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Quantum transducers convert quantum signals through hybrid interfaces of physical platforms in

quantum networks. Modeled as quantum communication channels, performance of unidirectional quantum

transduction can be measured by the quantum channel capacity. However, characterizing performance of

quantum transducers used for duplex quantum transduction where signals are converted bidirectionally

remains an open question. Here, we propose rate regions to characterize the performance of duplex

quantum transduction. Using this tool, we find that quantum transducers optimized for simultaneous

duplex transduction can outperform strategies based on the standard protocol of time-shared unidirectional

transduction. Integrated over the frequency domain, we demonstrate that the rate region can also

characterize quantum transducers with finite bandwidth.
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Introduction.—Quantum transducers convert quantum

signals between physically distinct carriers, enabling quan-

tum information exchange across multiple platforms in

quantumnetworks [1]. For example, amicrowave-to-optical

quantum transducer [2–13] can distribute processed quan-

tum states stored in superconducting qubits over optical

fibers. Various designs of quantum transducers have been

developed, utilizing hybrid interfaces like electro-optics

[6,7,10,11,14], optomechanics [4,5,8,9,13,15–20], and

electromagnonics [13,21,22].

As devices for quantum state transfer, quantum trans-

ducers can be abstracted as quantum channels. Most

bosonic quantum transducers use red-detuned pumps

[3,4,6–10] to engineer a two-mode scattering process that

is equivalent to a beam splitter. The input signal of one

mode â1;inðâ2;inÞ gets converted to the output signal of the

other mode â2;outðâ1;outÞ, yielding two unidirectional trans-

duction channels E1 and E2 [Fig. 1(a)]. Oftentimes, only a

single channel is utilized to transduce the quantum signal

from one mode to the other, which we refer to as uni-

directional quantum transduction. The performance of

unidirectional quantum transduction is characterized by

the quantum capacity of either E1 or E2 [23,24].

By leveraging both unidirectional transduction channels,

quantum signals can be converted bidirectionally which we

refer to as duplex quantum transduction [25]. Duplex

quantum transduction can be modeled as a quantum inter-

ference channel [26–28], with senders Aðâ1;inÞ and Bðâ2;inÞ
and receivers Cðâ2;outÞ and Dðâ1;outÞ. The senders and

receivers can be distinct users by separating the input and

output signals of each modewith circulators [Fig. 1(b)]. For

example, a lossless beam splitterwith efficiencyT [Fig. 1(c)]

implements a quantum interference channel:

E1;A→D∶ â2;out ¼
ffiffiffiffi

T
p

â1;in þ
ffiffiffiffiffiffiffiffiffiffiffi

1 − T
p

â2;in;

E2;B→C∶ â1;out ¼
ffiffiffiffi

T
p

â2;in −
ffiffiffiffiffiffiffiffiffiffiffi

1 − T
p

â1;in: ð1Þ

One strategy for duplex quantum transduction is to alternate

between using E1 and E2, while simultaneous transduction

of uncorrelated input signals â1;in and â2;in may be more

efficient. However, E1 and E2 can interfere with each other

when put in use simultaneously, e.g., the input signal â1;in for

E1 acts as added noise for E2 in a beam splitter [Eq. (1)]. As a

result, characterizing the performance of duplex quantum

transduction requires a new metric beyond the quantum

capacities of the individual unidirectional transduction

channels.

We propose to use the achievable information rate region

as the performance metric. The achievable rates of a

quantum device depend on the quantum channels it imple-

ments as well as the input signal encodings, with channel

parameters [such as T in Eq. (1)] determined by the

physical device parameters. In duplex quantum transduc-

tion, both transduction channels E1 and E2 transmit

quantum information at rates I1 and I2, respectively. For

simultaneous duplex transduction, the pair of achievable

rates ðI1; I2Þ depends on how we encode quantum infor-

mation into quantum signals. By varying the encodings for

â1;in and â2;in, we obtain a two-dimensional region of

achievable information rates fðI1; I2Þg [Fig. 1(d)]. The rate
region characterizes the performance of simultaneous

duplex transduction and its boundary indicates the opti-

mized coding strategies. Past studies have also employed

rate regions or capacity regions to study the trade-off

among multiple quantum channels, albeit limited to send-

ing classical information [26,27,29–31] or distributing
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entanglement in qubit-based quantum networks [32–35].

