
RRT Guided Model Predictive Path Integral Method

Chuyuan Tao†, Hunmin Kim‡, and Naira Hovakimyan†

Abstract— This work presents an optimal sampling-based
method to solve the real-time motion planning problem in static
and dynamic environments, exploiting the Rapid-exploring
Random Trees (RRT) algorithm and the Model Predictive Path
Integral (MPPI) algorithm. The RRT algorithm provides a
nominal mean value of the random control distribution in the
MPPI algorithm, resulting in satisfactory control performance
in static and dynamic environments without a need for fine pa-
rameter tuning. We also discuss the importance of choosing the
right mean of the MPPI algorithm, which balances exploration
and optimality gap, given a fixed sample size. In particular, a
sufficiently large mean is required to explore the state space
enough, and a sufficiently small mean is required to guarantee
that the samples reconstruct the optimal control. The proposed
methodology automates the procedure of choosing the right
mean by incorporating the RRT algorithm. The simulations
demonstrate that the proposed algorithm can solve the motion
planning problem for static or dynamic environments.

I. INTRODUCTION

Motion planning problems have been widely discussed in
recent years in the field of robotics, [1], [2], [3], [4], [5].
The main goal of motion planning problems is to find an
optimal path for the agents to move from an initial position
to a target position in known stationary environments while
preventing collisions. It is challenging to solve the same
problem efficiently in dynamic environments and implement
the algorithms on the robotic systems in real time.

For motion planning problems, sampling-based methods
have been proven to be effective for complex systems since
the methods avoid calculating the derivatives of the dynamic
equation and the cost function. In particular, the Probabilistic
Roadmap (PRM) algorithm [6] is the first sampling-based
algorithm that solves the motion planning problem. The
algorithm uses a local planner to connect the sampling
configuration in free space. The Rapid-exploring Random
Trees (RRT) algorithm [7], [8], one of the most famous
sampling-based algorithms, combines the exploration of the
configuration space and the biased sampling around the goal
configuration space. Most of the RRT algorithm variants
can efficiently solve motion planning problems but cannot
find an optimal solution. The RRT* algorithm has been
developed in [9] to find an optimal solution by using incre-
mental rewirings of the graph to provide an asymptotically
optimal solution to the motion planning problems. However,

This research is supported by NSF CPS #1932529, AFOSR #FA9550-
21-1-0411, NASA #80NSSC22M0070 and #80NSSC20M0229 awards.

†Chuyuan Tao and Naira Hovakimyan are with the Department of
Mechanical Science and Engineering, University of Illinois at Urbana-
Champaign, USA. {chuyuan2, nhovakim}@illinois.edu

‡Hunmin Kim is with the Department of Electrical and Computer
Engineering, Mercer University, USA. kim h@mercer.edu

compared to the RRT algorithm, the RRT* algorithm and its
variants have a relatively longer execution time because the
algorithm calculates the neighboring nodes and rewires the
graph.

Most RRT and RRT* algorithms cannot handle dynamic
environments since it requires one to abandon the current
path, and derive a new path from scratch. Dynamic Rapidly-
exploring Random Trees (DRRTs) algorithm [10] was devel-
oped to address the problem by trimming the original results
and exploring to get the target again. In [11], the authors
provide a variant of replanning RRT algorithms combined
with the Multipartite RRT (MP-RRT) algorithm. The MP-
RRT algorithm biases the sampling distribution towards
previous useful states and analytically computes which part
of the previous RRT results can be re-utilized. Yet, both
algorithms could not guarantee an optimal solution to the
motion planning problem since the algorithms are based on
non-optimal RRT algorithms. Thus, we provide a different
approach to solving optimal real-time motion problems.

