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Quantum transducers convert quantum signals through hybrid interfaces of physical platforms in
quantum networks. Modeled as quantum communication channels, performance of unidirectional quantum
transduction can be measured by the quantum channel capacity. However, characterizing performance of

quantum transducers used for duplex quantum transduction where signals are converted bidirectionally

remains an open question. Here, we propose rate regions to characterize the performance of duplex

quantum transduction. Using this tool, we find that quantum transducers optimized for simultaneous
duplex transduction can outperform strategies based on the standard protocol of time-shared unidirectional
transduction. Integrated over the frequency domain, we demonstrate that the rate region can also
characterize quantum transducers with finite bandwidth.
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Introduction.—Quantum transducers convert quantum
signals between physically distinct carriers, enabling quan-
tum information exchange across multiple platforms in
quantum networks [1]. For example, a microwave-to-optical
quantum transducer [2—13] can distribute processed quan-
tum states stored in superconducting qubits over optical
fibers. Various designs of quantum transducers have been
developed, utilizing hybrid interfaces like electro-optics
[6,7,10,11,14], optomechanics [4,5,8,9,13,15-20], and
electromagnonics [13,21,22].

As devices for quantum state transfer, quantum trans-
ducers can be abstracted as quantum channels. Most
bosonic quantum transducers use red-detuned pumps
[3.4,6-10] to engineer a two-mode scattering process that
is equivalent to a beam splitter. The input signal of one
mode a (@, ;,) gets converted to the output signal of the
other mode @5 o (@ ou), yielding two unidirectional trans-
duction channels &£, and &, [Fig. 1(a)]. Oftentimes, only a
single channel is utilized to transduce the quantum signal
from one mode to the other, which we refer to as uni-
directional quantum transduction. The performance of
unidirectional quantum transduction is characterized by
the quantum capacity of either &£, or &, [23,24].

By leveraging both unidirectional transduction channels,
quantum signals can be converted bidirectionally which we
refer to as duplex quantum transduction [25]. Duplex
quantum transduction can be modeled as a quantum inter-
ference channel [26-28], with senders A(a; ;,) and B(a, ;)
and receivers C(@yoy) and D(aj o). The senders and
receivers can be distinct users by separating the input and
output signals of each mode with circulators [Fig. 1(b)]. For
example, a lossless beam splitter with efficiency T [Fig. 1(c)]
implements a quantum interference channel:
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Easp Qrou = \/Tfll,in + V1 =Tay,,
Erpoct Apow = ﬁflz,in = V1 =Tay,. (1)

One strategy for duplex quantum transduction is to alternate
between using £; and &,, while simultaneous transduction
of uncorrelated input signals &, ;, and a,;, may be more
efficient. However, £; and &, can interfere with each other
when put in use simultaneously, e.g., the input signal & ;, for
&, acts as added noise for &, in abeam splitter [Eq. (1)]. Asa
result, characterizing the performance of duplex quantum
transduction requires a new metric beyond the quantum
capacities of the individual unidirectional transduction
channels.

We propose to use the achievable information rate region
as the performance metric. The achievable rates of a
quantum device depend on the quantum channels it imple-
ments as well as the input signal encodings, with channel
parameters [such as T in Eq. (1)] determined by the
physical device parameters. In duplex quantum transduc-
tion, both transduction channels &£, and &, transmit
quantum information at rates /; and I,, respectively. For
simultaneous duplex transduction, the pair of achievable
rates (I,1,) depends on how we encode quantum infor-
mation into quantum signals. By varying the encodings for
ayin and a,;,, we obtain a two-dimensional region of
achievable information rates {(/, I,)} [Fig. 1(d)]. The rate
region characterizes the performance of simultaneous
duplex transduction and its boundary indicates the opti-
mized coding strategies. Past studies have also employed
rate regions or capacity regions to study the trade-off
among multiple quantum channels, albeit limited to send-
ing classical information [26,27,29-31] or distributing
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FIG. 1. (a) Quantum signals converted from one mode to the

other with a quantum transducer, where &£, and &, are the
unidirectional transduction channels. (b) Separating the input
and output signals of each mode with circulators. (c) Beam
splitter with efficiency 7. (d) Schematic of the rate region (black
line) for duplex quantum transduction. Blue dots: quantum
capacity of the unidirectional transduction channels. Gray dashed
line: achievable rates for the time-shared unidirectional
transduction.

entanglement in qubit-based quantum networks [32-35].
So far, there is no analysis investigating the achievable
quantum information rate region at the hardware level, such
as quantum transducers.

