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ABSTRACT: Manganese (Mn) oxides are abundant in aquatic and terrestrial environments,
where they play significant roles in redox cycling and biological metabolisms. We recently
observed that Mn oxides were homogenously formed during the abiotic oxidation of Mn?*(aq) to
Mn(IV) by O2" via nitrate photolysis, at a rate comparable to that of biotic Mn oxides formation.
On the other hand, for the heterogeneous formation of Mn oxides, the presence of a substrate can
alter the required thermodynamic driving force, which may affect their crystalline phases and
further influence the oxidative capability of redox cycling in environmental systems. However,
little is known about the photochemically-induced heterogeneous formation of Mn oxides on
substrates. In this study, we investigated the heterogeneous formation of Mn oxides on a quartz
substrate in the presence of two environmentally abundant cations, Na* and Mg?*. In contrast to
homogeneously generated Mn oxides, the heterogeneously formed Mn oxides displayed earlier
crystalline phase evolutions and morphological changes over time. Additionally, the coexistence
of Na* and Mg?" ions greatly affected the initial crystalline phase and the phase evolution, as well
as the surface morphologies of the Mn oxides. These discoveries contribute to our understanding
of how various Mn oxides form in nature and provide insight into the processes involved in

manufacturing specific Mn oxide crystalline structures for engineering applications.
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= INTRODUCTION

Manganese (Mn) oxides are one of the most reactive naturally occurring minerals, with more than
30 species in various geological settings.! As electron donors and acceptors, they are important in
redox cycling in environmental systems.?* Owing to the various oxidation states of Mn, its redox
chemistry is significant in plant and human life, where it transfers electrons during metabolism.>
® Most natural Mn(III/IV) oxide solids are formed from the oxidation of Mn**. However, Mn
oxidation by Oz is very slow and kinetically controlled.” ® Bacteria and fungi accelerate the
oxidation of Mn?*(aq) to Mn(IV),”!! and bacteria-mediated Mn oxidation is believed to be the
dominant oxidative pathway from Mn?"(aq) to Mn(IV) in natural systems. Abiotic, inorganic
oxidation of Mn is considered less important than microbially-promoted processes because abiotic
Mn?*(aq) oxidation has been thought to be very slow.”® Previous studies reported the effects of

1213 which promoted Mn oxidation by

mineral substrates on Mn oxidation as auto-catalysis,
enhanced electron transfer. Surface-catalyzed abiotic oxidation resulted in Mn*" half-lives ranging
from 5 to 2800 days, depending on the presence and the type of mineral surfaces and the pH
conditions.'* However, this Mn oxidation proceeded mostly from Mn?" to Mn(III).

In surface water environments, photochemical processes trigger redox reactions in the cycling
among aqueous Mn>" and the solid phases of Mn(III) and Mn(IV)." In particular, we recently
observed fast photochemically-assisted abiotic oxidation of Mn?"(aq) to Mn(IV) by reactive
oxygen species (ROS) at rates comparable to those of biotic Mn oxidation.'®!” ROS formed during
the photolysis of nitrate (i.e., completely inorganic systems) or the photolysis of dissolved natural
organic matter (DOM) induced Mn oxidation.!'®!® In addition, in the presence of halide ions, such

as Br~ and CI, reactive halogen species were formed, further promoting Mn oxidation.'® !* These

results provide critical evidence for the fast abiotic formation of homogeneous Mn oxide in nature.
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Heterogenous nucleation and growth occur in the presence of a substrate. Compared with
homogeneous nucleation, heterogeneous nucleation can greatly influence the fate and transport of
aqueous ions and mineral nucleation.?2> The growth of the formed minerals is impacted by the
electrostatic forces between the substrate and aqueous ions,?* and the newly formed minerals on
the surface can affect the electrical properties of the surface.”* On the other hand, interfacial
energies control the heterogeneous nucleation and growth, because the energy barrier to
heterogeneous nucleation is affected by the substrate—water and precipitate—substrate interfacial
energies.”” In addition, the hydrophilicity of the substrate can also change the energy barrier,

affecting the nucleation and growth of the minerals.?