So far, there is no analysis investigating the achievable

quantum information rate region at the hardware level, such

as quantum transducers.

Furthermore, we can combine simultaneous duplex

transduction with the time-sharing strategy, where we

alternate between different signal encodings and even

device parameters. This leads to a new region of achievable

rates that is the convex hull of the original region, and we

refer to the new region as the time-sharing achievable rate

region. For example, we can perform transduction in one

direction with E1 for 40% of the time and in the opposite

direction with E2 for the remaining 60% of the time [black

dot, Fig. 1(d)]. Notably, when the original region is not

convex, time-sharing can offer an additional performance

boost for duplex quantum transduction.

In this Letter, we define the (time-sharing) achievable

rate region and apply the tool to characterize the perfor-

mance of two-mode quantum transducers. We demonstrate

that a sizable portion of quantum transducers can benefit

from simultaneously transducing quantum signals in both

directions. We also discuss how reflectionless scattering

leads to the optimal duplex quantum transduction, as well

as the effect of finite bandwidth.

Rate regions of duplex quantum transduction.—We

consider quantum transducers with a linear input-output

relation
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; ð2Þ

where the scattering matrix S is unitary and depends on the

device parameters of the transducer [3]. We choose ports 1

and 2 as the signal ports, and ân>2;in are the injected

vacuum noise from the internal loss channels. The two

transduction channels are

E1;A→D∶ â2;out ¼ S21â1;in þ S22â2;in þ
X

n>2

S2nân;in;

E2;B→C∶ â1;out ¼ S12â2;in þ S11â1;in þ
X

n>2

S1nân;in: ð3Þ

Intuitively, the transmission coefficients S12 and S21 deter-
mine the transduction efficiency, while the reflection

coefficients S11 and S22 lead to the interference between

E1 and E2.

Here we define the achievable information rates for

simultaneous duplex transduction. For a quantum channel

E∶ LðHÞ → LðHÞ, the achievable rate of quantum infor-

mation with an input state ρ̂ is measured by the coherent

information IðE; ρ̂Þ [36]. Let jψi∈H ⊗ H0 be a purifica-

tion of ρ̂; we have

IðE; ρ̂Þ≡H½Eðρ̂Þ� −H½ðE ⊗ I 0Þðjψihψ jÞ�; ð4Þ

where Hðρ̂Þ is the von Neumann entropy of ρ̂ and I 0 is the
identity map on H0. For IðE; ρ̂Þ < 0, the achievable rate is

0. Generalizing to a quantum interference channel

EðA;BÞ→ðC;DÞ∶ LðH1 ⊗ H2Þ → LðH1 ⊗ H2Þ, the simulta-

neously achievable information rates ðI1; I2Þ with uncorre-

lated input state ρ̂1 ⊗ ρ̂2 are

I1ðE; ρ̂1 ⊗ ρ̂2Þ≡ IðE1; ρ̂1Þ; E1ð·Þ ¼ Tr1Eð·; ρ̂2Þ;
I2ðE; ρ̂1 ⊗ ρ̂2Þ≡ IðE2; ρ̂2Þ; E2ð·Þ ¼ Tr2Eðρ̂1; ·Þ: ð5Þ

Given the challenges in determining the quantum capac-

ity for lossy channels with added noise [37–40], we focus

on the rate region achievable with thermal input states as a

lower bound. When the input signals of E1 and E2 are

thermal states with average photon number N1 and N2, the

outputs are also thermal states with photon number N0
1
¼

TN1 þ R2N2 and N0
2
¼ TN2 þ R1N1 [Fig. 2(a)]. Here

Ri ¼ jSiij2 is the power reflection coefficient from port

i, Tij ¼ jSijj2 is the power transmission coefficient from

port j to port i, and we assume T12 ¼ T21 ≡ T. For finite
R1 and R2, the reflected signal from one channel adds

thermal noise to the other channel, which leads to the trade-

off between I1 and I2 for simultaneous duplex transduction.

