisfying h(z) > 0, there exists
u satisfying

1 7+ 0%h
L¢h(z)+ Lgh(z)u + 5 Tr(o WJ) > —h(z). (3

Definition 1 extends the definition of the CBF to the
stochastic system and guarantees safety, as shown in the
following theorem.

Theorem 1: [18] If u satisfies (3) for all time ¢, then
Pr(z; € CVt) = 1, provided x¢ € C.

The CBF algorithm defines a quadratic programming
problem (QP) that minimizes the difference between the
safe control output us; and the nominal control input w,
and simultaneously satisfies the CBF constraints. We can
define the following convex QP problem for the stochastic
safe control design:

. 1 2
arg min 3 lus — unll5
Us
2

st. Lyh(x) + Lgh(x)us + %Tr(aT%o) > h(x).

The SCBF algorithm also averts calculating the derivatives
of the dynamic system; the convex QP optimization problems
in the algorithm can be solved in polynomial time [19].
However, the CBF algorithm can only guarantee the safety of
the dynamics. To solve the stochastic path planning problem
defined in Problem 1, we will use the MPPI algorithm [10],
which also evades the calculation of the derivatives of the
dynamic functions.

B. Model Predictive Path Integral Control (MPPI)

To solve the nonlinear stochastic optimization described in
problem 1, we apply the MPPI algorithm using Monte Carlo
(MC) methods to approximate the optimal control solution.

First, the MPPI algorithm samples K trajectories with
T being the time horizon. In each trajectory 7;, let v; =
[vi 0, v, 7—1]T be the mean of the control sequence. Let
wi = [wig,...,u;7—1]7 be the actual control input se-
quence. €; = [€;0,...,€;, 7—1]" represents the disturbance of
the control input, and €;; ~ N(0,%; ). [io, - 2ir-1]T
denotes the states of the current sampled trajectory.

The iterative update law is:

Eglexp(=(1/A)S(7)o () dW ()]
Eglexp(=(1/A)S(7)] ’

u(we, 1) = u(zy, t) +
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where wu(z¢,t) is the initial control input to be optimized,
T
and S(r) = ¢(zr) + [, q(ze, t)dt.
The continuous-time trajectories are sampled as a dis-
cretized system x;,1 = z¢ + dr; according to

dre = (f(xe, ) 4 g(ze, )u(ze, £)) At + o (x4, 1) 6V AL,
= f(:ct, t)At + o(z;, t)étm,

where d; is the Gaussian random vector with independent
and identically distributed (i.i.d.) standard normal Gaussian
random variables, i.e., [0¢]; ~ N(0,1), and At denotes the
time step of the time-discretization using Euler—Maruyama
method [20]. Then the discrete-time control update law to
approximate the optimal control will be:

z:i-’i‘ulexp(—(l/x)é(n,t))aui,,t,

Yico exp(—(1/2)5(7:,))
5 )

where du;; = Ja7 can be considered as a random con-

trol input, and S(7;;) = @(z; ;) + E::_ul G(Ti s, ipr €it)-
The running cost function is G(zi s, vit, €ie) = q(Tie) +
-z le{tReu + v Rei s + %UE;RU,;J, where v is the ratio
between the covariance of the injected disturbance ¢; and the
covariance of the disturbance of the original dynamics.

The MPPI algorithm solves the nonlinear stochastic prob-
lems efficiently based on the dynamic trajectories sampled
from normal distributions. However, most sampled trajecto-
ries may violate the safety constraints and receive a penalty
in the reward functions in some extreme environments, such
as the obstacle-rich environment. As a result, the sample
efficiency of the algorithms becomes poor and eventually
influences the performance of the algorithms. To solve these
problems, we provide a safe and sampling-efficient algorithm
by using SCBF to constrain the sample distributions.

w(ze,, t:)* = u(ze,, t;) +

C. SCBF-Based Chance Constrained MPPI Algorithm

We consider the SCBF-based chance cosntrained algo-
rithm, where SCBF constraints are no longer used as a
safe filter for the control input. In our previous work [17],
we mentioned that if the CBF method compensates for the
control output of the MPPI algorithm directly, the exploration
of the MPPI algorithm will be hindered. So we design CBF
chance constraints to find a trust region for the algorithms
to sample. We formulate a convex optimization based on the
trust region of the SCBF functions as follows:

arg min ||u — uy||,
u

S.LPr (Lgh(:c)u > —h(z) — Lyh(z) - %I}(JTHIU))