The presence of the substrate and co-existing ions can also affect the crystalline structures of
the formed minerals.?” ?® For example, quartz substrates behaved as an epitaxial host for the

nucleation and growth of witherite (BaCO3).%

Photolysis of polystyrene nanoplastics produced
ROS, resulting in the heterogeneous formation of Mn oxides on the nanoplastics, with different
crystalline structures than those of homogeneously formed Mn oxides.’® Regarding co-existing
ions, the presence of sulfate promoted CaCOs heterogenous growth with less calcite formation
than that without sulfate.>! Moreover, previous studies have shown that intercalated cations, such
as Na*, K', Ca**, and Mg**, affect homogeneously formed Mn oxide structures. In particular,
compared with Na*, Ca*" facilitated the formation of birnessite with a long-range order during the
oxidation of Mn?*(aq) by Bacillus sp. Strain SG-1.>> Wang et al. (2015) reported that K* was found
in the middle of the interlayer of birnessite, while Mg** was located above Mn vacancies in the
layers, resulting in different micromorphologies.*® Furthermore, Mg** was important in forming

stable 10-A phyllomanganate in the phase transformation from birnessite to todorokite under high

temperature and pressure.’* Thus, it is important to comprehend how coexisting cations affect the
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heterogeneous formation of photochemically-induced Mn oxides. All these previous findings
emphasize the need to systematically investigate the crystalline structures and structural evolution

of the heterogeneous nucleation of Mn oxides in the presence of environmentally abundant cations,

35,36 37,38 5

which can affect their roles as water-oxidizing catalysts and their oxidation capabilities in

both engineered and environmental processes.

To address this knowledge gap, here we examined the heterogeneous formation of Mn oxides
on quartz in the presence of Na' and Mg?*. Quartz is the most abundant substrate in the
environment,*® and Na" and Mg?* are abundant cations in aqueous environments.** By using
grazing incidence wide-angle X-ray scattering (GIWAXS), we identified the phase evolution of
newly formed Mn oxides in a nitrate solution exposed to simulated sunlight. Using atomic force
microscopy (AFM) measurements, this work provided information on the evolution and
morphology of nanoscale heterogeneously formed Mn oxides. To elucidate the roles of Na* and
Mg?*, we examined the initial crystalline phase, phase evolution, and surface morphology of the
heterogeneously formed Mn oxides in the presence of these cations. Different crystalline structures
of Mn oxide, such as romanechite, cryptomelane, groutellite, and groutite were formed over the
phase evolutions under these above conditions. The findings provide a better understanding of the
mechanism and phase evolution of Mn oxides in the environmental cycle of Mn and the abundance
of Mn oxides in terrestrial and aquatic systems. Furthermore, cryptomelane and romanechite were

41.42 and battery electrode materials.* ** Cryptomelane and groutellite

used as molecular sieves,
were also employed as catalyst materials.* *® Hence, this work also suggests a new, simple, and

environmentally friendly method for synthesizing targeted Mn oxide crystalline structures such as

cryptomelane, groutellite, and groutite.

= EXPERIMENTAL SECTION
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Chemicals. All chemicals used in this study were at least American Chemical Society grade.
Manganese chloride (MnClz2, 97%, anhydrous) was purchased from Beantown Chemical Co. (NH,
USA). Sodium nitrate (NaNO3, = 99.0%) was obtained from Avantor Performance Materials, Inc.
(PA, USA). Magnesium chloride hexahydrate (MgCl2:6H20, 99%-102%), sodium chloride
(NaCl, > 99%), sodium hydroxide (NaOH, > 97%), acetone (= 99.5%), denatured absolute ethanol
(200 proof), and isopropyl alcohol (>99%) were purchased from VWR International LLC (PA,
USA). Deionized (DI) water (resistivity >18.2 MQ-cm, Barnstead Ultrapure water systems) was
used to prepare the solutions for all experiments.

Substrate Preparation. Quartz (SiO2) was selected as the model substrate for heterogeneous
MnO: nucleation because it is one of the most abundant minerals in the earth’s crust.** A large
single crystal quartz wafer was bought from MTI Corporation (CA, USA). The crystal had an
atomically flat polished (100) surface (roughness < 5 A). The (100) surface of quartz is as common
in the natural environment as other quartz surfaces with similar surface energies.*’ The quartz
wafer was cut into 0.5 cm X 0.5 cm squares using a slow diamond saw (MTI Corp., CA). To
remove organic matter, the cut quartz substrates were cleaned overnight in a mixed solution of
concentrated sulfuric acid and Nochromix®.?? The quartz substrates were then sonicated
successively in acetone, ethanol, and isopropyl alcohol for 30 min each, rinsed three times with DI
water, and stored in DI water. To ensure that the quartz substrates were clean, they were imaged
using AFM, as shown in the Supporting Information, Figure S1. The quartz substrates were dried
with high-purity nitrogen gas before use.