Transducer

Mode 1:

Mode 2:

(a)

(d)

40%

60%

(c)

Transducer

(b)

B

A C

D

FIG. 1. (a) Quantum signals converted from one mode to the

other with a quantum transducer, where E1 and E2 are the

unidirectional transduction channels. (b) Separating the input

and output signals of each mode with circulators. (c) Beam

splitter with efficiency T. (d) Schematic of the rate region (black

line) for duplex quantum transduction. Blue dots: quantum

capacity of the unidirectional transduction channels. Gray dashed

line: achievable rates for the time-shared unidirectional

transduction.
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The achievable rates ðI1; I2Þ for Eq. (3) with thermal input

states ðN1; N2Þ are (see Supplemental Material (SM) [41])

IkðT; R1; R2; N1; N2Þ ¼ hðN0
kÞ − h

�

Dk þ N0
k − Nk − 1

2

�

− h

�

Dk − N0
k þ Nk − 1

2

�

; ð6Þ

where k ¼ 1, 2,

hðxÞ ¼ ðxþ 1Þlog2ðxþ 1Þ − xlog2ðxÞ; ð7Þ

and

Dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNk þ N0
k þ 1Þ2 − 4TNkðNk þ 1Þ

q

: ð8Þ

The rate region R≡ fðI1; I2Þj ∀ ðN1; N2Þg only depends

on channel parameters ðT; R1; R2Þ. We could combine

simultaneous duplex transduction with the time-sharing

protocol, and the resulting time-sharing rate region is the

convex hull R̃ ¼ ConvðRÞ. Additionally, numerical evi-

dence suggests that thermal encodings are likely optimal

among general Gaussian encodings (see SM [41]). The rate

regions can be calculated similarly when the environment

injects thermal noise rather than vacuum noise via the

internal loss channels ân>2;in (see SM [41]).

The rate region R can be determined from its boundary

∂R. For the special cases of unidirectional quantum trans-

duction with ðN1; N2Þ ¼ ð∞; 0Þ and ð0;∞Þ, we achieve

information rates ðImax; 0Þ and ð0; ImaxÞ on ∂R [Fig. 2(b),

blue dots]. Here Imax ¼ maxflog2ðT=ð1 − TÞÞ; 0g is the

quantum capacity of the pure-loss channel [48]. For I1 > 0

and I2 > 0, R corresponds to a continuous mapping

ðN1; N2Þ → ðI1; I2Þ and ∂R can be solved numerically

with the low-rank Jacobian condition detðJÞ ¼ 0, where

J is the 2 × 2 Jacobian matrix. In Fig. 2(b), we plot the rate

regions R (blue lines and dots) and R̃ (gray lines) for

different reflection coefficients ðR1; R2Þ. We choose T ¼
0.9 with Imax ≈ 3.17.

Finite reflectionRk results in a noticeable discontinuity of

the boundary ∂R at the Ik axis [Figs. 2(b)i–2(b)iii]. This can
be explained from the upper bound on the thermal-loss

capacity [49–51]. AssumingR1 > 0, the channel E2;B→C is a

thermal loss channel with noise photon N̄ ¼ R1N1=ð1 − TÞ.
From the upper bound [49–51]

I2 ≤ max

�

log2

�

T − ð1 − TÞN̄
ð1 − TÞðN̄ þ 1Þ

�

; 0

�

; ð9Þ

we must have N1 < ð2T − 1Þ=2R1 to achieve a positive

information rate I2 > 0. On the other hand, when I2 ¼ 0 the

quantum capacity I1 ¼ Imax is achieved at N1 →∞, which

leads to the discontinuity at I2 ¼ 0.