>1-4
(3
where u, is a nominal random control input distribution,
H, = % is the hessian matrix of function h.
Theorem 2: Let the Gaussian distributions Qp =
N (o, Xo) and Qs = N (s, Xg) satisfy Xy > X, For fixed
probability 1 — 4 defined in (5), if the mean g and variance

Y satisfy the constraint:
Aggpr — aAi,tEAg:t > by, (6)

where o is the confidence interval corresponding to the
probability 1 — 4, A; ; = Lgh(z;4), and b;; = —h(z;,) —
Lih(z;e) — %Tr(UT%‘gJ), then the sample control input
us e ~ Q(us, Xg) satisfies the SCBF chance constraints in
the optimization problem (5).
Proof: The left hand side of the inequality can be cast as
a Gaussian random variable with mean A;;u and variance
A;2A; ;. Considering the upper bound of the confidence
interval for the Gaussian variable, we can simplify the SCBF
chance constraint to a linear combination of mean A;;pu
and variance A; ;X A, ;, which satisfy the inequality A; ;p >
O.’Ag',gEAg?t + bg',t. |
Since the variance of the distribution should always be
positive semidefinite ¥ > 0, to guarantee the convexity of
the previous optimization problem (5) we reformulate it to:

argl;]lil'l”,u — poll1 + IX = Zollp,
"‘,

s.L A‘j‘lt,uv - OrAﬁ,.tZAE:; > bi,t: {?)
Y =0.

Remark 1: Suppose that there exists a state x such that
the SCBF chance constraint is active. Then the following
inequality holds aA; ;Y AT, < A; 4 — b;¢. This inequality
shows that there is an upper bound on the variance ¥. Hence,
we can assume that ¥y = X.

For any positive semidefinite matrices X, X, there exist
matrices Py, P such that Xy = P,PT and ¥ = PPT. Using
this fact, we can simplify the constraints in (7), and the
optimization problem becomes:

argtg.in [l = polls + | P — Pollp,
H.

t I VadiP '\, o ®
S \VaPTAY, pAie—bi) =

The solution to the optimization problem (8) provides the
safe mean p, and variance ¥, = PPT. In our previous
work [17], we proved that the optimization can be simplified
to a Semidefinite Programming optimization problem (SDP).
In [21], it is shown that using parallel computing, the
SDP problems can be solved almost as efficiently as linear
programming. Based on the safe mean and variance from
SDP optimization (8), we will generate one safe control
variation du;; ~ N(us, Xs) for each sample state z;; and
propagate through discrete dynamics:

wy = xp g+ (F(=f) + 9(2f) (uig +0uig) . (9)

We can obtain a sampled trajectory ; = {zo,...,zT},
where T is the time horizon of the MPPI algorithm. Then
we will calculate the cost of the i*" sampled trajectory by
using the cost function S (-), and using the following equation
we will calculate the weight of each trajectory:

w; = exp (—%g(n)) . (10)
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We use the following control update law:
> iey Wil
e .
D k—1 Wi

In conclusion, we have the following algorithm:

u* (@, t;) = u(we,, ) + (11)

Algorithm 1 SCBF-MPPI algorithm

Uinit - Random initialize control input;
K, T : Size of sampled trajectories and timesteps;
®,q, R, \ : Cost function parameters;
while task is not completed do
for i < 0to K —1do
T < Zo;
for t < 1to T do
Solving SDP in (8) to get ps, 2s;
Generate control variations du; ¢ ~ A (s, Ls);
Simulate discrete dynamic (9) to obtain x; ;;
Calculate cost function S(7;) += G(x;¢, 0u;t);
end for
Calculate the terminal cost S(7;) += ¢(z; 1)
end for
B min;[S(7;)];
Get sample weights w; ; using (10);
Update control input using w; ; and du;; using (11);
Send u;, to actuator;
for i< 0to7T —2do
Uj = Uj415
end for
UN -1 = Uinits
end while

IV. SAMPLE SIZE ANALYSIS

The size of sampled trajectories has a significant effect on
the performance and the computation time of the sampling-
based algorithms. With more sampled trajectories, the per-
formance of the algorithm will be better, but the computation
time of the algorithm will increase significantly as well.
Our previous work on the sampling complexity of the PI
method [22] uses Hoeffding’s inequality and Chebyshev’s
inequality. We will provide a sampling complexity analysis
of this intuitive idea. We discuss the case of one dimensional
control input [0u;]; ~ N([pe)i, [X¢];) in this paper, and a
similar result can be extended to high dimensional control
input straightforwardly.

Assumption 1: Assume that the error bound ¢; of the
Chebyshev’s inequality is smaller than the expectation of w

€ < E[exp(fiS(Ti)].