Photo-oxidation Experiments. To photochemically induce the heterogeneous nucleation of
Mn oxides on a quartz substrate, a stock solution containing 0.1 mM MnClz and 1 mM NaNO3

was prepared. The solution pH was adjusted to 9.0 + 0.1 by adding NaOH solution. During the
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experiments, which were conducted in triplicate, the stock solution was refreshed about every hour
to make sure the pH was above 8.5. Considering that the U.S. Environmental Protection Agency
(EPA) water quality criterion for pH in freshwater ranges from pH 6.5 to 9,*® our experimental pH
is relevant to environmental systems. Solid Mn(OH)2 does not form under these conditions,
because it has a low saturation index (SI) of —1.20 and a solubility product constant (Ksp) of
1.6x10713.% No pH buffer was utilized in these experiments because aqueous Mn** can be formed
as an intermediate product during the photo-oxidation reaction of Mn?*, and the buffer could

complex with aqueous Mn**, affecting Mn oxidation.>

As shown in Figure 1a, the cleaned quartz substrates were pasted on a Kapton film and placed
inside a custom-made quartz cuvette (external dimensions of 45 mm x 12.5 mm x 12.5 mm). The
substrates were placed in the cuvette vertically to minimize the chance of attachment of
homogeneously nucleated Mn oxides falling under gravity. The prepared solution was
continuously pumped into the cuvette (~2 mL/min), and the photochemical reaction was initiated
in the quartz reactor by simulated solar light from a 450 W Xenon arc lamp (Newport 6279NS).
The light was passed through flowing tap water, which both filtered out near-infrared light and
cooled the reactor. The lamp spectrum is shown in Figure S2. The cuvette was held under
irradiation for 20 hours, during which time individual quartz substrates were removed at 6, 12, and
20 hr. The pH change between the inlet and outlet was less than 0.1, so our experiment ran in a
constant pH environment. Further, to investigate the effects of different cations (Na* or Mg?") on
the nucleation and crystalline structure evolution of heterogeneously nucleated Mn oxides, NaCl
or MgCl2 was added to the solution, as shown in Table 1. The concentrations of Mg?* and Na* can
vary across different water bodies. For example, seawater typically contains around 50 mM Mg**,

while river water contains less than 0.5 mM Mg?*.>! Similarly, Na* concentrations can range from
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above 400 mM in seawater to less than 0.5 mM in river water.’! In this study, we focused on the
effect of 10 mM Mg?* on the heterogeneous formation of Mn oxides. Our previous study showed
that the kinetics and crystallinity of formed Mn oxides were significantly affected by the ionic
strength.' Thus, the solutions containing NaCl or MgClz had the same ionic strength (IS) for

comparison, and the experimental procedures remained the same as above.

Mn Oxides Solid Phase Characterization. The reacted quartz wafers were washed with DI
water and dried with high-purity nitrogen gas. The formation of heterogeneous Mn oxides and
their phase evolutions on quartz were observed with GIWAXS at Beamline 12-ID-B of the
Advanced Photon Source (APS) in Argonne National Laboratory (IL, USA). As shown in Figure
1b, the quartz substrate was first aligned with the middle of the 13.3 keV X-ray beam (200 pm in
width and 20 pm in height). Then the incident beam illuminated the quartz substrate for 1 second
at an angle of 0.11°, which is slightly lower than the critical angle of the quartz substrate for total
reflection. The beam, scattered by newly formed Mn oxides on the quartz substrate, was collected
by a PerkinElmer 4k x 4k detector 200 mm away from the sample to determine the crystalline
phases of the Mn oxides. The measured 2D scattering images were averaged radially to plot the
intensity versus the scattering vector (¢). The peak locations in the plot were compared with

reference minerals to identify the mineral phases.