If one side is reflectionless with Rk ¼ 0, the disconti-

nuity of ∂R vanishes at the Ik axis [Fig. 2(b)ii I2 axis]. If

both sides are reflectionless, there is no interference

between the two transduction channels and the maximal

square region can be achieved [Fig. 2(b)iv]. Therefore it is

possible to outperform the time-shared unidirectional trans-

duction [Fig. 1(d) gray dashed line] with the simultaneous

duplex transduction, as long as the reflection coefficients

are small [Figs. 2(b)ii–2(b)iv].

So far we have only considered direct transduction

without adaptive control [23] or shared entanglement

[52–54]. In the SM [41], we briefly discuss duplex

quantum transduction assisted with local operations and

classical communication, along with the scenario where the

senders are the same as the receivers which allows one to

use the interference-based techniques [55,56].

Optimized transduction protocols.—Here we apply the

tool of rate regions to analyze a physical transducer model.

The channel parameters ðT; R1; R2Þ, and thus the achiev-

able rates, depend on the device parameters of the trans-

ducer. We therefore generalize the achievable rate regions

to include not only different signal encodings but also

different device parameters. The boundary of the resulting

rate region leads to optimized signal encodings and device

parameters for the transducer.

We consider a transducer model for frequency conver-

sion between two bosonic modes â1 and â2 [Fig. 3(a)]. The
lab frame Hamiltonian is

Ĥ¼ω1â
†

1
â1þω2â

†

2
â2þg

	

â†
1
â2e

iωptþ â1â
†

2
e−iωpt




; ð10Þ

where ωk are the mode frequencies, ωp is the pump

frequency and g is the interaction rate. An input signal

at frequency ω in mode 1 gets converted to an output signal

at frequency ωþ ωp in mode 2, and vice versa. The

Hamiltonian in the rotating frame of the signal is

Ĥ ¼ Δ1â
†

1
â1 þ Δ2â

†

2
â2 þ g

	

â†
1
â2 þ â1â

†

2




; ð11Þ

where Δ1 ¼ ω1 − ω and Δ2 ¼ ω2 − ωp − ω.

i iiiii iv

(a)

(b)

FIG. 2. (a) Duplex transduction with thermal input states.

(b) The rate regions (blue dot and lines) and time-sharing rate

regions (gray lines) at T ¼ 0.9 for different reflection coeffi-

cients ðR1; R2Þ ¼ ð0.03; 0.03Þ; ð0.03; 0Þ; ð0.003; 0.003Þ; ð0; 0Þ.
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Assuming mode k has external (internal) loss rate

κk;eðiÞ; k ¼ 1, 2, the scattering matrix only depends on

the ratios κk;e=κk;i (see SM [41]). In practice, the loss rates

of two modes may differ by orders of magnitude, but the

ratios κ1;e=κ1;i and κ2;e=κ2;i are often close [6,10,11].

Therefore, we assume symmetric loss rates κ1;eðiÞ ¼
κ2;eðiÞ ≡ κeðiÞ for simplicity and the more general case is

discussed in the SM [41]. The input-output relation is

given by

0

B

B

B

@

â1;out

â2;out

ã1;out

ã2;out

1

C

C

C

A

¼ S

0

B

B

B

@

â1;in

â2;in

ã1;in

ã2;in

1

C

C

C

A

; ð12Þ

where ãk;inðoutÞ are the internal loss channels, and

S ¼
�

I þ κeM
ffiffiffiffiffiffiffiffi

κeκi
p

M
ffiffiffiffiffiffiffiffi

κeκi
p

M I þ ffiffiffiffi

κi
p

M

�

: ð13Þ

Here I is the 2 × 2 identity matrix, and

M ¼ −

�

iGþ κe þ κi

2
I

�

−1

; G ¼
�

Δ1 g

g Δ2

�

: ð14Þ

We focus on optimizing the detunings ðΔ1;Δ2Þ of the

transducer, while keeping other relevant parameters

ðg; κe; κiÞ fixed. Besides the signal encodings ðN1; N2Þ,
the achievable rates ðI1; I2Þ also depend on the device

parameters ðΔ1;Δ2; g; κe; κiÞ. We therefore define the rate

region as R≡ fðI1; I2Þj ∀ ðN1; N2;Δ1;Δ2Þg. The opti-

mized signal encodings ðN1; N2Þ and detunings ðΔ1;Δ2Þ
can be obtained from the boundary ∂R̃ of the time-sharing

rate region R̃.