One alternative way to efficiently solve optimal motion
planning problems with dynamic environments is to use the
Model Predictive Integral Control (MPPI) algorithm [12],
[13]. By sampling the forward trajectories of dynamic sys-
tems, the MPPI algorithm avoids calculating the derivatives
of the dynamic functions or the cost functions [14]. Since the
forward trajectories can be sampled efficiently by Graphic
Processing Units (GPUs), the algorithm can be applied
to diverse robotic systems by finishing the calculation in
a fixed time [15]. The MPPI algorithm enables real-time
implementation by adjusting the fixed running time, whereas
a longer running time reduces the optimality gap. Since the
algorithm solves the motion planning problem iteratively,
the algorithm can handle dynamic environments directly.
However, the performance of the algorithm is influenced by
the hyper-parameters dramatically, especially the mean value
of the control input sample distribution. Intuitively, a small
mean value may result in conservative exploration, and a
large mean value may result in risky behaviors. In particular,
in dynamic environments, to get better performance, a time-
varying mean value is needed. Thus, in this work, we utilize
the RRT algorithm to design a better sample mean to guide
the MPPI algorithm in exploring the workspace and sampling
the trajectories.

The idea of using the RRT and RRT* algorithms to
solve motion planning problems in dynamic environments is
inspired by [16]. In this work, the authors propose the RRTX

algorithm, which combines the replanning ideas provided in
the DRRT algorithm and RRT* algorithm to continuously
update the path during the exploration when the environment

IEEE Control Systems Letters paper presented at
2023 American Control Conference (ACC)
San Diego, CA, USA. May 31 - June 2, 2023

979-8-3503-2806-6/$31.00 ©2023 AACC 776

Authorized licensed use limited to: University of Illinois. Downloaded on December 29,2023 at 04:29:02 UTC from IEEE Xplore. Restrictions apply.

changes. However, the algorithms require large computation
power and are hard to implement on the robots in real
time. The idea of using a nominal or baseline controller to
improve the performance of the MPPI algorithm is inspired
by [17], [18]. In [17], the authors present a method using the
entire planning tree from the RRT* algorithm to approximate
the value functions in the MPPI algorithm. However, due
to the learning procedure in the algorithm, the cost of
finding an optimal solution to the motion planning problem
is computationally expensive. In [18], the authors control
the variance of the MPPI algorithm to handle the dynamic
environments and provide a faster running time and better
collision avoidance in a ground unicycle simulation. How-
ever, the algorithm requires the linearized dynamic model,
which results in expensive computation for complex or high-
dimensional systems.

Contributions. This work presents a sampling-based al-
gorithm to solve the motion planning problem. We use the
RRT algorithm to provide a nominal mean value for the
random control distribution of the MPPI algorithm. The
proposed algorithm advances the RRT algorithm in terms of
its applicability to navigation in dynamic environments and
optimality. With respect to the MPPI algorithm, it reduces
the need to fine-tune the mean value. We provide simulation
results to discuss the importance of tuning the mean value
in the original MPPI algorithm. In particular, the sampling-
based algorithms need sufficiently large means to explore the
state space and sufficiently small means to guarantee that the
samples reconstruct the optimal control. Thus, our proposed
method avoids fine-tuning the mean value by using the
nominal path provided by the RRT algorithms. Our algorithm
finds the optimal solutions by allowing the MPPI algorithm
to explore freely, and it has a better performance in running
time by using the offline RRT algorithm to provide a nominal
path to guide the MPPI algorithm. If the MPPI algorithm
reaches the area where the nominal path provided by the
offline RRT algorithm has not been explored before, our al-
gorithm uses an online real-time Replanning RRT algorithm
to provide new nominal paths. Finally, we implement our
algorithm on a unicycle robot and solve the motion planning
problem in static and dynamic environments.

II. PROBLEM STATEMENT

Let X d denote the d dimensional space and Xobs ⊂ X d

be the obstacle space. We define the free space Xf = X d \
Xobs, where the robot can reach. The start and goal states
are xs and xg , respectively. We assume that the robot has a
nonlinear control affine dynamical system:

dxt = (f(xt) + g(xt)ut)dt+ σ(xt)dWt, (1)

where xt ∈ Rn is the state, f : Rn → Rn, g : Rn →
Rn×m and σ : Rn → Rn are locally Lipschitz continuous
functions, and dWt is a Wiener process with ⟨dWkdWl⟩ =
νkl(xt, ut, t)dt.