Furthermore, we can combine simultaneous duplex
transduction with the time-sharing strategy, where we
alternate between different signal encodings and even
device parameters. This leads to a new region of achievable
rates that is the convex hull of the original region, and we
refer to the new region as the time-sharing achievable rate
region. For example, we can perform transduction in one
direction with £; for 40% of the time and in the opposite
direction with &, for the remaining 60% of the time [black
dot, Fig. 1(d)]. Notably, when the original region is not
convex, time-sharing can offer an additional performance
boost for duplex quantum transduction.

In this Letter, we define the (time-sharing) achievable
rate region and apply the tool to characterize the perfor-
mance of two-mode quantum transducers. We demonstrate
that a sizable portion of quantum transducers can benefit
from simultaneously transducing quantum signals in both
directions. We also discuss how reflectionless scattering
leads to the optimal duplex quantum transduction, as well
as the effect of finite bandwidth.

Rate regions of duplex quantum transduction.—We
consider quantum transducers with a linear input-output
relation

aji out Ay in
az out as in

=S ; (2)
Ay out Ay in

where the scattering matrix § is unitary and depends on the
device parameters of the transducer [3]. We choose ports 1
and 2 as the signal ports, and &,.,;, are the injected
vacuum noise from the internal loss channels. The two
transduction channels are

Elamp ' Qaou = $21Q1jn + Sndojn + E S0 jns
n>2

Erpoct Alow = S120nin + S118yjn + E Sinlp jn- (3)

n>2

Intuitively, the transmission coefficients S;, and S,; deter-
mine the transduction efficiency, while the reflection
coefficients Sy; and S,, lead to the interference between
& 1 and 52.

Here we define the achievable information rates for
simultaneous duplex transduction. For a quantum channel
E: L(H) - L(H), the achievable rate of quantum infor-
mation with an input state p is measured by the coherent
information I(&, p) [36]. Let [w) € H @ H' be a purifica-
tion of p; we have

I(&,p) =HIEP) - HI(E®T) (W) {wl],  (4)

where H(p) is the von Neumann entropy of p and Z’ is the
identity map on H'. For I(€,p) < 0, the achievable rate is
0. Generalizing to a quantum interference channel
E(A,B)—>(C,D): ﬁ(Hl ® H2> - E(Hl ® Hz), the simulta-
neously achievable information rates (1, I,) with uncorre-
lated input state p; ® p, are

1(E.p1 ® pr) =1(E1.p1)s
L(E.p1 ® p2) = 1(E3, o).

Given the challenges in determining the quantum capac-
ity for lossy channels with added noise [37-40], we focus
on the rate region achievable with thermal input states as a
lower bound. When the input signals of £ and &, are
thermal states with average photon number N and N,, the
outputs are also thermal states with photon number N} =
TN, + R,N, and N, =TN,+ RN, [Fig. 2(a)]. Here
R; = |S;|* is the power reflection coefficient from port
i, T;j = |S;;|* is the power transmission coefficient from
port j to port i, and we assume T, = T,; = T. For finite
R, and R,, the reflected signal from one channel adds
thermal noise to the other channel, which leads to the trade-
off between /; and I, for simultaneous duplex transduction.
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FIG. 2. (a) Duplex transduction with thermal input states.

(b) The rate regions (blue dot and lines) and time-sharing rate
regions (gray lines) at 7 = 0.9 for different reflection coeffi-
cients (R, R;) = (0.03,0.03), (0.03,0), (0.003,0.003), (0,0).