The boundary of the rate region can be determined by

exploring several possible solutions. On the I1 and I2 axes,
the quantum capacity of unidirectional quantum transduc-

tion increases with the transmission coefficient. Therefore

we choose ðΔ1;Δ2Þ that leads to the highest transmission

rate T to achieve the information rates ðImax; 0Þ and ð0; ImaxÞ
on ∂R. For I1 > 0 and I2 > 0,R corresponds to a continuous

mapping ðN1; N2;Δ1;Δ2Þ → ðI1; I2Þ. The boundary ∂R as

extreme values of the mapping can be obtained by compar-

ing two possible solutions. One solution is from the low-

rank Jacobian condition rankðJÞ < 2, where J is the 2 × 4

Jacobianmatrix. The other solution is from the reflectionless

condition with Rk ¼ 0 and Nk → ∞ where k ¼ 1 or 2. We

consider this solution separately since the Jacobian matrix

may be undefined under the limit of Nk → ∞. The reflec-

tionless solution can be calculated analytically. For example,

R1 ¼ 0 requires

Δ1¼
κe−κi

κeþκi
Δ2; Δ2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðκeþκiÞð4g2−κ2eþκ2i Þ
4ðκe−κiÞ

s

; ð15Þ

which leads to the achievable rates at N1 → ∞

I1ðN2Þ ¼ log2
T

1 − T
− h

�

R2N2

1þ T

2ð1 − TÞ

�

;

I2ðN2Þ ¼ hðTN2Þ − h½ð1 − TÞN2�: ð16Þ

In practice, we expect an approximate reflectionless solution

withRk ≈ 0 and finiteNk, due to input power constraints and

uncertainties in controlling the reflection coefficients.

We calculate the time-sharing rate region R̃ðκeÞ for

several choices of κe at g ¼ 5 and κi ¼ 1 [Fig. 3(b)].

The boundary ∂R̃ may be composed of one or more types

of the protocols: reflectionless (red), low-rank Jacobian

(green), and time-sharing (gray). For example, for 9.63 <
κe < 9.68 the boundary contains all three types of pro-

tocols [Fig. 3(b)ii] while for κe > 11.28 or κe < 6.2 the

optimized protocol is time-shared unidirectional transduc-

tion. It is also worth mentioning that for 6.2 < κe < 11.28

the transducers benefit from the simultaneous duplex

transduction.

If both κe and detunings are tunable, it can be proved that

the highest transmission rate T occurs when R1 ¼ R2 ¼ 0

(see SM [41]). Therefore the optimal duplex quantum

transduction is achieved with the two-sided reflectionless

condition at κe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4g2 þ κ2i

p

and Δ1 ¼ Δ2 ¼ 0 [Fig. 3(b)

iv]. In other words, R̃ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4g2 þ κ2i

p

Þ is the largest possible

region in the sense that R̃ðκeÞ ⊆ R̃ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4g2 þ κ2i

p

Þ for any κe.

Frequency-integrated rate region.—A quantum trans-

ducer usually has a finite conversion bandwidth, which

determines the range of signal frequencies that can be

converted efficiently [57]. A larger bandwidth enables

higher operation speed of the transducer, and is preferable

(a)

(b)

9.63 9.68

reflectionless low-rank Jacobian time-sharing

11.28

0 21
0

2

1

v

i ii iviii v

0 21
0

2

1

i

0 21
0

2

1

ii

0 21
0

2

1

iii

0 21
0

2

1

iv

6.2

FIG. 3. (a) Schematic of a physical transducer model. (b) Opti-

mized protocols achieving the boundary ∂R̃ for the time-shared

duplex transduction at different κe. Here i–v correspond to

κe ¼ 9.2, 9.66, 9.9, 10.05, 11.4, respectively.
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in the presence of decoherence. Within the bandwidth,

quantum signals at multiple frequencies can be trans-

duced independently with frequency-dependent conversion

efficiencies.