Problem 1: Given X ,Xobs, xg , and xt(0) = xs, we aim to
find the optimal control input u∗ that would lead to the short-
est path to state xg in the static or dynamic environments

(i.e., time-varying Xobs). Specifically, we aim to minimize
the cost function S(xt, ut), defined as:

S(xt, ut) = ϕ(xt+T) +
t+T−1∑
j=t

q(xj , uj) (2)

subject to xj ∈ Xf , where q(xj , uj) is a running cost
function, and ϕ(xt+T) is the terminal cost function.

III. APPROACH

To this end, we propose the RRT-guided MPPI algorithm
in Section III-C, which addresses Problem 1. By generating
mean values using the RRT (presented in Section III-A), the
MPPI algorithm (presented in Section III-B) does not need
fine parameter tuning in dynamic environments. Furthermore,
the MPPI algorithm provides real-time implementable opti-
mal control inputs.

Algorithm 1 RRT algorithm

Given: Initial vertices S ← {ss}
Given: Initial edges ε← ∅
for i = 1, ..., n do
ssample ←SampleState();
snear ←NearestNeighbor(S, ssample);
s←Steer(snear, ssample, γ);
if ObstacleFree(snear, s) then
S ← S ∪ {s};
ε← ε ∪ {(snear, s)};

end if
if d(s, sg) < γ then
S ← S ∪ {sg};
ε← ε ∪ {(s, sg)};
return p = ExtractPath (S, ε)

end if
end for

A. Rapidly-Exploring Random Trees Algorithm

We present the RRT algorithm in Algorithm 1. The al-
gorithm uses function SampleState() to uniformly sample a
new state ssample in the configuration space X . Then, the
algorithm finds the nearest vertex snear with the function
NearestNeighbor() and projects the sample state ssample to
the ball with radius γ with a function Steer(). If the new
edge between the snear and s is free from collision, the
projected state s will be added to the vertex set, and the new
edge (s, snearest) will be added to the vertex set. If the new
vertex s is within a radius γ of the goal state sgoal, then the
RRT reaches the target and returns the path p. Otherwise, the
algorithm adds the new vertex and advances the exploration.

The RRT algorithm focuses on fast iteration while not
guaranteeing to find the optimal solution to the motion
planning problem. RRT* [9] is the first variant of the
RRT algorithm that could ensure asymptotic optimality. By
allowing the new vertices to ”rewire” graph edges within
the local neighborhood, the algorithm guarantees asymptotic
optimality with the cost of increasing running time. However,

777

Authorized licensed use limited to: University of Illinois. Downloaded on December 29,2023 at 04:29:02 UTC from IEEE Xplore. Restrictions apply.

the running time of the RRT* algorithm also increases
dramatically, and it is hard to implement the algorithm in
real time. In this work, instead of using the RRT* algorithm,
we utilize the MPPI algorithm to find the optimal solution
to the motion planning problem.

B. Model Predictive Path Integral Control Algorithm

In this section, we introduce the MPPI algorithm [14],
[15] to solve the motion planning problem. First, we need
to sample K trajectories with time horizon T with random
control input ui,j ∼ N (µ,Σ), where i = 1, · · · ,K is
the sample trajectory index. In each trajectory τi, ui =
[ui,t, . . . , ui,t+T−1]

T denotes the actual control input se-
quence, and [xi,t+1, . . . , xi,t+T]

T denotes the states of the
current sample trajectory. The evaluated cost for ith trajec-
tory is given by

S(τi) = ϕ(xi,t+T) +
t+T−1∑
j=t

q(xi,j , ui,j), (3)

where q(xi,j , ui,j) = (xg − xi,j)
T (xg − xi,j) +

1
2u

T
i,jRui,j ,

where R is a positive definite control penalty matrix. We
define the weight of ith trajectory ωi as:

ωi = exp(− 1

λ
(Si)),

where λ is the parameter that decides how much we trust
the better-performed trajectories. Then the MPPI algorithm
updates the control input using the following equation

uj =

∑K
i=1 ωiui,j∑K

i=1 ωi

(4)

for j = t, · · · , t + T − 1, which approximates the optimal
control inputs using sampled trajectories.