The achievable rates (1, I,) for Eq. (3) with thermal input
states (N, N,) are (see Supplemental Material (SM) [41])

D N, —N, -1
1k<T,R1,R2,N1,N2>—h(N;)—h( et Ve = M )

2

D,—N,+ N, —1

where k = 1, 2,
h(x) = (x + Dlogy(x + 1) —xlogs(x).  (7)

and

Dy = /(N + N+ 12 —4TN, (N + 1), (8)

The rate region R= {(/,,1,)| V (N, N,)} only depends
on channel parameters (7,R;,R,). We could combine
simultaneous duplex transduction with the time-sharing
protocol, and the resulting time-sharing rate region is the
convex hull R = Conv(R). Additionally, numerical evi-
dence suggests that thermal encodings are likely optimal
among general Gaussian encodings (see SM [41]). The rate
regions can be calculated similarly when the environment
injects thermal noise rather than vacuum noise via the
internal loss channels &,,.,;, (see SM [41]).

The rate region R can be determined from its boundary
OR. For the special cases of unidirectional quantum trans-
duction with (N, N,) = (00,0) and (0, ), we achieve
information rates (/,,,,0) and (0, I,,,) on dR [Fig. 2(b),
blue dots]. Here I, = max{log,(7/(1 —T)),0} is the
quantum capacity of the pure-loss channel [48]. For I; > 0
and I, >0, R corresponds to a continuous mapping
(N{,N,) = (I;,1,) and 0R can be solved numerically
with the low-rank Jacobian condition det(J) = 0, where
J is the 2 x 2 Jacobian matrix. In Fig. 2(b), we plot the rate

regions R (blue lines and dots) and R (gray lines) for

different reflection coefficients (R, R,). We choose T =
0.9 with I, ~3.17.

Finite reflection R, results in a noticeable discontinuity of
the boundary dR at the I, axis [Figs. 2(b)i—2(b)iii]. This can
be explained from the upper bound on the thermal-loss
capacity [49-51]. Assuming R; > 0, the channel &, p_.cisa
thermal loss channel with noise photon N = RN /(1 = T).
From the upper bound [49-51]

we must have N; < (2T —1)/2R; to achieve a positive
information rate /, > 0. On the other hand, when 7, = 0 the
quantum capacity I; = I,,,, s achieved at N; — oo, which
leads to the discontinuity at 7, = 0.

If one side is reflectionless with R, = 0, the disconti-
nuity of dR vanishes at the I, axis [Fig. 2(b)ii I, axis]. If
both sides are reflectionless, there is no interference
between the two transduction channels and the maximal
square region can be achieved [Fig. 2(b)iv]. Therefore it is
possible to outperform the time-shared unidirectional trans-
duction [Fig. 1(d) gray dashed line] with the simultaneous
duplex transduction, as long as the reflection coefficients
are small [Figs. 2(b)ii—2(b)iv].

So far we have only considered direct transduction
without adaptive control [23] or shared entanglement
[52-54]. In the SM [41], we briefly discuss duplex
quantum transduction assisted with local operations and
classical communication, along with the scenario where the
senders are the same as the receivers which allows one to
use the interference-based techniques [55,56].

Optimized transduction protocols.—Here we apply the
tool of rate regions to analyze a physical transducer model.
The channel parameters (7, R, R,), and thus the achiev-
able rates, depend on the device parameters of the trans-
ducer. We therefore generalize the achievable rate regions
to include not only different signal encodings but also
different device parameters. The boundary of the resulting
rate region leads to optimized signal encodings and device
parameters for the transducer.

We consider a transducer model for frequency conver-
sion between two bosonic modes a,; and a, [Fig. 3(a)]. The
lab frame Hamiltonian is

I, < max {log2 { 9)

A

H=w,a]a, +yda, + g(a}aye'™' +a aye"),  (10)

where w; are the mode frequencies, w, is the pump
frequency and g is the interaction rate. An input signal
at frequency o in mode 1 gets converted to an output signal
at frequency @ + w, in mode 2, and vice versa. The
Hamiltonian in the rotating frame of the signal is

H = Ajaja, + Maha, + g(ala, +aay),  (11)

where Ay =w; —w and A, = 0y — 0, — o.

p
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FIG. 3. (a) Schematic of a physical transducer model. (b) Opti-
mized protocols achieving the boundary dR for the time-shared
duplex transduction at different «,. Here i—v correspond to
K, = 9.2, 9.66, 9.9, 10.05, 11.4, respectively.