We can perform duplex quantum transduction in parallel

for various signal frequencies, and the frequency-dependent

scattering matrices result in distinct achievable rate regions

that vary with frequency. Let ω2 ¼ ωp þ ω1 for the trans-

ducer model Eq. (11); the signal detuning in the rotating

frame becomesΔ1 ¼ Δ2 ≡ Δ, and the frequency-dependent

rate region is RðΔÞ≡f½I1ðΔÞ;I2ðΔÞ�j∀ ðN1;N2Þg. We plot

the time-sharing rate regions R̃ðΔÞ formultipleΔ [Fig. 4(a)],

and compare max½I1ðΔÞ þ I2ðΔÞ� with the quantum capac-

ity ImaxðΔÞ [Fig. 4(b)]. ForΔwithin the gray shaded region,

simultaneous duplex transduction is advantageous, while

outside this region time-shared unidirectional transduction

is the optimal protocol.

To obtain the total achievable rate region, we sum the

contributions from the individual rate regions at each signal

frequency [Fig. 4(a)]. The frequency-integrated rate region

for time-shared duplex transduction is defined as

R̃tot≡

Z

⊕

R̃ðωÞdω

≈ δð� � �⊕ R̃ðωj−1Þ⊕ R̃ðωjÞ⊕ R̃ðωjþ1Þ⊕ � � �Þ; ð17Þ

where fωjg is a set of evenly spaced frequencies with a

frequency spacing δ, and A ⊕ B≡ faþ bja∈A; b∈Bg is

the Minkowski sum [58] of two sets A and B. For general

sets the complexity of the Minkowski sum is OðjAjjBjÞ,
while for convex sets A and B in R2 the complexity is

Oðj∂Aj þ j∂BjÞ [58]. Therefore numerical evaluation of

R̃tot is efficient since R̃ is convex in R2.

We calculate the Minkowski sum of all rate regions R̃ðΔÞ
in Fig. 4(a), and the resulting frequency-integrated rate

region R̃tot is shown in Fig. 4(c). The boundary ∂R̃tot can be

achieved with frequency dependent protocols. For example,

to realize the orange part of ∂R̃tot with a slope of −1, we

choose the simultaneous duplex transduction protocol that

maximizes I1ðΔÞ þ I2ðΔÞ [Fig. 4(a) orange dots] for signal
detuning Δ within the gray shaded region in Fig. 4(b). For

other Δ, we perform the time-shared unidirectional trans-

duction. Benefiting from simultaneous duplex transduc-

tion, the frequency-integrated rate region outperforms the

time-shared unidirectional transduction [Fig. 4(c), gray

dashed line].

Discussion.—We proposed the (time-sharing) rate region

to quantify the performance of duplex quantum trans-

duction and studied optimized protocols for a two-mode

quantum transducer. Unlike unidirectional quantum trans-

duction, duplex quantum transduction is influenced by the

reflection coefficients, and we explored how the reflection-

less condition can be related to the optimal duplex quantum

transduction. Furthermore, we incorporated the finite

bandwidth of the transducer and introduced the fre-

quency-integrated rate region. In future works, it would

be interesting to consider non-Gaussian encodings (see SM

[41]), as well as other approaches to quantum transduction

such as adaptive control [23], shared entanglement [52–54],

and interference-based methods [55,56]. Our method can

also be extended to analyze the performance of multiplex

quantum hardware with more than two quantum channels,

such as characterizing the performance of a 3-port quantum

circulator with a three-dimensional rate region. Exploring

alternative performance metrics [59] for duplex quantum

transduction may provide further insights.
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