In conclusion, the MPPI algorithm uses sample trajectories
to find the optimal control input to solve the motion planning
problem. Because the MPPI algorithm avoids calculating the
derivatives of the nonlinear dynamic systems or the value
functions, it can be implemented in real-time with the help
of parallel computations on the GPUs, even for complex
dynamic systems.

While the MPPI algorithm has clear merits mentioned
in the previous paragraph, its performance is dramatically
influenced by the mean of the control input distribution. In
the unicycle simulations presented in Figure 1, the MPPI
algorithm may fail to solve the motion planning problems
due to the bad choice of the mean value. In Figure 1, the
red path is the result when the mean value of the control
input is µ = [1, 0]T ; the yellow path is the result when
the mean value is µ = [1, 1]T ; and the green path is the
result when the mean value is µ = [0, 0]T . We can find out
easily that a smaller mean value hinders the exploration and
cannot finish the path planning task in the provided horizon.
A larger mean value may result in a safety violation. If the
mean value is large, the MPPI algorithm is more aggressive
and finishes the task faster. However, it also provides more
risky control inputs and should require a larger sample size
to get an optimal solution.

Fig. 1: MPPI algorithm with various mean values in a static
environment.

An example of MPPI trajectory in a dynamic environment
is shown in Figure 2, where we increase the radius of circle
obstacles by 2 and 4. The mean value for the MPPI is [1, 0]T ,
which has a perfect performance in a static environment but
fails the task, being stuck between obstacles in dynamic
environments, as the second figure shown in Figure 2.
Thus, we can conclude that for a dynamic environment,
the MPPI algorithm needs a time-varying mean value to
obtain a fine performance. To automate the procedure of
choosing dynamic mean values, we combine it with the RRT
algorithm.

C. Replanning RRT Guided MPPI Algorithm

We propose a new sampling-based method that utilizes
the RRT algorithm to guide the MPPI algorithm to solve the
optimal motion planning problem defined in Problem 1. Our
algorithm performs well without tuning the mean value of
the control distribution. Our algorithm also has a fast running
speed, and thus it can be implemented in real-time.

First, we use the RRT algorithm to provide an offline
nominal path pn, which provides a possible solution to solve
the motion planning problem. Although the RRT algorithm
has a relatively fast iteration speed, the algorithm is still hard
to implement in real time, which will also be shown later in
the simulations. So we first run the RRT algorithm offline,
not in real-time. Since the RRT algorithm only provides
the state information instead of the control information, we
then use Lyapunov controllers or PD controllers to obtain a
nominal control input un in real-time. However, since the
RRT algorithm cannot guarantee the optimal solution, we
use the MPPI algorithm with nominal control input un as
the mean of the random control distribution to explore an
optimal control input u∗ at each time step.

As the difference between the nominal control input un

and the optimal control input u∗ becomes increasingly large,
the optimal control input may lead the agents to reach the
area where the path pn of the RRT algorithm never reached
before. In this case, the nominal path may have a negative in-
fluence on the MPPI algorithm. To address this issue, we use

778

Authorized licensed use limited to: University of Illinois. Downloaded on December 29,2023 at 04:29:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Results with MPPI algorithm in dynamic environments. In the first environment, the radius of the circle obstacles
increases by two at time t = 0.5s. The solid line represents the radius before the environment changes, and the dotted line
represents the radius after the environment changes. The MPPI algorithm can still handle the change without changing the
mean value. In the second environment, the radius increases by four at time t = 0.5s as well. The MPPI algorithm with a
fixed mean value fails to finish the task.

the replanning idea first presented in the DRRT algorithm,
where the agents replan under the changing environment.
However, unlike the DRRT algorithm, our algorithm replans
when the nominal controllers un are no longer helpful. In
our implementation, we use a distance R to justify if the
replanning is needed. We use a NearestNeighbor() function
to calculate the distance between the current state x and its
closest point xn in the nominal path, and if the distance is
larger than R, our algorithm replans.