To visualize the Mn oxides nuclei on quartz, measure their heights, and determine their
morphologies, we used AFM tapping mode in the air (Nanoscope V multimode SPM, Veeco Inc.,
NY). The AFM probe tips were made of 0.01—0.025 Q-cm antimony (n)-doped Si (Model: RTESP,
MPP-11100-10, Bruker Corp., MA). The cantilevers were 125 um long and 35 um wide, and the
nominal tip radius was 8 nm. AFM images of an average of 20 different locations on each sample

were analyzed using Nanoscope 7.20 software, provided by Veeco. The Mn oxidation states in the
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Mn oxides (s) samples were identified by X-ray photoelectron spectroscopy (XPS, PHI 5000
VersaProbe II, UlvacPHI with monochromatic Al Ka radiation (1486.6 €V)). The C 1s peak (284.8
eV) was used as the reference peak. To determine the ratio of Mn(II), Mn(III), and Mn(IV), the
Mn 3p spin orbit was fitted with Mn(II) (47.8 eV), Mn(Ill) (48.5 eV), and Mn(IV) (49.8 ¢V) by
Gauss-Lorentz fitting methods. As shown in Figure S3, the above reference peak values were
measured from reference samples of Mn(II) (MnO, Sigma Aldrich), Mn(III) (y-MnOOH, from the
Atikokan area of Ontario, Canada (Mineralogical Research Co.)), and Mn(IV) (B-MnO2, Sigma
Aldrich). The percentages of the Mn(II), (III), and (IV) in the total Mn were determined from the
ratio of each specific Mn peak area to the total Mn peak area. The Mn average oxidation state of
each sample was calculated by summing the products of the percentages for each oxidation state
multiplied by the number of the oxidation state. The error range of these values was calculated
based on the standard deviation of duplicate tests. High-resolution transmission electron
microscopy (HR-TEM, JEOL-2100F field emission) was utilized to image the morphologies of
formed Mn oxides on quartz. After the photochemical reaction, a small steel blade was used to
gently scrape the Mn oxides from the quartz surface into DI water. A droplet of the solution was
placed on an ultrathin lacey carbon film coated-Cu grid (LC400-Cu-UL, Electron Microscopy

Science, PA) for imaging.

= RESULTS AND DISCUSSION

Photochemically-induced Abiotic Heterogeneous Formation of Mn Oxides on Quartz. During
nitrate photolysis, reactive oxygen species can form, including O2" and ‘OH. In our previous

studies!”- 1°

of the photolysis of a solution containing 0.1 mM MnCl; and 1 mM NaNOj3 at initial
pH 9, we showed that O2" is responsible for the homogeneous formation of birnessite (6-MnO3)

with a layer structure.
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In the current work, using quartz as a substrate to study the heterogeneous formation, we show
that the crystalline structure of Mn oxides can also be affected by altering the required
thermodynamic driving force, which can be different from the structures of homogeneously
formed Mn oxides. As shown in Figure 2 and S4, Mn oxide was heterogeneously nucleated on the
quartz substrate, driven by the photolysis of solutions containing I mM NaNOs3 and 0.1 mM MnClz
at pH 9. The XPS and AFM results in Figure S4 indicated the formation of Mn oxide solids at 3
hr of reaction. However, the GIWAXS pattern of Mn oxides without any sharp peaks was observed.
Thus, amorphous Mn oxides may form in the initial stages of the reaction. To investigate the phase
evolution of the formed Mn oxides, we analyzed the crystalline phases of Mn oxides via GIWAXS
at 6, 12, and 20 hr. Samples were measured from two orientations by 90 degrees (e.g., 6 hr and 6
hr R90) to get more scattering information. As shown in Figure S5, GIWAXS patterns with
diffraction peaks of the clean quartz substrate are observed at ¢ values of 1.50 and 1.88 A™!. As
shown in Figure 2, at 6 hr, GIWAXS patterns show diffraction peaks at ¢ values of 1.88~1.90 and
2.79 A7) indicating that romanechite (American Mineralogist Crystal Structure Database
(AMCSD) #0001198),%? with a 3x2 tunnel structure, was formed. The diffraction peaks for
romanechite at ¢ of 1.89 A™! are stronger at 12 and 20 hr, suggesting the further formation and
growth of romanechite. At 12 and 20 hr, new diffraction peaks are observed. The peak at a ¢ value
of 2.01~2.03 A™! indicates the formation of cryptomelane (0-MnO2, AMCSD #0009758),3 with a
2x2 tunnel structure. In addition, the peak at a ¢ of 2.24 A™! suggests the formation of groutite (o-
MOOH, AMCSD #0013941),>* with a 2x1 tunnel structure. These results demonstrate the
structural evolution of abiotically-formed Mn oxides on quartz during photolysis within a short
period. In this study, the GIWAXS results were compared with the diffraction patterns of all Mn

