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Abstract—The emergence of edge stream processing has cre-
ated a new way of processing real-time data from the Internet
of Things (IoT), which comprises a plethora of geographically
dispersed physical devices equipped with sensors and actuators
that exchange data with the Cloud. Nevertheless, edge stream
processing systems face new challenges, including dynamic work-
loads, resource limitations, and multi-tenant application hosting.
Adaptive resource management has been proposed to address
these issues. However, this technique may lead to Service Level
Objective (SLO) violations when the system encounters resource
constraints. To mitigate this problem, we investigate the benefits
of using priority-based stream data to reduce the SLO violations
associated with adaptive resource management. Our findings
demonstrate that segregating data according to their priority
levels and processing them accordingly can significantly enhance
the efficiency and stability of the system. We implemented this
technique on the Storm Streaming system and used RIOT as
a benchmark, employing VRebalance and other approaches to
adjust system resources dynamically.

Index Terms—Internet of Things, Stream Processing, Priority-
based Scheduler.

I. INTRODUCTION & MOTIVATION

The advent of the Internet of Things (IoT) has brought
about a pressing need for processing continuous data streams
generated by devices, enabling integration and control op-
erations within intelligent systems [1]–[3]. This data must
often be processed under strict time constraints to extract
meaningful insights for future actions, and in some cases,
it must be processed in near real-time to identify patterns
of interest. To address this need, stream processing has
emerged as a leading paradigm for processing high-volume
and continuous data streams in real-time as shown in Fig. 1.
Unfortunately, popular stream processing engines such as
Apache Storm 1 and Apache Spark 2 are primarily designed
for resource-rich cloud environments and may not perform
optimally at the edge. A recent study [4] showed that Storm’s
default resource scaling mechanism is slow and can lead to
inefficient usage in resource-constrained environments.

As edge computing becomes more prevalent, it is crucial
to develop stream processing solutions that can effectively
operate in such environments while minimizing data transfer

1http://storm.apache.org/
2https://spark.apache.org/
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Fig. 1: IoT: Device to Cloud.

costs over the wide area network (WAN). However, edge
stream processing poses a significant challenge in promptly
responding to dynamically changing input loads, as any delay
could result in catastrophic outcomes. For instance, IoT-based
traffic control systems in smart cities require real-time anal-
ysis of live video streams captured from cameras deployed
at various intersections [5]. Unfortunately, scenarios like a
sudden surge in user traffic resulting from a natural disaster
or the death of a prominent individual cannot be predicted.
One potential solution is to apply a priority-based resource
scheduling technique [6], [7] to a traditional stream processing
system, allowing users to prioritize certain input data items
or nodes in the processing graph. However, these techniques
have some limitations when used in edge environments, as
they do not adequately address dynamic resource allocation
or competition between multiple applications.

In our previous study [4], we presented VRebalance, a vir-
tual resource orchestrator that ensures end-to-end performance
for concurrent stream processing workloads at the edge.
VRebalance employs Bayesian Optimization (BO) to identify
near-optimal resource configurations rapidly. However, this
approach did not account for data priority and resulted in SLO
violations when resource constraints were reached. To address
this limitation, we explored using a data priority scheduler
to sort input data with different priorities, ensuring strict
latency for high-priority data while sacrificing low-priority
data. We conducted experiments using the open-source IoT

http://storm.apache.org/
https://spark.apache.org/


benchmark RIoTBench [8] and the Apache Storm stream
processing engine to implement our priority scheduler. Our
study suggests that stream processing systems based on data-
priority provide superior SLO guarantees for high-priority
data compared to traditional stream processing systems.

In conjunction with existing resource allocation techniques,
our priority scheduler consistently achieves 0% SLO violation
rate for high-priority data in concurrently running applications
even for highly dynamic workloads. In particular, priority
scheduling with BO-based resource allocation achieves the
best overall performance with only up to 8.5% SLO violations
even for low-priority data and up to 3% SLO violations for
medium-priority data. Furthermore, we analyzed the impact of
micro-batching with different batch sizes on the performance
of priority-based stream processing.

The paper is structured as follows. Section II-A provides
an overview of the stream processing model. In Section
II-B, we present the design and implementation details of
our proposed technique. Section III describes the testbed
setup and presents the results of our experimental evaluation.
We review related work in Section IV. Lastly, Section V
summarizes the findings, concludes our work, and introduces
future work.