Algorithm 2 Replanning RRT algorithm

Given: Vertices S ← [p], S ′ ← [ss]
Given: Edges ε← ∅
for i = 1, ..., n do
ssample ←SampleState();
snear ←NearestNeighbor(S, ssample);
s′near ←NearestNeighbor(S ′, ssample);
s←Steer(ssample, s

′
near, γ)

if ObstacleFree(s′near, s) then
S ← S ∪ {s};
ε← ε ∪ {(snear, s)};

end if
if d(s, sg) < γ or d(s, snear) < γ then
S ′ ← S ′ ∪ {sg} or S ′ ← S ′ ∪ {snear};
ε← ε ∪ {(s, sg)} or ε← ε ∪ {(s, snear)};
return p = ExtractPath (S ′, ε)

end if
end for

The detail of the Replanning RRT algorithm is presented in
Algorithm 2. Our replanning RRT algorithm has a different
input compared to the previous RRT algorithm, where the
vertices set S is given by the previous nominal path pn, and
vertices set S ′ contains the start state ss. Next, we sample
the state ssample and find the nearest neighbor s′near and
project the states s the same way as the RRT algorithm in

Algorithm 1.

Algorithm 3 RRT-MPPI algorithm

Given: Number of sample trajectories K and timesteps T ;
Given: Initial variance Σ0;
Given: Cost function parameters ϕ, q,R, λ;
Use offline RRT algorithm to get initial path pn
while task is not completed do

for j ← t to t+ T − 1 do
Find the nearest state s ∈ pn to the current state x;
if d(s, x) ≥ R then

Use Replanning RRT algorithm to get new pn
Find new nearest state s ∈ pn

end if
Get nominal control mean value un = L(s, x)
for i← 0 to K − 1 do

Generate control variations ui,j ∼ N (un,Σ0);
Simulate discrete dynamic to obtain xi,j ;
Calculate cost function S(τi) += q(xi,j , ui,j);

end for
Calculate the terminal cost S(τi) += ϕ(xi,t+T)

end for
β ← mini[S(τi)];
Get sample weights ωi;
Update control input using ωi,j and ui,j ;
Send ut to actuator;

end while

However, we will also find the closest state snear to the
vertices set S ′. Then we check if the new edges (s′near, s)
are in the collision-free space Xf . Finally, we repeat the
previous procedure until the distance between new vertex s
and target state sg or closest state on the nominal path snear
is smaller than the radius γ and return the new path p. Since
our replanning algorithm uses the MPPI algorithm to give a
penalty to the obstacles at each time step, we do not need to

779

Authorized licensed use limited to: University of Illinois. Downloaded on December 29,2023 at 04:29:02 UTC from IEEE Xplore. Restrictions apply.

trim the previous result. As a result, the proposed algorithm is
significantly faster than the original RRT algorithm. The first
part of our algorithm requires an offline RRT algorithm to
provide a nominal path pn. The second part of our algorithm,
which is based on the Replanning RRT algorithm and MPPI
algorithm, can be implemented on the robots in real-time.

With the new nominal path S ′, we then use the Lyapunov
controllers or the PD controllers to get the new nominal
control input u′

n. We can obtain a sampled trajectory τi =
[xi,t, ..., xi,t+T−1]

T with the new distribution N (u′
n,Σ),

where T is the time horizon of the MPPI algorithm and
Σ is the fixed variance. Then we calculate the cost of the
ith sampled trajectory by using the quadratic cost function
S(·) and using the following equation, and we calculate the
weight of each trajectory:

ωi = exp

(
− 1

λ
S(τi)−min(S(τi))

)
. (5)

Note that we need to find the minimum value of all
trajectories to prevent the numerical instability of the algo-
rithms [18]. Finally, we use the normalized trajectory weights
to calculate the control update law: for j = t, · · · , t+T −1,

uj =

∑K
i=1 ωiui,j∑K

i=1 ωi

. (6)

The proposed RRT-guided MPPI algorithm is summarized
in Algorithm 3.