(hydr)oxides in the ICDD PDF-4 database, leading to the determination that romanechite,



201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

cryptomelane, and groutite were the potential phases. However, it should be noted that not all of
the characteristic peaks of cryptomelane and romanechite were observed in the GIWAXS patterns.
Possibly, the Mn oxide particles preferentially grew in a few oriented directions on the quartz
substrate, which would obscure some characteristic peaks. For nanoparticles, it is common for not
all characteristic diffraction peaks to be observed.>> Also, the samples were measured using
GIWAXS from only two orientations with respect to X-ray direction, which may have missed
some of the characteristic peaks. In addition, the formation of Mn oxides was influenced by the
presence of the quartz substrate, resulting in altered crystalline structures. Note that in the absence
of the quartz substrate, homogeneous formation of birnessite (6-MnO2) occurred during the
photolysis of a solution containing 1 mM NaNOs3 and 0.1 mM MnCl: at the initial pH 9,'% 7 which

contrasts with our observations of heterogeneous Mn oxides formation.

On the other hand, the XPS spectra in Figure 3 show that the Mn oxides in all the samples
contained mostly Mn(IV) and Mn(III). From 6 to 20 hr, the Mn(IV) percentage decreases from
67.1 = 1.1% to 56.5 = 2.1%, and Mn(III) percentage increases from 25.9 + 2.4% to 41.7 + 1.8%,
indicating that the crystalline structure evolution is accompanied by Mn oxidation state changes.
The increase of Mn(III) in samples at 12 and 20 hr resulted from the formation of groutite (a-
MOOH), which contains mostly Mn(IIl). The variations in the crystalline phases and oxidation
states for Mn oxides can influence their oxidation capability,’” and may further affect their

oxidative activities in the environment.

Effects of Na* and Mg?* on the Crystalline Structures of Heterogeneously Formed Mn
Oxides. Our study further investigated the effects of Na* and Mg*" on the crystalline structures of
heterogeneously nucleated Mn oxides. As shown in Figure 4a, in the presence of Na", GIWAXS

patterns with diffraction peaks at g of 1.99~2.00 A™! are observed at 6 hr, indicating that

10
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cryptomelane was initially formed, which is different from the diffraction patterns without Na* in
Figure 2. From 6 to 12 hr, the formed cryptomelane (2x2 tunnel structure) evolved to romanechite
(3x2 tunnel structure) and groutellite (AMCSD #0003566,°® with a 2x1 tunnel structure). At 20 hr,
a very high intensity diffraction peak of romanechite at ¢ of 1.90 A™!is observed, suggesting its
fast growth and increased crystallinity. On the other hand, as shown in Figure 4b, in the presence
of 10 mM Mg?", a tiny romanechite diffraction peak at 1.90 A™!is observed at 6 hr. At 12 hr, the
intensity of this diffraction peak is stronger, suggesting the formation and growth of romanechite.
Additional peaks at ¢ of 1.50 A" at 12 and 20 hr, and 2.23 A ! at 20 hr are observed, indicating
the formation of groutite. Moreover, at 20 hr, a peak at q of 2.00~2.01 A™! suggests the formation
of cryptomelane. The XPS spectra in Figure S6 provide evidence that Mg?" is incorporated into
Mn oxides at 20 hr. The above results clearly show that the presence of Na* or Mg?" affected both
the initial crystalline phase and the phase evolution during the photochemically-induced
heterogeneous nucleation and growth of Mn oxides on the quartz substrate. The crystalline
structure evolution may result from the migration of Mn. A more detailed discussion about the

tunnel structure evolution of Mn oxides is made in a later section.