Assumption 2: We suppose that the running cost function
G(z;:) and terminal cost function ¢(z;r) are quadratic
functions.

Theorem 3: Under Assumptions 1 and 2, the size of
sampled trajectory N of the original MPPI control update
law defined in (4) is larger than the size of sampled trajectory
N? of the control update law of the SCBF-MPPI algorithm

(11) given the same sampling complexity error bound e and
risk probability p.

To prove the above theorem we have the following lemmas
and propositions.

Lemma 1: For any random variables X,Y, we have:
Var [XY] < 2Var [X]Var [Y] + 2Var [Y] E[X]%.

Due to the space of the limitation, we defer the details of
the proofs in the paper to online full version [23].

Lemma 2: We have Var [w] < (1 — E[w]) Ejw] < E[w] <
1.

Proof: Since w = exp(— S(T)) and since the cost-to-go
function S(7) > 0 by Assumption 2, then w € [0,1] is a
bounded random variable and its variance is also bounded.

|
Corollary 1: We have

B{|E) — Elw]| > &1} < p1 = 2exp(~Ni&3),

where E; = ZZ 1exp(—3S5()), €1 is the error bound of
the discrete sampled estlmate, and p; is referred to as risk
probability of not satisfying the error bound. The sample size
N7 can be calculated as:

12)

Ny = l g 2 (13)
Proof: By Hoeffding’s 1nequahty and with w € [0, 1]:
~ N1€1
P{|E1 —Ew]| > e1} < 2exp (_(wnmxwmln)Q)
< 2exp(—Nief).
|

Lemma 3: Let E, denote the resample control update
By, = £, (“’15:1) and B = E [% . We have the
following error bound €o and sample size

{2 ) 2 g (o (52
)

d

where I' = 4Var [du].
Due to the space of the limitation, we defer the details of
the proofs in the paper to online full version [23].
Corollary 2: Under Assumptions 1 and 2, the MC error

bound in (14) becomes
a(5ta)
EE
N262 E1—61

J(=IE

where €7 is the first MC error bound from (12). Then we
conclude that for the error bound €5 and the risk probability
p2, the sample size N, can be calculated:

4V; 1\’
Ny — ar [u] ( .
P26€5 E1 — €
Proof: From the proof in Lemma % we have
wouy 4Var [0u]
Vi <
. {EM] = TEP

5)

Using the inequality |4
relation for (E[w])?:
1 1 1
= < < — .
(B1+e€1)? (Bh —e1)?

—E[w]| > €1, we have the following

- () T
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Then the above follows using Chebyshev’s inequality. [ ]

Since the control output distribution of the MPPI algo-
rithm du has greater variance than the safe control output
distribution of the SCBF-MPPI algorithm dug, by using the
conclusion of Corollary 2, we can conclude that to reach the
same error bound e and risk probability ps, the sample size
of the MPPI algorithm N, is larger than the size of SCBF-
MPPI algorithm NN5. For the same error bound €; and risk
probability p;, the sample size of both algorithms are the
same based on the Corollary 1. So the required samples size
for the MPPI algorithm N = max(Ny, N2) is also greater or
equal to the size of samples for the SCBF-MPPI algorithm
N* = max(Ny, N3).

V. SIMULATIONS

A. Unicycle Dynamics

We implement our algorithms on a two-dimensional uni-
cycle dynamical system with:

T cosf O v
y| = |sin6 0 [w] + odW (¢),
0 0 1

where x,y are the coordinates, 6 is the angle, v is the linear
velocity, w is the angular velocity of the unicycle model, o
is the identity matrix, and W (¢) is a Brownian motion. The
time step for the discrete-time simulation is At = 0.05s.

B. Simulation Setup

We demand a probability of 1 — v = 0.997 of avoiding
all obstacles. The parameters for the sampling algorithm are
set: the time horizon T' = 20, and X\ = 1.

We consider a narrow passage environment where the
safe set C is defined as {(z,y)|sinZz <y <sinZz +a},
where « is the width of the narrow passage. The
control barrier functions are {h; :=y —sinz > 0}, and
{hg :=sinz +a —y > 0}. We consider a stochastic path
planning problem where the initial state of the unicycle is
[0,0.5,0]T, and the target state is [4,0.5,0]7. The running
cost function is g(z,y,0) = [|X — X [|3 + 1000 * Ly ¢,
where C is the complementary set to the safe set C over R?,
and 1 is the indicator function.