Assuming mode k has external (internal) loss rate
Kie(i)» k =1, 2, the scattering matrix only depends on
the ratios x; . /k;; (see SM [41]). In practice, the loss rates
of two modes may differ by orders of magnitude, but the
ratios «,/k;; and k,,/k,; are often close [6,10,11].
Therefore, we assume symmetric loss rates ki) =
K2.0(i) = Ke(;y for simplicity and the more general case is
discussed in the SM [41]. The input-output relation is
given by

a1 out A1 in
é\12 out é\12 in
al =g M. (12)
al,out Aa1in
a3 out a3 in

where dy jnou) are the internal loss channels, and

I+xM Jx,x;M
VKM T+ M )

Here 7 is the 2 x 2 identity matrix, and

- A
M= <G+K +KI) , G:( ! g). (14)
2 g A

We focus on optimizing the detunings (A, A,) of the
transducer, while keeping other relevant parameters
(9,k.,k;) fixed. Besides the signal encodings (N, N,),
the achievable rates (,,7,) also depend on the device
parameters (A, A,, g,k,,k;). We therefore define the rate
region as R={(/;,1,)| V (Ny,N,,A;,A,)}. The opti-
mized signal encodings (N, N,) and detunings (A;, A,)

(13)

can be obtained from the boundary R of the time-sharing
rate region R.

The boundary of the rate region can be determined by
exploring several possible solutions. On the /; and I, axes,
the quantum capacity of unidirectional quantum transduc-
tion increases with the transmission coefficient. Therefore
we choose (A, A,) that leads to the highest transmission
rate T to achieve the information rates (1., 0) and (0, I,
ondR.Forl; > 0and, > 0, R corresponds to a continuous
mapping (N, N», Ay, Ay) — (I, 1,). The boundary oR as
extreme values of the mapping can be obtained by compar-
ing two possible solutions. One solution is from the low-
rank Jacobian condition rank(J) < 2, where J is the 2 x 4
Jacobian matrix. The other solution is from the reflectionless
condition with R, = 0 and N; — oo where k =1 or 2. We
consider this solution separately since the Jacobian matrix
may be undefined under the limit of N; — oo. The reflec-
tionless solution can be calculated analytically. For example,
R = 0 requires

Ke —K; (Ke+Ki)(492_KZ+K‘2)
A= A,, A= L, 15
! K, +K; g g \/ 4<Ke_Ki> ( )

which leads to the achievable rates at N; — o

()

— h[(1 = T)N,). (16)

T
I1(N,) = log, ~—— -
1,(N2) = h(TN,)

In practice, we expect an approximate reflectionless solution
with R, ~ 0 and finite N, due to input power constraints and
uncertainties in controlling the reflection coefficients.

We calculate the time-sharing rate region R(k,) for
several choices of k, at g=5 and «x; =1 [Fig. 3(b)].
The boundary oR may be composed of one or more types
of the protocols: reflectionless (red), low-rank Jacobian
(green), and time-sharing (gray). For example, for 9.63 <
kK, < 9.68 the boundary contains all three types of pro-
tocols [Fig. 3(b)ii] while for x, > 11.28 or k, < 6.2 the
optimized protocol is time-shared unidirectional transduc-
tion. It is also worth mentioning that for 6.2 < x, < 11.28
the transducers benefit from the simultaneous duplex
transduction.

If both k, and detunings are tunable, it can be proved that
the highest transmission rate 7 occurs when Ry = R, =0
(see SM [41]). Therefore the optimal duplex quantum
transduction is achieved with the two-sided reflectionless

condition at x, = \/4¢” + k% and A; = A, = 0 [Fig. 3(b)
iv]. In other words, R(+/4¢% + «2) is the largest possible
region in the sense that R(x,) C R(\/4¢? + «?) for any «,.