II. STREAM PROCESSING SYSTEM AT THE EDGE

A. Stream Processing Engine

Edge Stream Processing Engines (ESPEs) are increasingly
being deployed on IoT Gateways, which have more com-
puting resources than wireless sensor networks but are still
limited compared to the Cloud [9]. On these IoT Gateways,
data streams produced by IoT devices are processed using
data flow programming model, where each application is
packaged as a directed acyclic graph (DAG) data structure,
called a topology. Individual data points (tuples) flow through
a topology from sources to sinks. Each inner node is an
operation that performs arbitrary computation on the data,
ranging from simple filtering to complex operations like
Machine Learning (ML)-based classification algorithms. We
assume that each application has an SLO target in terms of
the 95th-percentile end-to-end latency of data tuples flowing
through the topology.

Data stream processing systems can be broadly categorized
into record-based (or continuous operator) streaming and
micro-batching (or batched) streaming [10]. Record-based
processing involves handling each record individually as soon
as it arrives, allowing for real-time processing and lower la-
tencies but sacrificing throughput. In contrast, micro-batching
involves dividing the input stream into mini-batches and
processing each batch one at a time. While this model results
in higher throughput due to processing multiple records to-
gether, it typically has higher average latency. Apache Storm,
Heron, and Flink support record-based streaming, while Spark
Streaming and Storm Trident support micro-batching [11].
Combining these two methods may be a viable approach to
optimize processing in an edge environment.

(a) Data stream processing.

(b) Data stream processing with data-priority model. Priority
number 1, 2, and 3 represent low, medium and high priorities
respectively.

Fig. 2: Data stream processing model.

B. Priority-based Stream Processing

In this section, we describe our methodology to enable
priority-based stream processing. Fig. 2a shows a traditional
stream processing topology using Apache Storm, which con-
sists of a DAG of spouts and bolts. A spout is a user-
defined component that serves as data stream source. It is
responsible to read data from an external source and emitting
tuples (a basic unit of data) into the topology for processing.
Whereas a bolt is a data processing unit. The system handles
each record individually as soon as it arrives. However, this
method does not take into account the varying degrees of
urgency of different data items. In contrast, our priority-
based stream processing system, as illustrated in Fig. 2b, is
particularly useful in situations where some data items are
more time-sensitive or critical than others, and require prompt
processing, while others can tolerate longer processing times.
Our priority scheduler is designed to support three priority
levels 1, 2, and 3 which are referred to as low, medium, and
high priority levels throughout the paper.

Our priority scheduler is implemented within the spout. It
scans the input stream for priority levels as soon as the data
items enter the system. For each micro-batch of data tuples
collected, it sorts them based on priority levels and streams the
data to the rest of the topology. High-priority data items are
processed first and given precedence for computing resources,
while normal and then low-priority items are processed later.
This ensures that high-priority items are given priority and
their latency remains relatively stable even in cases where
the input load suddenly increases. In this paper, we use a
batch size of 10 and 100. A sensitivity analysis of batch
size is presented in Section III-D. Currently, the algorithm
supports three priority levels: low, medium, and high. High-
priority data items are processed first and given priority for
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(a) Without priority scheduler.

0

100

200

300

400

500

1 21 41 61 81 101 121

95
th

 T
ai

l L
at

en
cy

 (%
)

Minutes

high medium low

200 ms

(b) With priority scheduler.

Fig. 3: 95th percentile latency for ETL topology with TAXI dataset under static workload. SLO target is 200 ms.
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Fig. 4: Static workload. Workload is measured in tuples per
minute.

computing resources, while medium and low-priority items
are processed later. This ensures that high-priority items are
prioritized and their latency remains relatively stable even
when the input load suddenly increases. This process opti-
mizes system performance and ensures that data from critical
tasks are completed promptly. Furthermore, the algorithm can
be extended to support a greater number of priority levels,
resulting in more precise control over data item processing
and resource allocation.

III. EVALUATION

A. Experimental Testbed

1) Edge node configuration.: We setup a prototype testbed
to represent an IoT Gateway by using a Ubuntu 16.04 machine
equipped with 4 CPU cores and 8 GB RAM. We used
Docker container engine (Version 18.06.2-ce) and Kubernetes
(Version 1.18.2) container orchestration system to deploy an
Apache Storm cluster composed of 12 containers. Two of the
containers were used for Nimbus and Zookeeper, while the
remaining containers were running as worker nodes. In our
experiments, the default CPU limit of each container was set

to 400 millicore (equal to 0.4 CPU core) and the requested
CPU was 200 millicore.

2) Datasets.: We used two IoT datasets including Sense
your City (CITY) [12] and New York city taxi trips
(TAXI) [13]. The CITY dataset consists of real-time en-
vironmental data from crowd-sourced sensors deployed in
seven cities across three continents, with approximately 12
sensors per city. The dataset reports six timestamped observa-
tions every minute, including temperature, humidity, ambient
light, sound, dust, and air quality, along with sensor ID and
geolocation metadata. The TAXI dataset comprises smart
transportation data from 2 million taxi trips taken in 2013
in New York City, including pickup and drop-off dates, taxi
and license details, start and end coordinates and timestamp,
metered distance, taxes, and tolls paid.