IV. SIMULATIONS

A. Unicycle Dynamics

We implement our algorithm on a two-dimensional unicy-
cle dynamic system with:

ẋd

ẏd

θ̇

ϕ̇

 =


cos θ 0
sin θ 0
tanϕ
L 0
0 1

[
v + δv

ω + δω

]
,

where x, y are the coordinates, θ is the heading angle, and ϕ
is the steering angle. v is the linear velocity control input, and
ω is the angular velocity control input. L = 0.5 is the length
of the wheelbase. δ = [δv, δω] ∼ N (0̄, I) is the random
control input perturbation. The time step for the discrete-
time simulation is ∆t = 0.05s. We use the following discrete
dynamics in the MPPI algorithm:

xd
t+1

ydt+1

θt+1

ϕt+1

 =


xd
t

ydt
θt
ϕt

+∆t


cos θt 0
sin θt 0
tanϕt

L 0
0 1

[
vt + δvt
ωt + δωt

]
.

B. Simulation Setups

The maximum sample size in the RRT algorithm is set to
20000, and the projection radius is set to γ = 0.5. We set
the sample size for the MPPI algorithm to be K = 10000,
the time horizon to be 20, and λ = 1.0. The cost function is
defined as:

q(x) = ∥x− xg∥22 + 1000 ∗ 1x∈Xobs
,

where x represents the current states, and xg represents
the goal state. Xobs is the obstacle set over R2, and 1

is the indicator function. We test our algorithm in two
different environments, a static environment and a dynamic
environment. In both simulations, the start states are xs =
[2, 3, 0, 0]T , and the goal states are xg = [49, 24, 0, 0]T . We
use a Lyapunov controller to design the velocity control input
and a Proportional controller to design the angular velocity
control input:

uv = edvmax
(1− exp(−α∥ed∥2))

∥ed∥
,

uω = kpeθ,

(7)

where ed, eθ are the error between the desired target state
and current states.

C. Results

We first test our algorithm in a fully known static en-
vironment with the replanning conditions R = 6. Figure
3a shows the result of a unicycle robot navigating through
the obstacles. The black rectangles represent the boundary
of the environments, the grey circles and rectangles denote
the obstacles, the blue square denotes the start state xs,
and the blue cross denotes the goal state xg . The blue line
in the figures is the result of the replanning RRT path,
and the orange line in the figures is the resulting control
output from the RRT-MPPI algorithm. Next, we implement
our algorithm in dynamic environments where the radius
of the circle obstacles increases by 2 and 4. We plot the
environment changes by plotting the circles with dot lines
as their boundaries. Figure 3b and Figure 3c show that our
algorithm can handle dynamic environments. Note that in
dynamic environments, the nominal path provided by the
RRT path may violate safety. However, since the MPPI
algorithm can explore freely, our algorithm is still able to
find the solution to the optimal motion planning problem.
Besides, we want to implement the algorithm in real time,
so the RRT algorithm we adopt here is relatively inaccurate
and can only guide the MPPI algorithm.

We repeat the previous experiments for 10 times and
change the value of the replanning condition from R = 2 to
R = 8. In Figure 4, we plot the average time, the maximum
and minimum running time of our algorithm, and the original
MPPI algorithm with mean [1, 0]T in static and dynamic
environments. The time of the offline RRT algorithm is
in purple color. Note that even the offline RRT algorithm
takes around 0.2 seconds, it is still not fast enough to be
implemented in real-time. The online RRT-MPPI algorithm
for the static environment is in blue color, and the dynamic
environment is in yellow color. We also compare the running
time with the MPPI algorithm with a fixed mean value
[µv, µω]

T = [1, 0]T , which is the grey color in the figures. As
the radius decreases, the RRT-MPPI algorithm can provide a
more accurate nominal controller. However, the time of the
replanning procedure increases as well, and as a result, the
total time to complete the task becomes longer. We can see

780

Authorized licensed use limited to: University of Illinois. Downloaded on December 29,2023 at 04:29:02 UTC from IEEE Xplore. Restrictions apply.