Surface Morphology of Heterogeneously Formed Mn Oxides. We used AFM to investigate
the surface morphology of heterogeneously formed Mn oxides. Figure 5 shows the representative
images of statistical analyses of the surface morphologies of formed Mn oxides, made by taking
at least an average of 20 locations for each sample. As shown in Figure 5a,d, without Na* or Mg**,
both small and large pieces of heterogeneously nucleated Mn oxide particles were observed at 6
hr, with heights of up to 30 nm. From 6 to 20 hr, the large pieces gradually grew bigger, and a few
narrow stripes of Mn oxides were also observed at 20 hr. In the presence of Na* (Figure 5b,e), Mn

oxide particles grew much faster and bigger than those formed without Na* or Mg?". Interestingly,
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in previous work on the homogenous formation of Mn oxides, we found that Na" increased the IS
and greatly inhibited the Mn oxidation rate.!” In contrast, for the Mn oxides heterogeneously
nucleated in the presence of Na* or Mg?*, more oxides were generated at a higher IS. At 20 hr,
long narrow stripes of Mn oxide became the dominant morphology. In the presence of Mg?* rather
than Na* (Figure 5c¢,f), fewer Mn oxides with smaller particle sizes and heights were initially
produced. Instead of narrow stripes, chains of small particles were observed at 20 hr. Thus, along
with the crystalline phase evolution, the morphology of the heterogeneously formed Mn oxides
also changed with time and presented differently in the presence or absence of additional Na* or
Mg?*. Note that the vertical orientation of the quartz substrates in the cuvette (Figure 1a) made it

highly unlikely that the large particles were generated from homogeneously formed Mn oxides.

To clearly observe the morphologies of Mn oxides without a quartz background,
heterogeneously formed Mn oxides were gently scraped from the quartz surface and placed on a
TEM grid. As shown in Figure 6, samples with and without additional cations had distinctively
different morphologies. Without Na* or Mg**, the large pieces of particles with large heights in
the AFM image overlie the thin flakes in the TEM image. The edges of the thin flakes are rolled
up owing to high surface tension, as previously reported.'® With coexisting Na*, Mn oxides grew
taller and much faster than in the absence of cations. The narrow stripes in the AFM images are a
large and thick island of Mn oxide in the TEM image. In contrast, with coexisting Mg**, chains of
small particles are observed in the TEM image, which match those in the AFM image. Figure S7
shows the selective area electron diffraction (SAED) patterns of Mn oxides formed at 20 hr.
Without Na* or Mg?*, the observed ring patterns suggest the heterogenous formation of amorphous
phases of Mn oxides, making it difficult to identify the phases. The SAED patterns of Mn oxides

formed with Na* indicate the presence of romanechite, while those formed with Mg?* indicate the
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formation of cryptomelane and groutite. The results are consistent with the findings by GIWAXS.
However, it is worth noting that, compared with GIWAXS, SAED patterns are generally more
challenging to use for phase identification, particularly for Mn oxides formed in the early stages
of the reaction. In addition, the quantity of Mn oxides formed on quartz was too small to be
observed with the naked eye, making it difficult to prepare heterogeneously formed Mn oxides

samples for TEM.

Comparison of the Crystalline Structures of Mn Oxides Homogeneously and
Heterogeneously Formed under Light Illumination. For easy comparison, Table 2 summarizes
the crystalline structures of the homogeneously and heterogeneously formed Mn oxides. For the
Mn oxides homogeneously formed without Na® or Mg?*, birnessite with a layer structure was
produced.'® " In the presence of Na*, we previously found that birnessite was also formed and Na*
was intercalated into the interlayer of the birnessite.!” The increased IS caused by NaCl enhanced
the crystallinity of birnessite.!” As shown in Figure S8, in the presence of Mg?", both todorokite
(3x3) and birnessite were generated. Mg?* was incorporated into the todorokite by interacting with
Mn(IIT) and located at the corner of the tunnel structure, which induced the formation of

todorokite.’”?

For the Mn oxides heterogeneously formed on quartz substrates without Na® or Mg*",
romanechite (3x2) was initially formed at 6 hr, and cryptomelane (2x2) and groutite (2x1) were
newly formed at 12 and 20 hr. This is probably a consequence of one large tunnel splitting into
two smaller tunnels of Mn oxides, by migrating the Mn atom from the intralayer to the interlayer
to construct tunnel walls.%* ¢! Mn-O bonds can be partially broken or weakened to enable an Mn
migration.’’ The structural stability and defects of Mn oxides also affected the phase evolution