3) Benchmarks.: We utilized the RIoTBench bench-
mark [8] suite to analyze our datasets, focusing on the ETL
and PRED IoT applications. The suite includes four applica-
tions based on common IoT patterns for data pre-processing,
statistical summarization, and predictive analytics. We did not
use the STATS and TRAIN applications, which are integrated
with public cloud services and unsuitable for low-latency
Edge stream processing. To create a dynamic workload, we
modified RIoTBench’s input generator. It feeds multiple fixed-
sized data batches (e.g., 10 tuples) into Storm’s source task
(Spout) every minute, with random delays following a Poisson
distribution [14]. The workload intensity was adjusted by
varying the total number of data batches per interval.

4) Evaluation method.: In this work, we use Apache Storm
as a representative SPE, which is a distributed real-time
computation system for processing unbounded streams of
data. Storm topologies consist of spouts and bolts, where
spouts serve as sources of data streams, and bolts are the
data processing units. We evaluate four applications (ETL-
TAXI, ETL-CITY, PRED-CITY, PRED-TAXI) from the RI-
oTBench benchmark suite. Each application uses a different
combination of topology and dataset. The input data is
allocated randomly to one of three different priority levels:
low, medium, and high. This ensures an equal distribution of



Fig. 5: Mix of static and dynamic workloads. Workload is
measured in tuples per minute and shown in log scale.

input data across all priority levels. For each application, we
set the SLO target of 200 ms for the 95th percentile end-to-
end latency of data tuples flowing through the topology.

B. 95th Percentile Latency of an Application Running Alone
Under Static Workload

First, we evaluate the impact of priority scheduling on
the 95th percentile end-to-end latency of a single application
facing a static workload of 90K tuples per minute as shown in
Fig. 4. For CPU resource allocation, we use the BO technique,
presented in VRebalance [4], with the aim to meet the SLO
target of 200 ms. The effectiveness of the priority scheduler
in preventing SLO violations for high-priority data collected
at two-hour intervals is demonstrated in Fig.3. Fig.3a reveals
that without the priority scheduler, high-priority data suffered
from SLO violations due to fluctuation in the 95th percentile
latency. In contrast, Fig. 3b shows that the priority scheduler
maintained the 95th percentile latency around 100 ms, which
is well within the SLO threshold. These findings suggest
that a priority-based data scheduler can effectively ensure
stable performance for higher-priority data and prevent SLO
violations.

C. Performance Comparison with Multiple Applications Run-
ning Concurrently under Dynamic Workload

We evaluate the impact of priority scheduling on SLO
violations of multiple applications running concurrently under
dynamic workload conditions. As shown in Fig. 5, ETL-CITY
and PRED-TAXI face dynamic workloads, while ETL-TAXI
and PRED-CITY operate under static workloads. The entire
workload lasts for 24 hours and includes repeating patterns.
We conduct a comparative analysis with existing dynamic
resource allocation techniques, including VRebalance [4] BO,
and Hill Climbing with two different step sizes (50 millicore
and 200 millicore), and a static resource allocation method
with two different resource allocation levels (400 millicore
and 4000 millicore, representing partial and full resource
utilization, respectively).

In Fig. 6 and Fig. 7, we compare the SLO violation
rates of different resource allocation methods without and
with priority scheduling respectively. Fig. 6 illustrates that,
in the absence of priority scheduling, all resource allocation
methods lead to SLO violations across all categories of data

and applications. In particular, ETL-CITY suffers up to 30%
SLO violations even for high-priority data. In contrast, Fig. 7
shows that our priority scheduler is able to reduce the SLO
violation rate of high-priority data to 0% for all applications
and resource allocation methods. BO with priority scheduling
achieves the best overall performance with only up to 8.5%
SLO violations for low-priority data and up to 3% SLO
violations for medium-priority data.

D. Analysis of batch size sensitivity

The choice of batch size is a critical factor that can sig-
nificantly impact the performance and efficiency of a stream
processing system. Fig. 8 compares the SLO violation rates
for BO with priority scheduling using different batch sizes.
We observe that a batch size of 10 achieves lower SLO
violation rates than a batch size of 100, for all applications. A
batch size of 10 reduces the SLO violation rate by up to 55%
and 30% in the case of low-priority and medium-priority data
respectively. For high-priority data, the SLO violation rate is
0% for both batch sizes.