Trajecotry of unicycle model

—— 500-sample SCBF-MPPI

400-sample SCBF-MPP|
25 —— 300-sample SCBF-MPPI
—— 200-sample SCBF-MPPI

~ = 5000-sample MPPI

~= 4000-sample MPPI
1000-sample MPPI

~ = 500-sample MPPI

y-position

20 25
x-position

30 35 40

Fig. 1: Path planning result with different sample sizes.

C. Results

Figure 1 illustrates a result for the unicycle robots navigat-
ing through a narrow passage for at most 12.5 seconds. The
black line represents the boundary of the safe set. The blue
cross represents the target position. We first implemented
the MPPI algorithm with 500, 1000, 4000 and 5000 sampled
trajectories. The robotic systems can reach the target position
but may violate safety in some states. Then, we implement
the SCBF-MPPI algorithm with 200, 300, 400, and 500
sampled trajectories where the safety is guaranteed and also
reaches the target successfully. However, the SCBF-MPPI
algorithm behaves more conservatively and spends more time
steps for reaching the goal. In Figure 2, we plot different
algorithms’ running cost function values with varying sample
sizes. The SCBF-MPPI algorithm converges slower than the
MPPI algorithm, which illustrates the same result in Figure
1: the SCBF-MPPI algorithm is more conservative. The CBF
constrained sample distribution leads to the conservativeness
of the control output.

—— 500-sample SCBF-MPPI

400-samples SCBF-MPPI
—— 300-samples SCBF-MPPI
—— 200-samples SCBF-MPPI
—— 5000-samples MPPI
—— 4000-samples MPPI

1000-samples MPPI
—— 500-samples MPP|

Time Horizon

Fig. 2: Cost with different sample sizes.

We define the collision rate as how many states in the
trajectory violate the safety constraint. We further define the
average time to finish (TTF) to be the number of time steps
to reach a vicinity area of the target. In this experiment, we
define the vicinity area as a circle with a radius of 0.15.
We repeat both algorithms ten times to calculate the average
collision rate and average time steps. Table I shows that in
both the MPPI and the SCBF-MPPI algorithms, the average
TTF will decrease when the sample size is larger, which
means the performance will be better. The MPPI algorithm
has a lower average TTF than the SCBF-MPPI, which
indicates that SCBF-MPPI is more conservative. However,
the collision rate of SCBF-MPPI remains 0, which implies
that the safety constraints are always satisfied during the
experiments.

In Figure 3a and Figure 3b, we plot all the sampled
trajectories of the MPPI algorithm and the SCBF-MPPI
algorithm when the sample size is 200. The sampled tra-
jectories are in blue color, and the boundary of the safe
set is in black color. The sampled trajectories in the MPPI
algorithm follow a Gaussian random variable with fixed
mean and variance. For the SCBF-MPPI algorithm, the mean
and variance of the sampled trajectory are obtained based on
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— obstacles
samples

20 — obstacles 20
samples

(a) MPPI algorithm. (b) SCBF-MPPI algorithm.

Fig. 3: The sampled trajectories of the algorithm

TABLE I: MPPI and CBF-MPPI of different sample size

Case Collision Rate ~ Avg. TTF
200 samples MPPI 0.0454 140.4
500 samples MPPI 0.0294 129.6
200 samples SCBF-MPPI 0.0 163.6
500 samples SCBF-MPPI 0.0 156.1

the SDP optimization. As a result, all sampled trajectories
are in the safe set. Note that some aggressive and dangerous
sampled trajectories in the SCBF-MPPI algorithm will be
turned opposite because of the confidence interval we set.
But the costs of these samples are low, so they have minor
effect on the control output.

In our last experiment, we set the sample size to be N =
500, the desired bound ¢; = 0.05,¢; = 0.1,, the allowable
risk of failure p; = 0.05, po = 0.1. We calculate the sample
size N1 and Ny based on the equations (13) and (15) at
time step 7' = 50. In conclusion, it shows that our algorithm
needs smaller sample size than the MPPI algorithm.

TABLE II: Sample size for N; and N»

Algorithm T Ny No

MPPI 50
SCBF-MPPI 50

1476
1476

2973
584

VI. CONCLUSION AND DISCUSSION

We propose a SCBF-MPPI algorithm that utilizes the
safe SCBF constraints to determine the mean and variance
of the random control trajectories for calculating the path-
integral control. The augmentation will defer the control from
the (potentially infeasible) optimal solution provided by the
MPPIL. The improved safety can also indirectly be observed
through the smaller sample size required by the SCBF-
MPPI than the MPPI for the same level of assurance. Using
sampling complexity analysis and simulations, we show that
the CBF-MPPI algorithm needs fewer sampled trajectories
due to the smaller variance of the control distribution.
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