Frequency-integrated rate region.—A quantum trans-
ducer usually has a finite conversion bandwidth, which
determines the range of signal frequencies that can be
converted efficiently [57]. A larger bandwidth enables
higher operation speed of the transducer, and is preferable
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FIG. 4. (a) The time-sharing rate regions R(A) for different
signal frequencies. Here g = 5, kx, = 9, k; = 1 are fixed. (b) Com-
paring the maximal I,(A) + I,(A) with the quantum capacity
Inax (A). (¢) Frequency-integrated rate region If{ml over all regions
R(A) in (a).

in the presence of decoherence. Within the bandwidth,
quantum signals at multiple frequencies can be trans-
duced independently with frequency-dependent conversion
efficiencies.

We can perform duplex quantum transduction in parallel
for various signal frequencies, and the frequency-dependent
scattering matrices result in distinct achievable rate regions
that vary with frequency. Let w, = @, + w, for the trans-
ducer model Eq. (11); the signal detuning in the rotating
frame becomes A; = A, = A, and the frequency-dependent
rate region is R(A)={[I,(A),1,(A)]| V (N,N,)}. We plot
the time-sharing rate regions R(A) for multiple A [Fig. 4(a)],
and compare max[/; (A) + I,(A)] with the quantum capac-
ity 1,0 (A) [Fig. 4(b)]. For A within the gray shaded region,
simultaneous duplex transduction is advantageous, while
outside this region time-shared unidirectional transduction
is the optimal protocol.

To obtain the total achievable rate region, we sum the
contributions from the individual rate regions at each signal
frequency [Fig. 4(a)]. The frequency-integrated rate region
for time-shared duplex transduction is defined as

ﬁmt = /GB Ifi(a))da)
~5(--- ®R(w_) ®R(w) ®R(w;1) ®---).  (17)

where {w;} is a set of evenly spaced frequencies with a
frequency spacing 5, and A @ B={a + blacA,beB} is
the Minkowski sum [58] of two sets A and B. For general
sets the complexity of the Minkowski sum is O(|A||B|),
while for convex sets A and B in R? the complexity is
O(|0A| + |0B|) [58]. Therefore numerical evaluation of
I-:itot is efficient since R is convex in R2.

We calculate the Minkowski sum of all rate regions R(A)
in Fig. 4(a), and the resulting frequency-integrated rate

region Ifitot is shown in Fig. 4(c). The boundary 0ﬁtot can be
achieved with frequency dependent protocols. For example,
to realize the orange part of dR,, with a slope of —1, we
choose the simultaneous duplex transduction protocol that
maximizes /| (A) + I,(A) [Fig. 4(a) orange dots] for signal
detuning A within the gray shaded region in Fig. 4(b). For
other A, we perform the time-shared unidirectional trans-
duction. Benefiting from simultaneous duplex transduc-
tion, the frequency-integrated rate region outperforms the
time-shared unidirectional transduction [Fig. 4(c), gray
dashed line].

Discussion.—We proposed the (time-sharing) rate region
to quantify the performance of duplex quantum trans-
duction and studied optimized protocols for a two-mode
quantum transducer. Unlike unidirectional quantum trans-
duction, duplex quantum transduction is influenced by the
reflection coefficients, and we explored how the reflection-
less condition can be related to the optimal duplex quantum
transduction. Furthermore, we incorporated the finite
bandwidth of the transducer and introduced the fre-
quency-integrated rate region. In future works, it would
be interesting to consider non-Gaussian encodings (see SM
[41]), as well as other approaches to quantum transduction
such as adaptive control [23], shared entanglement [52-54],
and interference-based methods [55,56]. Our method can
also be extended to analyze the performance of multiplex
quantum hardware with more than two quantum channels,
such as characterizing the performance of a 3-port quantum
circulator with a three-dimensional rate region. Exploring
alternative performance metrics [59] for duplex quantum
transduction may provide further insights.
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