In general, smaller batch sizes allow for more frequent
updates to the system, resulting in faster processing times
for individual data items. This can be particularly important
for real-time processing, where timely updates are crucial.
However, if the batch size is too small, priority scheduling
may not be very effective. In the extreme case, a batch size
of one will be equivalent to disabling priority scheduling. On
the other hand, larger batch sizes can introduce more latency
into the system as data items must wait to be processed until
the entire batch is complete. In this paper, we use a batch
size of 10 since it achieves a good balance between real-time
responsiveness and service differentiation between data items
based on their priority.

IV. RELATED WORK

Resource management is a critical aspect of Edge comput-
ing. Xu et al. [15] proposed an auction-based mechanism for
resource contract establishment and a latency-aware schedul-
ing technique to optimize the utility for Edge computing
infrastructures and service providers. Araldo et al. [16] im-
plemented a polynomial-time resource allocation algorithm
that enables Edge network operators to maximize their utility,
which can improve inter-domain traffic savings, QoE for
users, or other metrics of interest. Wang et al. [17] investi-
gated workload reduction and resource allocation for cloudlet
applications to manage application quality of service in the
presence of contention for cloudlet resources. In the context
of stream processing, several works have focused on auto-
scaling distributed systems by monitoring the performance
model of streaming dataflows [18], [19]. Kalavri et al. [20]
proposed an automatic scaling controller based on a general
performance model of streaming dataflows and lightweight
instrumentation to estimate the processing and output rates
of individual dataflow operators. These approaches differ
from our work, which focuses on the study of priority-
based stream processing in conjunction with various resource
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(c) PRED-CITY.
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Fig. 6: SLO violation without priority scheduler.
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Fig. 7: SLO violation with priority scheduler. SLO violation rate for high-priority data is 0%.
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Fig. 8: Comparison of SLO violations with different batch
sizes. For high-priority data, SLO violation rate is 0% for
both batch sizes 10 and 100.

allocation techniques in a resource-constrained Edge node.
In particular, we highlight how data prioritization along with
BO-based resource allocation technique can achieve superior
SLO guarantees in terms of the 95th percentile latency.

Load shedding is an important technique used in edge

computing to prevent system overload and ensure timely
processing of high-priority tasks while maintaining a given
latency bound. Some recent works [21], [22], have proposed
load-shedding frameworks that utilize a probabilistic model
to learn the significance of events in a window based on their
position and type. They provide algorithms for determining
when and how many events to drop and predicting a utility
threshold to maintain the latency bound. While input-based
load shedding is a common technique for CEP queries, the
utility of individual events can vary significantly depending
on the presence of partial matches, leading to potential quality
issues. To address this, state-based techniques have been
developed to selectively discard partial matches and maintain
high result quality under limited resources [23]. Load shed-
ding is complementary to our work. We plan to investigate
the integration of load shedding and priority scheduling in
our future work.

Approximation techniques have been used in hybrid edge-
cloud streaming systems to minimize traffic over the WAN
while achieving acceptable downstream query accuracy. One
such technique involves sampling at the network edge, which
has proven effective in reducing transmissions without intro-
ducing significant errors in downstream queries. Additionally,
this approach enables error bounds to be set for different
types of queries, which is essential in ensuring optimal per-
formance in production deployments. Recently, Wolfrath [24]
discovered that data streams across devices located in the
same geographical area often exhibit correlations. This insight
led to the development of a hybrid edge-cloud system that
balances the tradeoff between sampling at the edge and
estimation of missing values in the cloud, ultimately reducing
WAN traffic. In contrast, our approach is focused on real-
time stream processing at the Edge, with the primary goal of



meeting strict SLO guarantees. We prioritize processing data
at the Edge as it is generated, rather than waiting for it to be
transmitted to the cloud for processing.

V. CONCLUSIONS & FUTURE WORK

In this paper, we investigate how data prioritization im-
pacts the performance and stability of critical applications
in resource-constrained stream processing at the Edge. Our
findings reveal that organizing data based on priority levels
and processing it accordingly can significantly improve the
system’s efficiency and stability. In particular, our priority
scheduler achieved 0% SLO violation rate for high-priority
data in concurrently running RIoTBench applications in terms
of their 95th percentile latency.

In the future, we will explore the integration of priority
scheduling and load shedding to address congestion and
tackle more complex scenarios. Load shedding can be used
to selectively drop incoming data during periods of high con-
gestion, thus reducing the load on the system and preventing
it from becoming overwhelmed. However, it is important to
carefully evaluate the trade-offs between processing efficiency
and data loss when implementing load shedding, as dropping
important data can have significant consequences in certain
applications. Overall, the integration of priority scheduling
and load shedding could offer valuable insights into how to
better manage congestion and optimize the performance of
stream processing systems. As such, we plan to explore these
methods in future work, with a focus on evaluating their
effectiveness, identifying potential trade-offs, and identifying
optimal configurations for specific use cases. We also intend
to assess how storage and processing power affect SLO
performance.
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