process.®> © On the other hand, in the presence of Na', cryptomelane (2x2) was produced first,
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and gradually became romanechite (3x2) and groutellite (2x1). Two (2%2) tunnels were evolved
into one bigger (3%2) and one smaller (2x1) tunnel. It possibly stems from the migration of the
tunnel walls. In the presence of Mg?", romanechite (3x2) was initially generated at 6 hr. Both
romanechite (3x2) and groutite (2x1) were observed at 12 hr. By 20 hr, romanechite (3%2) has
disappeared and evolved to groutite (2x1) and cryptomelane (2x2). During the phase
transformation process, Mn(Ill) can play a crucial role. Mn(Ill) can be formed via the
comproportionation reaction between adsorbed Mn(II) and Mn(IV) in Mn oxides,** and then
adsorb at the vacant sites of Mn oxides. The Mn(III) can serve as a precursor for rapid structural
rearrangement.®® This rearrangement leads to the formation of tunnel walls in Mn oxides by
sharing oxygen atoms between Mn(I1I) octahedra adsorbed at vacancies of adjacent layers.®> % On
the other hand, in the presence of Mg?*, Mg** can complex with Mn(III) and affect the important
roles of Mn(1III) in the Mn migration.®” In addition, Mg** can stabilize the interlayer region and
support the formation of large tunnel structures at the early stage of the reaction.®® In contrast, Na*
facilitates the formation of smaller tunnels than that in the presence of Mg?".%° Large tunnel
structures were also observed in the absence of Na* or Mg?*, which may result from the fact that
the low ionic strength of the solution promotes the kinetics of Mn oxides formation.'” Notably,
although Cl radicals may have formed when CI” was added to the solution, in our previous study,
we found that the addition of 500 mM CI™ did not result in the generation of new crystalline
structures of Mn oxides.!® Moreover, in this study, we used much lower concentrations of C1~ than
in our previous study. Therefore, we believe that Cl radicals have negligible effects on the

formation and transformation of Mn oxides.

The diverse crystalline phases of Mn oxides formed during the phase evolution processes in

the presence of different cations. This finding suggests new insights into the occurrences of Mn
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oxides in the environment and provides an improved understanding of the abiotic formation
mechanism and diversity of natural Mn oxides. In addition, Mn oxides are promising adsorbents
for pollutants in wastewater. In particular, cryptomelane was used for the adsorption of Co?*, Zn**,
Pb**, and Cd**.%% % Cryptomelane and romanechite were employed as molecular sieve material.*"
42 An improved understanding of the nanostructures and crystallographic types of Mn oxides
would go far towards explaining their adsorption affinities for heavy metal ions.®® ¢° Further, Mn
oxides have been called a “catalytic Swiss army knife”,”® due to their important roles in catalytic
reactions. Especially, cryptomelane and groutellite can function as catalyst materials.*> ¢ The
structural features of Mn oxides significantly influence their catalytic selectivity and activity.*% 7!
Moreover, cryptomelane and romanechite were used as battery electrode materials.* ** In battery
applications, the nanostructures, crystallographic types, heterogeneity, and crystal morphologies
of Mn oxides greatly affect their electrochemical performance as electrode materials in energy
storage.”>’* Hence, our study can help to design a novel, environmentally friendly, and facile

pathway for synthesizing specific crystallographic types of Mn oxide, and can illuminate the phase

transformation of Mn oxides in these application areas.

= CONCLUSION

In summary, different from studies of the photochemically-induced abiotic homogeneous
formation of Mn oxides, this work showed the crystalline phase evolution and morphology
changes of heterogeneously formed Mn oxides on quartz substrates over time. The presence of
Na® or Mg?* not only affected the initial crystalline phase and phase evolution of the formed Mn
oxides, but also altered their surface morphology. These findings help us understand the natural

formation mechanism of diverse Mn oxides. This study also provides new insights into the
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pathways for synthesizing tailored Mn oxide crystalline structures for these engineering

applications.
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(S1) AFM image of the clean quartz substrate. (S2) Light spectrum of the Xenon arc lamp. (S3)
Reference peak values for XPS Mn 3p. (S4) Mn oxides heterogeneously formed over 3 hr. (S5)
GIWAXS characterization of the phase of the quartz substrate. (S6) XPS Mg KLL Auger spectra
of heterogeneously formed Mn oxides. (S7) Selective area electron diffraction patterns of

heterogeneously formed Mn oxides. (S8) XRD spectra of homogeneously formed Mn oxide solids.
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563  Figure 1. Schematics of (a) the flow-through cell for photochemically-induced heterogeneous
564  nucleation of MnO:2 on quartz substrates and (b) the GIWAXS experiment setup at beamline 12-
565 ID-B inthe APS, with the quartz substrate mounted on an alignment stage shown enlarged at lower