(a) Static Environment (b) 1st Dynamic Environment (c) 2nd Dynamic Environment

Fig. 3: Results with RRT-MPPI algorithm in static or dynamic environments. The blue dash-dot lines are the paths provided
by the Replanning RRT algorithm, and the orange line is the result of our proposed method.

Fig. 4: Running time of RRT-MPPI algorithm with different
replanning conditions and MPPI algorithm with the fixed
mean value.

that when the radius R = 6, and the algorithm takes the least
time to finish the motion planning task.

V. CONCLUSION

This paper presents a real-time RRT-MPPI algorithm to
solve the motion planning problem in different environments.
The proposed algorithm advances the RRT algorithm in
terms of dynamic environment navigation and optimality
and reduces the need to fine-tune the mean value of the
MPPI algorithm. In particular, we use the RRT algorithm
to provide the suitable nominal control mean value for the
random distribution in the MPPI algorithm. This helps us
avoid fine-tuning the mean value and balance the optimality
and exploration. Finally, in the simulations, we use a unicycle
robot to implement the algorithm in static and dynamic
environments. We compare the running time of our RRT-
MPPI algorithm with the fixed value MPPI algorithm in the
experiments, showing that our algorithm is faster.

REFERENCES

[1] F. Gao, L. Wang, B. Zhou, X. Zhou, J. Pan, and S. Shen, “Teach-
repeat-replan: A complete and robust system for aggressive flight in
complex environments,” IEEE Transactions on Robotics, vol. 36, no. 5,
pp. 1526–1545, 2020.

[2] B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-
aware trajectory replanning for quadrotor fast flight,” IEEE Transac-
tions on Robotics, vol. 37, no. 6, pp. 1992–2009, 2021.

[3] Q. Nguyen, X. Da, J. Grizzle, and K. Sreenath, “Dynamic walking
on stepping stones with gait library and control barrier functions,” in
Algorithmic Foundations of Robotics XII, pp. 384–399, Springer, 2020.

[4] Y. Cheng, P. Zhao, and N. Hovakimyan, “Safe model-free rein-
forcement learning using disturbance-observer-based control barrier
functions,” arXiv preprint arXiv:2211.17250, 2022.

[5] C. Tao, H.-J. Yoon, H. Kim, N. Hovakimyan, and P. Voulgaris, “Path
integral methods with stochastic control barrier functions,” in 2022
IEEE 61st Conference on Decision and Control (CDC), pp. 1654–
1659, 2022.

[6] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[7] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” The international journal of robotics research, vol. 20, no. 5,
pp. 378–400, 2001.

[8] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for
path planning,” 1998.

[9] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846–894, 2011.

[10] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with rrts,” in
Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006., pp. 1243–1248, IEEE, 2006.

[11] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite rrts for rapid
replanning in dynamic environments,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation, pp. 1603–1609,
IEEE, 2007.

[12] G. Williams, A. Aldrich, and E. Theodorou, “Model predictive path
integral control using covariance variable importance sampling,” arXiv
preprint arXiv:1509.01149, 2015.

[13] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in
2016 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1433–1440, IEEE, 2016.

[14] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1714–1721, IEEE, 2017.

[15] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Information-theoretic model predictive control: Theory and applica-
tions to autonomous driving,” IEEE Transactions on Robotics, vol. 34,
no. 6, pp. 1603–1622, 2018.

[16] M. Otte and E. Frazzoli, “Rrtx: Asymptotically optimal single-query
sampling-based motion planning with quick replanning,” The Inter-
national Journal of Robotics Research, vol. 35, no. 7, pp. 797–822,
2016.

[17] N. Hatch and B. Boots, “The value of planning for infinite-horizon
model predictive control,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA), pp. 7372–7378, IEEE, 2021.

[18] J. Yin, Z. Zhang, E. Theodorou, and P. Tsiotras, “Trajectory dis-
tribution control for model predictive path integral control using
covariance steering,” in 2022 International Conference on Robotics
and Automation (ICRA), pp. 1478–1484, IEEE, 2022.

781

Authorized licensed use limited to: University of Illinois. Downloaded on December 29,2023 at 04:29:02 UTC from IEEE Xplore. Restrictions apply.