566  right.
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Figure 2. GIWAXS characterization of the phase of Mn oxides formed on a quartz substrate by
the photolysis of solutions containing 1 mM NaNO3 and 0.1 mM MnCl: at pH 9. After being
measured from one orientation, the quartz substrates were rotated 90 degrees for another
measurement (e.g., 6hr and 6hr R90) to get more scattering information from each sample. At
least five locations on each sample were measured, and duplicate samples were prepared for each

time point.
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Figure 3. Average Mn oxidation states of Mn 3p spectra calculated via Gaussian-Lorentzian fitting
of data for Mn oxides heterogeneously nucleated on a quartz substrate over time by the photolysis
of solutions containing 1 mM NaNO3 and 0.1 mM MnClz, at pH 9. At least duplicate samples were
prepared and measured for each time point. The error ranges of the Mn(Il), (III), and (IV)

percentages and the Mn average oxidation state (Mn avg) were determined from the standard

deviation of duplicate tests.
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582  Figure 4. GIWAXS characterization of the phase of Mn oxides formed on a quartz substrate by
583  photolysis of solutions containing 1 mM NaNOs3 and 0.1 mM MnCly, at pH 9, and (a) with 30 mM
584  NaCl or (b) with 10 mM MgClz. At least five locations on each sample were measured, and

585  duplicate samples were prepared for each time point.
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Figure 5. Representative AFM height mode images of Mn oxide heterogeneously nucleated on a
quartz substrate over time. Mn oxides were formed by photolysis of solutions containing 1 mM
NaNO3 and 0.1 mM MnCly, at pH 9, and (a) without Na* or Mg?", (b) with 30 mM NaCl, or (¢)
with 10 mM MgClz at 6 hr; (d-f) at 20 hr. For each sample, at least five different locations on the

quartz substrates were measured.
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Figure 6. Comparison of the morphologies of Mn oxide heterogeneously nucleated on a quartz
substrate by the photolysis of solutions containing 1 mM NaNO3 and 0.1 mM MnClz, at pH 9, and
(a) without Na* or Mg?*, (b) with 30 mM NaCl, or (¢) with 10 mM MgCl>. For each TEM image,
the morphology of the Mn oxides matches that in the white circle in the corresponding AFM image.

For each sample, at least five different locations on the TEM grids were measured.
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598 Table 1. Solution conditions in this study

Conditions NaNO3; (mM) MnCl> (mM) NaCl (mM) MgClx (mM) pH IS (mM)

C1 1 0.1 0 0 9.0+£0.1 1.3
C2 1 0.1 30 0 9.0+£0.1 31.3
C3 1 0.1 0 10 9.0+£0.1 31.3

599
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Table 2. Summary and comparison of the crystalline phases of the homogeneously or

heterogeneously nucleated Mn oxides. ¢

Conditions No Na* or Mg** With Na* With Mg?*
Homogeneous Birnessite (layer) Birnessite with a Todorokite (3%3)
formation high crystallinity and birnessite

(Ref. '® and 1) (Ref. 1) (Fig. S8, Ref. 37
Heterogeneous Romanechite (3x2)—  Cryptomelane (2x2)— Romanechite (3x2)—
formation on a Romanechite (3x2) Romanechite (3x2) Romanechite (3x2)
quartz substrate +Cryptomelane (2x2) +Groutellite (2x1) +Groutite (2x1)—

+Groutite (2x1) Groutite (2x1)

+Cryptomelane (2x2)
(This work) (This work) (This work)

“ Homogeneously or heterogeneously nucleated Mn oxides are formed by the photolysis of the
solutions containing 1 mM NaNO3, 0.1 mM MnCl2 under pH 9, without Na* or Mg?*"; with
additional Na®; or with additional Mg?*. For homogenous nucleation conditions, because of
forming Mn oxides and CO2 adsorption into the solution, the solution pH decreased to ~6 after 6

hr reaction.
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